Skip to content

Commit 59755bc

Browse files
committed
Added abstracts to publications
1 parent 4f82fe8 commit 59755bc

File tree

2 files changed

+102
-10
lines changed

2 files changed

+102
-10
lines changed

_bibliography/papers.bib

Lines changed: 95 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,101 +2,193 @@
22
---
33
44
@inproceedings{genath2021asim1,
5+
abbr={Paper},
56
author = {Genath, Jonas and Bergmann, Sören and Spieckermann, Sven and Stauber, Stephan and Feldkamp, Niclas},
67
title = {Entwicklung einer integrierten Lösung für das Data Farming und die Wissensentdeckung in Simulationsdaten},
78
booktitle = {Proceedings der ASIM Fachtagung „Simulation in Produktion und Logistik“},
89
year = {2021},
910
pages = {377--386},
1011
bibtex_show={true},
12+
abstract = {
13+
Simulation is an established methodology for planning and evaluating manufacturing and logistics systems. In contrast to classical simulation studies, the method of knowledge discovery in simulation data uses a simulation model as a data generator (data farming). Subsequently, hidden, previously unknown and potentially useful cause-effect relationships can be uncovered on the generated data using data mining and visual analytics methods. So far, however, there is a lack of integrated, easy-to-use software solutions for the application of the data farming in operational practice. This paper presents such an integrated solution, which allows for generating experiment designs, implements a method to distribute the necessary experiment runs, and provides the user with tools to analyze and visualize the result data.
14+
}
1115
}
1216

1317
@inproceedings{genath2021asim2,
18+
abbr={Paper},
1419
author = {Genath, Jonas and Bergmann, Sören and Feldkamp, Niclas and Straßburger, Steffen},
1520
title = {Automatisierung im Prozess der Wissensentdeckung in Simulationsdaten - Charakterisierung der Ergebnisdaten},
1621
booktitle = {Proceedings der ASIM Fachtagung „Simulation in Produktion und Logistik“},
1722
year = {2021},
1823
pages = {367--376},
1924
bibtex_show={true},
25+
abstract = {
26+
The traditional application of simulation in production and logistics is usually aimed at changing certain parameters in order to answer clearly defined objectives or questions. In contrast to this approach, the method of knowledge discovery in simulation data (KDS) uses a simulation model as a data generator (data farming). Subsequently using data mining methods, hidden, previously unknown and potentially useful cause-effect relationships can be uncovered. So far, however, there is a lack of guidelines and automatization-tools for non-experts or novices in KDS, which leads to a more difficult use in industrial applications and prevents a broader utilization. This paper presents a concept for automating the first step of the KDS, which is the process of characterization of the result data, using meta learning and validates it on small case study.
27+
}
2028
}
2129

2230
@inproceedings{genath2021wsc1,
31+
abbr={Paper},
2332
author = {Genath, Jonas and Bergmann, Soeren and Strassburger, Steffen and Stauber, Stephan and Spieckermann, Sven},
2433
title = {An Integrated Solution for Data Farming and Knowledge Discovery in Simulation Data: A Case Study of the Battery Supply of a Vehicle Manufacturer},
2534
booktitle = {Proceedings of the 2021 Winter Simulation Conference},
2635
address = {Phoenix, AZ, USA},
2736
year = {2021},
2837
bibtex_show={true},
38+
abstract = {
39+
The development of logistics concepts, here for supplying an automobile production with batteries, is a major challenge, especially when there are uncertainties. In order to mitigate this, the method of knowledge discovery in simulation data is to be applied here. In order to enable the planners to easily use the method, a tool that can be easily integrated into practical use (SimAssist-4farm) was developed.
40+
}
2941
}
3042

