| 
 | 1 | +*> \brief \b CLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm  | 
 | 2 | +*  | 
 | 3 | +*  =========== DOCUMENTATION ===========  | 
 | 4 | +*  | 
 | 5 | +* Online html documentation available at  | 
 | 6 | +*            http://www.netlib.org/lapack/explore-html/  | 
 | 7 | +*  | 
 | 8 | +*> \htmlonly  | 
 | 9 | +*> Download CLARFT + dependencies  | 
 | 10 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f">  | 
 | 11 | +*> [TGZ]</a>  | 
 | 12 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f">  | 
 | 13 | +*> [ZIP]</a>  | 
 | 14 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f">  | 
 | 15 | +*> [TXT]</a>  | 
 | 16 | +*> \endhtmlonly  | 
 | 17 | +*  | 
 | 18 | +*  Definition:  | 
 | 19 | +*  ===========  | 
 | 20 | +*  | 
 | 21 | +*       SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )  | 
 | 22 | +*  | 
 | 23 | +*       .. Scalar Arguments ..  | 
 | 24 | +*       CHARACTER          DIRECT, STOREV  | 
 | 25 | +*       INTEGER            K, LDT, LDV, N  | 
 | 26 | +*       ..  | 
 | 27 | +*       .. Array Arguments ..  | 
 | 28 | +*       COMPLEX            T( LDT, * ), TAU( * ), V( LDV, * )  | 
 | 29 | +*       ..  | 
 | 30 | +*  | 
 | 31 | +*  | 
 | 32 | +*> \par Purpose:  | 
 | 33 | +*  =============  | 
 | 34 | +*>  | 
 | 35 | +*> \verbatim  | 
 | 36 | +*>  | 
 | 37 | +*> CLARFT forms the triangular factor T of a complex block reflector H  | 
 | 38 | +*> of order n, which is defined as a product of k elementary reflectors.  | 
 | 39 | +*>  | 
 | 40 | +*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;  | 
 | 41 | +*>  | 
 | 42 | +*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.  | 
 | 43 | +*>  | 
 | 44 | +*> If STOREV = 'C', the vector which defines the elementary reflector  | 
 | 45 | +*> H(i) is stored in the i-th column of the array V, and  | 
 | 46 | +*>  | 
 | 47 | +*>    H  =  I - V * T * V**H  | 
 | 48 | +*>  | 
 | 49 | +*> If STOREV = 'R', the vector which defines the elementary reflector  | 
 | 50 | +*> H(i) is stored in the i-th row of the array V, and  | 
 | 51 | +*>  | 
 | 52 | +*>    H  =  I - V**H * T * V  | 
 | 53 | +*> \endverbatim  | 
 | 54 | +*  | 
 | 55 | +*  Arguments:  | 
 | 56 | +*  ==========  | 
 | 57 | +*  | 
 | 58 | +*> \param[in] DIRECT  | 
 | 59 | +*> \verbatim  | 
 | 60 | +*>          DIRECT is CHARACTER*1  | 
 | 61 | +*>          Specifies the order in which the elementary reflectors are  | 
 | 62 | +*>          multiplied to form the block reflector:  | 
 | 63 | +*>          = 'F': H = H(1) H(2) . . . H(k) (Forward)  | 
 | 64 | +*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)  | 
 | 65 | +*> \endverbatim  | 
 | 66 | +*>  | 
 | 67 | +*> \param[in] STOREV  | 
 | 68 | +*> \verbatim  | 
 | 69 | +*>          STOREV is CHARACTER*1  | 
 | 70 | +*>          Specifies how the vectors which define the elementary  | 
 | 71 | +*>          reflectors are stored (see also Further Details):  | 
 | 72 | +*>          = 'C': columnwise  | 
 | 73 | +*>          = 'R': rowwise  | 
 | 74 | +*> \endverbatim  | 
 | 75 | +*>  | 
 | 76 | +*> \param[in] N  | 
 | 77 | +*> \verbatim  | 
 | 78 | +*>          N is INTEGER  | 
 | 79 | +*>          The order of the block reflector H. N >= 0.  | 
 | 80 | +*> \endverbatim  | 
 | 81 | +*>  | 
 | 82 | +*> \param[in] K  | 
 | 83 | +*> \verbatim  | 
 | 84 | +*>          K is INTEGER  | 
 | 85 | +*>          The order of the triangular factor T (= the number of  | 
 | 86 | +*>          elementary reflectors). K >= 1.  | 
 | 87 | +*> \endverbatim  | 
 | 88 | +*>  | 
 | 89 | +*> \param[in] V  | 
 | 90 | +*> \verbatim  | 
 | 91 | +*>          V is COMPLEX array, dimension  | 
