|
| 1 | +import scipy.stats as scst |
| 2 | +import numpy as np |
| 3 | +from . import bsm |
| 4 | +from . import norm |
| 5 | +from . import opt_abc as opt |
| 6 | + |
| 7 | + |
| 8 | +class BsmSpreadKirk(opt.OptMaABC): |
| 9 | + """ |
| 10 | + Kirk's approximation for spread option. |
| 11 | +
|
| 12 | + References: |
| 13 | + Kirk, E. (1995). Correlation in the energy markets. In Managing Energy Price Risk |
| 14 | + (First, pp. 71–78). Risk Publications. |
| 15 | +
|
| 16 | + Examples: |
| 17 | + >>> import numpy as np |
| 18 | + >>> import pyfeng as pf |
| 19 | + >>> m = pf.BsmSpreadKirk((0.2, 0.3), cor=-0.5) |
| 20 | + >>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3) |
| 21 | + array([22.15632247, 17.18441817, 12.98974214, 9.64141666, 6.99942072]) |
| 22 | + """ |
| 23 | + |
| 24 | + weight = np.array([1, -1]) |
| 25 | + |
| 26 | + def price(self, strike, spot, texp, cp=1): |
| 27 | + df = np.exp(-texp * self.intr) |
| 28 | + fwd = np.array(spot) * (1.0 if self.is_fwd else np.exp(-texp * np.array(self.divr)) / df) |
| 29 | + assert fwd.shape[-1] == self.n_asset |
| 30 | + |
| 31 | + fwd1 = fwd[..., 0] - np.minimum(strike, 0) |
| 32 | + fwd2 = fwd[..., 1] + np.maximum(strike, 0) |
| 33 | + |
| 34 | + sig1 = self.sigma[0] * fwd[..., 0] / fwd1 |
| 35 | + sig2 = self.sigma[1] * fwd[..., 1] / fwd2 |
| 36 | + sig_spd = np.sqrt(sig1*(sig1 - 2.0*self.rho*sig2) + sig2**2) |
| 37 | + price = bsm.Bsm.price_formula(fwd2, fwd1, sig_spd, texp, cp=cp, is_fwd=True) |
| 38 | + return df * price |
| 39 | + |
| 40 | + |
| 41 | +class BsmSpreadBjerksund2014(opt.OptMaABC): |
| 42 | + """ |
| 43 | + Bjerksund & Stensland (2014)'s approximation for spread option. |
| 44 | +
|
| 45 | + References: |
| 46 | + Bjerksund, P., & Stensland, G. (2014). Closed form spread option valuation. |
| 47 | + Quantitative Finance, 14(10), 1785–1794. https://doi.org/10.1080/14697688.2011.617775 |
| 48 | +
|
| 49 | + Examples: |
| 50 | + >>> import numpy as np |
| 51 | + >>> import pyfeng as pf |
| 52 | + >>> m = pf.BsmSpreadBjerksund2014((0.2, 0.3), cor=-0.5) |
| 53 | + >>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3) |
| 54 | + array([22.13172022, 17.18304247, 12.98974214, 9.54431944, 6.80612597]) |
| 55 | + """ |
| 56 | + |
| 57 | + weight = np.array([1, -1]) |
| 58 | + |
| 59 | + def price(self, strike, spot, texp, cp=1): |
| 60 | + df = np.exp(-texp * self.intr) |
| 61 | + fwd = np.array(spot) * (1.0 if self.is_fwd else np.exp(-texp * np.array(self.divr)) / df) |
| 62 | + assert fwd.shape[-1] == self.n_asset |
| 63 | + |
| 64 | + fwd1 = fwd[..., 0] |
| 65 | + fwd2 = fwd[..., 1] |
| 66 | + |
| 67 | + std11 = self.sigma[0]**2 * texp |
| 68 | + std12 = self.sigma[0]*self.sigma[1] * texp |
| 69 | + std22 = self.sigma[1]**2 * texp |
| 70 | + |
| 71 | + aa = fwd2 + strike |
| 72 | + bb = fwd2/aa |
| 73 | + std = np.sqrt(std11 - 2*bb*self.rho*std12 + bb**2*std22) |
| 74 | + |
| 75 | + d3 = np.log(fwd1/aa) |
| 76 | + d1 = (d3 + 0.5*std11 - bb*(self.rho*std12 - 0.5*bb*std22)) / std |
| 77 | + d2 = (d3 - 0.5*std11 + self.rho*std12 + bb*(0.5*bb - 1)*std22) / std |
| 78 | + d3 = (d3 - 0.5*std11 + 0.5*bb**2*std22) / std |
| 79 | + |
| 80 | + price = cp*(fwd1*scst.norm.cdf(cp*d1) - fwd2*scst.norm.cdf(cp*d2) |
| 81 | + - strike*scst.norm.cdf(cp*d3)) |
| 82 | + |
| 83 | + return df * price |
| 84 | + |
| 85 | + |
| 86 | +class NormBasket(opt.OptMaABC): |
| 87 | + """ |
| 88 | + Basket option pricing under the multiasset Bachelier model |
| 89 | + """ |
| 90 | + |
| 91 | + weight = None |
| 92 | + |
