Skip to content

Commit c844579

Browse files
Fix notation inconsistency: standardize u_eq to u_e in Taylor expansion section
Co-authored-by: andrewrosemberg <[email protected]>
1 parent 40619f7 commit c844579

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

class01/class01_intro.jl

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -840,10 +840,10 @@ Foldable(md" $\dot{x} = f(x,u) \; \implies \; A=? \; B=?$", md"""
840840
Suppose now that we apply our dynamics equation to an input:
841841
842842
```math
843-
u(t) = u_{eq} + \delta u(t), \quad t \ge 0
843+
u(t) = u_e + \delta u(t), \quad t \ge 0
844844
```
845-
where $u_{eq}$ is an fixed input and $\delta u(t)$ is a perturbation function such that the input is close
846-
but not equal to $u_{eq}$ and similarly we perturb the initial condition:
845+
where $u_e$ is an fixed input and $\delta u(t)$ is a perturbation function such that the input is close
846+
but not equal to $u_e$ and similarly we perturb the initial condition:
847847
848848
```math
849849
x(0) = x_e + \delta x(0)
@@ -857,10 +857,10 @@ We will define the deviation from the reference state as:
857857
To determine the evolution of $\delta x(t)$, we can expand the dynamics around the reference point using a Taylor expansion:
858858
859859
```math
860-
\dot{\delta x}(t) = f(x_e + \delta x(t), u_{eq} + \delta u(t))
860+
\dot{\delta x}(t) = f(x_e + \delta x(t), u_e + \delta u(t))
861861
```
862862
```math
863-
=\frac{\partial f}{\partial x}\bigg|_{(x_e, u_{eq})} \delta x(t) + \frac{\partial f}{\partial u}\bigg|_{(x_e, u_{eq})} \delta u(t) + \mathcal{O}(\|\delta x\|^2) + \mathcal{O}(\|\delta u\|^2)
863+
=\frac{\partial f}{\partial x}\bigg|_{(x_e, u_e)} \delta x(t) + \frac{\partial f}{\partial u}\bigg|_{(x_e, u_e)} \delta u(t) + \mathcal{O}(\|\delta x\|^2) + \mathcal{O}(\|\delta u\|^2)
864864
```
865865
866866
Considering just the first-order terms we obtain:

0 commit comments

Comments
 (0)