Skip to content

Commit 4c8b272

Browse files
author
ArnaudDeza
committed
Fix Class 2 documentation links to use full website URLs
- Update class02.md to use full documentation website URLs for HTML notebooks - Update overview.md to use full documentation website URLs for HTML notebooks - Fix relative path links to point to proper documentation site - Ensure all interactive materials are accessible from the course website This fixes broken links in the Class 2 documentation by using absolute URLs instead of relative paths, making the materials properly accessible from the course documentation website.
1 parent 9374491 commit 4c8b272

File tree

2 files changed

+13
-13
lines changed

2 files changed

+13
-13
lines changed

class02/class02.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,31 +14,31 @@ This class covers the fundamental numerical optimization techniques essential fo
1414

1515
The class is structured around 1 slide deck and four interactive Jupyter notebooks:
1616

17-
1. **[Part 1a: Root Finding & Backward Euler](part1_root_finding.html)**
17+
1. **[Part 1a: Root Finding & Backward Euler](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_root_finding.html)**
1818
- Root-finding algorithms for implicit integration
1919
- Fixed-point iteration vs. Newton's method
2020
- Application to pendulum dynamics
2121

2222

23-
2. **[Part 1b: Minimization via Newton's Method](part1_minimization.html)**
23+
2. **[Part 1b: Minimization via Newton's Method](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_minimization.html)**
2424
- Unconstrained optimization fundamentals
2525
- Newton's method implementation
2626
- Globalization strategies: Hessian matrix and regularization
2727

28-
3. **[Part 2: Equality Constraints](part2_eq_constraints.html)**
28+
3. **[Part 2: Equality Constraints](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part2_eq_constraints.html)**
2929
- Lagrange multiplier theory
3030
- KKT conditions for equality constraints
3131
- Quadratic programming implementation
3232

33-
4. **[Part 3: Interior-Point Methods](part3_ipm.html)**
33+
4. **[Part 3: Interior-Point Methods](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part3_ipm.html)**
3434
- Inequality constraint handling
3535
- Barrier methods and log-barrier functions
3636
- Comparison with penalty methods
3737

3838
## Additional Resources
3939

40-
- **[Lecture Slides (PDF)](ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck
41-
- **[LaTeX Source](main.tex)** - Source code for lecture slides
40+
- **[Lecture Slides (PDF)](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck
41+
- **[LaTeX Source](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/main.tex)** - Source code for lecture slides
4242

4343
## Key Learning Outcomes
4444

class02/overview.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -35,28 +35,28 @@ By the end of this class, students will be able to:
3535
The class is structured around four interactive Jupyter notebooks that build upon each other:
3636

3737

38-
1. **[Part 1a: Root Finding & Backward Euler](part1_root_finding.html)**
38+
1. **[Part 1a: Root Finding & Backward Euler](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_root_finding.html)**
3939
- Root-finding algorithms for implicit integration
4040
- Fixed-point iteration vs. Newton's method
4141
- Backward Euler implementation for ODEs
4242
- Convergence analysis and comparison
4343
- Application to pendulum dynamics
4444

45-
2. **[Part 1b: Minimization via Newton's Method](part1_minimization.html)**
45+
2. **[Part 1b: Minimization via Newton's Method](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part1_minimization.html)**
4646
- Unconstrained optimization fundamentals
4747
- Newton's method for minimization
4848
- Hessian matrix and positive definiteness
4949
- Regularization and line search techniques
5050
- Practical implementation with Julia
5151

52-
3. **[Part 2: Equality Constraints](part2_eq_constraints.html)**
52+
3. **[Part 2: Equality Constraints](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part2_eq_constraints.html)**
5353
- Lagrange multiplier theory
5454
- KKT conditions for equality constraints
5555
- Quadratic programming with equality constraints
5656
- Visualization of constrained optimization landscapes
5757
- Practical implementation examples
5858

59-
4. **[Part 3: Interior-Point Methods](part3_ipm.ipynb)**
59+
4. **[Part 3: Interior-Point Methods](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/part3_ipm.html)**
6060
- Inequality constraint handling
6161
- Barrier methods and log-barrier functions
6262
- Interior-point algorithm implementation
@@ -65,9 +65,9 @@ The class is structured around four interactive Jupyter notebooks that build upo
6565

6666
### Additional Resources
6767

68-
- **[Lecture Slides (PDF)](ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck from the presentation
69-
- **[LaTeX Source Files](main.tex)** - Source code for the lecture slides
70-
- **[Demo Script](penalty_barrier_demo.py)** - Python demonstration of penalty vs. barrier methods
68+
- **[Lecture Slides (PDF)](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/ISYE_8803___Lecture_2___Slides.pdf)** - Complete slide deck from the presentation
69+
- **[LaTeX Source Files](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/main.tex)** - Source code for the lecture slides
70+
- **[Demo Script](https://learningtooptimize.github.io/LearningToControlClass/dev/class02/penalty_barrier_demo.py)** - Python demonstration of penalty vs. barrier methods
7171

7272
## Key Concepts Covered
7373

0 commit comments

Comments
 (0)