diff --git a/VantageCloud_Lake/Getting_Started/Demo_XGB_Scoring.py b/VantageCloud_Lake/Getting_Started/Demo_XGB_Scoring.py new file mode 100644 index 00000000..3760fd5e --- /dev/null +++ b/VantageCloud_Lake/Getting_Started/Demo_XGB_Scoring.py @@ -0,0 +1,71 @@ +# Load dependency packages +import sys +import csv +import numpy as np +import pandas as pd +from xgboost import XGBClassifier, Booster +import warnings + +# pickle will issue a caution warning, if model pickling was done with +# different library version than used here. The following disables any warnings +# that might otherwise show in the scriptlog files on the Advanced SQL Engine +# nodes in this case. Yet, do keep an eye for incompatible pickle versions. +warnings.filterwarnings('ignore') + +# Know your data: You must know in advance the number and data types of the +# incoming columns from the SQL Engine database! +# For this script, the input expected format is: +colNames = ['txn_id', + 'txn_type_CASH_OUT', + 'txn_type_CASH_IN', + 'txn_type_TRANSFER', + 'txn_type_DEBIT', + 'txn_type_PAYMENT', + 'txn_type_other', + 'amount', + 'oldbalanceOrig', + 'newbalanceOrig', + 'oldbalanceDest', + 'newbalanceDest', + 'isFraud'] + + + +model = XGBClassifier() +booster = Booster() +booster.load_model('xgb_model') +model._Booster = booster + + +d = csv.DictReader(sys.stdin.readlines(), fieldnames = colNames) + +df = pd.DataFrame(d, columns = colNames) + +# Use try...except to produce an error if something goes wrong in the try block +try: + # Exit gracefully if DataFrame is empty + if df.empty: + sys.exit() + + # Specify the rows to be scored by the model and call the predictor. + X_test = df[['txn_type_CASH_OUT', 'txn_type_CASH_IN','txn_type_TRANSFER', 'txn_type_DEBIT','txn_type_PAYMENT', 'txn_type_other','amount','oldbalanceOrig', 'newbalanceOrig','oldbalanceDest', 'newbalanceDest']].astype(float) + + y_prob = model.predict_proba(X_test) + df[['prob_0', 'prob_1']] = y_prob + + y_pred = model.predict(X_test) + df['prediction'] = y_pred + + # Export results to the Database through standard output. + for index, value in df.iterrows(): + my_str = str(value['txn_id']) + ',' + str(value['prob_0']) + ',' + str(value['prob_1']) + ',' + str(value['prediction']) + ',' + str(value['isFraud']) + print(my_str) + + +except (SystemExit): + # Skip exception if system exit requested in try block + pass +except: # Specify in standard error any other error encountered + print("Script Failure :", sys.exc_info()[0], file=sys.stderr) + raise + sys.exit() diff --git a/VantageCloud_Lake/Getting_Started/Opensource_Data_Science_OAF.ipynb b/VantageCloud_Lake/Getting_Started/Opensource_Data_Science_OAF.ipynb new file mode 100644 index 00000000..57ef699d --- /dev/null +++ b/VantageCloud_Lake/Getting_Started/Opensource_Data_Science_OAF.ipynb @@ -0,0 +1,1037 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "hawaiian-daniel", + "metadata": {}, + "source": [ + "\n", + "\n", + "
\n", + "

\n", + " Leveraging Open Source Machine Learning with ClearScape Analytics and Open Analytics Framework\n", + "
\n", + " \"Teradata\"\n", + "

\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "c5a2465a", + "metadata": {}, + "source": [ + "

Introduction:

\n", + "\n", + "

Open-source Machine Learning, AI, and Advanced Analytics tools, techniques, and resources offer enterprises limitless opportunities to drive new insights and business value from their internal and external data landscape. Unfortunately, with these opportunities come significant challenges to realizing success. Some of these challenges include:

\n", + "\n", + " \n", + " \n", + " \n", + "

VantageCloud Lake Edition Open Analytics Framework is the only enterprise-class platform that addresses these challenges with a simple, powerful architecture. The following demonstration will illustrate how users can use any open-source tool or package of choice, deploy it to a custom, isolated environment; and then execute in parallel and at massive scale.

\n", + "\n", + "
\n", + "\n", + "Environment Overview\n", + "\n", + "

This demonstration utilizes a VantageCloud Lake Analytic Cluster architecture, using the shared data sets created in the previous demonstration. Specifically the \"Txn_History\" data that represents \"CashApp\" style transaction history stored in the Vantage Object File System (OFS).

\n", + "\n", + "

The high level process is as follows:

\n", + "\n", + "\n", + " \n", + "
\n", + "
    \n", + "
  1. The Data Scientist conducts analytics activities using his or her own python tools and packages of choice, then connects to VantageCloud Lake through teradataml client library and teradatasql python driver.
  2. \n", + "
    \n", + "
  3. Teradataml provides APIs to create and manage artifacts in User Environment Service, including custom libraries, dependencies, model artifacts, and scoring scripts. The user can leverage these APIs to create one or many custom, dedicated environments to host their code.
  4. \n", + "
    \n", + "
  5. The Data Scientist will then execute their pipeline that will;\n", + "
    • Call ClearScape Analytics functions on Compute Clusters (data prep, transformation, etc.)
    • \n", + "
    • Prepared data is passed to the python container running in parallel on cluster nodes.
    • \n", + "
    • Results (inference/predictions) are returned as \"virtual\" dataframes; where the data resides in Vantage
    • \n", + "
    • Data can be persisted in the Object Filesystem, written to open object storage, or copied to the client
    • \n", + "
  6. \n", + "
\n", + "
\n", + "\n", + "Demonstration Overview\n", + "\n", + "

This notebook consists of three primary demonstrations

\n", + "
    \n", + "
  1. Custom Environment Management - Create a server-side, custom python container with explicit package and versions installed
  2. \n", + "
  3. File Management - Upload model files, scoring scripts, and any other asset type
  4. \n", + "
  5. Analytics - Execute powerful feature engineering and statistical functions and pass this directly to the python container running in parallel
  6. \n", + "
  7. Appendix - Model Training and Testing - The process for creating and testing the model using open-source tools is provided in the Appendix
  8. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "transsexual-poverty", + "metadata": {}, + "source": [ + "
\n", + "1. Configure the environment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "southeast-density", + "metadata": {}, + "outputs": [], + "source": [ + "# install other required packages\n", + "%pip install xgboost dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "great-shadow", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Import the Python library teradataml and the specific environment setup modules.\n", + "import warnings\n", + "from teradataml import *\n", + "warnings.filterwarnings('ignore')\n", + "display.suppress_vantage_runtime_warnings = True\n", + "\n", + "from IPython.display import display as ipydisplay\n", + "from IPython.display import clear_output \n", + "from dotenv import load_dotenv, dotenv_values\n", + "from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, ConfusionMatrixDisplay\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Account for the data types to be used with the script.\n", + "from teradatasqlalchemy.types import BIGINT, VARCHAR, FLOAT, INTEGER\n", + "from collections import OrderedDict\n", + "\n", + "# Other case-specific imports.\n", + "import json, os, sys, getpass\n", + "import pandas as pd\n", + "from time import sleep\n", + "import time\n", + "# container name - set here for easier notebook navigation\n", + "# User will also be asked to change it \n", + "oaf_name = 'OAF_demo_env'\n", + "print(f'using \"{oaf_name}\" for the OAF environment')\n", + "\n", + "# get the current python version to match deploy a custom container\n", + "python_version = str(sys.version_info[0]) + '.' + str(sys.version_info[1])\n", + "print(f'Using Python version {python_version} for user environment')" + ] + }, + { + "cell_type": "markdown", + "id": "muslim-intention", + "metadata": {}, + "source": [ + "
\n", + "

2. Connect to VantageCloud Lake

\n", + "

Connect to VantageCloud using `create_context` from the teradataml Python library. Input your connection details, including the host, username, password and Analytic Compute Group name.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "700c32b0-bd3d-4cee-85db-788889f0c7a7", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=Opensource_Data_Science_OAF.ipynb;' UPDATE FOR SESSION;''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "offshore-watch", + "metadata": {}, + "source": [ + "
\n", + "

3. Demo 1 - Custom Container Management

\n", + "\n", + "\n", + "\n", + "

The Teradata Vantage Python Client Library provides simple, powerful methods for the creation and maintenance of custom Python runtime environments in the VantageCloud environment . This allows practitioners complete control over the behavior and quality of their model performance and analytic accuracy running on the Analytic Cluster. The following demonstration will show how easy it is to create a custom xgboost-based scoring environment.

\n", + "\n", + "\n", + "\n", + "

Custom environments are persistent. Users only need to create these once and then can be saved, updated, or modified only as needed.

\n", + "\n", + "
\n", + "

Container Management Process

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
    \n", + "
  1. Set up a connection to the Environment Service
  2. \n", + "
    \n", + "
  3. Create a unique User Environment based on available base images
  4. \n", + "
    \n", + "
  5. Install custom libraries and specifc versions if required
  6. \n", + "
    \n", + "
  7. Monitor packages installation/view installed packages
  8. \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "bridal-matrix", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

3.1 Connect to the Environment Service

\n", + "\n", + "

To better support integration with Cloud Services and commong automation tools; the User Environment Service is accessed via RESTful APIs. These APIs can be called directly or in the examples shown below that leverage the Python Package for Teradata (teradataml) methods.

\n", + "\n", + "

In order to properly authenticate to the UES infrastructure, the user must log in with the same credentials that are used to connect to the database. When the following cell executes, follow the instructions to open a browser window, and log in with that user.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "734d8327-f92c-4843-84be-b89b8fdf690f", + "metadata": {}, + "outputs": [], + "source": [ + "# We've already loaded all the values into our environment variables and into a dictionary, env_vars.\n", + "# username=env_vars.get(\"username\") isn't required when using base_url, pat and pem.\n", + "\n", + "if set_auth_token(base_url=env_vars.get(\"ues_uri\"),\n", + " pat_token=env_vars.get(\"access_token\"), \n", + " pem_file=env_vars.get(\"pem_file\"),\n", + " valid_from=int(time.time())\n", + " ):\n", + " print(\"UES Authentication successful\")\n", + "else:\n", + " print(\"UES Authentication failed. Check credentials.\")\n", + " sys.exit(1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "869bec81-31cd-4ec3-97e7-1802ae2cfd7b", + "metadata": {}, + "outputs": [], + "source": [ + "gpu_compute_group = env_vars.get(\"gpu_compute_group\")\n", + "execute_sql(f\"SET SESSION COMPUTE GROUP {gpu_compute_group};\")\n", + "print(f\"Compute group set to {gpu_compute_group}\") " + ] + }, + { + "cell_type": "markdown", + "id": "eligible-newfoundland", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

3.2 Create a Custom Container in Vantage

\n", + "\n", + "

If desired, the user can create a new custom environment by starting with a \"base\" image and customizing it. The steps are:

\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "consistent-component", + "metadata": {}, + "outputs": [], + "source": [ + "# List available Base Python environments\n", + "ipydisplay(list_base_envs())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c613d90f-4943-4d13-a97b-ede53b30c901", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new environment, or connect to an existing one\n", + "try:\n", + " ipydisplay(list_user_envs())\n", + "except Exception as e:\n", + " \n", + " if str(e).find('No user environments found') > 0:\n", + " print('No user environments found')\n", + " pass\n", + " else:\n", + " raise\n", + "\n", + "print('Use an existing environment, or create a new one:')\n", + "print(f'OAF Environment is set to {oaf_name}.')\n", + "print('Enter to accept, or input a new value.')\n", + "print('If the environment is not in the list, a new one will be created')\n", + "i = input()\n", + "if len(i) != 0:\n", + " oaf_name = i\n", + " print(f'OAF Environment is now {oaf_name}')\n", + "\n", + "try:\n", + " demo_env = create_env(env_name = oaf_name,\n", + " base_env = f'python_{python_version}',\n", + " desc = 'OAF Demo environment')\n", + "except Exception as e:\n", + " if str(e).find('same name already exists') > 0:\n", + " print('Environment already exists, obtaining a reference to it')\n", + " demo_env = get_env(oaf_name)\n", + " pass\n", + " elif 'Invalid value for base environment name' in str(e):\n", + " print('Unsupported base environment version, using defaults')\n", + " demo_env = create_env(env_name = oaf_name,\n", + " desc = 'OAF Demo environment')\n", + " else:\n", + " raise\n", + "\n", + "# Note create_env seems to be asynchronous - sleep a bit for it to register\n", + "sleep(5)\n", + "\n", + "try:\n", + " ipydisplay(list_user_envs())\n", + "except Exception as e:\n", + " if str(e).find('No user environments found') > 0:\n", + " print('No user environments found')\n", + " pass\n", + " else:\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "id": "breeding-shame", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

3.3 Install Dependencies

\n", + "\n", + "

The second step in the customization process is to install Python package dependencies. This set of code:\n", + "

\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "plain-psychology", + "metadata": {}, + "outputs": [], + "source": [ + "# View existing libraries in the user environment.\n", + "demo_env.libs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "premier-agenda", + "metadata": {}, + "outputs": [], + "source": [ + "# Install any Python add-ons needed by the script in the user environment\n", + "# Using option asynchronous=True for an asychronous execution of the statement.\n", + "# Note: Avoid asynchronous installation when batch-executing all notebook statements,\n", + "# as execution will continue even without installation being complete.\n", + "#\n", + "claim_id = demo_env.install_lib(['numpy','pandas','scikit-learn', 'xgboost==1.6.2'], asynchronous=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "blond-reliance", + "metadata": {}, + "outputs": [], + "source": [ + "# Check the status of installation using status() API.\n", + "# Create a loop here for demo purposes\n", + "\n", + "ipydisplay(demo_env.status(claim_id))\n", + "stage = demo_env.status(claim_id)['Stage'].iloc[-1]\n", + "while stage == 'Started':\n", + " stage = demo_env.status(claim_id)['Stage'].iloc[-1]\n", + " clear_output()\n", + " ipydisplay(demo_env.status(claim_id))\n", + " sleep(5)\n", + " \n", + "# Verify the Python libraries have been installed correctly.\n", + "ipydisplay(demo_env.libs)" + ] + }, + { + "cell_type": "markdown", + "id": "innovative-monster", + "metadata": {}, + "source": [ + "
\n", + "

4. Demo 2 - Install Custom Models and Scripts

\n", + "\n", + "

Once the custom runtime environment has been created, the user can then load custom user-created assets. For the purposes of this Demonstration, we will load two files;

\n", + "\n", + "
    \n", + "
  1. 'xgb_model' - This is a simple XGBoost Classifier model that was trained on the \"Financial Fraud\" data in the OFS table. It has an accuracy score of approximately 97.4%. The Appendix provides the code used to train, test, and save this model file.
  2. \n", + "
    \n", + "
  3. 'Demo_XBG_Scoring.py' - This file is a simple python program that acts as the bridge between EDW processing on the Analytics Cluster and the XGBoost model scoring. It simply formats the incoming data, calls the model, and outputs the model predictions. When executed on the individual parallel Analytic Cluster Nodes, it will us the XGBoost model file to score it's portion of the data.
  4. \n", + "
\n", + " \n", + "

Once again, the Vantage Python Library makes this process straightforward by calling two simple methods:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
    \n", + "
  • \"install_file\" for each of the two assets
  • \n", + "
    \n", + "
  • Verification using the \"files\" property
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "configured-skiing", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

4.1 Install User Files in the Cluster Container

\n", + "\n", + "

Users can load any asset to the environment using the install_file method. This ensures that only authenticated users can install specific files into a dedicated filesystem, and helps prevent malicious code injection. Users pass the file name, and whether to replace an existing file.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "large-luther", + "metadata": {}, + "outputs": [], + "source": [ + "# Install xgboost model file.\n", + "demo_env.install_file('xgb_model', replace = True)\n", + "\n", + "# Install the desired Python script into the environment.\n", + "demo_env.install_file('Demo_XGB_Scoring.py', replace = True)" + ] + }, + { + "cell_type": "markdown", + "id": "minimal-transport", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

4.2 List all installed files

\n", + "\n", + "

files property lists the asset, size, and last updated timestamp. As above, these methods are available to manage the container remotely, since these containers live in the Vantage environment.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "running-tribute", + "metadata": {}, + "outputs": [], + "source": [ + "# Verify the files have been installed correctly.\n", + "demo_env.files" + ] + }, + { + "cell_type": "markdown", + "id": "responsible-switzerland", + "metadata": {}, + "source": [ + "
\n", + "

5. Demo 3 - Model Scoring at Scale

\n", + "\n", + "

VantageCloud Lake Edition Analytic Clusters combine the power and scale of native ClearScape Analytics Functions with the open and flexible runtime environments; offering users the flexibility to balance built-in data prep, transformation and feature engineering functions with custom code and models at massive scale.

\n", + "\n", + "

Enterprise Class customers report the ability to reduce data prep and model scoring times from several hours per run to seconds; effectively allowing model scoring in near-real-time.

\n", + "\n", + "

This demonstration will illustrate these key concepts:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
    \n", + "
  • Leverage native data preparation functions to process incoming data for the model scoring
  • \n", + "
    \n", + "
  • Execute the combined native query and the python scoring functions together, in parallel
  • \n", + "
    \n", + "
  • Analyze the results of the process to determine ongoing model accuracty and efficacy
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "involved-assist", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

5.1 Data Transformation/Feature Engineering

\n", + "\n", + "

Create a reference to the data set in Vantage, and apply powerful transformation functions directly on the Data. ClearScape Analytics is a suite of in-database massively-parallel-processing functions for statistical analysis, data cleaning and transformation, machine learning, text analytics, and model scoring. Practictioners can leverage these functions together with open-source modeling as illustrated here, or create powerful, native end-to-end pipelines using just these functions.

\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "material-personality", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Create a reference to the data set in-Vantage\n", + "# by creating a \"Teradata DataFrame\"\n", + "# which is a reference to the data.\n", + "tdf_test = DataFrame(in_schema(\"DEMO_GLM_Fraud\", \"transaction_data\"))\n", + "tdf_test.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "signal-induction", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

5.2 Engineer Features

\n", + "\n", + "

Call the ClearScape One Hot Encoding function to transform the categorical column into numeric features.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "imposed-match", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Perform native one-hot encoding on the data\n", + "# These functions use a \"fit-and-transform\" pattern\n", + "# that supports reuse and easier operationalization of the transformation process\n", + "\n", + "from teradataml import OneHotEncodingFit, OneHotEncodingTransform\n", + "\n", + "res_ohe = OneHotEncodingFit(data = tdf_test, \n", + " target_column = 'type', \n", + " categorical_values = ['CASH_OUT', 'CASH_IN', 'TRANSFER', 'DEBIT', 'PAYMENT'], \n", + " other_column = 'other',\n", + " is_input_dense = True)\n", + "\n", + "res_transformed = OneHotEncodingTransform(data = tdf_test, object = res_ohe.result, is_input_dense = True)\n", + "res_transformed.result.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "collectible-gather", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

5.3 Execute the Scoring function

\n", + "\n", + "

Now that the categorical column has been encoded, the XGBoost model can be called. This is executed via the Apply method, where we pass;

\n", + "\n", + "\n", + " \n", + "\n", + "

Finally, the script is executed by calling the \"execute_script\" method; this \"lazy\" evaluation allows for more modular and performant architecture.

\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4af9a813-110a-4b7a-b46f-3b4a12aaa585", + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(res_transformed.result, table_name = 'Transformed_Tbl', if_exists = 'replace')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36b7284c-9522-453b-9a8b-59adebeb335e", + "metadata": {}, + "outputs": [], + "source": [ + "res_transformed = DataFrame.from_query(\"SELECT TOP 1000 * FROM Transformed_Tbl\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "unlimited-liver", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "apply_obj = Apply(data = res_transformed.drop(['step', 'nameOrig', 'nameDest', 'isFlaggedFraud'], axis = 1),\n", + " apply_command = 'python3 Demo_XGB_Scoring.py',\n", + " returns = {'Actual': VARCHAR(2) , 'Prob_0': VARCHAR(30), 'Prob_1': VARCHAR(30), 'Prediction':VARCHAR(2), 'txn_id': VARCHAR(20)},\n", + " env_name = demo_env,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "opening-manner", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Execute the Python script inside the remote user environment.\n", + "# The result is a teradataml DataFrame. \n", + "scored_data = apply_obj.execute_script()\n", + "\n", + "# Only return five rows - minimize network overhead\n", + "scored_data.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "chief-falls", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

5.4 Analyze the Results

\n", + "\n", + "

It is common practice to measure the efficacy of a model. For this demonstration, a \"Confusion Matrix\" is generated that shows the quantity of true vs. false positives and negatives for the model.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "distinguished-motor", + "metadata": {}, + "outputs": [], + "source": [ + "# Copy the predictions to the client\n", + "# to generate the simple Confusion Matrix\n", + "# and print the AUC (Area Under Curve)\n", + "\n", + "df_test = scored_data.to_pandas(all_rows = True)\n", + "cm = confusion_matrix(df_test['Actual'].astype(int), df_test['Prediction'].astype(int))\n", + "disp = ConfusionMatrixDisplay(confusion_matrix = cm, display_labels = ['0', '1'])\n", + "fig, ax = plt.subplots(figsize=(10,10))\n", + "disp.plot(ax=ax)\n", + "\n", + "plt.show()\n", + "\n", + "#Get AUC score - anything over .75 is decent\n", + "AUC = roc_auc_score(df_test['Actual'].astype(int), df_test['Prediction'].astype(int))\n", + "print(f'AUC: {AUC}')" + ] + }, + { + "cell_type": "markdown", + "id": "conceptual-crash", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

5.5 Disconnect from Vantage

\n", + "\n", + "

Once complete, one can remove the custom environment (if desired) and close the \"context\" to the Vantage system.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "tired-purple", + "metadata": {}, + "outputs": [], + "source": [ + "# uninstall the libraries from the environment first before removing it\n", + "demo_env.uninstall_lib(libs = demo_env.libs['name'].to_list())\n", + "remove_env(demo_env.env_name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fiscal-animal", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "material-groove", + "metadata": {}, + "source": [ + "
\n", + "

6. Appendix - Model Training and Evaluation

\n", + "\n", + "

VantageCloud Lake Edition Analytic Clusters and ClearScape Analytics functions can also be leveraged for model training. This brief addendum shows an abbreviated process for developing and testing an open-source fraud detection model with Vantage and XGBoost.