 | 92 | +*>                               (LDV,K) if STOREV = 'C'  | 
 | 93 | +*>                               (LDV,N) if STOREV = 'R'  | 
 | 94 | +*>          The matrix V. See further details.  | 
 | 95 | +*> \endverbatim  | 
 | 96 | +*>  | 
 | 97 | +*> \param[in] LDV  | 
 | 98 | +*> \verbatim  | 
 | 99 | +*>          LDV is INTEGER  | 
 | 100 | +*>          The leading dimension of the array V.  | 
 | 101 | +*>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.  | 
 | 102 | +*> \endverbatim  | 
 | 103 | +*>  | 
 | 104 | +*> \param[in] TAU  | 
 | 105 | +*> \verbatim  | 
 | 106 | +*>          TAU is COMPLEX array, dimension (K)  | 
 | 107 | +*>          TAU(i) must contain the scalar factor of the elementary  | 
 | 108 | +*>          reflector H(i).  | 
 | 109 | +*> \endverbatim  | 
 | 110 | +*>  | 
 | 111 | +*> \param[out] T  | 
 | 112 | +*> \verbatim  | 
 | 113 | +*>          T is COMPLEX array, dimension (LDT,K)  | 
 | 114 | +*>          The k by k triangular factor T of the block reflector.  | 
 | 115 | +*>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is  | 
 | 116 | +*>          lower triangular. The rest of the array is not used.  | 
 | 117 | +*> \endverbatim  | 
 | 118 | +*>  | 
 | 119 | +*> \param[in] LDT  | 
 | 120 | +*> \verbatim  | 
 | 121 | +*>          LDT is INTEGER  | 
 | 122 | +*>          The leading dimension of the array T. LDT >= K.  | 
 | 123 | +*> \endverbatim  | 
 | 124 | +*  | 
 | 125 | +*  Authors:  | 
 | 126 | +*  ========  | 
 | 127 | +*  | 
 | 128 | +*> \author Univ. of Tennessee  | 
 | 129 | +*> \author Univ. of California Berkeley  | 
 | 130 | +*> \author Univ. of Colorado Denver  | 
 | 131 | +*> \author NAG Ltd.  | 
 | 132 | +*  | 
 | 133 | +*> \ingroup larft  | 
 | 134 | +*  | 
 | 135 | +*> \par Further Details:  | 
 | 136 | +*  =====================  | 
 | 137 | +*>  | 
 | 138 | +*> \verbatim  | 
 | 139 | +*>  | 
 | 140 | +*>  The shape of the matrix V and the storage of the vectors which define  | 
 | 141 | +*>  the H(i) is best illustrated by the following example with n = 5 and  | 
 | 142 | +*>  k = 3. The elements equal to 1 are not stored.  | 
 | 143 | +*>  | 
 | 144 | +*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':  | 
 | 145 | +*>  | 
 | 146 | +*>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )  | 
 | 147 | +*>                   ( v1  1    )                     (     1 v2 v2 v2 )  | 
 | 148 | +*>                   ( v1 v2  1 )                     (        1 v3 v3 )  | 
 | 149 | +*>                   ( v1 v2 v3 )  | 
 | 150 | +*>                   ( v1 v2 v3 )  | 
 | 151 | +*>  | 
 | 152 | +*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':  | 
 | 153 | +*>  | 
 | 154 | +*>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )  | 
 | 155 | +*>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )  | 
 | 156 | +*>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )  | 
 | 157 | +*>                   (     1 v3 )  | 
 | 158 | +*>                   (        1 )  | 
 | 159 | +*> \endverbatim  | 
 | 160 | +*>  | 
 | 161 | +*  =====================================================================  | 
 | 162 | +      SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )  | 
 | 163 | +*  | 
 | 164 | +*  -- LAPACK auxiliary routine --  | 
 | 165 | +*  -- LAPACK is a software package provided by Univ. of Tennessee,    --  | 
 | 166 | +*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  | 
 | 167 | +*  | 
 | 168 | +*     .. Scalar Arguments ..  | 
 | 169 | +      CHARACTER          DIRECT, STOREV  | 
 | 170 | +      INTEGER            K, LDT, LDV, N  | 
 | 171 | +*     ..  | 