3143
@unpublished{genath2021wsc2,
44+
abbr={Vortrag},
3245
author = {Genath, Jonas},
3346
title = {Automation in the Process of Knowledge Discovery in Simulation Data},
3447
howpublished = {Proceedings 2021 Winter Simulation Conference, Vortrag und Poster},
3548
address = {Phoenix, AZ, USA},
3649
year = {2021},
37-
additional_info = {Winter Simulation Conference, Phoenix, AZ, USA, Vortrag und Poster}
50+
additional_info = {Winter Simulation Conference, Phoenix, AZ, USA, Vortrag und Poster},
51+
abstract = {
52+
In contrast to classical simulation studies, the method of knowledge discovery in simulation data uses a simulation model as a data generator (data farming). Subsequently using data mining methods, hidden, previously unknown and potentially useful cause-effect relationships can be uncovered. So far, however, there is a lack of support and automatization tools for non-experts or novices in knowledge discovery in simulation data, which leads to a more difficult use in industrial applications and prevents a broader utilization. In this work, we propose a concept which provides an approach for automating and supporting knowledge discovery in simulation data.
53+
}
3854
}
3955

4056
@article{genath2022zfwf,
57+
abbr ={Article},
4158
author = {Genath, Jonas and Bergmann, Soeren and Straßburger, Steffen and Spieckermann, Sven and Stauber, Stephan},
4259
title = {Data Farming und Wissensentdeckung in Simulationsdaten - Entwicklung einer integrierten Lösung},
4360
journal = {Zeitschrift für wirtschaftlichen Fabrikbetrieb},
4461
number = {3},
4562
year = {2022},
4663
bibtex_show={true},
64+
abstract = {
65+
Simulation als Methode der Digitalen Fabrik ist seit langem etabliert
66+
zur Unterstützung der Planung von Produktions- und Logistiksystemen.
67+
In Ergänzung zu bisher vorherrschenden Simulationsstudien
68+
wird bei der hier vorgestellten Methode der Wissensentdeckung in
69+
Simulationsdaten ein Simulationsmodell als Datengenerator verwendet.
70+
Dadurch können mittels Data-Mining- und Visual-Analytics-Methoden
71+
versteckte und potenziell nützliche Ursache-Wirkungs-Beziehungen
72+
in den generierten Daten aufgedeckt werden. Bislang fehlte es
73+
jedoch an integrierten Softwarelösungen für die Praxis.
74+
}
4775
}
4876

4977
@article{genath2022sne,
78+
abbr={Article},
5079
author = {Genath, Jonas and Bergmann, Sören and Spieckermann, Sven and Stauber, Stephan and Feldkamp, Niclas},
5180
title = {Development of an Integrated Solution for Data Farming and Knowledge Discovery in Simulation Data},
5281
journal = {Simulation Notes Europe},
5382
volume = {32},
5483
number = {2},
5584
year = {2022},
5685
bibtex_show={true},
86+
abstract = {
87+
Simulation is an established methodology for
88+
planning and evaluating manufacturing and logistics systems.
89+
In contrast to classical simulation studies, the
90+
method of knowledge discovery in simulation data uses a
91+
simulation model as a data generator (data farming). Subsequently,
92+
hidden, previously unknown and potentially
93+
useful cause-effect relationships can be uncovered on the
94+
generated data using data mining and visual analytics
95+
methods. So far, however, there was a lack of integrated,
96+
easy-to-use software solutions for the application of the
97+
data farming in operational practice. This paper presents
98+
such an integrated solution, which allows generating experiment
99+
designs, implements a method to distribute the
100+
necessary experiment runs, and provides the user with
101+
tools to analyze and visualize the result data.
102+
}
57103
}
58104

59105
@inproceedings{feldkamp2022wsc,
106+
abbr={Paper},
60107
author = {Feldkamp, Niclas and Genath, Jonas and Strassburger, Steffen},
61108
title = {Explainable AI for Data Farming Output Analysis: A Use Case for Knowledge Generation through Black-Box Classifiers},
62109
booktitle = {Proceedings of the 2022 Winter Simulation Conference},
63110
address = {Singapur, SGP},
64111
year = {2022},
65112
bibtex_show={true},
113+
abstract = {
114+
Data farming combines large-scale simulation experiments with high performance computing and
115+
sophisticated big data analysis methods. The portfolio of analysis methods for those large amounts of
116+
simulation data still yields potential to further development, and new methods emerge frequently. Among
117+
the most interesting are methods of explainable artificial intelligence (XAI). Those methods enable the use
118+
of black-box-classifiers for data farming output analysis, which has been shown in a previous paper. In this
119+
paper, we apply the concept for XAI-based data farming analysis on a complex, real world case study to
120+
investigate the suitability of such concept in a real world application, and we also elaborate on which blackbox
121+
classifiers are actually the most suitable for large-scale simulation data that accumulates in a data
122+
farming project.
123+
}
66124
}
67125