" + ] + }, + { + "cell_type": "markdown", + "id": "abroad-underground", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.1 Connect to Vantage

\n", + "\n", + "

If necessary, connect to Vantage. If the context is still valid from above this doesn't need to be run. The below code will read in a variables file (vars.json - this has been used in prior environment setup and data engineering examples) and will connect to Vantage with this information. The Vantage connection is referred to as a \"Context\" - a common python-rdbms connection architecture.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "contemporary-rouge", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=Opensource_Data_Science_OAF.ipynb;' UPDATE FOR SESSION;''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "modified-services", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.2 Get a reference to the data

\n", + "\n", + "

Create a Teradataml DataFrame which references the data set in Vantage. This could be a table stored in direct-attach block storage, Performance-Optimized Object Storage (OFS), or stored in an open format in any Object Store.

\n", + "\n", + "

Teradataml DataFrames do not copy data into local memory, so complex analytic and transformation operations can run against data at any scale, while leveraging the parallel processing and workload isolation of Vantage Analytic Clusters.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "american-centre", + "metadata": {}, + "outputs": [], + "source": [ + "# Updated variables to insure they are the same\n", + "tdf_test = DataFrame(in_schema(\"DEMO_GLM_Fraud\", \"transaction_data\"))\n", + "tdf_test.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "terminal-network", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.3 Engineer Features

\n", + "\n", + "

Call the ClearScape One Hot Encoding function to transform the categorical column into numeric features.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "higher-courage", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import OneHotEncodingFit, OneHotEncodingTransform\n", + "\n", + "res_ohe = OneHotEncodingFit(data = tdf_test, \n", + " target_column = 'type', \n", + " categorical_values = ['CASH_OUT', 'CASH_IN', 'TRANSFER', 'DEBIT', 'PAYMENT'], \n", + " other_column = 'other',\n", + " is_input_dense = True)\n", + "\n", + "res_transformed = OneHotEncodingTransform(data = tdf_test, object = res_ohe.result, is_input_dense = True)\n", + "res_transformed.result.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "billion-drawing", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

Design for Operations

\n", + "\n", + "

Persist the \"Fit\" table to reuse it for the Operational transformation of new data

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "meaning-trading", + "metadata": {}, + "outputs": [], + "source": [ + "# copy the fit table to a permanent table for use later\n", + "res = copy_to_sql(res_ohe.result, table_name = 'OHE_FIT_TABLE', if_exists = 'replace')" + ] + }, + { + "cell_type": "markdown", + "id": "cognitive-dream", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.4 Test/Train Split

\n", + "\n", + "

Extraordinarily fast \"Sample\" function can split the data into multiple data sets in seconds.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ignored-scholar", + "metadata": {}, + "outputs": [], + "source": [ + "tdf_samples = res_transformed.result.sample(frac = [0.2, 0.8])\n", + "copy_to_sql(tdf_samples[tdf_samples['sampleid'] == 2], table_name = 'txns_train', if_exists = 'replace')\n", + "copy_to_sql(tdf_samples[tdf_samples['sampleid'] == 1], table_name = 'txns_test' , if_exists = 'replace')" + ] + }, + { + "cell_type": "markdown", + "id": "major-nudist", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.5 Train the Model

\n", + "\n", + "

Use open-source XGBoost Classifier to train the model using the \"training\" data split above.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "demanding-bouquet", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pandas DataFrame\n", + "df_train = DataFrame(\"txns_train\").to_pandas(all_rows = True)\n", + "\n", + "# define the input columns and target variable:\n", + "X_train = df_train[['type_CASH_OUT', 'type_CASH_IN', 'type_TRANSFER',\n", + " 'type_DEBIT', 'type_PAYMENT', 'type_other', 'amount','oldbalanceOrig', 'newbalanceOrig',\n", + " 'oldbalanceDest', 'newbalanceDest']]\n", + "y_train = df_train[['isFraud']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "strong-lottery", + "metadata": {}, + "outputs": [], + "source": [ + "# Fit the Model\n", + "warnings.filterwarnings('ignore')\n", + "from xgboost import XGBClassifier\n", + "\n", + "model = XGBClassifier()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "atmospheric-occasions", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.6 Test the Model

\n", + "\n", + "

It is common practice to measure the efficacy of a model. For this demonstration, a \"Confusion Matrix\" is generated that shows the quantity of true vs. false positives and negatives for the model.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "australian-religion", + "metadata": {}, + "outputs": [], + "source": [ + "# Return a Pandas DataFrame from the split data above\n", + "\n", + "df_test = DataFrame(\"txns_test\").to_pandas(all_rows = True)\n", + "\n", + "# Define the input columns and target\n", + "X_test = df_test[['type_CASH_OUT', 'type_CASH_IN', 'type_TRANSFER',\n", + " 'type_DEBIT', 'type_PAYMENT', 'type_other', 'amount','oldbalanceOrig', 'newbalanceOrig',\n", + " 'oldbalanceDest', 'newbalanceDest']]\n", + "y_test = df_test[['isFraud']]\n", + "\n", + "\n", + "# Predict the class and the probability of Fraud\n", + "y_pred = model.predict(X_test)\n", + "y_prob = model.predict_proba(X_test)\n", + "\n", + "\n", + "# Generate the Confusion Matrix\n", + "df_test[['prob_0', 'prob_1']] = y_prob\n", + "df_test['prediction'] = y_pred\n", + "\n", + "cm = confusion_matrix(df_test['isFraud'], df_test['prediction'])\n", + "disp = ConfusionMatrixDisplay(confusion_matrix = cm, display_labels = ['0', '1'])\n", + "fig, ax = plt.subplots(figsize=(10,10))\n", + "disp.plot(ax=ax)\n", + "\n", + "plt.show()\n", + "\n", + "#Get AUC score - anything over .75 is decent\n", + "AUC = roc_auc_score(df_test['isFraud'], df_test['prediction'])\n", + "print(f'AUC: {AUC}')" + ] + }, + { + "cell_type": "markdown", + "id": "proper-friendship", + "metadata": {}, + "source": [ + "
\n", + "\n", + "

6.7 Save the Model

\n", + "\n", + "

Save the model file in native xgboost format. This is used above in the main demonstration.

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "assured-progressive", + "metadata": {}, + "outputs": [], + "source": [ + "model.save_model('xgb_model')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "formed-sheet", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "1a4db3dc-2241-4735-9a1e-a489c8986bdb", + "metadata": {}, + "source": [ + "" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "toc-autonumbering": false, + "toc-showmarkdowntxt": true + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/Getting_Started/images/Container_Layout.png b/VantageCloud_Lake/Getting_Started/images/Container_Layout.png new file mode 100644 index 00000000..79fac5d8 Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/Container_Layout.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/In_DB_Functions.png b/VantageCloud_Lake/Getting_Started/images/In_DB_Functions.png new file mode 100644 index 00000000..7445ea5f Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/In_DB_Functions.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/Model.png b/VantageCloud_Lake/Getting_Started/images/Model.png new file mode 100644 index 00000000..228bf77b Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/Model.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/OAF_Env.png b/VantageCloud_Lake/Getting_Started/images/OAF_Env.png new file mode 100644 index 00000000..1be627c3 Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/OAF_Env.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/OAF_Overview.png b/VantageCloud_Lake/Getting_Started/images/OAF_Overview.png new file mode 100644 index 00000000..73b29048 Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/OAF_Overview.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/OAF_Scoring.png b/VantageCloud_Lake/Getting_Started/images/OAF_Scoring.png new file mode 100644 index 00000000..239be028 Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/OAF_Scoring.png differ diff --git a/VantageCloud_Lake/Getting_Started/images/TeradataLogo.png b/VantageCloud_Lake/Getting_Started/images/TeradataLogo.png new file mode 100644 index 00000000..a6811164 Binary files /dev/null and b/VantageCloud_Lake/Getting_Started/images/TeradataLogo.png differ diff --git a/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python.ipynb b/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python.ipynb new file mode 100644 index 00000000..fa2b09ac --- /dev/null +++ b/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python.ipynb @@ -0,0 +1,1900 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b1378a69-ac58-4d0c-af22-7ef881abac45", + "metadata": {}, + "source": [ + "
\n", + "

\n", + " Anomaly Detection in Robot Welding Process\n", + "
\n", + " \"Teradata\"\n", + "

\n", + "
\n", + "\n", + "

Introduction

\n", + "\n", + "

Detecting anomalies reduces issues and delays in many industries, especially in the manufacturing field. There have been approaches to detect anomalies in the past, such as engineering rules and graph and deep learning. However, it still proves difficult to detect all the existing anomalies. Plus, companies are striving to minimize false positives, cope with the diversity of sensors and metrology issues, and deliver actionable insights at a business pace. Fortunately, Teradata and ClearScape Analytics have the solution. In ClearScape Analytics, users can execute all steps of anomaly detection from data preparation and exploration to model training and evaluations and adjustments. These analyses can improve the process and ensure accuracy in anomaly detection.

\n", + "\n", + "

Spot Welding Quality Assessment

\n", + "

Spot welding is a common technique used for welding car body panels, particularly in the assembly of smaller parts and components. Spot welding involves using a pair of copper electrodes to apply a series of short, high-current welding pulses to the metal, fusing the parts together at specific points or “spots”.

\n", + "\n", + "

The automotive industry is known for its high level of automation, and spot welding is one of the most automated processes, heavily reliant on robots to improve efficiency, reduce labor costs, and improve the consistency and quality of the finished product. Poor welding quality is rare, but even so, the consequences of poor quality may not be negligible in terms of rework costs and customer satisfaction, especially when quality issues are detected too late.

\n", + "\n", + "\n", + "\n", + "

Spot welding is a resistance welding process that uses large electrical current. There are many ways to assess the quality of a spot, like tensile or ultrasonic testing to assess the weld strength or the analysis of the welding current measured and recorded during the welding process. In this demo, we focus on the analysis of the anomalies in the welding spot due to welding current, and more specifically the resistance, i.e. the voltage-current ratio which impacts the quality of the welding. The shape of the resistance curve depends on many factors like the nature of the materials, the geometry, and the quality of the electrodes etc.

\n", + "\n", + "\n", + "

Business Values

\n", + "
  • Improve accuracy in the production and manufacturing process.
  • \n", + "
  • Reduce the number of false positive anomalies detected in a system.
  • \n", + "
  • Decrease additional costs and time wasted due to undetected anomalies.
  • \n", + "
  • Determine patterns and significant factors that lead to anomalies.
  • \n", + "

    Why Vantage?

    \n", + "

    Many organizations fail to realize value from their ML and AI investments due to a lack of scale. It is estimated that for broad adoption across many industries, the number of models and model deployments needs to scale 100-1000x larger than their organizations currently support.

    \n", + "

    The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "

    In this particular use case, the volume of machine sensor data was so great that millions of ML models were created to derive analytic features that ultimately deployed tens of thousands of models for real-time scoring. This extent of scale is only possible by combining the power of Vantage with native ClearScape Analytic functions.

    \n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "b33aebf1-80cf-4043-99de-b2ac0356ea64", + "metadata": { + "tags": [] + }, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "caa4ef22-2129-4713-9483-2b64565deda7", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3a0b76c2-b211-452f-949c-676da6da9540", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import getpass\n", + "import pandas as pd\n", + "import datetime\n", + "from teradataml import *\n", + "\n", + "# import tdsense\n", + "# from tdsense.plot import plotcurves \n", + "import numpy as np # linear algebra\n", + "import matplotlib.pyplot as plt\n", + "import sklearn\n", + "from sklearn import preprocessing\n", + "# from tdsense.clustering import hierarchy_dendrogram, hierarchy_clustering\n", + "# from tdnpathviz.visualizations import plotcurves\n", + "%matplotlib inline\n", + "\n", + "from sklearn import datasets\n", + "from sklearn2pmml.pipeline import PMMLPipeline\n", + "from sklearn2pmml import sklearn2pmml\n", + "from sklearn.model_selection import train_test_split\n", + "from imblearn.over_sampling import SMOTE\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.metrics import accuracy_score, precision_score, roc_auc_score, f1_score,confusion_matrix, roc_curve, ConfusionMatrixDisplay\n", + "import time\n", + "import pytz\n", + "\n", + "\n", + "import os\n", + "from jdk4py import JAVA, JAVA_HOME, JAVA_VERSION\n", + "# Set java path\n", + "\n", + "os.environ['PATH'] = os.environ['PATH'] + os.pathsep + str(JAVA_HOME)\n", + "os.environ['PATH'] = os.environ['PATH'] + os.pathsep + str(JAVA)[:-5]\n", + "\n", + "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", + "from collections import defaultdict\n", + "import plotly.offline as offline\n", + "offline.init_notebook_mode()\n", + "from dotenv import load_dotenv, dotenv_values\n", + "\n", + "from teradataml.dataframe.sql_functions import case\n", + "from teradataml import db_drop_table\n", + "configure.byom_install_location = \"td_mldb\"\n", + "\n", + "display.max_rows = 5\n", + "warnings.filterwarnings('ignore')\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=RuntimeWarning)\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)" + ] + }, + { + "cell_type": "markdown", + "id": "8c250746-66ba-40aa-b41b-c791786f61a0", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2be07d96-51d3-4aee-b025-582af97119da", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_AnomalyDetection_Python.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "a182d300-1103-4902-8973-715b805f3059", + "metadata": {}, + "source": [ + "
    \n", + "

    3.Load the data

    \n" + ] + }, + { + "cell_type": "markdown", + "id": "9476f53a-7115-4018-a58f-dd09f7fc8b88", + "metadata": {}, + "source": [ + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_AnomalyDetection\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + "\n", + "

    **Note: The tables are available in DEMO_AnomalyDetection_DB database and we have created views in DEMO_AnomalyDetection database which are used in the cells below

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "99598e0a-8a6c-4539-a06d-f6723f67134f", + "metadata": {}, + "outputs": [], + "source": [ + "Sensor_Data = DataFrame(in_schema('DEMO_AnomalyDetection', 'Sensor_Data'))\n", + "Sensor_Data" + ] + }, + { + "cell_type": "markdown", + "id": "d4b9b958-737d-41a0-adec-91614fa0fe2e", + "metadata": {}, + "source": [ + "

    We get the above data from sensors. We focus on one plant (PLANT=1) and one robot (ROBOT_ID=41). The Partition_ID is the type of welding, ID is the WELDING_ID, X is time required for welding in ms and Y is the RESISTANCE. We create a view with the columns required to get data with proper column names.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88cde234-6107-487e-92f2-7f045576cc1d", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "query = f\"\"\"\n", + "REPLACE VIEW DEMO_AnomalyDetection.V_dataset_01 AS\n", + "SELECT\n", + " 1 AS PLANT\n", + ", {41} AS ROBOT_ID\n", + ", CAST(A.PARTITION_ID AS BIGINT) AS WELDING_TYPE\n", + ", CAST((DATE '{str(datetime.datetime.now()).split(' ')[0]}' + FLOOR((WELDING_ID-700*WELDING_TYPE)/100)) AS DATE FORMAT 'YYYY-MM-DD') AS WELDING_DAY\n", + ", CAST(A.ID AS BIGINT) AS WELDING_ID\n", + ", CAST(A.X AS INTEGER) AS TIME_MS\n", + ", A.Y AS RESISTANCE\n", + "FROM DEMO_AnomalyDetection.Sensor_Data A\n", + "\"\"\"\n", + "execute_sql(query)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ec3a959-c5e0-4039-88f8-846adca6f113", + "metadata": {}, + "outputs": [], + "source": [ + "welding_dataset_new = DataFrame(in_schema('DEMO_AnomalyDetection', 'V_dataset_01'))\n", + "welding_dataset_new" + ] + }, + { + "cell_type": "markdown", + "id": "09198aa2-6ab7-4339-a01a-365cba02c772", + "metadata": {}, + "source": [ + "
    \n", + "

    3.1 - Some aggregations and visualization.

    \n" + ] + }, + { + "cell_type": "markdown", + "id": "f83b1b1a-eece-487a-97d7-b4759ea624ce", + "metadata": {}, + "source": [ + "

    We will check the histogram based on the minimum and maximum Time for welding.

    \n", + "

    A histogram is a better way to assess distribution, to cope with the scalability, it is recommended to compute the histogram bins in-database to leverage the Massively Parallel Architecture of Teradata Vantage. For that, we use the Histogram function of teradataml that pushes down the computations to Vantage.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1a5d38c3-ebb9-47a2-b8ad-f00acd9d769b", + "metadata": {}, + "outputs": [], + "source": [ + "welding_duration_ms = welding_dataset_new. \\\n", + " groupby(['PLANT','ROBOT_ID','WELDING_TYPE', 'WELDING_ID']). \\\n", + " agg({'TIME_MS':['min','max','count']})\n", + "welding_duration_ms" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "642bf739-a421-4ffd-8fc1-53f273db9bd9", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Histogram\n", + "obj = Histogram(data=welding_duration_ms,\n", + " target_columns=\"count_TIME_MS\",\n", + " method_type=\"Scott\")\n", + "res = obj.result.sort('MinValue')\n", + "res" + ] + }, + { + "cell_type": "markdown", + "id": "62b099f0-eb76-45a2-9c0e-983399c59570", + "metadata": {}, + "source": [ + "

    We can see that we have calculated the histogram values using the teradataml functions. Clearscape Analytics can easily integrate with 3rd party visualization tools like Tableau, PowerBI or many python modules available like plotly, seaborn etc. We can do all the calculations and pre-processing on Vantage and pass only the necessary information to visualization tools, this will not only make the calculation faster but also reduce the time due to less data movement between tools. We do the data transfer for this and the subsequent visualizations wherever necessary.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c9b72ab-7d3c-4964-9199-ee1dcc17c928", + "metadata": {}, + "outputs": [], + "source": [ + "res = obj.result.sort('MinValue').to_pandas()\n", + "res['duration_ms'] = [str(row['MinValue'])+'-'+str(row['MaxValue']) for i,row in res.iterrows()]\n", + "res.plot(x='duration_ms',y='CountOfValues',kind='bar', figsize=(15,10), legend=False,xlabel='Duration(ms)', ylabel='Welding Counts')" + ] + }, + { + "cell_type": "markdown", + "id": "88429a10-aa8b-459f-976a-6276ab121bbc", + "metadata": {}, + "source": [ + "

    In the above histogram we can see the bins between the Min and the Max value of the durations and the welding counts.

    \n", + "
    \n", + "

    3.2 - More advanced processing using window functions and delta_t

    \n", + "

    Resistance is an important parameter in resistance welding. The resistance should not vary too much. If there are any significant changes in resistance over time, it could indicate an issue with the weld quality. For example, an unusually high resistance could indicate poor contact between the parts being welded or a problem with the welding equipment.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5615026-52eb-4aae-8bb2-146e88ef4502", + "metadata": {}, + "outputs": [], + "source": [ + "welding_dataset_new.loc[welding_dataset_new.WELDING_ID == 854]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "50c72091-f7f3-4ed3-a436-ee5c44335f4e", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from tdnpathviz.visualizations import plotcurves\n", + "plotcurves(welding_dataset_new.loc[welding_dataset_new.WELDING_ID == 854],field='RESISTANCE',row_axis='TIME_MS', series_id='WELDING_ID',select_id=None)" + ] + }, + { + "cell_type": "markdown", + "id": "ae924828-6e92-4003-93c9-b66aeec1821f", + "metadata": {}, + "source": [ + "

    The above graph shows the variation of the resistance of the welding with respect to time. We see that the most interesting part lies between 40 and 400ms from the start of the curve.

    \n", + "\n", + "

    Next we apply the window function on the resistance to smooth the resistance and taking the mean value.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "516d8fd4-ab2c-44cd-89d2-d8075e40cf82", + "metadata": {}, + "outputs": [], + "source": [ + "# curve smoothing\n", + "window_for_smoothing = welding_dataset_new.RESISTANCE.window(\n", + " partition_columns = \"WELDING_ID\",\n", + " order_columns = 'TIME_MS',\n", + " window_start_point = -15,\n", + " window_end_point = 15\n", + ")\n", + "welding_dataset_smooth = welding_dataset_new.assign(RESISTANCE_SMOOTHED = window_for_smoothing.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6c351bab-cd80-452c-b600-79efaec9f769", + "metadata": {}, + "outputs": [], + "source": [ + "id_curve = 854\n", + "single_welding = welding_dataset_smooth[welding_dataset_smooth.WELDING_ID == id_curve].sort('TIME_MS')\n", + "single_welding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44d1ffb7-1bf2-4770-8b0d-f21ed5a589e4", + "metadata": {}, + "outputs": [], + "source": [ + "figure = Figure(width=1000, height=400, image_type=\"jpg\",\n", + " heading=\"RESISTANCE and RESISTANCE SMOOTHED\")\n", + "plot = single_welding.plot(x=single_welding.TIME_MS, y=[single_welding.RESISTANCE, single_welding.RESISTANCE_SMOOTHED],\n", + " style=['blue', 'red'],xlabel='time in ms', ylabel='resistance ',figure=figure)\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "id": "299bf795-653e-45a4-8f39-5143d81173cf", + "metadata": {}, + "source": [ + "

    The above graph shows the variation of the resistance of the welding with respect to time and the smoothed resistance, as shown by the Red line, after applying the window function.

    \n", + "\n", + "

    The window function generates a Window object on a teradataml DataFrame Column to run window aggregate functions.\n", + "

    Function allows user to specify window for different types of computations:\n", + "

  • Cumulative\n", + "
  • Group\n", + "
  • Moving\n", + "
  • Remaining\n", + "

    By default, window with Unbounded Preceding and Unbounded following is considered for calculation.