| 93 | + def __init__(self, sigma, cor=None, weight=None, intr=0.0, divr=0.0, is_fwd=False): |
| 94 | + """ |
| 95 | + Args: |
| 96 | + sigma: model volatilities of `n_asset` assets. (n_asset, ) array |
| 97 | + cor: correlation. If matrix, used as it is. (n_asset, n_asset) |
| 98 | + If scalar, correlation matrix is constructed with all same off-diagonal values. |
| 99 | + weight: asset weights, If None, equally weighted as 1/n_asset |
| 100 | + If scalar, equal weights of the value |
| 101 | + If 1-D array, uses as it is. (n_asset, ) |
| 102 | + intr: interest rate (domestic interest rate) |
| 103 | + divr: vector of dividend/convenience yield (foreign interest rate) 0-D or (n_asset, ) array |
| 104 | + is_fwd: if True, treat `spot` as forward price. False by default. |
| 105 | + """ |
| 106 | + |
| 107 | + super().__init__(sigma, cor=cor, intr=intr, divr=divr, is_fwd=is_fwd) |
| 108 | + if weight is None: |
| 109 | + self.weight = np.ones(self.n_asset) / self.n_asset |
| 110 | + elif np.isscalar(weight): |
| 111 | + self.weight = np.ones(self.n_asset) * weight |
| 112 | + else: |
| 113 | + assert len(weight) == self.n_asset |
| 114 | + self.weight = np.array(weight) |
| 115 | + |
| 116 | + def price(self, strike, spot, texp, cp=1): |
| 117 | + df = np.exp(-texp * self.intr) |
| 118 | + fwd = np.array(spot) * (1.0 if self.is_fwd else np.exp(-texp * np.array(self.divr)) / df) |
| 119 | + assert fwd.shape[-1] == self.n_asset |
| 120 | + |
| 121 | + fwd_basket = fwd @ self.weight |
| 122 | + vol_basket = np.sqrt(self.weight @ self.cov_m @ self.weight) |
| 123 | + |
| 124 | + price = norm.Norm.price_formula( |
| 125 | + strike, fwd_basket, vol_basket, texp, cp=cp, is_fwd=True) |
| 126 | + return df * price |
| 127 | + |
| 128 | + |
| 129 | +class NormSpread(opt.OptMaABC): |
| 130 | + """ |
| 131 | + Spread option pricing under the Bachelier model. |
| 132 | + This is a special case of NormBasket with weight = (1, -1) |
| 133 | +
|
| 134 | + Examples: |
| 135 | + >>> import numpy as np |
| 136 | + >>> import pyfeng as pf |
| 137 | + >>> m = pf.NormSpread((20, 30), cor=-0.5, intr=0.05) |
| 138 | + >>> m.price(np.arange(-2, 3) * 10, [100, 120], 1.3) |
| 139 | + array([17.95676186, 13.74646821, 10.26669936, 7.47098719, 5.29057157]) |
| 140 | + """ |
| 141 | + weight = np.array([1, -1]) |
| 142 | + |
| 143 | + price = NormBasket.price |
| 144 | + |
| 145 | + |
| 146 | +class BsmBasketLevy1992(NormBasket): |
| 147 | + """ |
| 148 | + Basket option pricing with the log-normal approximation of Levy & Turnbull (1992) |
| 149 | +
|
| 150 | + References: |
| 151 | + Levy, E., & Turnbull, S. (1992). Average intelligence. Risk, 1992(2), 53–57. |
| 152 | +
|
| 153 | + Krekel, M., de Kock, J., Korn, R., & Man, T.-K. (2004). An analysis of pricing methods for basket options. |
| 154 | + Wilmott Magazine, 2004(7), 82–89. |
| 155 | +
|
| 156 | + Examples: |
| 157 | + >>> import numpy as np |
| 158 | + >>> import pyfeng as pf |
| 159 | + >>> strike = np.arange(50, 151, 10) |
| 160 | + >>> m = pf.BsmBasketLevy1992(sigma=0.4*np.ones(4), cor=0.5) |
| 161 | + >>> m.price(strike, spot=100*np.ones(4), texp=5) |
| 162 | + array([54.34281026, 47.521086 , 41.56701301, 36.3982413 , 31.92312156, |
| 163 | + 28.05196621, 24.70229571, 21.800801 , 19.28360474, 17.09570196, |
| 164 | + 15.19005654]) |
| 165 | + """ |
| 166 | + def price(self, strike, spot, texp, cp=1): |
| 167 | + df = np.exp(-texp * self.intr) |
| 168 | + fwd = np.array(spot) * (1.0 if self.is_fwd else np.exp(-texp * np.array(self.divr)) / df) |
| 169 | + assert fwd.shape[-1] == self.n_asset |
| 170 | + |