 | 172 | +*     .. Array Arguments ..  | 
 | 173 | +      COMPLEX            T( LDT, * ), TAU( * ), V( LDV, * )  | 
 | 174 | +*     ..  | 
 | 175 | +*  | 
 | 176 | +*  =====================================================================  | 
 | 177 | +*  | 
 | 178 | +*     .. Parameters ..  | 
 | 179 | +      COMPLEX            ONE, ZERO  | 
 | 180 | +      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),  | 
 | 181 | +     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )  | 
 | 182 | +*     ..  | 
 | 183 | +*     .. Local Scalars ..  | 
 | 184 | +      INTEGER            I, J, PREVLASTV, LASTV  | 
 | 185 | +*     ..  | 
 | 186 | +*     .. External Subroutines ..  | 
 | 187 | +      EXTERNAL           CGEMM, CGEMV, CTRMV  | 
 | 188 | +*     ..  | 
 | 189 | +*     .. External Functions ..  | 
 | 190 | +      LOGICAL            LSAME  | 
 | 191 | +      EXTERNAL           LSAME  | 
 | 192 | +*     ..  | 
 | 193 | +*     .. Executable Statements ..  | 
 | 194 | +*  | 
 | 195 | +*     Quick return if possible  | 
 | 196 | +*  | 
 | 197 | +      IF( N.EQ.0 )  | 
 | 198 | +     $   RETURN  | 
 | 199 | +*  | 
 | 200 | +      IF( LSAME( DIRECT, 'F' ) ) THEN  | 
 | 201 | +         PREVLASTV = N  | 
 | 202 | +         DO I = 1, K  | 
 | 203 | +            PREVLASTV = MAX( PREVLASTV, I )  | 
 | 204 | +            IF( TAU( I ).EQ.ZERO ) THEN  | 
 | 205 | +*  | 
 | 206 | +*              H(i)  =  I  | 
 | 207 | +*  | 
 | 208 | +               DO J = 1, I  | 
 | 209 | +                  T( J, I ) = ZERO  | 
 | 210 | +               END DO  | 
 | 211 | +            ELSE  | 
 | 212 | +*  | 
 | 213 | +*              general case  | 
 | 214 | +*  | 
 | 215 | +               IF( LSAME( STOREV, 'C' ) ) THEN  | 
 | 216 | +*                 Skip any trailing zeros.  | 
 | 217 | +                  DO LASTV = N, I+1, -1  | 
 | 218 | +                     IF( V( LASTV, I ).NE.ZERO ) EXIT  | 
 | 219 | +                  END DO  | 
 | 220 | +                  DO J = 1, I-1  | 
 | 221 | +                     T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )  | 
 | 222 | +                  END DO  | 
 | 223 | +                  J = MIN( LASTV, PREVLASTV )  | 
 | 224 | +*  | 
 | 225 | +*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)  | 
 | 226 | +*  | 
 | 227 | +                  CALL CGEMV( 'Conjugate transpose', J-I, I-1,  | 
 | 228 | +     $                        -TAU( I ), V( I+1, 1 ), LDV,  | 
 | 229 | +     $                        V( I+1, I ), 1,  | 
 | 230 | +     $                        ONE, T( 1, I ), 1 )  | 
 | 231 | +               ELSE  | 
 | 232 | +*                 Skip any trailing zeros.  | 
 | 233 | +                  DO LASTV = N, I+1, -1  | 
 | 234 | +                     IF( V( I, LASTV ).NE.ZERO ) EXIT  | 
 | 235 | +                  END DO  | 
 | 236 | +                  DO J = 1, I-1  | 
 | 237 | +                     T( J, I ) = -TAU( I ) * V( J , I )  | 
 | 238 | +                  END DO  | 
 | 239 | +                  J = MIN( LASTV, PREVLASTV )  | 
 | 240 | +*  | 
 | 241 | +*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H  | 
 | 242 | +*  | 
 | 243 | +                  CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),  | 
 | 244 | +     $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV,  | 
 | 245 | +     $                        ONE, T( 1, I ), LDT )  | 
 | 246 | +               END IF  | 
 | 247 | +*  | 
 | 248 | +*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)  | 
 | 249 | +*  | 
 | 250 | +               CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1,  | 
 | 251 | +     $                     T,  | 