    \n", + "\n", + "

    Next we calculate the derivative by using the lead function and taking the difference of the lead value and the mean value of the resistance. Applying a window function to smooth the resistance curve helps to eliminate noise and makes it easier to see the overall trend. The derivative of the resistance gives an indication of how quickly the resistance is changing, which can be a useful measure for detecting anomalies and predicting potential issues.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e489b230-97b7-4f91-a001-3355da9b20bd", + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(welding_dataset_smooth,table_name='welding_dataset_smooth', if_exists='replace')\n", + "welding_dataset_smooth = DataFrame('welding_dataset_smooth')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fccb6149-ce72-4601-983b-a87f2bc52417", + "metadata": {}, + "outputs": [], + "source": [ + "# let's compute the lead\n", + "window_for_lead = welding_dataset_smooth.RESISTANCE_SMOOTHED.window(\n", + " partition_columns = \"WELDING_ID\",\n", + " order_columns = 'TIME_MS')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e6a9bc90-f330-467f-8765-5a00578c6c6e", + "metadata": {}, + "outputs": [], + "source": [ + "welding_dataset_smooth = welding_dataset_smooth.assign(RESISTANCE_SMOOTHED_AFTER = window_for_lead.lead())\n", + "welding_dataset_smooth = welding_dataset_smooth.assign(DERIVATIVE = (welding_dataset_smooth.RESISTANCE_SMOOTHED_AFTER - welding_dataset_smooth.RESISTANCE_SMOOTHED).zeroifnull())\n", + "welding_dataset_smooth.sort(['WELDING_ID','TIME_MS'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d019941f-4422-4012-8984-0dce20d10e48", + "metadata": {}, + "outputs": [], + "source": [ + "id_curve = 854\n", + "single_welding_subplot = welding_dataset_smooth[welding_dataset_smooth.WELDING_ID == id_curve].sort('TIME_MS')\n", + "single_welding_subplot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0bd9b71a-b668-44f9-a0bd-e74b2c82462e", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import subplots\n", + "# fig, axes = subplots(grid = {(1, 1): (1, 1),(2, 1): (1, 2)})\n", + "# Plot 1980 data at first Axis.\n", + "fig, axes = subplots(nrows=2, ncols=1)\n", + "plot = single_welding_subplot.plot(x=single_welding_subplot.TIME_MS, \n", + " y=[single_welding_subplot.RESISTANCE, single_welding_subplot.RESISTANCE_SMOOTHED],\n", + " legend=[\"RESISTANCE\", \"RESISTANCE SMOOTHED\"],\n", + " figure=fig,\n", + " style=['blue', 'red'],xlabel='time in ms', ylabel='resistance ', \n", + " ax=axes[0])\n", + "\n", + "# Plot 1981 data at second Axis.\n", + "plot = single_welding_subplot.plot(x=single_welding_subplot.TIME_MS, \n", + " y=single_welding_subplot.DERIVATIVE,\n", + " legend=[\"DERIVATIVE\"],\n", + " figure=fig,\n", + " style=\"red\",xlabel='time in ms', ylabel='derivative ' , \n", + " ax=axes[1])\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "id": "92c9f6e0-7b26-4fed-9b43-1d35989affad", + "metadata": {}, + "source": [ + "

    We see that the most interesting part lies between 40 and 400ms from the start of the curve, so we plot only that subset.

    " + ] + }, + { + "cell_type": "markdown", + "id": "4615d965-6892-4729-81b0-9dd39f7d9411", + "metadata": { + "tags": [] + }, + "source": [ + "

    It is hard to assess the diversity of curve shapes in this plot since many of them are superimposed. However, we see in the middle of the picture a sharp drop that looks unusual. Moreover, we guess that there are shifts in time and height.

    \n", + "\n", + "
    \n", + "

    4. Feature Engineering

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da82ee40-3e38-49af-a6ca-a678ba240ca2", + "metadata": {}, + "outputs": [], + "source": [ + "welding_dataset_new.columns" + ] + }, + { + "cell_type": "markdown", + "id": "539a4c25-f868-44af-bca3-13b4ca477445", + "metadata": {}, + "source": [ + "

    We will create a feature table by using different functions on the Resistance column. Valid values for functions are: 'count', 'sum', 'min', 'max', 'mean', 'std', 'percentile', 'unique','median', 'var', 'skew', 'kurtosis'.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aa37d2af-c185-4a84-9ca5-8628a216aa27", + "metadata": {}, + "outputs": [], + "source": [ + "features = welding_dataset_new.loc[welding_dataset_new.TIME_MS > 20,:]. \\\n", + " groupby(welding_dataset_new.columns[0:5]). \\\n", + " agg({\n", + " 'TIME_MS':['min','max'],\n", + " 'RESISTANCE':['count', 'sum', 'min', 'max', 'mean', 'std', 'percentile', 'unique','median', 'var','skew','kurtosis']\n", + " })\n", + "features" + ] + }, + { + "cell_type": "markdown", + "id": "0196e16a-9d9d-4d44-a0ed-e5220c3314e2", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Anomaly Detection on Sensor Data

    \n", + " \n", + "

    Let's start by getting the feature columns from the features tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "27cdf0f8-e0b3-41b5-b18d-b77cdbc5652b", + "metadata": {}, + "outputs": [], + "source": [ + "feature_names = features.columns[7::]\n", + "feature_names" + ] + }, + { + "cell_type": "markdown", + "id": "9655f048-ffbd-4785-9e8b-39d192ff7808", + "metadata": {}, + "source": [ + "
    \n", + "

    5.1 Clustering by curve shape

    \n", + "

    To cluster time series by shapes, we will use the Dynamic Time Warping (DTW) distance that measures the similarity between two time series. This distance is well adapted to this kind of problem since it provides robustness to shifts in time and height.

    \n", + "\n", + "

    Distance Matrix in-database Computations

    \n", + "\n", + "

    The ClearScape Analytics DTW function computes at scale distances between one reference curve to a set of curves, a many-to-one approach. ClearScape Analytics offers in database dynamic time warping function, callable in SQL as TD_DTW. TD_DTW measures the similarity of two time series. The Dynamics Time Warping (DTW) algorithm is used for space and time. The algorithm uses the FastDTW algorithm. TD_DTW measures the similarity of two time series. The Dynamics Time Warping (DTW) algorithm is used for space and time. The algorithm uses the FastDTW algorithm. This function computes at scale the DTW distances between one reference curve to a set of curves, a many-to-one approach. We want to compute the distance matrix of our subset, i.e. the DTW distance between each curve. The distance matrix is symmetric, since the DTW is, hence we only need to compute the triangular matrix. We wrapped this computation in the tdsense package that calls the TD_DTW function and iterates on the matrix row to compute and store the whole triangular distance matrix in a table.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "207e72c8-41e3-481a-9727-a4c7510f4206", + "metadata": {}, + "outputs": [], + "source": [ + "overview = welding_dataset_new.groupby('WELDING_DAY').count(distinct=True)\n", + "dates = list(overview.to_pandas().reset_index()['WELDING_DAY'].values.astype('str'))\n", + "dates" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c7180b4-a8b5-450a-96be-8aed93d1199a", + "metadata": {}, + "outputs": [], + "source": [ + "subset = welding_dataset_new[ \\\n", + " (welding_dataset_new['PLANT'] == 1) & \\\n", + " (welding_dataset_new['ROBOT_ID'] == 41) & \\\n", + " (welding_dataset_new['WELDING_TYPE'] in (8,9)) & \\\n", + " (welding_dataset_new['WELDING_DAY'].isin(dates)) \\\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0dda2eca-af26-4741-abeb-b63758f8c996", + "metadata": {}, + "outputs": [], + "source": [ + "subset_zoom = subset[(subset.TIME_MS < 400) & (subset.TIME_MS > 40)]\n", + "subset_zoom.shape" + ] + }, + { + "cell_type": "markdown", + "id": "9d40f422-886d-48e5-a4ce-03b259523917", + "metadata": {}, + "source": [ + "

    The subset of data we have taken contains 7 columns and 344,622 rows.

    \n", + "\n", + "

    Since this is a 2CPU system, the below computation takes around more than 2 hours for 350k rows and so we have pre calculated it and stored in the table in database.

    \n", + "\n", + "

    **In case we still want to compute the matrix please set the If part of the below code to True instead of False

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "276fd1b7-e057-4c0c-b8b0-4e063d70eb7a", + "metadata": {}, + "outputs": [], + "source": [ + "if False:\n", + " dtw_matrix = dtw_distance_matrix_computation2(subset_zoom,field='RESISTANCE',\n", + " table_name=dtw_result_table,\n", + " schema_name = Param['database'],\n", + " row_axis='TIME_MS',\n", + " series_id = 'WELDING_ID')\n", + "else:\n", + " dtw_matrix = DataFrame(in_schema('DEMO_AnomalyDetection','DTW_Matrix'))" + ] + }, + { + "cell_type": "markdown", + "id": "42f770a5-f3b2-4862-8256-b1cc1f969750", + "metadata": {}, + "source": [ + "
    \n", + "

    5.2 Hierarchical clustering with Scipy

    \n", + "\n", + "

    Now the distance matrix is available, we can perform the clustering. Here, we will use the open-source package Scipy and its cluster.hierarchy modules, that have been used in a tdsense for convenience.

    \n", + "\n", + "

    Hierarchical clustering is an alternative class of clustering algorithms that produce 1 to n clusters, where n is the number of observations in the data set. As you go down the hierarchy from 1 cluster (contains all the data) to n clusters (each observation is its own cluster), the clusters become more and more similar (almost always).

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b87b35b-c283-42d8-845b-5c9c7851c822", + "metadata": {}, + "outputs": [], + "source": [ + "dtw_matrix_loc = dtw_matrix.sort(columns=['WELDING_ID_2','WELDING_ID_1']).to_pandas(all_rows=True)\n", + "dtw_matrix_loc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49f64fd3-1f33-4b7c-9d8f-b0636bffc2f4", + "metadata": {}, + "outputs": [], + "source": [ + "from tdsense.clustering import hierarchy_dendrogram, hierarchy_clustering\n", + "linked, labelList = hierarchy_dendrogram(dtw_matrix_loc, cluster_distance = 'ward')" + ] + }, + { + "cell_type": "markdown", + "id": "df0a3961-8cd1-43b8-9c11-9e229648d1eb", + "metadata": {}, + "source": [ + "

    The dendrogram is useful for visualizing the structure of the hierarchical clustering and identifying the optimal number of clusters to use for further analysis. The optimal number of clusters can be determined by examining the dendrogram to identify a level at which the clusters start to merge more slowly or by using a threshold for the maximum distance between clusters.

    \n", + "\n", + "

    The resulting dendrogram as above shows how the hierarchical clustering algorithm has merged the data points into clusters based on their pairwise distances using the Ward linkage criterion. The dendrogram is a summary of the distance matrix. The X axis has the WELDING_ID but not visible as we have more than 450k rows. Looking at the dendrogram, we see that we have about 6 clusters. When selected 6, here is what we have got.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d2e168ff-626b-47b8-bc2b-ecfaac22a8f4", + "metadata": {}, + "outputs": [], + "source": [ + "cluster = hierarchy_clustering(linked, labelList, n_clusters=6)\n", + "cluster.head()" + ] + }, + { + "cell_type": "markdown", + "id": "48b62135-409c-45a9-b604-6e98ccf059fd", + "metadata": {}, + "source": [ + "

    The above dendogram is for only 6 clusters with the colors representing the different clusters. Now, we plot the Resistance curves for each cluster.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d31bafdc-9f43-4083-9677-ef7d94c18eb1", + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(2,3,figsize=(20,10))\n", + "colors = cluster[['cluster','leaves_color_list']].copy().drop_duplicates()\n", + "for k in range(6):\n", + " plt.subplot(2,3,k+1)\n", + " img = plotcurves( subset_zoom,\n", + " field='RESISTANCE',\n", + " row_axis='TIME_MS',\n", + " series_id='WELDING_ID',\n", + " select_id=list(cluster[cluster.cluster ==k].CURVE_ID.values),\n", + " noplot=True)\n", + " plt.imshow(img)\n", + " plt.title('cluster : ' +str(k) + '\\n' + str(cluster.groupby('cluster').count()['CURVE_ID'][k]) + ' obs.',fontdict = {'fontsize' : 10, 'color':colors.leaves_color_list.values[k]})\n", + " plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "id": "f50fab99-9231-410d-bdd3-1132fc98575f", + "metadata": {}, + "source": [ + "

    And if we plot the curves per cluster, we spot the curves with a sharp drop(cluster 4) and these are the curves we are interested in, i.e. the curve exhibiting the anomaly we are looking for. We note also the other clusters are looking more or less similar. By monitoring the resistance over time and calculating its derivative, you can detect any sudden changes or anomalies. Anomalies might indicate a problem with the welding process, such as a sudden drop in current or a sudden increase in resistance.

    " + ] + }, + { + "cell_type": "markdown", + "id": "9b99a7ac-6a99-4c9e-9ead-0f6d6e5c4759", + "metadata": {}, + "source": [ + "
    \n", + "

    5.3 Create the anomaly dataset

    \n", + "

    Now we create a table containing the anomaly flag that will be the target of a supervised machine learning model or a relevant KPI to monitor in production dashboards.

    \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cec5b577-b0dd-45c8-8fad-fee1fb1f952a", + "metadata": {}, + "outputs": [], + "source": [ + "target = cluster.copy().drop('leaves_color_list',axis=1)\n", + "target = target[target.cluster.isin([1,2])]\n", + "target['WELDING_ID'] = target['CURVE_ID']\n", + "target['anomaly'] = 0\n", + "target.loc[target.cluster==2,'anomaly'] = 1\n", + "target.drop(['cluster','CURVE_ID'],axis=1, inplace=True)\n", + "target.groupby('anomaly').count().plot(y='WELDING_ID',kind='bar',figsize=(10,10))\n", + "copy_to_sql( target,\n", + " table_name = 'Anomaly_Target',\n", + " if_exists='replace',\n", + " primary_index='WELDING_ID')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ac7c451-2fb3-45fa-895d-e881cc88a9ba", + "metadata": {}, + "outputs": [], + "source": [ + "anomalies = DataFrame('Anomaly_Target')\n", + "anomalies" + ] + }, + { + "cell_type": "markdown", + "id": "da6297fd-6f49-4619-af30-791db2af90da", + "metadata": {}, + "source": [ + "

    The above anomaly data has the welding ID and the anomaly flag.

    \n", + "
    \n", + "

    5.4 Build the analytical dataset

    \n", + "\n", + "

    We prepare the analytical dataset by joining the feature table with the anomaly table using the Welding ID so that we get the anomalies for the weldings.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fe4cfcfb-7d91-47e5-a4cc-e44428e51cfe", + "metadata": {}, + "outputs": [], + "source": [ + "ADS = features[['WELDING_ID']+feature_names].join(other=anomalies, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "ADS = ADS.assign(WELDING_ID=ADS.WELDING_ID_l).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1).select(['WELDING_ID']+feature_names+['anomaly'])\n", + "ADS" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "20a2163c-9fea-4f3d-ab0b-696b3cccaad9", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ADS.shape" + ] + }, + { + "cell_type": "markdown", + "id": "c03b26f4-0fa4-4478-922e-9cb850acbe34", + "metadata": {}, + "source": [ + "

    The analytical dataset we created has 14 columns and 391 rows which will be used to build the model below.

    " + ] + }, + { + "cell_type": "markdown", + "id": "09b3168b-8c53-4ffd-ba75-b26f40608654", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    6. Build the model

    \n", + "

    We have datasets in which different columns have different units – like one column can be in kilograms, while another column can be in centimetres. If we feed these features to the model as is, there is every chance that one feature will influence the result more due to its value than the others. But this doesn’t necessarily mean it is more important as a predictor. So, to give importance to all the features we need feature scaling.

    \n", + " \n", + "

    Here, we apply the Standard scale and transform functions which are ScaleFit and ScaleTransform functions in Vantage. ScaleFit() function outputs statistics to input to ScaleTransform() function, which scales specified input DataFrame columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d5d0898e-53a7-4aca-9f24-2e2f06ac73dc", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ScaleFit , ScaleTransform\n", + "scaler = ScaleFit(\n", + " data=ADS,\n", + " target_columns=feature_names,\n", + " scale_method=\"STD\",\n", + " global_scale=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "76af7c0a-b1cf-4914-a099-aeaeeb0c4977", + "metadata": {}, + "outputs": [], + "source": [ + "ADS_scaled = ScaleTransform(data=ADS,\n", + " object=scaler.output,\n", + " accumulate=\"anomaly\").result\n", + "ADS_scaled" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5cc1ed77-bd6e-4476-9b76-abb448c7199b", + "metadata": {}, + "outputs": [], + "source": [ + "df = ADS_scaled.to_pandas()" + ] + }, + { + "cell_type": "markdown", + "id": "3b3a8548-555a-48fd-88e4-795abaff2cc5", + "metadata": {}, + "source": [ + "
    \n", + "

    6.1 Create a model file using the python libraries.

    \n", + "\n", + "

    The Vantage Bring Your Own Model (BYOM) package gives data scientists and analysts the ability to operationalize predictive models in Vantage. Predictive models trained in external tools with sample data can be used to score data stored in Vantage using the BYOM Predict. Create or convert your predictive model using a supported model interchange format (PMML, MOJO, ONNX, Dataiku, and DataRobot are currently available), store it in a Vantage table, and use the BYOM PMMLPredict, H2OPredict, ONNXPredict, DataikuPredict, or DataRobotPredict to score your data with the model.

    \n", + "\n", + "

    A problem with imbalanced classification is that there are too few examples of the minority class for a model to effectively learn the decision boundary. One way to solve this problem is to oversample the examples in the minority class. the most widely used approach to synthesizing new examples is called the Synthetic Minority Oversampling Technique, or SMOTE for short. SMOTE works by selecting examples that are close in the feature space, drawing a line between the examples in the feature space and drawing a new sample at a point along that line.

    \n", + "\n", + "

    Then we use the RandomForestClassifier to create the model. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The Random forest classifier creates a set of decision trees from a randomly selected subset of the training set. It is basically a set of decision trees (DT) from a randomly selected subset of the training set and then It collects the votes from different decision trees to decide the final prediction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d847d16a-9735-4482-953d-66c80faf0bdc", + "metadata": {}, + "outputs": [], + "source": [ + "X_train = df[feature_names]\n", + "y_train = df['anomaly']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4350a66c-2ff9-483c-ae30-8f17c5d375b3", + "metadata": {}, + "outputs": [], + "source": [ + "# Balance the training set using SMOTE\n", + "smote = SMOTE(random_state=42)\n", + "X_train, y_train = smote.fit_resample(X_train, y_train)\n", + "\n", + "\n", + "# Create a random forest classifier\n", + "model = RandomForestClassifier(n_estimators=10,max_depth= 3, random_state=42)\n", + "\n", + "# Create a pipeline that includes the SMOTE transformer and the model\n", + "pipeline = PMMLPipeline([ ('model', model)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "455a3ff5-e8ee-4c9b-909e-3e1a79fa6612", + "metadata": {}, + "outputs": [], + "source": [ + "# Train the pipeline\n", + "start = time.time()\n", + "pipeline.fit(X_train, y_train)\n", + "end = time.time()\n", + "print('duration : ', end-start, 's')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61ff634a-aea7-4966-bf38-30b77547f0a3", + "metadata": {}, + "outputs": [], + "source": [ + "# make predictions on the training set\n", + "y_train_pred = pipeline.predict(X_train)\n", + "\n", + "# calculate and print the accuracy score\n", + "acc = accuracy_score(y_train, y_train_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(acc * 100))\n", + "\n", + "# calculate and print precision, AUC and F1-score\n", + "prec = precision_score(y_train, y_train_pred)\n", + "print(\"Precision: {:.2f}%\".format(prec * 100))\n", + "\n", + "# calculate AUC, AUC requires probability for positive class\n", + "prob = pipeline.predict_proba(X_train)[:, 1]\n", + "auc = roc_auc_score(y_train, prob)\n", + "print(\"AUC: {:.2f}%\".format(auc * 100))\n", + "\n", + "f1 = f1_score(y_train, y_train_pred)\n", + "print(\"F1-Score: {:.2f}%\".format(f1 * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60a0b3c9-4a3f-478c-a9f9-2ddd786aa332", + "metadata": {}, + "outputs": [], + "source": [ + "pmml_metrics=pd.DataFrame([{'Model':'PMML using BYOM','Accuracy':acc, 'Precision':prec, 'F1-Score':f1}])\n", + "pmml_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da084cfa-5c7b-4899-9c9b-41b065546bf6", + "metadata": {}, + "outputs": [], + "source": [ + "sklearn2pmml(pipeline, \"my_model.pmml\", with_repr = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c35b23c2-c4c4-4601-b374-9d021a4845b0", + "metadata": {}, + "outputs": [], + "source": [ + "additional_columns = {\"Description\": type(\"RandomForestClassifier model\"),\n", + " \"UserId\": type('demo_user'),\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": prec,\n", + " \"ModelAUC\": auc,\n", + " \"Modelf1Score\": f1,\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": end-start,\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + "for k in additional_columns.keys():\n", + " print(type(additional_columns[k]))" + ] + }, + { + "cell_type": "markdown", + "id": "8351d68c-fed5-4034-b00f-fe0379625090", + "metadata": {}, + "source": [ + "
    \n", + "

    6.2 Save the model file

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7ffc1be2-d980-4468-9fc9-58ef30e5cb27", + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " save_byom(model_id = 'model_anomaly1',\n", + " model_file = 'my_model.pmml',\n", + " table_name = 'BYOM_PMMLMODELS_REPOSITORY',\n", + " additional_columns={\"Description\": \"RandomForestClassifier model\",\n", + " \"UserId\": 'demo_user',\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": float(prec),\n", + " \"ModelAUC\": float(auc),\n", + " \"Modelf1Score\": float(f1),\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": float(end-start),\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + " )\n", + "except Exception as e: \n", + " # if our model exists, delete and rewrite \n", + " if str(e.args).find('TDML_2200') >= 1: \n", + " delete_byom(model_id = 'model_anomaly1', table_name = 'BYOM_PMMLMODELS_REPOSITORY') \n", + " save_byom(model_id = 'model_anomaly1',\n", + " model_file = 'my_model.pmml',\n", + " table_name = 'BYOM_PMMLMODELS_REPOSITORY',\n", + " additional_columns={\"Description\": \"RandomForestClassifier model\",\n", + " \"UserId\": 'demo_user',\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": float(prec),\n", + " \"ModelAUC\": float(auc),\n", + " \"Modelf1Score\": float(f1),\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": float(end-start),\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + " )\n", + " else: \n", + " raise ValueError(f\"Unable to save the model due to the following error: {e}\")\n", + "# pass \n", + "# else: \n", + "# raise \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "60c0f97c-52b2-407e-921c-75a61ca2d3fa", + "metadata": {}, + "source": [ + "

    The model file is saved as can be found in the left navigation pane in /UseCases/Anomaly_Detection.