68126
@inproceedings{genath2023wsc,
127+
abbr={Paper},
69128
author = {Genath, Jonas and Strassburger, Steffen},
70129
title = {How Not to Visualize your Simulation Output Data},
71130
booktitle = {Proceedings of the 2023 Winter Simulation Conference},
72131
address = {San Antonio, TX, USA},
73132
year = {2023},
74133
bibtex_show={true},
134+
abstract ={
135+
Hybrid modeling and simulation studies combine well-defined methods from other disciplines with a
136+
simulation technique. Especially in the area of output data analysis of simulation studies, there is great
137+
potential for hybrid approaches that incorporate methods from machine learning and AI. For their successful
138+
application, the analytical capabilities of machine learning and AI must be combined with the interpretive
139+
capabilities of humans. In most cases, this connection is achieved through visualizations. As methods
140+
become more complicated, the demands on visualizations are increasing. In this paper, we conduct a data
141+
farming study and delve into the analysis of the output data. In doing so, we uncover typical errors in
142+
visualizations making the interpretation and evaluation of the data difficult or misleading. We then apply
143+
concepts of visual analytics to these visualizations and derive general guidelines to help simulation users
144+
to analyze their simulation studies and present results unambiguously and clearly.
145+
}
75146
}
76147

77148
@inproceedings{amthor2023codeocean,
149+
abbr = {Paper},
78150
author = {Genath, Jonas and Amthor, Peter and Döring, Ulf and Fischer, Daniel and Kreuzberger, Gunther},
79151
title = {Erfahrungen bei der Integration des Autograding-Systems CodeOcean in die universitäre Programmierausbildung},
80152
booktitle = {Proceedings of the sixth workshop "Automatische Bewertung von Programmieraufgaben"},
81153
publisher = {Gesellschaft für Informatik e. V.},
82154
year = {2023},
83155
bibtex_show={true},
156+
abstract = {
157+
Effective and efficient university programming education increasingly requires
158+
the use of automated assessment systems. As part of the examING2 project, the
159+
AutoPING subproject is testing the use of the open-source autograding system CodeOcean for comprehensive
160+
courses and exams at the Technical University of Ilmenau with the aim of enabling and promoting self-directed and
161+
competence-oriented learning. This article provides an overview of
162+
initial project experiences in adapting didactic scenarios in programming education to
163+
test-driven software development and the generation of feedback. It discusses key
164+
findings from the perspective of students and teachers, challenges and approaches to
165+
integrating and expanding CodeOcean for new fields of application, and
166+
opens up future perspectives.
167+
}
84168
}
85169

