@@ -49,7 +49,7 @@ All interactions will happen **only through GitHub** — no in-person hints will
49
49
| 2 | 08/29/2025 | Lecture - Arnaud Deza | Numerical ** optimization** for control (grad/SQP/QP); ALM vs. interior-point vs. penalty methods | [ 📚] ( https://learningtooptimize.github.io/LearningToControlClass/dev/class02/overview/ ) |
50
50
| 3 | 09/05/2025 | Lecture - Zaowei Dai | Pontryagin’s Maximum Principle; shooting & multiple shooting; LQR, Riccati, QP viewpoint (finite / infinite horizon) | |
51
51
| 4 | 09/12/2025 | ** External seminar 1** - Joaquim Dias Garcia| Dynamic Programming & Model-Predictive Control | |
52
- | 5 | 09/19/2025 | Lecture - Guancheng "Ivan" Qiu | ** Nonlinear** trajectory ** optimization** ; collocation; implicit integration | |
52
+ | 5 | 09/19/2025 | Lecture - Guancheng "Ivan" Qiu | ** Nonlinear** trajectory ** optimization** ; collocation; implicit integration | [ 📚 ] ( https://learningtooptimize.github.io/LearningToControlClass/dev/class05/class05/ ) |
53
53
| 6 | 09/26/2025 | ** External seminar 2** - Henrique Ferrolho | Trajectory ** optimization** on robots in Julia Robotics | |
54
54
| 7 | 10/03/2025 | Lecture - Jouke van Westrenen | Stochastic optimal control, Linear Quadratic Gaussian (LQG), Kalman filtering, robust control under uncertainty, unscented optimal control; | |
55
55
| 8 | 10/10/2025 | Lecture - Kevin Wu | Distributed optimal control & multi-agent coordination; Consensus, distributed MPC, and optimization over graphs (ADMM) ||
@@ -67,14 +67,12 @@ Students must provide materials equivalent to those used in an in-person session
67
67
68
68
| # | Format / Presenter | Topic & Learning Goals | Prep / Key Resources |
69
69
| ---| --------------------| ------------------------| ----------------------|
70
- | 15 | Lecture - TBD | Quaternions, Lie groups, and Lie algebras; attitude control; LQR with Attitude, Quadrotors; | |
71
- | 16 | Lecture - TBD | Stochastic optimal control, Linear Quadratic Gaussian (LQG), Kalman filtering, robust control under uncertainty, unscented optimal control; | |
72
- | 17 | Lecture - TBD | Trajectory Optimization with Obstacles; Convexification of Non-Convex Constraints ; | |
73
- | 18 | Lecture - Joe Ye | Robust control & min-max DDP (incl. PDE cases); chance constraints; Data-driven control & Model-Based RL-in-the-loop | |
70
+ | 15 | Lecture - Shuaicheng (Allen) Tong | Dynamic Optimal Control of Power Systems; Generators swing equations, Transmission lines electromagnetic transients, dynamic load models, and inverters. | |
71
+ | 16 | Lecture - Joe Ye | Robust control & min-max DDP (incl. PDE cases); chance constraints; Data-driven control & Model-Based RL-in-the-loop | |
72
+ | 17 | Lecture - TBD | Quaternions, Lie groups, and Lie algebras; attitude control; LQR with Attitude, Quadrotors ; | |
73
+ | 18 | Lecture - TBD | Trajectory Optimization with Obstacles; Convexification of Non-Convex Constraints; | |
74
74
| 19 | Lecture - TBD | Contact Explict and Contact Implicit; Trajectory Optimization for Hybrid and Composed Systems; | |
75
75
| 20 | Lecture - TBD | Probabilistic Programming; Bayesian numerical methods; Variational Inference; probabilistic solvers for ODEs/PDEs; Bayesian optimization in control; | |
76
- | 21 | Lecture - Kevin Wu | Distributed optimal control & multi-agent coordination; Consensus, distributed MPC, and optimization over graphs (ADMM). | |
77
- | 22 | Lecture - Shuaicheng (Allen) Tong | Dynamic Optimal Control of Power Systems; Generators swing equations, Transmission lines electromagnetic transients, dynamic load models, and inverters. | |
78
76
79
77
## Reference Material
80
78
0 commit comments