    \n", + "\n", + "

    We create new scaled data to apply this model and predict data. New dataset is created by joining the features and the anomalies.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "60fe7dff-a0fa-43a6-aa03-d11aeed2904e", + "metadata": {}, + "outputs": [], + "source": [ + "newdata = features[['WELDING_ID']+feature_names].join(other=anomalies, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "newdata = newdata.assign(WELDING_ID=newdata.WELDING_ID_l).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1).select(['WELDING_ID']+feature_names+['anomaly'])\n", + "newdata" + ] + }, + { + "cell_type": "markdown", + "id": "bd7108ab-49b6-411a-a919-4ab7f859252e", + "metadata": {}, + "source": [ + "

    We create new transformed data by using the same Scalefit object we used earlier and get the transformed data for this new data.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "099b4d80-3bb8-4e96-ba57-c85c84ae990a", + "metadata": {}, + "outputs": [], + "source": [ + "newdata_scaled = ScaleTransform(data=newdata,\n", + " object=scaler.output,\n", + " # DataFrame(in_schema('demo_user','scaler_anomaly')),\n", + " accumulate=[\"WELDING_ID\",\"anomaly\"]).result\n", + "newdata_scaled" + ] + }, + { + "cell_type": "markdown", + "id": "46bb63a9-35eb-40e9-a4d4-d1aa558b19d1", + "metadata": {}, + "source": [ + "
    \n", + "

    6.3 Retrieve the model file and use it to predict

    \n", + "

    We use the PMMLPredict function from the teradataml library to predict the anomalies.

    \n", + "

    Predictive Model Markup Language (PMML) is an XML-based standard established by the Data Mining Group (DMG) for defining statistical and data-mining models. PMML models can be shared between PMML-compliant platforms and across organizations so that business analysts and developers are unified in designing, analyzing, and implementing PMML-based assets and services.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "16f0c6bb-3551-4337-a4e3-8c2a79fd55cc", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import PMMLPredict\n", + "modeldata_anomaly = retrieve_byom(\"model_anomaly1\", table_name=\"BYOM_PMMLMODELS_REPOSITORY\")\n", + "result=PMMLPredict(\n", + " modeldata = modeldata_anomaly,\n", + " newdata = newdata_scaled,\n", + " accumulate = ['WELDING_ID'],\n", + " model_output_fields=['probability(0)','probability(1)'],\n", + " overwrite_cached_models = '*'\n", + " )\n", + "pmml_predict=result.result\n", + "pmml_predict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1f03ec30-32a9-4b13-af64-78eaa88b79e1", + "metadata": {}, + "outputs": [], + "source": [ + "pmml_predict_result = pmml_predict.join(other=newdata_scaled, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "pmml_predict_result = pmml_predict_result.assign(prob_0=pmml_predict_result['probability(0)'])\n", + "pmml_predict_result = pmml_predict_result.assign(prob_1=pmml_predict_result['probability(1)'])\n", + "pmml_predict_result = pmml_predict_result.assign(WELDING_ID=pmml_predict_result.WELDING_ID_l)\n", + "pmml_predict_result = pmml_predict_result.assign(prediction=case([(pmml_predict_result.prob_1>pmml_predict_result.prob_0, 1 )],else_ = 0))\n", + "pmml_predict_result = pmml_predict_result.select(['WELDING_ID']+['anomaly']+['prob_0']+['prob_1']+['prediction'])\n", + "pmml_predict_result" + ] + }, + { + "cell_type": "markdown", + "id": "220bb477-2d63-4672-98a1-cb50d40f960f", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    7. Decision Forest

    \n", + " \n", + "

    We will now use the DecisionForest model to predict the anomalies. A decision forest is a generic term to describe models made of multiple decision trees. The prediction of a decision forest is the aggregation of the predictions of its decision trees. The implementation of this aggregation depends on the algorithm used to train the decision forest. The goal of using a Decision Tree is to create a training model that can use to predict the class or value of the target variable by learning simple decision rules inferred from prior data(training data).

    \n", + "\n", + "

    We start by creating a subset for the most interesting part lies between 40 and 400ms from the start of the curve.

    \n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf8a84c6-2c67-43c7-86e2-1f31c6bd1c18", + "metadata": {}, + "outputs": [], + "source": [ + "DF_curves_zoom = welding_dataset_new[(welding_dataset_new.TIME_MS > 40) & (welding_dataset_new.TIME_MS < 400) ]\n", + "DF_curves_zoom" + ] + }, + { + "cell_type": "markdown", + "id": "58c9f479-f2ff-4863-b969-b9b8a873e6d4", + "metadata": {}, + "source": [ + "

    We create various features by using the window function on the Resistance and taking the difference between the previous and current resistance based on time. We will create these features by using the aggregation function on this resistance and the difference of the resistance.

    \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a227337c-3b57-443c-a256-dd5230ed98dd", + "metadata": {}, + "outputs": [], + "source": [ + "DF_curves_zoom = DF_curves_zoom.assign(\n", + " resistance_diff = DF_curves_zoom.RESISTANCE \n", + " - DF_curves_zoom.RESISTANCE.window(\n", + " partition_columns=['WELDING_ID'],\n", + " order_columns=[\"TIME_MS\"]\n", + " ).lag(1)\n", + ")\n", + "# DF_curves_zoom[DF_curves_zoom.WELDING_ID==138].sort(\"TIME_MS\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cb8c00e7-c465-46ba-99ae-c094969a2eed", + "metadata": {}, + "outputs": [], + "source": [ + "DF_features = DF_curves_zoom.groupby(\"WELDING_ID\").agg({\n", + " 'RESISTANCE':['sum', 'min', 'max', 'mean', 'std', 'var','skew','kurtosis'],\n", + " 'resistance_diff':['min']\n", + "})\n", + "DF_features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6498373-8b50-49fb-ac0b-b0db7b0cb522", + "metadata": {}, + "outputs": [], + "source": [ + "feature_names = DF_features.columns[1:]\n", + "feature_names" + ] + }, + { + "cell_type": "markdown", + "id": "57712977-e195-4ce9-9867-a7cdbc772279", + "metadata": {}, + "source": [ + "
    \n", + "

    7.1 Build the analytical dataset.

    \n", + "

    We create the analytical dataset joining the anomaly table created above and the dataset with the features created.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55686241-b413-45eb-a495-9888c946c634", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "DF_target = DataFrame('Anomaly_Target')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7f0b595e-d794-4797-9125-b0bd2e9b046a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "DF_ADS_train = DF_features[['WELDING_ID']+feature_names].join(\n", + " other=DF_target, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "DF_ADS_train = DF_ADS_train.assign(WELDING_ID=DF_ADS_train.WELDING_ID_l\n", + " ).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1\n", + " ).select(['WELDING_ID']+feature_names+['anomaly']\n", + " ).assign(anomaly_int = DF_ADS_train.anomaly.cast(INTEGER()))\n", + "DF_ADS_train" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0199e5db-a881-4a2e-92df-0fcc0a54158b", + "metadata": {}, + "outputs": [], + "source": [ + "DF_ADS_score = DF_features[['WELDING_ID']+feature_names]\\\n", + " [DF_features.WELDING_ID>800]\n", + "DF_ADS_score" + ] + }, + { + "cell_type": "markdown", + "id": "d3865607-6205-43e4-a3be-2142af2dd340", + "metadata": {}, + "source": [ + "

    We store these training and scoring datasets into Vantage to be used by the In-DB functions.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "30d0d263-3183-4e37-aa05-6f5ccd61ac49", + "metadata": {}, + "outputs": [], + "source": [ + "DF_ADS_train.to_sql(\n", + " table_name = 'ADS_train_data',\n", + " primary_index= 'WELDING_ID',\n", + " if_exists = 'replace'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db8815e7-cdc4-40fb-9160-bfd466d7535f", + "metadata": {}, + "outputs": [], + "source": [ + "DF_ADS_score.to_sql(\n", + " table_name = 'ADS_test_data',\n", + " primary_index= 'WELDING_ID',\n", + " if_exists = 'replace'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "f38cc3c9-6828-4c65-9b72-53ea02a172cd", + "metadata": {}, + "source": [ + "
    \n", + "

    7.2 Train Decision Forest

    \n", + "

    The DecisionForest is an ensemble algorithm used for classification and regression predictive modelling problems. It is an extension of bootstrap aggregation (bagging) of decision trees.

    \n", + "\n", + "

    This function takes the training data as input, as well as the following function parameters

    \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5217c805-010b-4184-b312-b22c7f0b1d49", + "metadata": {}, + "outputs": [], + "source": [ + "DecisionForest_out = DecisionForest(data = DF_ADS_train, \n", + " input_columns = ['sum_RESISTANCE', 'min_RESISTANCE', 'max_RESISTANCE', 'mean_RESISTANCE', 'std_RESISTANCE', 'var_RESISTANCE', 'skew_RESISTANCE',\n", + " 'kurtosis_RESISTANCE', 'min_resistance_diff'], \n", + " response_column = 'anomaly_int', \n", + " max_depth = 16, \n", + " num_trees = 8, \n", + " min_node_size = 1, \n", + " mtry = 1, \n", + " mtry_seed = 3, \n", + " seed = 3, \n", + " tree_type = 'CLASSIFICATION')\n", + "# Print the result DataFrame.\n", + "# print(DecisionForest_out.result) \n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "aca1ef54-8f11-48af-9d9f-ffe19a08b050", + "metadata": {}, + "source": [ + "
    \n", + "

    7.3 Predict and Evaluate Decision Forest model

    \n", + "

    Execute a testing prediction using the split data above. Evaluate the model by creating a confusion matrix with the ClassificationEvaluator SQL Function.

    \n", + "\n", + "\n", + "
      \n", + "
    1. Execute DecisionForestPredict using the model built above
    2. \n", + "
    3. Execute ClassificationEvaluator and pass the actual classification and the predicted value
    4. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "12ca4daf-6b7f-453b-b690-3ca59df0fb6b", + "metadata": {}, + "outputs": [], + "source": [ + "decision_forest_predict_out = TDDecisionForestPredict(object = DecisionForest_out.result,\n", + " newdata = DF_ADS_train,\n", + " id_column = \"WELDING_ID\",\n", + " detailed = False,\n", + " output_prob = True,\n", + " output_responses = ['0','1'],\n", + " accumulate = 'anomaly_int')\n", + "decision_forest_predict_out.result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46f0ff60-f38b-40a4-aafe-0d644a284e8f", + "metadata": {}, + "outputs": [], + "source": [ + "# df_predict= DataFrame('DF_Predict')\n", + "df_predict = decision_forest_predict_out.result\n", + "df_predict_char = df = df_predict.assign(anomaly = df_predict.anomaly_int.cast(type_=VARCHAR(2))\n", + " ,prediction_ch = df_predict.prediction.cast(type_=VARCHAR(2)))\n", + "df_predict_char" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7844e297-5036-4ea2-bf0d-aff9b7c8d5d0", + "metadata": {}, + "outputs": [], + "source": [ + "ClassificationEvaluator_obj = ClassificationEvaluator(data=df_predict_char,\n", + " observation_column='anomaly',\n", + " prediction_column='prediction_ch',\n", + " labels=['0','1'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c2c4cd5-6f62-4ad3-a8b0-3db15872b87c", + "metadata": {}, + "outputs": [], + "source": [ + "df_metrics = ClassificationEvaluator_obj.output_data\n", + "df_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c771f8db-68a9-4995-bcc9-872892b8bb85", + "metadata": {}, + "outputs": [], + "source": [ + "df_metric_pd = df_metrics.to_pandas(all_rows = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d1c78bb0-a809-4a71-bc77-3f2d3bf31285", + "metadata": {}, + "outputs": [], + "source": [ + "df_metric_pd['Metric'] = df_metric_pd['Metric'].str.strip('\\x00')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7771b01-523d-4737-b7ef-75246f87d7f0", + "metadata": {}, + "outputs": [], + "source": [ + "accuracy = df_metric_pd[df_metric_pd['Metric'] == 'Accuracy']['MetricValue'][0]\n", + "precision = df_metric_pd[df_metric_pd['Metric'] == 'Micro-Precision']['MetricValue'][1]\n", + "f1score = df_metric_pd[df_metric_pd['Metric'] == 'Micro-F1']['MetricValue'][3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "07bf6fba-e68c-4a78-9eae-5aa134aa3655", + "metadata": {}, + "outputs": [], + "source": [ + "df_metrics_new=pd.DataFrame([{'Model':'In-DB DecisionForest','Accuracy':accuracy, 'Precision':precision, 'F1-Score':f1score}])\n", + "df_metrics_new" + ] + }, + { + "cell_type": "markdown", + "id": "0311a230-7911-4859-8658-4130c893b72d", + "metadata": {}, + "source": [ + "
    \n", + "

    7.4 Score new Data

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a5fde359-12da-4038-963c-c34ce410de04", + "metadata": {}, + "outputs": [], + "source": [ + "decision_forest_predict_test_out = TDDecisionForestPredict(object = DecisionForest_out.result,\n", + " newdata = DF_ADS_score,\n", + " id_column = \"WELDING_ID\",\n", + " detailed = False,\n", + " output_prob = True,\n", + " output_responses = ['0','1'])\n", + "decision_forest_predict_test_out.result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58448648-772a-445e-9989-8b174ac9db2f", + "metadata": {}, + "outputs": [], + "source": [ + "# df_predict_test= DataFrame('DF_Predict_test')\n", + "df_predict_test=decision_forest_predict_test_out.result\n", + "df_predict_test" + ] + }, + { + "cell_type": "markdown", + "id": "cda02bba-235d-4f1a-b2a7-3e2ea619cce2", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    8. Compare PMML and DecisionForest

    \n", + "
    \n", + "

    8.1 Show AUC-ROC Curve

    \n", + "\n", + "

    The ROC curve shows the performance of a binary classification model as its discrimination threshold varies. For a range of thresholds, the curve plots the true positive rate against false-positive rate.

    \n", + "\n", + "

    This function accepts a set of prediction-actual pairs as input and calculates the following values for a range of discrimination thresholds.

    \n", + " \n", + "\n", + "

    ROC for PMML

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c4b179b-a334-4dc0-b3f8-71c35f87283e", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ROC \n", + "roc_pmml = ROC(data = pmml_predict_result, \n", + " probability_column = \"prob_1\",\n", + " observation_column = \"anomaly\",\n", + " positive_class=\"1\"\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "32b946fb-e09e-4e62-b78a-c5325d84c175", + "metadata": {}, + "outputs": [], + "source": [ + "roc_data_pmml = roc_pmml.output_data.to_pandas().sort_values(\"fpr\", ascending=True)\n", + "roc_data_pmml.tail(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "de67ebb4-b0f9-4a8c-9559-e6a44f1c9a21", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "auc_pmml = roc_pmml.result.to_pandas().iloc[0,0]\n", + "auc_pmml" + ] + }, + { + "cell_type": "markdown", + "id": "baf0989e-387a-4ee9-b99e-0687d5a97799", + "metadata": {}, + "source": [ + "

    ROC for DecisionForest

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02a1c9e2-be8c-44da-9e0a-9056a2ec8243", + "metadata": {}, + "outputs": [], + "source": [ + "roc_obj = ROC(data = df_predict, \n", + " probability_column = \"prob_1\",\n", + " observation_column = \"anomaly_int\",\n", + " positive_class=\"1\"\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "27834036-13cc-49e9-a34e-b2bcb2c192b1", + "metadata": {}, + "outputs": [], + "source": [ + "roc_data = roc_obj.output_data.to_pandas().sort_values(\"fpr\", ascending=True)\n", + "roc_data.tail(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab90afd6-b0c1-4edd-9492-c97b16c8d4e0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "auc = roc_obj.result.to_pandas().iloc[0,0]\n", + "auc" + ] + }, + { + "cell_type": "markdown", + "id": "abb98428-872c-41d5-b8b1-79804c772a8a", + "metadata": {}, + "source": [ + "

    Plot ROC Curves

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "93ab97d1-cbd3-4044-8546-0f170a5ca9ce", + "metadata": {}, + "outputs": [], + "source": [ + "# Plot 1\n", + "plt.plot(roc_data_pmml['fpr'], roc_data_pmml['tpr'], color='orange', label='PMML ROC. AUC = {}'.format(str(auc_pmml)), drawstyle='steps') \n", + "# Plot 2\n", + "plt.plot(roc_data['fpr'], roc_data['tpr'], color='green', label='DecisionForest ROC. AUC = {}'.format(str(auc)), drawstyle='steps') \n", + "# Plot the diagonal dashed line\n", + "plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--') \n", + "# Set labels and title\n", + "plt.xlabel('False Positive Rate',fontsize=12) \n", + "plt.ylabel('True Positive Rate',fontsize=12) \n", + "plt.title('Receiver Operating Characteristic (ROC) Curve',fontsize=16) \n", + "# Add legend\n", + "plt.legend(loc=\"lower right\",fontsize=10) \n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c721c745-be69-4eee-a8e2-9faa4ecff46e", + "metadata": {}, + "source": [ + "

    The closer the ROC curve is to the upper left corner of the graph, the higher the accuracy of the test because in the upper left corner, the sensitivity = 1 and the false positive rate = 0 (specificity = 1). The ideal ROC curve thus has an AUC = 1.0. As seen in the above graph the AUC for both the models is close to 1 so the accuracy of both models is very good.

    \n", + "\n", + "
    \n", + "

    8.2 Show Confusion Matrix

    \n", + "\n", + "

    Confusion Matrix is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.

    \n", + "\n", + "

    Confusion matrices represent counts from predicted and actual values. The output “TN” stands for True Negative which shows the number of negative examples classified accurately. Similarly, “TP” stands for True Positive which indicates the number of positive examples classified accurately. The term “FP” shows False Positive value, i.e., the number of actual negative examples classified as positive; and “FN” means a False Negative value which is the number of actual positive examples classified as negative.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0cac3275-2854-464a-b240-03e7b836b96d", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate confusion matrix for PMML\n", + "DF_result=df_predict.to_pandas().reset_index()\n", + "pmml_result=pmml_predict_result.to_pandas()\n", + "cm_pmml = confusion_matrix(pmml_result['anomaly'], pmml_result['prediction']) \n", + "# Calculate confusion matrix for DecisionForest\n", + "cm_df = confusion_matrix(DF_result['anomaly_int'], DF_result['prediction']) \n", + "# Create figure and axes objects\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8)) \n", + "# Plot PMML confusion matrix\n", + "disp_pmml = ConfusionMatrixDisplay(confusion_matrix=cm_pmml, display_labels=['No Anomaly', 'Anomaly']) \n", + "disp_pmml.plot(ax=ax1, cmap='Blues', colorbar=False) \n", + "ax1.set_title('PMML Confusion Matrix') \n", + "ax1.set_xlabel('Predicted Label') \n", + "ax1.set_ylabel('True Label') \n", + "ax1.set_xticks([0, 1]) \n", + "ax1.set_yticks([0, 1]) \n", + "ax1.set_xticklabels(['No Anomaly', 'Anomaly']) \n", + "ax1.set_yticklabels(['No Anomaly', 'Anomaly'])\n", + "\n", + "# Add text to the plot to show the actual values of the confusion matrix\n", + "for i in range(cm_pmml.shape[0]): \n", + " for j in range(cm_pmml.shape[1]): \n", + " ax1.text(j, i, f'{cm_pmml[i, j]}', ha='center', va='center', color='white' if cm_pmml[i, j] > cm_pmml.max() / 2 else 'black') \n", + "\n", + "# Plot DecisionForest confusion matrix\n", + "disp_df = ConfusionMatrixDisplay(confusion_matrix=cm_df, display_labels=['No Anomaly', 'Anomaly']) \n", + "disp_df.plot(ax=ax2, cmap='Blues', colorbar=False) \n", + "ax2.set_title('DecisionForest Confusion Matrix') \n", + "ax2.set_xlabel('Predicted Label') \n", + "ax2.set_ylabel('True Label') \n", + "ax2.set_xticks([0, 1]) \n", + "ax2.set_yticks([0, 1]) \n", + "ax2.set_xticklabels(['No Anomaly', 'Anomaly']) \n", + "ax2.set_yticklabels(['No Anomaly', 'Anomaly'])\n", + "\n", + "# Add text to the plot to show the actual values of the confusion matrix\n", + "for i in range(cm_df.shape[0]): \n", + " for j in range(cm_df.shape[1]): \n", + " ax2.text(j, i, f'{cm_df[i, j]}', ha='center', va='center', color='white' if cm_df[i, j] > cm_df.max() / 2 else 'black') \n", + "\n", + "# Adjust layout and spacing\n", + "plt.tight_layout() \n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6f7bd547-6020-42c0-b2a7-d1938a9bdb30", + "metadata": {}, + "source": [ + "

    The confusion matrix for this binary class classification problem has the below 4 quadrants:

    \n", + "\n", + "
  • True Positive (TP) refers to a sample belonging to the positive class being classified correctly.
  • \n", + "
  • True Negative (TN) refers to a sample belonging to the negative class being classified correctly.
  • \n", + "
  • False Positive (FP) refers to a sample belonging to the negative class but being classified wrongly as belonging to the positive class.
  • \n", + "
  • False Negative (FN) refers to a sample belonging to the positive class but being classified wrongly as belonging to the negative class.
  • \n", + "\n", + "
    \n", + "

    8.3 Show Metrices

    \n", + "\n", + "

    Below is the comparison for Accuracy, Precision and F1-Score of the 2 models.