 | 252 | +     $                     LDT, T( 1, I ), 1 )  | 
 | 253 | +               T( I, I ) = TAU( I )  | 
 | 254 | +               IF( I.GT.1 ) THEN  | 
 | 255 | +                  PREVLASTV = MAX( PREVLASTV, LASTV )  | 
 | 256 | +               ELSE  | 
 | 257 | +                  PREVLASTV = LASTV  | 
 | 258 | +               END IF  | 
 | 259 | +            END IF  | 
 | 260 | +         END DO  | 
 | 261 | +      ELSE  | 
 | 262 | +         PREVLASTV = 1  | 
 | 263 | +         DO I = K, 1, -1  | 
 | 264 | +            IF( TAU( I ).EQ.ZERO ) THEN  | 
 | 265 | +*  | 
 | 266 | +*              H(i)  =  I  | 
 | 267 | +*  | 
 | 268 | +               DO J = I, K  | 
 | 269 | +                  T( J, I ) = ZERO  | 
 | 270 | +               END DO  | 
 | 271 | +            ELSE  | 
 | 272 | +*  | 
 | 273 | +*              general case  | 
 | 274 | +*  | 
 | 275 | +               IF( I.LT.K ) THEN  | 
 | 276 | +                  IF( LSAME( STOREV, 'C' ) ) THEN  | 
 | 277 | +*                    Skip any leading zeros.  | 
 | 278 | +                     DO LASTV = 1, I-1  | 
 | 279 | +                        IF( V( LASTV, I ).NE.ZERO ) EXIT  | 
 | 280 | +                     END DO  | 
 | 281 | +                     DO J = I+1, K  | 
 | 282 | +                        T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )  | 
 | 283 | +                     END DO  | 
 | 284 | +                     J = MAX( LASTV, PREVLASTV )  | 
 | 285 | +*  | 
 | 286 | +*                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)  | 
 | 287 | +*  | 
 | 288 | +                     CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I,  | 
 | 289 | +     $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ),  | 
 | 290 | +     $                           1, ONE, T( I+1, I ), 1 )  | 
 | 291 | +                  ELSE  | 
 | 292 | +*                    Skip any leading zeros.  | 
 | 293 | +                     DO LASTV = 1, I-1  | 
 | 294 | +                        IF( V( I, LASTV ).NE.ZERO ) EXIT  | 
 | 295 | +                     END DO  | 
 | 296 | +                     DO J = I+1, K  | 
 | 297 | +                        T( J, I ) = -TAU( I ) * V( J, N-K+I )  | 
 | 298 | +                     END DO  | 
 | 299 | +                     J = MAX( LASTV, PREVLASTV )  | 
 | 300 | +*  | 
 | 301 | +*                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H  | 
 | 302 | +*  | 
 | 303 | +                     CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J,  | 
 | 304 | +     $                           -TAU( I ),  | 
 | 305 | +     $                           V( I+1, J ), LDV, V( I, J ), LDV,  | 
 | 306 | +     $                           ONE, T( I+1, I ), LDT )  | 
 | 307 | +                  END IF  | 
 | 308 | +*  | 
 | 309 | +*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)  | 
 | 310 | +*  | 
 | 311 | +                  CALL CTRMV( 'Lower', 'No transpose', 'Non-unit',  | 
 | 312 | +     $                        K-I,  | 
 | 313 | +     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )  | 
 | 314 | +                  IF( I.GT.1 ) THEN  | 
 | 315 | +                     PREVLASTV = MIN( PREVLASTV, LASTV )  | 
 | 316 | +                  ELSE  | 
 | 317 | +                     PREVLASTV = LASTV  | 
 | 318 | +                  END IF  | 
 | 319 | +               END IF  | 
 | 320 | +               T( I, I ) = TAU( I )  | 
 | 321 | +            END IF  | 
 | 322 | +         END DO  | 
 | 323 | +      END IF  | 
 | 324 | +      RETURN  | 
 | 325 | +*  | 
 | 326 | +*     End of CLARFT  | 
 | 327 | +*  | 
 | 328 | +      END  | 
0 commit comments