| 171 | + fwd_basket = fwd * self.weight |
| 172 | + m1 = np.sum(fwd_basket, axis=-1) |
| 173 | + m2 = np.sum(fwd_basket @ np.exp(self.cov_m * texp) * fwd_basket, axis=-1) |
| 174 | + |
| 175 | + sig = np.sqrt(np.log(m2/(m1**2))/texp) |
| 176 | + price = bsm.Bsm.price_formula( |
| 177 | + strike, m1, sig, texp, cp=cp, is_fwd=True) |
| 178 | + return df * price |
| 179 | + |
| 180 | + |
| 181 | +class BsmMax2(opt.OptMaABC): |
| 182 | + """ |
| 183 | + Option on the max of two assets. |
| 184 | + Payout = max( max(F_1, F_2) - K, 0 ) for all or max( K - max(F_1, F_2), 0 ) for put option |
| 185 | +
|
| 186 | + References: |
| 187 | + Rubinstein, M. (1991). Somewhere Over the Rainbow. Risk, 1991(11), 63–66. |
| 188 | +
|
| 189 | + Examples: |
| 190 | + >>> import numpy as np |
| 191 | + >>> import pyfeng as pf |
| 192 | + >>> m = pf.BsmMax2(0.2*np.ones(2), cor=0, divr=0.1, intr=0.05) |
| 193 | + >>> m.price(strike=[90, 100, 110], spot=100*np.ones(2), texp=3) |
| 194 | + array([15.86717049, 11.19568103, 7.71592217]) |
| 195 | + """ |
| 196 | + |
| 197 | + m_switch = None |
| 198 | + |
| 199 | + def __init__(self, sigma, cor=None, weight=None, intr=0.0, divr=0.0, is_fwd=False): |
| 200 | + super().__init__(sigma, cor=cor, intr=intr, divr=divr, is_fwd=is_fwd) |
| 201 | + self.m_switch = BsmSpreadKirk(sigma, cor, is_fwd=True) |
| 202 | + |
| 203 | + def price(self, strike, spot, texp, cp=1): |
| 204 | + sig = self.sigma |
| 205 | + df = np.exp(-texp * self.intr) |
| 206 | + fwd = np.array(spot) * (1.0 if self.is_fwd else np.exp(-texp * np.array(self.divr)) / df) |
| 207 | + assert fwd.shape[-1] == self.n_asset |
| 208 | + |
| 209 | + sig_std = sig * np.sqrt(texp) |
| 210 | + spd_rho = np.sqrt(np.dot(sig, sig) - 2*self.rho*sig[0]*sig[1]) |
| 211 | + spd_std = spd_rho * np.sqrt(texp) |
| 212 | + |
| 213 | + # -x and y as rows |
| 214 | + # supposed to be -log(fwd/strike) but strike is added later |
| 215 | + xx = -np.log(fwd)/sig_std - 0.5*sig_std |
| 216 | + |
| 217 | + fwd_ratio = fwd[0]/fwd[1] |
| 218 | + yy = np.log([fwd_ratio, 1/fwd_ratio])/spd_std + 0.5*spd_std |
| 219 | + |
| 220 | + rho12 = np.array([self.rho*sig[1]-sig[0], self.rho*sig[0]-sig[1]])/spd_rho |
| 221 | + |
| 222 | + mu0 = np.zeros(2) |
| 223 | + cor_m1 = rho12[0] + (1-rho12[0])*np.eye(2) |
| 224 | + cor_m2 = rho12[1] + (1-rho12[1])*np.eye(2) |
| 225 | + |
| 226 | + strike_isscalar = np.isscalar(strike) |
| 227 | + strike = np.atleast_1d(strike) |
| 228 | + cp = cp * np.ones_like(strike) |
| 229 | + n_strike = len(strike) |
| 230 | + |
| 231 | + # this is the price of max(S1, S2) = max(S1-S2, 0) + S2 |
| 232 | + # Used that Kirk approximation strike = 0 is Margrabe's switch option price |
| 233 | + parity = 0 if np.all(cp > 0) else self.m_switch.price(0, fwd, texp) + fwd[1] |
| 234 | + price = np.zeros_like(strike, float) |
| 235 | + for k in range(n_strike): |
| 236 | + xx_ = xx + np.log(strike[k])/sig_std |
| 237 | + term1 = fwd[0] * (scst.norm.cdf(yy[0]) - scst.multivariate_normal.cdf(np.array([xx_[0], yy[0]]), mu0, cor_m1)) |
| 238 | + term2 = fwd[1] * (scst.norm.cdf(yy[1]) - scst.multivariate_normal.cdf(np.array([xx_[1], yy[1]]), mu0, cor_m2)) |
| 239 | + term3 = strike[k] * np.array(scst.multivariate_normal.cdf(xx_ + sig_std, mu0, self.cor_m)) |
| 240 | + |
| 241 | + assert(term1 + term2 + term3 >= strike[k]) |
| 242 | + price[k] = (term1 + term2 + term3 - strike[k]) |
| 243 | + |
| 244 | + if cp[k] < 0: |
| 245 | + price[k] += strike[k] - parity |
| 246 | + price *= df |
| 247 | + |
| 248 | + return price[0] if strike_isscalar else price |
0 commit comments