    \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ColumnDescription
    PrecisionThe positive predictive value. Refers to the fraction of relevant instances among\n", + "the total retrieved instances.\n", + " Precision answers the following question: what proportion of predicted Positives is truly Positive? \n", + " Precision = (TP)/(TP+FP)
    AccuracyAccuracy simply measures how often the classifier correctly predicts. We can define accuracy as the ratio of the number of correct predictions and the total number of predictions.
    F1F1 score, defined as the harmonic mean of the precision and recall and is a number between 0 and 1. F1 score maintains a balance between the precision and recall for your classifier. \n", + " F1 = 2*(precision*recall/precision+recall)
    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5559331d-05a2-417a-aa23-cd9eae401b9c", + "metadata": {}, + "outputs": [], + "source": [ + "combined_metrics=pd.concat([pmml_metrics, df_metrics_new], axis=0)\n", + "combined_metrics" + ] + }, + { + "cell_type": "markdown", + "id": "41344788-3979-4546-a6e2-ae16b6dccb79", + "metadata": {}, + "source": [ + "

    From the above metrics we can conclude that both the models are performing almost similar and have similar Accuracy and Precision.

    " + ] + }, + { + "cell_type": "markdown", + "id": "43be6263-22d8-43d2-94e2-1f58d730f567", + "metadata": {}, + "source": [ + "

    Conclusion

    \n", + "

    We have seen an end-to-end exploration process for labelling anomalous time series using ClearScape Analytics on Teradata Vantage. Thanks to the in-database capabilities offered by Teradata Vantage with ClearScape Analytics, we were able to run this exploration with the smallest notebook instance. The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "

    In this particular use case, we have observed that with large volume of machine sensor data millions of ML models were created to derive analytic features that ultimately deployed tens of thousands of models for real-time scoring. This extent of scale is only possible by combining the power of Vantage with native ClearScape Analytic functions.

    " + ] + }, + { + "cell_type": "markdown", + "id": "29e90d19-1b71-44e8-b6d5-aa53e3b673c1", + "metadata": {}, + "source": [ + "
    \n", + "

    8. Cleanup

    \n", + "

    Work Tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48a959e6-319f-4592-93af-482d391224b4", + "metadata": {}, + "outputs": [], + "source": [ + "tables = ['ADS_train_data', 'ADS_test_data','DF_train', 'DF_Predict', 'DF_Predict_test','additional_metrics_test']\n", + "\n", + "# Loop through the list of tables and execute the drop table command for each table\n", + "for table in tables:\n", + " try:\n", + " db_drop_table(table_name=table)\n", + " except:\n", + " pass " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bbf8f9bc-9f3a-47e9-b2d4-81fd00291bc8", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "d51fd98f-b9b2-48b9-b639-16cc51f9116f", + "metadata": {}, + "source": [ + "
    \n", + "

    9. Exploring the Versatility of this Analytical Approach in Alternative Use Case Settings

    \n", + "

    How this analytic approach can be levaraged in other use case settings

    \n", + "\n", + "

    The analytical approach of leveraging clustering followed by classification for anomaly detection in short time series data is highly adaptable and can be broadly applied across various industries, especially in settings where operations or processes are characterized by short, continuous time series with a defined start and end and where ground truth labels are not initially available.

    \n", + "

    This method begins with unsupervised learning to explore and understand the data, identifying patterns, similarities, and potential outliers through techniques like Dynamic Time Warping (DTW). Such exploration is crucial in settings where anomalies are not predefined or where the data’s inherent complexity requires initial unsupervised insight to develop an understanding of what constitutes normal behavior versus an anomaly. Following the clustering phase, supervised classification models are trained on the newly identified labels to predict anomalies. This generic approach is particularly effective for short time series data, where each sequence represents a process or event whose normal operational parameters need to be defined through exploratory analysis before precise anomaly detection can occur.

    \n", + "

    Potential Use Cases Across Industries:

    \n", + "
  • Telco & Utilities - Power Grid Load Monitoring: Analyzing short time series of electricity load during peak usage times to identify anomalies that could indicate equipment failure, energy theft, or inefficiencies in power distribution. Each series could represent the load profile for a brief, high-demand period.
  • \n", + "
  • Healthcare - ECG or EEG Analysis: Short segments of electrocardiogram (ECG) or electroencephalogram (EEG) readings can be analyzed to detect anomalies indicating cardiac arrhythmias or neurological issues, respectively. Each segment represents a complete heartbeat or a brief brain activity pattern.
  • \n", + "
  • Manufacturing - CNC Machine Operations: Monitoring the torque and force profiles of a CNC (Computer Numerical Control) machine during a single machining operation. Anomalies could indicate tool wear, material inconsistency, or operational errors.
  • \n", + "
  • Travel & Transport - Aircraft Engine Test Runs: Analyzing the time series data of engine parameters (e.g., temperature, pressure, vibration) during short test runs to identify deviations from normal operational profiles, suggesting maintenance or safety issues.
  • \n", + "
  • Hospitality & Entertainment - Theme Park Ride Operations: Analyzing sensor data from individual rides, where each ride cycle produces a time series of mechanical or operational parameters. Anomalies in these series could indicate safety concerns or maintenance needs.
  • \n", + "

    Conclusion

    \n", + "

    In each of these scenarios, the focus is on analyzing the shape or behavior of a curve within a short time frame, similar to observing a spot welding curve. These curves are shaped by the specific activity taking place, whether it’s a machine at work, a health test running, financial trades happening, or people interacting with a service. The method begins by sorting these curves into groups based on their patterns, without needing to know ahead of time which ones are out of the ordinary. Then, it moves on to use a more detailed approach to pinpoint which curves don’t fit the expected pattern, labeling them as either normal or not normal. This way of doing things is great for quickly finding and addressing issues, and it also helps in getting a better grasp of how these processes work. This can lead to making things run more smoothly and keeping equipment in good shape before problems even start.

    " + ] + }, + { + "cell_type": "markdown", + "id": "91bd8857-19e0-4200-b3ae-b2efdbca73d3", + "metadata": {}, + "source": [ + "
    \n", + "Resources\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    \n", + "Filters: \n", + "
  • Industry: Manufacturing
  • \n", + "
  • Functionality: Machine Learning
  • \n", + "
  • Use Case: Anomaly Detection
  • \n", + "Related Resources:\n", + "
  • Hyper-scale time series forecasting done right
  • \n", + "
  • Stay Ahead of Continuous and Rapid Change with a Dynamic Supply Chain
  • \n", + "
  • Achieve industry 4.0 using advanced manufacturing analytics at scale
  • \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "1da48da7-d4de-4693-9365-5d5f63810673", + "metadata": { + "tags": [] + }, + "source": [ + "" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python_TrustedAI.ipynb b/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python_TrustedAI.ipynb new file mode 100644 index 00000000..e1d35dbb --- /dev/null +++ b/VantageCloud_Lake/UseCases/Anomaly_Detection/VCL_Anomaly_Detection_Python_TrustedAI.ipynb @@ -0,0 +1,80545 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b1378a69-ac58-4d0c-af22-7ef881abac45", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Anomaly Detection in Robot Welding Process
    Trusted AI\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    \n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "d0f87457-4516-4584-be1c-165cbf682c24", + "metadata": {}, + "source": [ + "

    Introduction

    \n", + "\n", + "

    Detecting anomalies reduces issues and delays in many industries, especially in the manufacturing field. There have been approaches to detect anomalies in the past, such as engineering rules and graph and deep learning. However, it still proves difficult to detect all the existing anomalies. Plus, companies are striving to minimize false positives, cope with the diversity of sensors and metrology issues, and deliver actionable insights at a business pace. Fortunately, Teradata and ClearScape Analytics have the solution. In ClearScape Analytics, users can execute all steps of anomaly detection from data preparation and exploration to model training and evaluations and adjustments. These analyses can improve the process and ensure accuracy in anomaly detection.

    \n", + "\n", + "

    Spot Welding Quality Assessment

    \n", + "

    Spot welding is a common technique used for welding car body panels, particularly in the assembly of smaller parts and components. Spot welding involves using a pair of copper electrodes to apply a series of short, high-current welding pulses to the metal, fusing the parts together at specific points or “spots”.

    \n", + "\n", + "

    The automotive industry is known for its high level of automation, and spot welding is one of the most automated processes, heavily reliant on robots to improve efficiency, reduce labor costs, and improve the consistency and quality of the finished product. Poor welding quality is rare, but even so, the consequences of poor quality may not be negligible in terms of rework costs and customer satisfaction, especially when quality issues are detected too late.

    \n", + "\n", + "\n", + "\n", + "

    Spot welding is a resistance welding process that uses large electrical current. There are many ways to assess the quality of a spot, like tensile or ultrasonic testing to assess the weld strength or the analysis of the welding current measured and recorded during the welding process. In this demo, we focus on the analysis of the anomalies in the welding spot due to welding current, and more specifically the resistance, i.e. the voltage-current ratio which impacts the quality of the welding. The shape of the resistance curve depends on many factors like the nature of the materials, the geometry, and the quality of the electrodes etc.

    \n", + "\n", + "\n", + "

    Business Values

    \n", + "
  • Improve accuracy in the production and manufacturing process.
  • \n", + "
  • Reduce the number of false positive anomalies detected in a system.
  • \n", + "
  • Decrease additional costs and time wasted due to undetected anomalies.
  • \n", + "
  • Determine patterns and significant factors that lead to anomalies.
  • \n", + "

    Why Vantage?

    \n", + "

    Many organizations fail to realize value from their ML and AI investments due to a lack of scale. It is estimated that for broad adoption across many industries, the number of models and model deployments needs to scale 100-1000x larger than their organizations currently support.

    \n", + "

    The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "

    In this particular use case, the volume of machine sensor data was so great that millions of ML models were created to derive analytic features that ultimately deployed tens of thousands of models for real-time scoring. This extent of scale is only possible by combining the power of Vantage with native ClearScape Analytic functions.

    \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "7f41da40-f1e9-4979-9e0f-bd5ba6460443", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d5933363-d749-42da-bde7-4524f5f013b9", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv\n", + "!pip install lime\n", + "!pip install scikit-learn==1.1.3" + ] + }, + { + "cell_type": "markdown", + "id": "8f352f94-db8e-48e8-8040-a63c466fd4f5", + "metadata": {}, + "source": [ + "
    \n", + "

    Note: After installing the above libraries, Please restart the kernel. The simplest way is by typing zero zero: 0 0

    \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3a0b76c2-b211-452f-949c-676da6da9540", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import json\n", + "import getpass\n", + "import pandas as pd\n", + "import datetime\n", + "from teradataml import *\n", + "\n", + "import numpy as np # linear algebra\n", + "import matplotlib.pyplot as plt\n", + "import sklearn\n", + "from sklearn import preprocessing\n", + "# from tdsense.clustering import hierarchy_dendrogram, hierarchy_clustering\n", + "# from tdnpathviz.visualizations import plotcurves\n", + "%matplotlib inline\n", + "\n", + "from sklearn import datasets\n", + "from sklearn2pmml.pipeline import PMMLPipeline\n", + "from sklearn2pmml import sklearn2pmml\n", + "from sklearn.model_selection import train_test_split\n", + "# from imblearn.over_sampling import SMOTE\n", + "import imblearn\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.metrics import accuracy_score, precision_score, roc_auc_score, f1_score,confusion_matrix, roc_curve, ConfusionMatrixDisplay\n", + "import time\n", + "import pytz\n", + "import lime\n", + "from dotenv import load_dotenv, dotenv_values\n", + "from IPython.display import display as ipydisplay\n", + "from IPython.display import clear_output\n", + "from time import sleep\n", + "\n", + "#Set java path\n", + "from jdk4py import JAVA, JAVA_HOME, JAVA_VERSION\n", + "os.environ['PATH'] = os.environ['PATH'] + os.pathsep + str(JAVA_HOME)\n", + "os.environ['PATH'] = os.environ['PATH'] + os.pathsep + str(JAVA)[:-5]\n", + "\n", + "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", + "from collections import defaultdict\n", + "import plotly.offline as offline\n", + "offline.init_notebook_mode()\n", + "\n", + "from teradataml.dataframe.sql_functions import case\n", + "from teradataml import db_drop_table\n", + "configure.byom_install_location = \"td_mldb\"\n", + "\n", + "display.max_rows = 5\n", + "warnings.filterwarnings('ignore')\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=RuntimeWarning)\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)" + ] + }, + { + "cell_type": "markdown", + "id": "8c250746-66ba-40aa-b41b-c791786f61a0", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2be07d96-51d3-4aee-b025-582af97119da", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking if this environment is ready to connect to VantageCloud Lake...\n", + "Your environment parameter file exist. Please proceed with this use case.\n", + "Connected to VantageCloud Lake with: Engine(teradatasql://jd255091:***@54.156.178.22)\n" + ] + } + ], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_AnomalyDetection_TrustedAI.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c80f069f-5d34-4f18-93fd-c784897102c0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Authentication token is generated, authenticated and set for the session.\n", + "UES Authentication successful\n" + ] + } + ], + "source": [ + "# We've already loaded all the values into our environment variables and into a dictionary, env_vars.\n", + "# username=env_vars.get(\"username\") isn't required when using base_url, pat and pem.\n", + "\n", + "if set_auth_token(base_url=env_vars.get(\"ues_uri\"),\n", + " pat_token=env_vars.get(\"access_token\"), \n", + " pem_file=env_vars.get(\"pem_file\"),\n", + " valid_from=int(time.time())\n", + " ):\n", + " print(\"UES Authentication successful\")\n", + "else:\n", + " print(\"UES Authentication failed. Check credentials.\")\n", + " sys.exit(1)" + ] + }, + { + "cell_type": "markdown", + "id": "9476f53a-7115-4018-a58f-dd09f7fc8b88", + "metadata": {}, + "source": [ + "
    \n", + "

    3.Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_AnomalyDetection\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_AnomalyDetection_DB database and we have created views in DEMO_AnomalyDetection database which are used in the cells below

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "99598e0a-8a6c-4539-a06d-f6723f67134f", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "add51f496db2440e9195e9a4369d27cc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PARTITION_IDIDXY
    10905105233.91074826423207
    10905208293.063489325248
    1090564221.8570197466893
    10905194299.3853606177206
    1090554219.24825515502602
    " + ], + "text/plain": [ + " X Y\n", + "PARTITION_ID ID \n", + "10 905 105 233.910748\n", + " 905 208 293.063489\n", + " 905 64 221.857020\n", + " 905 194 299.385361\n", + " 905 54 219.248255" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Sensor_Data = DataFrame(in_schema('DEMO_AnomalyDetection', 'Sensor_Data'))\n", + "Sensor_Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fb3791b3-ba71-4c52-bec7-bb6350a498e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(908440, 4)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Sensor_Data.shape" + ] + }, + { + "cell_type": "markdown", + "id": "d4b9b958-737d-41a0-adec-91614fa0fe2e", + "metadata": {}, + "source": [ + "

    We get the above data from sensors. We focus on one plant (PLANT=1) and one robot (ROBOT_ID=41). The Partition_ID is the type of welding, ID is the WELDING_ID, X is time required for welding in ms and Y is the RESISTANCE. We create a view with the columns required to get data with proper column names.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "88cde234-6107-487e-92f2-7f045576cc1d", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "query = f\"\"\"\n", + "REPLACE VIEW DEMO_AnomalyDetection.V_dataset_01 AS\n", + "SELECT\n", + " 1 AS PLANT\n", + ", {41} AS ROBOT_ID\n", + ", CAST(A.PARTITION_ID AS BIGINT) AS WELDING_TYPE\n", + ", CAST((DATE '{str(datetime.datetime.now()).split(' ')[0]}' + FLOOR((WELDING_ID-700*WELDING_TYPE)/100)) AS DATE FORMAT 'YYYY-MM-DD') AS WELDING_DAY\n", + ", CAST(A.ID AS BIGINT) AS WELDING_ID\n", + ", CAST(A.X AS INTEGER) AS TIME_MS\n", + ", A.Y AS RESISTANCE\n", + "FROM DEMO_AnomalyDetection.Sensor_Data A\n", + "\"\"\"\n", + "execute_sql(query)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8ec3a959-c5e0-4039-88f8-846adca6f113", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dc7b3e698fe042d3847a1767b5cd7fc8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCE
    141102025-06-12905105233.91074826423207
    141102025-06-12905208293.063489325248
    141102025-06-1290564221.8570197466893
    141102025-06-12905194299.3853606177206
    141102025-06-1290554219.24825515502602
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE\n", + "0 1 41 10 2025-06-12 905 105 233.910748\n", + "1 1 41 10 2025-06-12 905 208 293.063489\n", + "2 1 41 10 2025-06-12 905 64 221.857020\n", + "3 1 41 10 2025-06-12 905 194 299.385361\n", + "4 1 41 10 2025-06-12 905 54 219.248255" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "welding_dataset_new = DataFrame(in_schema('DEMO_AnomalyDetection', 'V_dataset_01'))\n", + "welding_dataset_new" + ] + }, + { + "cell_type": "markdown", + "id": "09198aa2-6ab7-4339-a01a-365cba02c772", + "metadata": {}, + "source": [ + "
    \n", + "

    3.1 - Some aggregations and visualization.

    \n" + ] + }, + { + "cell_type": "markdown", + "id": "f83b1b1a-eece-487a-97d7-b4759ea624ce", + "metadata": {}, + "source": [ + "

    We will check the histogram based on the minimum and maximum Time for welding.

    \n", + "

    A histogram is a better way to assess distribution, to cope with the scalability, it is recommended to compute the histogram bins in-database to leverage the Massively Parallel Architecture of Teradata Vantage. For that, we use the Histogram function of teradataml that pushes down the computations to Vantage.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1a5d38c3-ebb9-47a2-b8ad-f00acd9d769b", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3f8e6f0f137346148636bb3c10aca42b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_IDmin_TIME_MSmax_TIME_MScount_TIME_MS
    14143201806806
    14154181642642
    1419801114781478
    1419884110851085
    141109381928928
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_ID min_TIME_MS max_TIME_MS count_TIME_MS\n", + "0 1 41 4 320 1 806 806\n", + "1 1 41 5 418 1 642 642\n", + "2 1 41 9 801 1 1478 1478\n", + "3 1 41 9 884 1 1085 1085\n", + "4 1 41 10 938 1 928 928" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "welding_duration_ms = welding_dataset_new. \\\n", + " groupby(['PLANT','ROBOT_ID','WELDING_TYPE', 'WELDING_ID']). \\\n", + " agg({'TIME_MS':['min','max','count']})\n", + "welding_duration_ms" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "642bf739-a421-4ffd-8fc1-53f273db9bd9", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f522d71d68b84df89cb78c6b92684e2b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    ColumnNameLabelMinValueMaxValueCountOfValuesBin_Percent
    count_TIME_MS00.0100.0111.0999999999999999
    count_TIME_MS1100.0200.0141.4000000000000001
    count_TIME_MS2200.0300.0343.4000000000000004
    count_TIME_MS3300.0400.0393.9
    count_TIME_MS4400.0500.0474.7
    " + ], + "text/plain": [ + " ColumnName Label MinValue MaxValue CountOfValues Bin_Percent\n", + "0 count_TIME_MS 0 0.0 100.0 11 1.1\n", + "1 count_TIME_MS 1 100.0 200.0 14 1.4\n", + "2 count_TIME_MS 2 200.0 300.0 34 3.4\n", + "3 count_TIME_MS 3 300.0 400.0 39 3.9\n", + "4 count_TIME_MS 4 400.0 500.0 47 4.7" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from teradataml import Histogram\n", + "obj = Histogram(data=welding_duration_ms,\n", + " target_columns=\"count_TIME_MS\",\n", + " method_type=\"Scott\")\n", + "res = obj.result.sort('MinValue')\n", + "res" + ] + }, + { + "cell_type": "markdown", + "id": "62b099f0-eb76-45a2-9c0e-983399c59570", + "metadata": {}, + "source": [ + "