86170
@unpublished{kreuzberger2024turn,
171+
abbr={Vortrag},
87172
author = {Kreuzberger, Gunther and Genath, Jonas and Fischer, Daniel},
88173
title = {ChatGPT meets CodeOcean: Integeration KI-basierten Feedbacks in Autograder-Systeme},
89174
howpublished = {TURN Conference, Vortrag und Poster},
90175
address = {Berlin},
91176
year = {2024},
92-
additional_info = {TURN Conference, Berlin, Vortrag und Poster}
177+
additional_info = {TURN Conference, Berlin, Vortrag und Poster},
178+
abstract = {
179+
Im Projekt examING – Digitalisierung des kompetenzorientierten Prüfens für ingenieurwissenschaftliche Bachelorstudiengänge wird untersucht, wie Feedback zu Programmieraufgaben durch generative KI verbessert werden kann. Ziel ist es, Rückmeldungen individueller, differenzierter, konstruktiver und sprachlich variabler zu gestalten. Der entwickelte Ansatz motiviert Lernende durch praxisnahe Aufgaben, umfangreiche Übungsmöglichkeiten und integrierte Programmierwerkzeuge. Zur Umsetzung wurde ChatGPT über eine API in das webbasierte Autograder-System CodeOcean eingebunden. Mithilfe strukturierter Prompts wird sachorientiertes Feedback generiert, das gezielt auf die eingereichten Lösungen eingeht. Erste Ergebnisse zeigen, dass sich durch die KI-Integration qualitativ hochwertiges, anpassbares Feedback entlang definierter Dimensionen erzeugen lässt. Die nächsten Schritte umfassen die nutzerfreundliche Darstellung des Feedbacks, eine Evaluation der Akzeptanz sowie die Erweiterung auf weitere Anwendungsfälle wie Kommentaranfragen, Hinweiserstellungen und Aufgabenklärung. Das Projekt wird von der Stiftung Innovation in der Hochschullehre im Rahmen des Bund-Länder-Programms „Hochschule durch Digitalisierung stärken“ gefördert.
180+
}
93181
}
94182

95183
@unpublished{genath2025digitell,
184+
abbr={Vortrag},
96185
author = {Genath, Jonas and Fischer, Daniel},
97186
title = {Einsatz eines Autograders in der universitären Programmierausbildung zur Verbesserung des digital gestützten Lernens und Prüfens für Ingenieure},
98187
howpublished = {DigiTeLL – Digital Teaching and Learning Lab, Vortrag und Poster},
99188
address = {Frankfurt},
100189
year = {2025},
101-
additional_info = {DigiTeLL – Digital Teaching and Learning Lab, Frankfurt, Vortrag und Poster}
190+
additional_info = {DigiTeLL – Digital Teaching and Learning Lab, Frankfurt, Vortrag und Poster},
191+
abstract = {
192+
As part of the redesign of a course on operational digitization, the desire was expressed to also digitize teaching itself to a greater extent. The aim is to give students a basic understanding of programming so that they can better understand digital possibilities. The autograder CodeOcean was used as a suitable tool—a web-based open-source platform with a development environment, collaboration functions, and LMS integration. In the “examING” project, funded by the Foundation for Innovation in Higher Education, new digital teaching and examination formats for Python training were developed and tested with CodeOcean. So far, around 270 students have participated in the courses, and around 120 have taken digital exams. Feedback and observations accompanied the implementation. Automated assessment by CodeOcean facilitates individual learning and promotes targeted skills development. The article reflects on the experiences, identifies challenges, and outlines further developments, in particular the planned integration of generative AI such as ChatGPT to further improve feedback for students.
193+
}
102194
}

assets/json/resume.json

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
{
22
"basics": {
33
"name": "Jonas Genath",
4-
"label": "AI Developer and Data Scientist",
4+
"label": "AI Developer, Data Scientist, and Data Visualization Expert",
55
"image": "",
66
"email": "[email protected]",
77
"url": "https://cbblr.github.io/",
@@ -235,25 +235,25 @@
235235
],
236236
"projects": [
237237
{
238-
"name": "DaWiS",
238+
"name": "AutoPING",
239239
"summary": "Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers.",
240240
"highlights": [
241241
"Quantum Teleportation",
242242
"Quantum Cryptography"
243243
],
244-
"startDate": "2020-01-01",
245-
"endDate": "2021-12-31",
244+
"startDate": "2022-01-01",
245+
"endDate": "2025-09-30",
246246
"url": "https://example.com"
247247
},
248248
{
249-
"name": "AutoPING",
249+
"name": "DaWiS",
250250
"summary": "Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers.",
251251
"highlights": [
252252
"Quantum Teleportation",
253253
"Quantum Cryptography"
254254
],
255-
"startDate": "2022-01-01",
256-
"endDate": "2025-09-30",
255+
"startDate": "2020-01-01",
256+
"endDate": "2021-12-31",
257257
"url": "https://example.com"
258258
}
259259
]

0 commit comments

Comments
 (0)