    We can see that we have calculated the histogram values using the teradataml functions. Clearscape Analytics can easily integrate with 3rd party visualization tools like Tableau, PowerBI or many python modules available like plotly, seaborn etc. We can do all the calculations and pre-processing on Vantage and pass only the necessary information to visualization tools, this will not only make the calculation faster but also reduce the time due to less data movement between tools. We do the data transfer for this and the subsequent visualizations wherever necessary.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "7c9b72ab-7d3c-4964-9199-ee1dcc17c928", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAKMCAYAAABSLaH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAABE1klEQVR4nO3deZhuZ1km+vsJAWRGIEQgQFAGQRSEMCinlXkwNNAcEGiV4aDYLSo4tITWq2lPt3ZwhG4FjaIEG0EENEgYDxJoB4aAzGESAgQZgpAwD4Hn/LG+gsqmdlXtoWp978rvd137StX6qr59s3h31brX8L7V3QEAAGBZjpk7AAAAAEefsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMfOHeBIXOMa1+gTTzxx7hgAAACzeMMb3vCJ7j5uq9eGLnsnnnhizj777LljAAAAzKKqPnCw19zGCQAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACzQnpW9qvqTqvp4Vb1t07bfrKp3VtVbquqvquqqm157fFW9t6reVVX32KtcAAAAlwR7eWXv6UnuecC2lye5eXd/T5J3J3l8klTVzZI8OMl3rb7nKVV1qT3MBgAAsGh7Vva6+9VJPnnAtpd190WrT1+T5ITVx/dN8uzu/lJ3vz/Je5Pcdq+yAQAALN2cz+z9P0levPr4Okk+tOm181bbAAAAOAyzlL2q+uUkFyV55mF876Oq6uyqOvv8888/+uEAAAAWYN/LXlU9PMm9k/xId/dq84eTXHfTl52w2vZNuvu07j6pu0867rjj9jQrAADAqPa17FXVPZP8UpL7dPfnN730giQPrqrLVtUNktwoyev2MxsAAMCSHLtXb1xVz0pyxyTXqKrzkjwh0+ybl03y8qpKktd093/o7rdX1XOSvCPT7Z2P7u6v7lU2AACApatv3Ek5npNOOqnPPvvsuWMAsM9OPOXMPXvvc089ec/eGwCOtqp6Q3eftNVrc87GCQAAwB5R9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFOnbuAADA+jvxlDP37L3PPfXkPXtvgEuyPbuyV1V/UlUfr6q3bdp2tap6eVW9Z/Xfb11tr6r6n1X13qp6S1Xdaq9yAQAAXBLs5W2cT09yzwO2nZLkFd19oySvWH2eJPdKcqPVn0cleeoe5gIAAFi8PSt73f3qJJ88YPN9k5y++vj0JPfbtP0ZPXlNkqtW1bX2KhsAAMDS7fcELcd390dWH380yfGrj6+T5EObvu681TYAAAAOw2wTtHR3V1Uf6vdV1aMy3eqZ613vekc9FwDslb2c5CQx0QkAF7ffV/Y+tnF75uq/H19t/3CS6276uhNW275Jd5/W3Sd190nHHXfcnoYFAAAY1X6XvRckedjq44clOWPT9oeuZuW8fZILN93uCQAAwCHas9s4q+pZSe6Y5BpVdV6SJyQ5NclzquqRST6Q5IdXX/6iJD+U5L1JPp/kEXuVCwAA4JJgz8pedz/kIC/dZYuv7SSP3qssAAAAlzT7fRsnAAAA+0DZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGOnTsAwOhOPOXMPXvvc089ec/eGwBYNlf2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFujYuQMAMI8TTzlzT9//3FNP3tP3BwC2N8uVvar6uap6e1W9raqeVVXfUlU3qKrXVtV7q+ovquoyc2QDAABYgn0ve1V1nSQ/m+Sk7r55kksleXCSJyb53e6+YZJPJXnkfmcDAABYirme2Ts2yeWq6tgkl0/ykSR3TvLc1eunJ7nfPNEAAADGt+9lr7s/nOS3knwwU8m7MMkbklzQ3Retvuy8JNfZ72wAAABLMcdtnN+a5L5JbpDk2kmukOSeh/D9j6qqs6vq7PPPP3+PUgIAAIxtjts475rk/d19fnd/Jcnzk9whyVVXt3UmyQlJPrzVN3f3ad19UnefdNxxx+1PYgAAgMHMUfY+mOT2VXX5qqokd0nyjiSvTPKA1dc8LMkZM2QDAABYhDme2XttpolY3pjkrasMpyV5XJKfr6r3Jrl6kqftdzYAAIClmGVR9e5+QpInHLD5fUluO0McAACAxZlr6QUAAAD2kLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACzQjmWvqu5QVVdYffyjVfU7VXX9vY8GAADA4drNlb2nJvl8Vd0iyS8k+eckz9jTVAAAAByR3ZS9i7q7k9w3ye919+8nudLexgIAAOBIHLuLr/lMVT0+yY8m+YGqOibJpfc2FgAAAEdiN1f2HpTkS0ke2d0fTXJCkt/c01QAAAAckd1c2fu57n7cxifd/cGq+q49zAQAAMAR2s2Vvbttse1eRzsIAAAAR89Br+xV1X9M8lNJvr2q3rLppSsl+Ye9DgYAAMDh2+42zj9P8uIk/yPJKZu2f6a7P7mnqQAAADgiBy173X1hkguTPKSqLpXk+NXXX7GqrtjdH9ynjAAAAByiHSdoqaqfTvJfk3wsyddWmzvJ9+xdLAAAAI7EbmbjfGySm3T3v+5xFgAAAI6S3czG+aFMt3MCAAAwiN1c2XtfkrOq6sxMi6snSbr7d/YsFQAAAEdkN2Xvg6s/l1n9AQAYwomnnLmn73/uqSfv6fsDHIkdy153/+p+BAEAAODo2c1snK/MNPvmxXT3nfckEQAAAEdsN7dx/uKmj78lyf+d5KK9iQMAAMDRsJvbON9wwKa/r6rX7VEeAAAAjoLd3MZ5tU2fHpPk1kmusmeJAAAAOGK7uY3zDZme2atMt2++P8kj9zIUAAAAR2Y3t3HeYD+CAAAAcPTs5jbOSyf5j0l+YLXprCR/2N1f2cNcAAAAHIHd3Mb51CSXTvKU1ec/ttr243sVCrjksfAxAMDRtZuyd5vuvsWmz/+2qt68V4EAAAA4csfs4mu+WlXfsfFJVX17kq/uXSQAAACO1G6u7P2nJK+sqvdlmpHz+kkesaepAAAAOCK7mY3zFVV1oyQ3WW16V3d/aW9jAQAAcCQOWvaq6keTVHf/2arcvWW1/ceq6qvd/ef7FRIAAIBDs90zez+T5K+22P78JL+wN3EAAAA4GrYre5fu7s8euLG7P5dpKQYAAADW1HZl73JVdYUDN1bVlZJcZu8iAQAAcKS2K3tPS/Lcqrr+xoaqOjHJs1evAQAAsKYOOkFLd/9WVX02yaur6oqrzZ9Ncmp3P3Vf0gEAAHBYtl16obv/IMkfrG7dTHd/Zl9SAQAAcER2s6i6kgcAADCYXZU9AABYuhNPOXPP3vvcU0/es/eGg9lughYAAAAGteOVvaq6/xabL0zy1u7++NGPBAAAwJHazW2cj0zyfUleufr8jknekOQGVfX/dvef7VE2AAAADtNuyt6xSW7a3R9Lkqo6PskzktwuyauTKHsAAEeZ58eAI7WbZ/auu1H0Vj6+2vbJJF/Zm1gAAAAcid1c2Turql6Y5C9Xn//fq21XSHLBXgUDAADg8O2m7D06U8G7w+rzZyR5Xnd3kjvtVTAAAAAO345lb1Xqnrv6AwAAwAB2fGavqu5fVe+pqgur6tNV9Zmq+vSR/KVVddWqem5VvbOqzqmq76uqq1XVy1d/18ur6luP5O8AAAC4JNvNBC2/keQ+3X2V7r5yd1+pu698hH/vk5O8pLu/M8ktkpyT5JQkr+juGyV5xepzAAAADsNuyt7Huvuco/UXVtVVkvxAkqclSXd/ubsvSHLfJKevvuz0JPc7Wn8nAADAJc1uJmg5u6r+IslfJ/nSxsbufv5h/p03SHJ+kj+tqltkWqD9MUmO7+6PrL7mo0mOP8z3BwAAuMTbTdm7cpLPJ7n7pm2d5HDL3rFJbpXkZ7r7tVX15Bxwy2Z3d1X1Vt9cVY9K8qgkud71rneYEQAAAJZtN7NxPuIo/53nJTmvu1+7+vy5mcrex6rqWt39kaq6VqbF27fKc1qS05LkpJNO2rIQAgAAXNIdtOxV1S91929U1f/KdCXvYrr7Zw/nL+zuj1bVh6rqJt39riR3SfKO1Z+HJTl19d8zDuf9AQAA2P7K3sakLGfvwd/7M0meWVWXSfK+JI/INFnMc6rqkUk+kOSH9+DvBQAAuEQ4aNnr7r9Z/ff0g33N4eruNyU5aYuX7nK0/y4AAIBLou1u4/ybbHH75obuvs+eJAIAAOCIbXcb52+t/nv/JN+W5H+vPn9Iko/tZSgAAACOzHa3cb4qSarqt7t78y2Xf1NVe/EcHwAAAEfJMbv4mitU1bdvfFJVN0hyhb2LBAAAwJHazaLqP5fkrKp6X5JKcv0kP7mnqQAAADgiu1lU/SVVdaMk37na9M7u/tLexgIAAOBIbDcb5/0P8tJ3VFW6+/l7lAkAAIAjtN2VvX+7zWudRNkDAABYU9vNxvmI/QwCAADA0bPjbJxVdXxVPa2qXrz6/GZV9ci9jwYAAMDh2s3SC09P8tIk1159/u4kj92jPAAAABwFuyl71+ju5yT5WpJ090VJvrqnqQAAADgiu1ln73NVdfVMk7Kkqm6f5MI9TQUAwJBOPOXMPX3/c089eU/fH5ZkN2XvF5K8INOSC3+f5LgkD9jTVAAAAByR7dbZe2ySf0jyxiQ/mOQmSSrJu7r7K/uSDgAAgMOy3TN7JyR5UpKPJ3lFkh9JcmKSK+15KgAAAI7Iduvs/WKSVNVlkpyU5PuTPCLJaVV1QXffbH8iAgAAcKh288ze5ZJcOclVVn/+Jclb9zIUAAAAR2a7Z/ZOS/JdST6T5LWZnt/7ne7+1D5lAwAA4DBt98ze9ZJcNslHk3w4yXlJLtiHTAAAAByh7Z7Zu2dVVaare9+faQmGm1fVJ5P8Y3c/YZ8yAgAAcIi2fWavuzvJ26rqgkwLqV+Y5N5JbptE2QMAAFhT2z2z97OZruh9f5KvZHpm7x+S/ElM0AIAALDWtruyd2KSv0zyc939kf2JAwAAwNGw3TN7P7+fQQAAADh6tpuNEwAAgEEpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAt07NwBgKPrxFPO3LP3PvfUk/fsvQEAOLpc2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBZit7VXWpqvqnqnrh6vMbVNVrq+q9VfUXVXWZubIBAACMbs4re49Jcs6mz5+Y5He7+4ZJPpXkkbOkAgAAWIBZyl5VnZDk5CR/vPq8ktw5yXNXX3J6kvvNkQ0AAGAJ5rqy96Qkv5Tka6vPr57kgu6+aPX5eUmuM0MuAACARdj3sldV907y8e5+w2F+/6Oq6uyqOvv8888/yukAAACWYY4re3dIcp+qOjfJszPdvvnkJFetqmNXX3NCkg9v9c3dfVp3n9TdJx133HH7kRcAAGA4+172uvvx3X1Cd5+Y5MFJ/ra7fyTJK5M8YPVlD0tyxn5nAwAAWIp1WmfvcUl+vqrem+kZvqfNnAcAAGBYx+78JXunu89Kctbq4/clue2ceWDDiaecuafvf+6pJ+/p+wMAwDpd2QMAAOAoUfYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAU6du4ALNuJp5y5Z+997qkn79l7AwDA6FzZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggY6dOwAAAHD4TjzlzD19/3NPPXlP35+948oeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMAC7XvZq6rrVtUrq+odVfX2qnrMavvVqurlVfWe1X+/db+zAQAALMUcV/YuSvIL3X2zJLdP8uiqulmSU5K8ortvlOQVq88BAAA4DPte9rr7I939xtXHn0lyTpLrJLlvktNXX3Z6kvvtdzYAAIClmPWZvao6Mcn3JnltkuO7+yOrlz6a5Pi5cgEAAIxutrJXVVdM8rwkj+3uT29+rbs7SR/k+x5VVWdX1dnnn3/+PiQFAAAYzyxlr6ounanoPbO7n7/a/LGqutbq9Wsl+fhW39vdp3X3Sd190nHHHbc/gQEAAAYzx2ycleRpSc7p7t/Z9NILkjxs9fHDkpyx39kAAACW4tgZ/s47JPmxJG+tqjettv3nJKcmeU5VPTLJB5L88AzZAAAAFmHfy153/12SOsjLd9nPLAAAAEs162ycAAAA7A1lDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWaN8XVQcAAEiSE085c8/e+9xTT96z9x6FK3sAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALJCyBwAAsEDKHgAAwAIpewAAAAuk7AEAACyQsgcAALBAyh4AAMACHTt3AHZ24iln7un7n3vqyXv6/gAAwP5zZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFigY+cOsJ9OPOXMPXvvc089ec/eGwAA4FC5sgcAALBAyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC6TsAQAALNAlalF1AACAI3XiKWfu6fufe+rJR+V9XNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCBlD0AAIAFUvYAAAAWSNkDAABYIGUPAABggZQ9AACABVL2AAAAFkjZAwAAWCBlDwAAYIGUPQAAgAVS9gAAABZI2QMAAFggZQ8AAGCB1q7sVdU9q+pdVfXeqjpl7jwAAAAjWquyV1WXSvL7Se6V5GZJHlJVN5s3FQAAwHjWquwluW2S93b3+7r7y0meneS+M2cCAAAYzrqVvesk+dCmz89bbQMAAOAQVHfPneHrquoBSe7Z3T+++vzHktyuu39609c8KsmjVp/eJMm79ijONZJ8Yo/ee6+Nmn3U3Mm42UfNnYybfdTcybjZR82djJt91NzJuNlHzZ2Mm33U3Mm42UfNnext9ut393FbvXDsHv2Fh+vDSa676fMTVtu+rrtPS3LaXgepqrO7+6S9/nv2wqjZR82djJt91NzJuNlHzZ2Mm33U3Mm42UfNnYybfdTcybjZR82djJt91NzJfNnX7TbO1ye5UVXdoKouk+TBSV4wcyYAAIDhrNWVve6+qKp+OslLk1wqyZ9099tnjgUAADCctSp7SdLdL0ryorlzZB9uFd1Do2YfNXcybvZRcyfjZh81dzJu9lFzJ+NmHzV3Mm72UXMn42YfNXcybvZRcyczZV+rCVoAAAA4OtbtmT0AAACOAmUPAABggZQ9AACABVq7CVrmVlVXS5Lu/uTcWZauqr4zyX2TXGe16cNJXtDd58yXaneq6ipJ7pmLZ39pd18wW6hdGHyf3yPJ/XLx7Gd090tmC7ULo+ZOxh0vA+e+SpLHZxov10zSST6e5Iwkp677zxcA1o8JWpJU1fWS/EaSuyS5IEkluXKSv01ySnefO1u4XRjxYLKqHpfkIUmeneS81eYTMq2t+OzuPnWubDupqocmeUKSl2Xa18mU/W5JfrW7nzFXtu0Mvs+flOTGSZ6Ri2d/aJL3dPdjZoq2rVFzJ+OOl1FzJ0lVvTTT753Tu/ujq23fluRhSe7S3XefM99OqqqS3DYX/130ul7zA41RT94l4+7zJKmq47Mpd3d/bM48uzXqPh98nA+ZfV3GirKXpKr+McmTkjy3u7+62napJA9M8tjuvv2M8bY16sFkVb07yXd191cO2H6ZJG/v7hvNk2xnVfWuJLc78IdMVX1rktd2941nCbaDwff5u7far6sfpO9e1+yj5k7GHS+j5k6mny3dfZNDfW0dVNXdkzwlyXty8ZNgN0zyU939srmybWfUk3fJ0Pv8lkn+IMlVcvHcF2TK/cZ5ku1s4H0+8jgfMvs6jRW3cU6u0d1/sXnDqvQ9u6r+20yZduuHDnIw+RdJ3p1kLctekq8luXaSDxyw/Vqr19ZZZbq96kBfW722rkbe51+sqtt09+sP2H6bJF+cI9AujZo7GXe8jJo7ST5QVb+U6crex5KvX/14eJIPzRlsF56c5K4H3glTVTfItHbuTecItQu/nOTWBzt5l+lE6roadZ8/PclPdvdrN2+sqtsn+dMkt5gj1C6Nus9HHuejZl+bsaLsTd5QVU9Jcnq+8Qv1uplunfmn2VLtzqgHk49N8oqqek++sc+vl+mMx0/PFWqXfi3JG6vqZbl49rslWeeTA4/NuPv84UmeWlVXyjeuYF83yYWr19bVwzNm7mTc8fLYjJk7SR6U5JQkr6qqa662fSzJC5L88GypdufYfGOMb/bhJJfe5yyHYtSTd8m4+/wKBxa9JOnu11TVFeYIdAhG3ecjj/NRs6/NWHEbZ75+e88jc/EH+s9L8jdJntbdX5or206q6lZJnppkq4PJR3f3G+bKtpOqOibffC/z6zdupV1nqzNK98g33z/+qflS7WzkfZ58/fmlzc94fHTOPLs1cO4hx8uouUdWVY/PVEifnYufNH1wkud09/+YK9t2quphSf5LplvEvunkXXc/faZoOxp4n//PJN+R6YrM5twPTfL+7l7bkzID7/ORx/mQ2ddprCh7CzHqwSQAO6uqW63zs0xJUlU3zdazoL5jvlQ7G/XkXTL0Pr9Xts79ovlS7c7A+3zkcT5k9nUZK8reDqrq3t39wrlzXJJU1Qu7+95z5zgcVXVadz9q7hyHavB9/sbuvtXcOQ7VqLmTccfLqLmTpKr+qLt/Yu4cAIzFouo7u83cAQ5XVa31WeBtjHxA84dzBzhMw+7zUQvTqLlXRh0vo+bOyEWvqv7r3BkOR1WdNneGwzXwPh/uZOmGgff5yON8yOz7PVZM0LKD7n7C3BkO1ygHk3XAQvbd/ZF5Ex2+dX5GcrNR9/nA6zINmXvDwONluNyjrie1gyF+Lm5h1JN3ybj7fJ0n3NjJqPt85HE+avZ9HStu41ypqu/M1vfVnjNfqt0b7WCyBl7IfnUw9vhMC9lfM9MsUR9PckaSU9f1oGzwfX7LDLgu06i5k3HHy6i5k3HXkwJgfSl7SarqcUkekmnGnM0Lkz84ybO7+9S5su1k1IPJwReyf2mmA8fTNybCWU2Q87Akd+nuu8+Z72AG3+dvysHXZfrD7l7LdZlGzZ2MO15GzZ1MC6cnud3B1pPaak3VdVFVx2aa1frfZVrnMJl+J52RaVbrrxzse+c06sm7ZNx9niRVdY9M+3zzCfYzuvsls4XahVH3+eDjfMjs6zRWlL0kVfXuJN914I5fLcnw9u6+0TzJdjbqwWRVvedg+3W719ZBVb2ru29yqK/NbfB9vl3293b3Dfc7026MmjsZd7yMmjv5+u+i23T3hQdsv0qSs9c8+7MynWQ8PRc/afqwJFfr7gfNFG1bo568S4be509KcuNMSy9szv3QJO/p7sfMFG1HA+/zkcf5kNnXaawoe0mq6p1J7tHdHzhg+/WTvGxdD96TcQ8mq+rZST6ZrReyv0Z3r+0CwjUtpv7/ZfrB87HVtuMzLZJ9t+6+64zxDmrwfT7kukyj5k7GHS+j5k7GXU8qmYrqwa48bvfa3EY9eZcMvc+3zFZVleTda35SY9R9PvI4HzL7Oo0VE7RMHpvkFVX1nlz8F+wNk6ztwdjKi6vqzGx9MLnOt0M8NNPl7V/NAc9JJnnaXKF26UFJTknyqlXJS5KPZsq+tgeSGXifd/fP1tbrMv1+r/G6TKPmXhl1vIyaO919elW9IBdfT+qsJI/vNV9PKsknq+qBSZ7X3V9LkpoWt39gknXO/oGq+qVsffLuQ9t94xoYdZ9/sapu092vP2D7bZJ8cY5Ah2DUfT7yOB81+9qMFVf2Vlb/B9w2Fz84eP3GMx/r7CAHk0MsTgrAxY024VaSVNWJSZ6Y5M6ZDmQqyVXzjYlx3j9buG2snoc8JdPv0ANP3j1xYybXdTTwPr9VkqcmuVK+cXvbdZNcmOTRvcazWg+8z0ce50NmX6exouytrG4fOLDsva7toD2x6cHV++WAB7Szxg85bxjx4fKR9/mmB7Q3ftiP8oD2kLmTccfLqLmTb5pw67xMBwdrP+HWgarq6knS3f86d5ZLihH3+eq5q80nNT46Z55DNeI+Zx5zjxVlL0lV3T3JU5K8Jxef0fKGmX7BvmyubDsZ9WBynR5cPVSjPlw++D4/2APaD09y5zV+QHvI3Mm442XU3Mm4E25tqK2XMDqju985X6qdjXjybsPA+3zY9SQH3ucjj/Mhs6/LWFH2klTVOUnu1Qesv1RVN0jyou6+6SzBdmHUg8l1enD1UI36cPng+3zUB7SHzJ2MO15GzZ2MO+FWktSgSxiNevIuGXqfD7ue5MD7/EkZd5w/KQNmX6exouxl+gWb5KbdfdEB2y+T5B1r/gt2yIPJqnpNkt/O1g+u/nx3327OfNupqrckeeSBD5dX1W0z3Sb23fMk297g+3zUGVCHzJ2MO15GzZ1k9Nlbh1zCaNSTd8nQ+3zk9SRH3edDj/MRs6/TWDEb5+RPkry+pim7N/+CfXDWfPa2jDtL0YMzPbj6lKo68MHVB8+YazcenuSpVbXVw+UPnynTbmy1z6+S5JVZ/32+eQbUa2bKPsIMqAfmTpKPZf1zJ+P+Gx12nPfYs7d+LdPCwR84YPu1Vq+tq5Fnhhx1n1emR04O9LXVa+ts1H0+8jgfNfvajBVX9laq6qbZekbLd8yXamcHzFJ04MHk2s5StNncD64erpEfLh91nzOPUcfLqLlHVFX3TPJ7mZ59/6YljNb12Zoae2bIUff5yOtJjrrPRx7nt840r8ZQ2ddprCh7zGZ122N39+ur6maZHtY+p7tfPHO0Q1ZVv97d/3nuHIdi9Uzq92a6VXndHyy/Xaax8emqulymExy3SvKOJL/e3RfOGvAgqupnkzy/u8/b8YvXzOpWkwdnOpHxiqr690m+P8k5SU5b81ktr5jp58l1k3w1ybuTvGzjts51VYNOuLWhxl7CaMiTd6Pu89WJ6s3rSW5M0LLOa9UlGXefJ+OO82TM7OsyVpS9HVTVi7v7XnPn2M5qtp/rJHlNd39u0/Z7rvFZpickuVemW4lfnuR2mW6zulumH/i/NmO8ba2eqznQQzM9Z5Pu/tn9TbQ7VfXX3X2/1cf3TfKkTAs23yFTYXr6XNl2UlVvT3KL7r6oqk5L8vkkz01yl9X2+88a8CCq6sIkn0vyz0meleQvu/v8eVPtTlU9M9O/z8tnmt3yikmen2mfV3c/bL50B1dVP5zkF5O8JcmdkvxDkmOSfHeSH+nut84Yb1ujTri1k6q6Ynd/du4c26mqS2/xbM01uvsTc2XajdXBZLr7a6sTNDdPcu4Id/VsVlX36e4XzJ3jcFTV1dZ9f6/Gxld6ddBfVXfKdML07et6nLihqr6nu98yd47DUVXXS/Lp7r6gpnX3Tsp04vrt+5pD2fv65e0tX0rywu6+1n7mORSrKwePznS2/ZZJHtPdZ6xee2N3H+x/26yq6q2Z8l4207NXJ2y6avPa7v6eOfNtp6o+lORVmW5B2Xi+4LcyHWCmu0+fKdq2quqfuvt7Vx//Q6YD3/dX1TWSvKLXeFr3qjqnV7PiHjiuq+pN3X3L2cJto6r+Kcmtk9w10/N790nyhkzF7/nd/ZkZ422rqt7S3d9T07p1H05y7e7+6uqh+Dev67/R1QRKt+/uz6/G9jO7+x5V9T1J/qC7v3/miAdVg064tZOq+mB3X2/uHFtZHfT+WZJvSfLGJI/q1czc6/w7NEmq6n5J/jDT8z//Icl/TvLZJDdJ8h+7+2/mS3dwVbXVybmnJPmpJOnu5+9vot2rql/p7v+++vhmSf46yaUzHQs8qA9YNmVdVNWbk9yxuz9VVf8pyb9L8qIkP5jk7O5+/KwBt1FVX03yvkyzWj5r3R+v2lBVpyT5ySRfyjeOEf8+ye0zTeb3O/uVxQQtk9dnOnjf6sHgq+5vlEP2E0lu3d2fXZ01eG5VndjdT856P+h80eoy9uer6p+7+9NJ0t1fqKq1vtUqyc2S/LdMt4n9Ynf/S1U9YV1L3iabz+wc293vT5Lu/sQA+/xtVfWI7v7TJG+uqpO6++yqunGStb2dMNNtyl/LdGLgZVV16UxXtB+S6Yf/cXOG28Exq7PBV8h0de8qST6Z6QTNpecMtoNK8oXVx5/L6lnm7n5LVV15tlS7M+qEW6mqnz/YS5muCq+r30hyj+5+e1U9IMnLq+rHuvs1We/focm0fMEtklwuyZuT3Ka731VV10/yvCRrWfaS/EWSl2a6RXljH18hyb/N9Htqbctekvsn+e+rj38z0wn2F68eS3lSplvd19GlNt0i+6Ak/2Z1vHVqppMca1v2Mt2l8WOZfm++oKo+l+mE6bP7gCXT1syPZTpevHySc5N8e3efX1VXSPLaJMrePjsn00K27znwhdVVnHV2zMbtMd19blXdMVPhu37W+xfVl6vq8t39+UxXPpJ8/ZmVtS4eq6sxj109NPzMqjoz021i6+4WVfXpTOPislV1re7+yOqA/lIzZ9vJjyd5clX9SpJPJPnH1b/ND61eW1cX+ze4uk3sBZl+YV1+nki79rQk78w0Nn45yV9W1fsynZV89pzBdvCiJC+pqldnOiHzl8l0q1XW+2diMvbsrb+e6eD3oi1eW+efj5fZuKWqu59b07q7z69pjay1v/Vp0+2+H+zud622fWDj9s419f1JTs307NJTk6Sq7tjdj5g31iG79sYcA939utWdSevq01V18+5+W6bfod+S6aTYsVnvf5/JdNL0bZl+D/3yqlg/OMnfrcb9uhbsr64K9Zcz7et/TZLu/tx0g8z+cRtnktXZvLdu/KA84LX7dfdf73+q3amqv820dtSbNm07NtNyEj/S3Wt5EF9Vl+3uL22x/RpJrrXOz9Vstrql7aeSfF93/+jceQ5HVV010zqT/zh3lp2srszcINMvqPM2rn6sq6q6cXe/e+4ch6uqrp0kq6vXV810O+oHu/t1swbbQVX9UKYzqm/u7pevth2T5NJb/dzhyK1uDf+Z3mJmvKr6UHdfd4ZYO6qqs5PcuzdN9lBVJyR5YZLv6O4rzRZuBxu3ia+e17vtxr/LqrpUprF/83kTHtzq3+PPJLlfksdlukrz7bOG2oWquiDJqzOdOLp9kuuvTlqnqt62rvt8dRv7n2W6ApxMz+q/OtOzzL/T3X8+V7adbH4E5YDtleQHuvtVM8TaUVU9PcnG3TGfz3Qi7CVJ7pzkSt29byfwlL3BrX4pXdRbzEpUVXfo7r+fIdZhqapHdfdpc+c4HFV17+5+4dw5DtWouZNxx8uouZNxs488zjdsuo15LVXVTZL8a28xoUlVHb+uJ2aq6q5Jzu/uNx+w/SqZpkdf58nCbpPpRPUXD9h+YpL/q7v/9yzBDsHqhNKTkpw0SNn7wQM2vWH1GM3xSR7Q3b8/R67dWJ0EuHuSG2d1wjTThHgXzJlrJ1X179e5jB7M6sLLAzPdIfDcTLNy/vskH8y0durntvn2o5tF2dtaVb2wu+89d47DMfAB2Vo/DL+dUbOPmjsZN/uouZNxs4+ae7N1nuQEgPW17vfpzuk6O3/J2voPcwc4TOv+PM12Rs0+au5k3Oyj5k7GzT5E7qp6y0H+vDXTuntDqmm5lOFU1XBrvm4YNfuoYyUZN/uoYyUZN/t+5zZBy8H909wBjsAQBzZb+LdzBzgCPzl3gMM0au5k3PEyau5k3OyjjPPjMy00feDC0pVpvcC1tZoAZ8uXkvzQfmY5FLX90ku33Mcoh2zU7KOOlWTc7KOOlWTc7OuUW9k7wMY/5O7+f+bOcgSGOCCrqntkejh74yrqh6vqjF7zBT6TpKaF7O+bi2f/THefM2OsHY2aOxl3vIyaOxk3+8Dj/IVJrrh5wq0NVXXWvqc5NOcn+UAufrKxV59fc8vvWA8jL700avZRx0oybvZRx0oybva1ye2ZvWRjhfvfSHKXJBdk+j/mykn+Nskpa76Ox5YHZEnW+oCsqp6U6SHhZ2R6SDhJTkjy0CTv6e7HzBRtR6spuR+Safr5zdkfnGlGsVPnyradUXMn446XUXMn42YfeZyPrKrek+Qu3f3BLV5b59k435bk3x1s6aV1zZ2Mm33UsZKMm33UsZKMm32dcit7SarqHzPNBvXcnhb63pi16IFJHtvdt58x3rYGPiB7d3ffeIvtleTd3X2jGWLtSlW9O8l3rdZM27z9Mknevq7ZR82djDteRs2djJt95HG+lVEm3KqqRyf5uwNntVy99jPd/b9miLWjGnvppSGzjzpWknGzjzpWknGzr1NuZS/TmZqDHQBs99o6GPiA7C1JHtndrz9g+22TPK27v3ueZDurqncmuUd3f+CA7ddP8rLuvsk8ybY3au5k3PEyau5k3Owjj/OtLGEmUQDm45m9yRuq6ilJTk/yodW26yZ5WNZ/opYvVtVtDjwgS3KbJF/c6hvWxMOTPLWqrpRvXJG8bpILV6+ts8cmecXqdo6N8XK9JDdM8tNzhdqFx2bM3Mm44+XhGTN3Mm72x2bccb6VUSfcSlWd1t2PmjvHoaqxl14aMvuoYyUZN/uoYyUZN/tcuV3Zy9dv73lkLv5A/3lJ/ibTGewvzZVtJ6vZfp6aZKsDskd39xvmyrYbVfVt2fSsYW+xOPw6qqpjMi2Qufk5yddv3Aa8rkbNvWHg8TJk7mTM7KOP882q6oTuPm/nr1w/o16VrKp/6u7vnTvH4Rg1+6hjJRk3+6hjJRk3+1y5XdlL0t1fzlSYnjp3lkPV3W9McrsRD8iSZJVziKybdffXkrxm7hyHatTcGwYeL0PmTsbMPvI4H3UG1IP4+NwBDtO639GznVGzjzpWknGzjzpWknGzz5Lblb0dVNW9u/uFc+e4JBn1LFni1oI5jDpeRs2djJt93cf5qBNuLUV9Y+mlT86d5VCNnJ39NfJYGTX73LmVvR1U1a929xPmznE4Rj0gG1lVXau7PzJ3jkM1am44FOs+zkedcCtJquoqSR6f6arkNTOtPfbxJGckObW7L5gt3DZq4KWXRs0+6lhJxs0+6lhJxs2+TrmP2a+/aN1V1XdW1eOq6n+u/jyuqm46atFLkhGKXlUdX1W3Wv05fu48h6qqrrZxxiZJ1vlAcrOBcw85XkbNnQyffbRx/sWqus0W29d9wq0keU6STyW5Y3dfrbuvnuROq23PmTXZ9v4iyV8l+bbuvlF33zDJtZL8daa1GtfZqNlHHSvJuNlHHSvJuNnXJrcre0lqAYvwrg7CNj+z97E58+ykqm6Z5A+SXCXT5AnJtM8vSPJTq2cR19I6na05FKPmTsYdL6PmTsbNPvg4H3bCrap618GWtdjutbltt7zSdq+tg1GzjzpWknGzjzpWknGzr1NuZS/TrTMZdBHegQ/I3pTkJ7v7tQdsv32SP+zuW8wSbBeq6h+TPCnJczdm96uqSyV5YJLHdvftZ4x3UKPmTsYdL6PmTsbNPvI43zDihFtV9bIk/1+S0zdONq5OQj48yd26+64zxjuoqnp2kk9m66WXrtHdPzxXtp2Mmn3UsZKMm33UsZKMm32dcit7ydCL8A58QLbdGY/3ri53r6V1OltzKEbNnYw7XkbNnYybfeRxPrKq+tYkp2Rawuiaq80fS/KCJE9c1wkVauyll4bMPupYScbNPupYScbNvk65lb0kVXXPJL+XZMtFeHuNp7we+IDsfyb5jkyzzm0+4/HQJO/v7rVd/HidztYcilFzJ+OOl1FzJ+NmH3mcb6dMuAXAYVD2VmrQRXhHPSBLkqq6Vy5+xuPDSV7Q3S+aL9XODnK25sOZzuyNdpZp7XNvGHi8DJk7GTP76ON8iarqVuv6SMF2auCll0bNPupYScbNPupYScbNvt+5lb0FGPGADICtjTbh1k6q6o+6+yfmznGoauyll4bMPupYScbNPupYScbNvt+5lT1mUd9Yq+a+SY7PIGvVJElVHZvpysH9cvGCfUamKwdfOci3zmrU3Mm442XU3Mm42Qcf57fMgBNuAbC+lL3BDXxA9tJMU6GfvjHT3GoGuocnuXN3333GeNuqqmdlOvg6PRdfquNhSa7W3Q+aKdq2Rs2djDteRs2djJt98HH+pgw44daG1e+je+biJful6/p7aENVfWe2vjvmnPlS7c6o2UcdK8m42UcdK8m42dclt7I3uIEPyIZcqyZJqurd3X3jQ31tbqPmTsYdL6PmTsbNPvg4H3LCrSSpqocmeUKSl+XiVyXvluRXu/sZc2XbTg28zu6o2UcdK8m42UcdK8m42dcpt7I3uIEPyIZcqyZJquo1SX47yfO6+2urbcdkWsfr57v7dnPmO5hRcyfjjpdRcyfjZh98nI884da7ktzuwKsbq6nqX7uuJbvGXmd3yOyjjpVk3OyjjpVk3OzrlPuY/fqL2DMfqKpfWh2EJZkOyFZnFD60zffN7UFJrp7kVVX1qar6ZJKzklwtybpPjf7gJA9I8tGqevfqH/RHk9x/9dq62sj9sVXu92SM3Mm442XU3Mm42Uf995nu/tlMywDdKdPt+Y9fffz761z0VirTYwQH+trqtXX1tSTX3mL7tVavrbNRs486VpJxs486VpJxs69Nblf2BlfbL/B5and/aq5sO1ndy3xCktd092c3bb9nr/HahklSVbfL9AP/n5N8Z5LvS/KOUWZAraqrrz58cnf/6KxhDkNV/ZtMS6W8tbtfNneeg1mNk3d294VVdflM/1ZvleTtSX69uy+cNeA2qupnk/xVd6/zSaNvsjpr+pAk/5LkjZmerblDpn1+2jpP0DKyqnpYkv+S6fa2zevV3i3Jf+vup88UbVs19jq7Q2Yfdawk42Yfdawk42Zfp9zK3oJV1SO6+0/nzrGV1YHko5Ock+SWSR7T3WesXlvrxYOr6glJ7pXk2CQvz1Q6zsr0w/6l3f1r86U7uKp6wRab75zpmc909332N9HuVdXruvu2q49/PNPY+eskd0/yN2t8z/7bk9yiuy+qqtOSfC7J85LcZbX9/rMG3EZVXZgp7z8n+fMkf9ndn5g31c6q6pmZ/m1eLsmFSa6Q5K8y7fPq7ofNGG9bNeiEWxtWJx/vkW+euGJtTzomX7/Nd7h1dpNxs486VpJxs486VpJxs69L7mP38y9j3/1qkrUse0l+Ismtu/uzVXVikudW1Ynd/eSs960QyXSL2C2TXDbT7WEndPenq+q3krw2yVqWvUxXUd+R5I8zHURWkttker5p3V1608c/meTu3X3+ap+/Jslalr0kx3T3RauPT9p0EuPvapp5cZ29L8mtk9w10y2d/29VvSHJs5I8v7s/M2e4bXx3d39PTUswfDjJtbv7q1X1v5O8eeZsO3lOppMvd9piwq3nZDq5sba6+1NV9cpcfI3AtT4AXulNfzY+X+fbwzYbMvvAY2Xk7EOOlZVRs69FbmVvcFX1loO9lOnM8Lo6ZuPWze4+t6rumKnwXT/rX/YuWp2V+XxV/XN3fzpJuvsLVbXOP3xOSvKYJL+c5D9195uq6gvd/aqZc+3GMauzqcdkujpzfpJ09+eq6qLtv3VWb9t0hf3NVXVSd59dVTdOsu63E/ZqgpOXJXlZVV060xXthyT5rSTHzRluG8esbuW8QpLLZ1qz7pOZTs5certvXAMndvcTN29Ylb5Tq+oRM2Xalbr4GoHnZfo5fkJVXZA1XiOwqu6e5CmZbrXaPLviDavqp9b8NvEhs486VpJxs486VpJxs69TbmVvfMdnup3gwLNKleQf9j/Orn2sqm7Z3W9KktUVvnsn+ZMk3z1rsp19uaou392fz3TlI8nXb8Fa27K3OnD/3ar6y9V/P5ZxfgZcJckbsno4vqqu1d0fqaorZr1PDvx4kidX1a8k+USSf6yqD2W6f//HZ022s4vt19Wzbi9I8oLV84fr6mlJ3pnkUplObPxlVb0vye0zTYG9zj5QVb+UrWdAXfdnJ5+eg68R+KdJ1nWNwCcnuWt3n7t5Y1XdIMmLktx0jlC7NGr2p2fMsZKMm33UsZKMm31tco9yoMfBvTDJFTdK02ZVdda+p9m9hya52BWZ1e1uD62qP5wn0q79QHd/Kfl6gdpw6UwLN6+17j4vyQOr6uQkn547z25094kHeelrSf7dPkY5JKsJWB5eVVdOcoNMP3PP2ziQX3MHXXx8daJjLXX371bVX6w+/peqekamW1H/qLtfN2+6HT0o0yQ+Z9U3ZljemHBrnWdATZIrHHgAnCTd/ZqqusIcgXbp2HxjDazNPpz1vxI8avZRx0oybvZRx0oybva1ya3sDa67H7nNa/9+P7McilXhONhrf7+fWQ7VRtHbYvsnMl29GUJ3n5nkzLlzHIlV6Xj/3Dl2srrVd92fF7uY7n733BkOV3f/y6aPL0jy3PnS7N7qWaDTMv0cuW6SryZ5V5I/37hdfI29uKrOzNZrBK7lbHkrf5Lk9VX17Fw894MzXSVeZ6NmH3WsJONmH3WsJFtnv16mk2PrnH1t9rnZOAFgDaxmKb53klcn+aEk/5TkgkxXr3+qu8+aLdwuVNW9Ms0kunnmuRes+5I0VXXTbJ37HfOl2p2qulmS+2Sw7FX1Q9k691qPlcQ4n8Oo2dclt7IHAGugqt6a5Jar2UMvn+RF3X3HqrpekjO6+3tnjggcoKqu2d0fnzvHJUlVXb27/3XuHKM4Zu4AAMDXbTxecdkkV0yS7v5g1vvZlFTVVarq1Ko6p6o+WVX/uvr41Kq66tz5DkdVvXjuDNupqitX1f+oqj+rqocc8NpT5sq1k6r6tqp6alX9flVdvar+a1W9paqeU1XXmjvfdqrqagf+SfK6qvrW1cdrqaYFvjc+vkpV/fFqn//5pueD19LqZ8g1Vh/fejXh1muq6gNV9YMzxzuoqnpjVf1KVX373FmUPQBYD3+c6RmPP0ryj0l+P0mq6rhMy0ess+dkmhX6Tt19te6+epI7ZboN9TlzBttOVd3qIH9unWk91XX2p5lmzX1ekodU1fOq6rKr124/X6wdPT3Tmq8fSvLKJF9IcnKS/5NpWYN19olMM0Nv/nOdJG9McvaMuXby65s+/u1MawT/2ySvT7Luk+KdvJoTIZmW/XlQd98oyd2y3usEf2uSq2aacOt1VfVzVXXtOYK4jRMA1kRVfVemKbnf1t3vnDvPblXVu7r7Jof62tyq6qtJXpWtl3C5fXdfbp8j7VpVvam7b7np81/O9KznfZK8vLtvNVe27VTVP23cklxVH+zu62167WL/m9ZNVf1CppLxn7r7ratt7+/uG8ybbHtV9caN8bDFuFn3fX5Oku/u7ouq6jXdfftNr721u9dyua4D9vm/ybRG7f2TnJPkWd192n5lMRsnAKyJ7n57krfPneMwjLpG4DmZ1k17z4Ev1LQm5jq7bFUds7EEUHf/WlV9ONMEP1ecN9q2Nt9V9owDXrvUfgY5VN3926ulXX53NT6ekGSEqybXrKqfz3RS48pVVf2Nqz3rfpffU5K8qKpOTfKSqnpykucnuXOSN80ZbLe6+/8k+T9V9TOZThY8KMm+lb11/z8YAFh/D0py9SSvWj2z98kkZyW5WpIHzhlsB/81Bz8W+pl9zHE4/ibTAe/XdffTk/xCki/PEWiXzqiqjedRf2VjY1XdMNNSI2utu8/r7gdmGt8vT3L5eRPtyh8luVKmkwCnJ9l4Bu7bsuaFqbv/V6bbUH8y08yWd07yuEwzWz5ixmg7+abli7r7q939ku7e19xu4wQA9kxVPaK7/3TuHIdq1NzJuNlHy11Vl0vyHd39ttGybxg1dzJu9v3OrewBAHvmwOeyRjFq7mTc7KPmTsbNPmruZNzs+53bM3sAwBGpqrcc7KUkazu1+6i5k3Gzj5o7GTf7qLmTcbOvU25lDwA4UscnuUem5Rc2qyT/sP9xdm3U3Mm42UfNnYybfdTcybjZ1ya3sgcAHKkXJrlid7/pwBeq6qx9T7N7o+ZOxs0+au5k3Oyj5k7Gzb42uT2zBwAAsECWXgAAAFggZQ8AAGCBlD0AhlZVX62qN1XV26vqzVX1C1V11H6/VdXDq+ramz7/46q62RG832Or6qFHIdezq+pGR/o+ACyXZ/YAGFpVfba7r7j6+JpJ/jzJ33f3Ew7hPS7V3V89yGtnJfnF7j77KGQ9Nskbk9yquy86wvf6wSQ/2t0/caS5AFgmV/YAWIzu/niSRyX56Zo8vKp+b+P1qnphVd1x9fFnq+q3q+rNSb6vqv5LVb2+qt5WVaetvv8BSU5K8szV1cPLVdVZVXXS6j0eUlVvXX3PEzf9PZ+tql9bXWl8TVVtrKt05yRv3Ch6q/f63ao6u6rOqarbVNXzq+o9VfXfV19zhao6c/Veb6uqB63e6/8kueuqQALAN1H2AFiU7n5fkkslueYOX3qFJK/t7lt0998l+b3uvk133zzJ5ZLcu7ufm+TsJD/S3bfs7i9sfPPq1s4nZipwt0xym6q636b3fk133yLJq5NsXH27Q5I3HJDjy919UpI/SHJGkkcnuXmSh1fV1ZPcM8m/rHLePMlLVv87v5bkvUlusfu9A8AlibIHwCXVV5M8b9Pnd6qq11bVWzMVuO/a4ftvk+Ss7j5/daXumUl+YPXalzOts5RM5e7E1cfXSnL+Ae/zgtV/35rk7d39ke7+UpL3JbnuavvdquqJVfVvuvvCTd/78STXDgBsQdkDYFGq6tszFbmPJ7koF/9d9y2bPv7ixnN6VfUtSZ6S5AHd/d1J/uiArz1UX+lvPBT/1SQbt1p+YYv3/dLqv1/b9PHG58d297uT3CpT6fvvVfVfDvjf84UAwBaUPQAWo6qOy3Q75O+tyta5SW5ZVcdU1XWT3PYg37pRwD5RVVdM8oBNr30myZW2+J7XJfnBqrpGVV0qyUOSvGqHiOckueGu/sesrG4X/Xx3/+8kv5mp+G24cZK3Hcr7AXDJ4aFuAEZ3uap6U5JLZ7qS92dJfmf12t8neX+Sd2QqWm/c6g26+4Kq+qNMxemjSV6/6eWnJ/mDqvpCku/b9D0fqapTkrwySSU5s7vP2CHri1f5DsV3J/nNqvpakq8k+Y9Jspr05Qvd/dFDfD8ALiEsvQAA+6iq/irJL3X3e47wfX4uyae7+2lHJxkAS+M2TgDYX6dkmqjlSF2Q5PSj8D4ALJQrewAAAAvkyh4AAMACKXsAAAALpOwBAAAskLIHAACwQMoeAADAAil7AAAAC/T/A//bvNM0oi6/AAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "res = obj.result.sort('MinValue').to_pandas()\n", + "res['duration_ms'] = [str(row['MinValue'])+'-'+str(row['MaxValue']) for i,row in res.iterrows()]\n", + "res.plot(x='duration_ms',y='CountOfValues',kind='bar', figsize=(15,10), legend=False,xlabel='Duration(ms)', ylabel='Welding Counts')" + ] + }, + { + "cell_type": "markdown", + "id": "88429a10-aa8b-459f-976a-6276ab121bbc", + "metadata": {}, + "source": [ + "

    In the above histogram we can see the bins between the Min and the Max value of the durations and the welding counts.

    \n", + "
    \n", + "

    3.2 - More advanced processing using window functions and delta_t

    \n", + "

    Resistance is an important parameter in resistance welding. The resistance should not vary too much. If there are any significant changes in resistance over time, it could indicate an issue with the weld quality. For example, an unusually high resistance could indicate poor contact between the parts being welded or a problem with the welding equipment.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b5615026-52eb-4aae-8bb2-146e88ef4502", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d628ce44d1b549acb4bbd0b861240b89", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCE
    14192025-06-18854714103.14563314224813
    14192025-06-18854130171.2900655657514
    14192025-06-18854352161.46970909346348
    14192025-06-18854353154.4865896266523
    14192025-06-1885472387.61515040184788
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE\n", + "0 1 41 9 2025-06-18 854 714 103.145633\n", + "1 1 41 9 2025-06-18 854 130 171.290066\n", + "2 1 41 9 2025-06-18 854 352 161.469709\n", + "3 1 41 9 2025-06-18 854 353 154.486590\n", + "4 1 41 9 2025-06-18 854 723 87.615150" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "welding_dataset_new.loc[welding_dataset_new.WELDING_ID == 854]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "50c72091-f7f3-4ed3-a436-ee5c44335f4e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAMACAIAAAA12IJaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nOzdeZxkdX3v/3edrbbepmdh9gGEEQHBBR1U0OBEiDJGfypIBsWEKHgFouaqCS4RLtz84gy5gIZArjHiiEHcYkDUQFCQMBFFZJOBAYFh9rW32s+pqvvHt+p09UpPd1V3V9fr+YePqlOnur/dTLXncz7LN1IulwUAAACgNVgzvQAAAAAA04cAAAAAAGghBAAAAABACyEAAAAAAFoIAQAAAADQQggAAAAAgBZCAAAAAAC0EAIAAAAAoIUQAAAAAAAthAAAAKYql8u5NaLR6BFHHPHud7/7G9/4RrFYHOfMYR599NHwzFKp9O1vf/u9733vwoULo9Ho4sWLzzzzzGuvvXbv3r3Dvtr8+fNrv8X4b0ylUuMsIHTXXXeFX3Djxo3m4O9///txfvaXv/zlvu8Pe/WII45wXXfku3p7e2+66aY3vOEN8+fPN7+uN73pTV/4whe2bt16uL8oAMBhKwMApiabzY71N/ZjH/vYBM+U9Mgjj5jTSqXS+9///lHPOfvss4d9ta6urvDIS75xYGBgIv/X8NOf/jT8gscdd5w5+MUvfnH8n/2f//mfh726YMECjfg/mm984xuJRGLU77tq1arD+kUBACaBDAAA1EdHR4fv+77vZzKZZ5555hOf+ISk//t//++OHTvGOnOYk046yZxw77333nbbbY7jXH311Vu3bk2lUvv27bvnnns++clPLlq0aJw1vOQbk8nksG+6YsUKSdu3b689+La3vc18wYceeuipp5564xvf6Hnepk2bSqXSqN+3ra3NcZwrr7wyn8+P/1v67ne/+6EPfSiTybzlLW/55je/uWfPnmw2u2/fvgceeOCqq65avXr1Yf2iAACTMdMRCAA0vZF34svlcqlUMtep3/72t8c/c6QLL7xQ0uc///mRL5VKpXG+2gTfWGvVqlWSdu/ePeqrl1xyiaSbb775ne98p6T77rtv2AlmDatWrbr44osl/eM//mPtq8MyAIVCwcQhl19++ajrCQ9O8BcFAJgEMgAA0BCRSMSyLEltbW2H+15TqHP88ceP+mUb8cZR5fP5W2+91fO8d73rXaay6Oabbx7r5M9//vOxWOyqq64ap3rnZz/72b59+172spddddVVo65nEosEABwuAgAAqLNisbh9+/a//uu/fuSRRzo6Ot74xjce7lcwb/mnf/qnQ4cOTc8bR/XjH//40KFDZ511VldX1x//8R/HYrHvfve76XR61JOXL19+0UUX7d69+6abbhrrC956662S3ve+99m2PfXlAQAmhwAAAOqjt7fXzKhxHGflypVf+tKXjjjiiB/84Afz5s0b68xaxxxzTHjCBRdcsGrVqvvuu2/FihVnnXXWFVdcceedd/b19b3kGib9xlF94xvfkPQnf/Inktrb2//oj/4olUr927/921jnX3755YlE4u/+7u9SqdSoJzz22GOS3vrWt05wAS/5iwIATAIBAADUTRAEQRCYx5ZlXX311WvXrh3nzGHCV7u7ux999NFPfOIT7e3td91115VXXrlu3bqlS5deeuml49/an/QbR9q/f/+dd94Zi8XWrVtnjpx33nmSNm3aNNZbFi9efNlll+3bt+8rX/nKqCf09/dL6ujomPgyxv9FAQAmgQAAAOojHFlz8ODBW2+9ta2t7SMf+cjPfvazcc6s9eyzz9ae09nZee211+7atevhhx/+6le/+sEPftCyrBtuuOGMM84YOW6/Lm8c5l//9V+DIFi3bl17e7s5sm7dukQicc8992zfvn2sd33605/u6Oi45pprRk07mEt/EwZMxER+UQCAw0UAAAD1YVmW4ziO43R3d5933nlf/epXJV122WUjR2eGZw4z6td89atf/eEPf3jTpk1bt25dtWrVY4899uMf/3gii5ncG0Om/ufcc88NjySTybPPPrtUKt1yyy1jvWv+/Pl/+Zd/eejQoWuvvXbkqyeccIKk++67b4JrmPgvCgAwcQQAANAQ55xzzmtf+9onn3zy3//93+vyBZcsWXLOOedIuv/++xv9xscff/y3v/2tpPPOO6+2/v773/++pJtvvrlcLo/13k984hPd3d3XXnvtwYMHh71kRgl973vfG2s/AQDANCAAAICGiEQin/nMZyRdc8019fqaTz/9tKR4PN7oN5rb/5JKpVJt8b25cN+6deuvfvWrsd7b2dn5mc98pr+/f+PGjcNeOvPMM7u7u7du3fq3f/u3h/sjAADqhQAAABrlPe95z4oVKzZv3vzggw8e1hs/9alPXXLJJXfccceOHTuCIMhkMo8//vill156xx13aGhZTr3eWCsIAlPkc8stt4wswTdDgcZpBZZ06aWXLlq06Ctf+cqwcUCe51133XWSvvCFL5x99tk/+MEP+vv7S6VSf3//b37zm2uuuSZsOAYANNBM70QGAE1vnG1rN2zYIOn9739/7ZmSRi1tv+WWW8xpH/rQh8b6o33xxReP830n+MZaI3cCvvPOOyWtWLGiUCiMPP/Xv/61pO7u7lwuV67ZCXjYaeZCf9T/o7nxxhs9zxt1keHXmeAvCgAwCWQAAKCBPvzhDycSie9///vbtm2rPT7qdMtytbB+48aNN95447ve9a5Vq1Z5nud53lFHHfWhD33ohz/84Y033jjOt5v0G2uZ7X4vu+wy13VHvnrKKae8+c1vPnTokMkqjOXiiy9etmzZqC999KMf3bVr15e//OXXve51HR0dpm16zZo1n/nMZ370ox8NO3n8XxQAYBIi/BkFAAAAWgcZAAAAAKCFEAAAAAAALYQAAAAAAGghBAAAAABACyEAAAAAAFoIAQAAAADQQggAAAAAgBZCAAAAAAC0EAIAAAAAoIUQAAAAAAAthAAAAAAAaCEEAAAAAEALcWZ6AZNXKpV2797d1tYWiURmei0AAADA7FIul1Op1JIlSyxryE3/Jg4Adu/evXz58pleBQAAADB77dixY9myZbVHmjgAaGtrk7Rjx4729vaZXgsAAAAwuwwMDCxfvtxcM9dq4gDAVP60t7d3dHTM9FoAAACA2WhktTxNwAAAAEALIQAAAAAAWggBAAAAANBCCAAAAACAFkIAAAAAALQQAgAAAACghRAAAAAAAC2EAAAAAABoIQQAAAAAQAshAAAAAABaCAEAAAAA0EIIAAAAAIAWQgAAAAAAtBACAAAAAKCFEAAAAAAALYQAAAAAAGghBAAAAABACyEAAAAAAFoIAQAAAADQQggAAAAAgBZCAAAAAAC0EAIAAAAAoIUQAAAAAAAthAAAAAAAaCEEAAAAAEALIQAAAAAAWogz0wtoYo/u6N3dmzthaceK7sRMrwUAAACYEDIAk/eVe5756C2/uf/ZAzO9EAAAAGCiCAAmL+rYkvJ+caYXAgAAAEwUAcDkRV1LUj4ozfRCAAAAgIkiAJi8mGNLKgRkAAAAANA0CAAmL+pEJOXIAAAAAKB5NDYA2Lp167nnntvZ2bl48eL169fv3LnTHL/kkkvcGtdff705XiwWr7766qVLl3Z2dl544YX79u1r6PKmyHMdSQWfAAAAAABNo7EBwA033HDuuedu37598+bNBw8eXL9+vTleLBYvuuiibNVll11mjm/YsOGmm266/fbbt2zZsnfv3vPOO6+hy5uiqB2RVCADAAAAgObR2H0ArrvuukgkIqmjo+OjH/3o+vXry+WyORKJRBxn+HfftGnTpz/96VNOOUXSxo0bTzjhhJ07dy5btsy8Wi6XBwYGwpPN43K53NAfYRzVJmB6AAAAANA0GpsBMNf65XJ5z549mzZtWrdunTki6Zvf/GYymTzyyCM//vGP9/b2Surp6XnqqafWrFljTjj++OMTicTmzZvDrzYwMNBZY/ny5ZJSqVRDf4RxeLYtpgABAACgqTS8CXjTpk2O4yxZsuS555677rrrzMEbbrjh4MGDBw4cuO222+69994LLrhAUl9fn6TOzs7wvZ2dneag0d7e3ldjx44dktra2hr9I4wl6hIAAAAAoMk0PAD4wAc+kMvltm3b9oY3vOH000/PZDKSbNt2HCcej69Zs+b666+/4447Dhw40NHRoWoYYPT19ZmDRiQS6ajR3t6uapJhRni2JTYCAwAAQFNpeABgWZbruitXrvzc5z73/PPPb9myZdgJtm1LKpVK3d3dq1evfuihh8zxLVu2ZDKZU089tdErnDTTA1AokgEAAABA02hgABAEwUc+8pFnn322WCxu3779qquuWrRo0XHHHSfpggsu2Lp1q+/7jz766Cc/+ckzzzxz0aJFks4///wNGzY88cQTBw8evPzyy0877bSVK1c2boVTFHVME/CMdSEDAAAAh6uBAYBt22vXrn3ve9+bSCTWrFnT09Nz1113JZNJSe94xzvOOeectra2d73rXaeeeuott9xi3vLZz372wgsvXLt27cqVK9vb27/zne80bnlTF3VsUQIEAACAphKZwTGaU9Tf32+6hGv7BKbT/c8c+ODXHnz54vb/+MSbZ2QBAAAAwFjGulpueA/AHBZzaAIGAABAkyEAmDyPJmAAAAA0GwKAyYtWxoASAAAAAKBpEABMntkIrFCkBAgAAABNgwBg8swY0BwZAAAAADQPAoDJ8xxLkl9s3kFKAAAAaDkEAJNn9gGQ5NMHDAAAgCZBADB5JgMgBgEBAACgeRAATJ5nV357DAICAABAsyAAmLxIRK4TkZQPGAQEAACA5kAAMCWeZUnKB2QAAAAA0BwIAKbEbAZMAAAAAIBmQQAwJWYvMEqAAAAA0CwIAKYkaluSCmQAAAAA0CQIAKYkTgkQAAAAmgoBwJR4ti3GgAIAAKB5EABMSdS1xEZgAAAAaB4EAFNiegDyPk3AAAAAaA4EAFPiOaYJmAAAAAAAzYEAYEqiDk3AAAAAaCYEAFMS9RyxDwAAAACaBwHAlLiW6QEgAwAAAIDmQAAwJVE3IqkQlGd6IQAAAMCEEABMScy1JeUYAwoAAIAmQQAwJa5tSSowBhQAAABNggBgSkwGgClAAAAAaBYEAFOS9CxJGTIAAAAAaBIEAFOSiLqS0rlgphcCAAAATAgBwJS0RR1J6YI/0wsBAAAAJoQAYEriniUplaMECAAAAM2BAGBK2jxHUipPAAAAAIDmQAAwJW0xV1KGEiAAAAA0CQKAKUl6pgeAJmAAAAA0BwKAKUlGbUmZQqlcnumlAAAAABNAADAlyagjqVgq5wPaAAAAANAECACmJO7a5kGmQAAAAACAJkAAMCW2FYk5lqRUnjYAAAAANAECgKkyVUBpAgAAAAA0AwKAqapuBkwJEAAAAJoAAcBUJaK2yAAAAACgSRAATFVb1BUBAAAAAJoEAcBUJaOWpHSezYABAADQBAgApspsBpzK0wMAAACAJkAAMFWmCThToAQIAAAATYAAYKoSlQwAAQAAAACaAAHAVCUrGYDSTC8EAAAAeGkEAFOVjDmSBnI0AQMAAKAJEABMVZtnS8pSAgQAAIBmQAAwVfGoLSmVpwQIAAAATYAAYKrMRmAD7AMAAACAZkAAMFVx15ZUCNgHAAAAAE2AAGCqbCsiKSiWZ3ohAAAAwEsjAJgq14pIKpToAQAAAEATIACYKse2JJWoAAIAAEAzIACYKseOSCqUyQAAAACgCRAATJVrWZJKAQEAAAAAmgABwFRVMgAlmoABAADQBAgApsq1LUlFmoCBOsn5xSIRNQAADUMAMFWOFZHkB1yvAHXQl/XX/O97/vRffj3TCwEAYM4iAJgqMwUooAkYqIf/fHJPX86//9n9M70QAADmLAKAqXJtsxGYyuQAgCnL+5UPUp7GegAAGoMAYKrMTsCSikQAwJRlfN886M0UZnYlAADMVQQAU2WagCUFRW5YAlO1byBvHvRm/ZldCQAAcxUBwFQ51QxAwNwSYMr29OfMg940GQAAABqCAGCqnMEMAAEAMFV7+yrX/T1kAAAAaAwCgKmyI2EGgBIgYKr29mfNg540AQAAAA1BADBVkYgcW5J8MgDA1JTL2jdQKQHqy1ICBABAQxAA1IETsUQTMDCuoFT+5/uf37K7f5xz0oUgU6h8jnozZAAAAGgIZ6YXMBe4TiQX0AQMjOd7D+24+s4nJb3wd2ePdc7eagewpJ50fjqWBQBA6yEDUAe2ZUnyyQAAY3t633j3/o29/YMX/b05MgAAADQEAUAdeJbZDJgMADCmeQnPPEgXgrHO2VeTAejNjHkaAACYCgKAOrBsS5LPFCBgbFY1QN5+KDvWORm/KCnhWZL6MpQAAQDQEAQAdeBZpgmYDAAwpoFC0Tx48VBmrHNyfiBpUXtM0iHGgAIA0BgEAHVg2RJTgIBxpao1/S8eHDsAKJQkLe6MSerJMAYUAICGIACog0oGgClAwNgG8pUAYPuh9Fjn5P2SpKWdMUl+sZzzi9OzNgAAWgoBQB04dkQEAMC4UtlKU+83/nvb53/4+Kifl1xQlNSdjNoRSephKwAAABqAAKAOXMeWVChytxIY00B+cKrPLb988ceP7R55Ti4oSYq5dnvMlTTAJFAAABqAAKAOnIgkcf2PVrajJxtW7Ozqzf7Ftx9+fGdf7Qmp/JCxnv+y+bmRXyRXCCTFPaujEgAwCRQAgPojAKgDx7bFGFC0sKd295/2pZ/90fW/ME//5YHnb39k9zu/8l+1dT7pXFHSn7x+xdXvPsGxIo+82DcsQpCUDYqSoo7VFrNFAAAAQGMQANSBW5kCRA8AWtRPntgj6YUDlfE+flAJhr/z0PbwnP68L+nP3nTUB0498vVHd0t6eu/wvYGzBVMC5LTHPEn9WUqAAACoPwKAOnAq+wBQA4QW5ZkyuCrXrvxh+c6vBwOAVC6Q1B5zJMUdW5IflCWVy7r2rq2f/+ET5bLyflGVHgA7fAsAAKgvZ6YXMBe4lZ2AZ3odwAzxbNs8KJcViahQzQD0V7t4C0HJlAO1RV1JnmNJlcv9Df/x1I33/l7SRW8+Ol8sS4q6VkfUVTVpAAAA6osMQB04lkQJEFqYa1cyABk/kJQPitWnlQdhB3DCsyVFXVtSUCrt7suZq39JmXxgmoBjttUed1QTP4yqP+tTIwQAwCQQANSBY+oZKAFCq7KtSgBg2nbz1QxArlCsPZ5wbXOma5kMQOn5A4ObguWCUmUMqOeYMaDjXN8HpfJJV9510pV3+ezADQDAYSIAqAO3kgGY6XUAMyS85T88ABiaAWiLVWoOTc9AoVje3ZsJv0i2EOQqPQCWCQBS+TE/VJlqSuFAKl/PnwQAgBZAAFAHtmWLJmC0sPCK32zdla9e9+f8UqlclpTK+ao2AEjybEtSoVjc3ZsLv0guKIVNwB2mBChTkFQISh/82q9u+Pkztd8xHDBaCCi9AwDg8BAA1EFlDCjXIWhVeT8MAAJpsAlY1djAtPOayn5Jnmuq5sq7+rLhmTm/lPMrOwGbXMFAvijp9sd23v/M/o3/sbX2O4aVPzlSbwAAHCYCgDpwKzMNqUVGi8oPHfuTr6nLzxaKqu4C1u5VhgVF7Yikgl/aVZsB8IumBCjqWJ2mByDnS+pNjzIM1K/23GcLBAAAABwexoDWgROJqKYmAWg1Ya3/QCZQTUJA5gI9WekBSFYzAI4ZAxoU9/RnJbl2xC+Ws34xXyxKkZhrmx6Ap/cMrPvy/avmJ8y78kEp6lTuWYRJhgwBAAAAh4kMQB2Yq5mgRAYALapQveVvSn0KNf0wWb8oaSAfSGof2gPgF0s7e3OSjl7YJqk/65fLEUkxx+qohgpP7Oq/8/E95vFAzVTQ8DumC0wCBQDg8BAA1IEZgk4JEFpWWIdjinayNRkAc4feDPRsj1ZLgBxLUm/GNz0DR89PSOrLFsyrYQZgmIGajYHDDEC2wOcOAIDDQwBQBzYlQGhtYQ9AKjtkDKiq1UHm5n1HzDMHo7Yt6YWDWUntMXt+e1RSXyaQFImUXdtqj41SnVi7LUDYBJwee1QoAAAYFQFAHbhWRFLAhkRofs8fSE9iT+tw7md/zRhQx4oozADkzBSgSgbAdSRp28GUpCUd8ZhjS+pJ5yVFbTsSkTkyTP+oGQCfEiAAAA4PAUAdmB4AnzmgaHJ3Pbn3jGvuvfDmXx3uGwvBKGNAOxOOqj0AJjPQUS3s8RxHkgk0FnREY64tqSfrSzKPI5FRvkt/bpQMAFOAAAA4XAQAdeBYlqRAZADQ3G5+4DlJv3jmwFgnFEvlZ/elyiNC3XDuZyUDEJQkdcc9Sdl8IKnP9ADEKyVAnjP4lyfpOnHXUrUEKOaO+UeptgQoXwz3GB4SAJTLmkQGAwCAlkIAUAfmYqbIZQeanB0ZpfCm1hdv/90f/p/7bt78/LDjYQlQKlcslcumH6Yr6UnK+IGqmYGOamW/mQJkxDw75tmSenIFSVF3zDX0ZwdLgMKEW64wZJeAj9/28Cn/++6eTGH8HwQAgFZGAFAHnm1LKhAAoMmNfe1dccsvt0n60k+eGnY8F5YA5f2wHKgr7qnaBFzpARgsARos8Yk6VtxxJPVnCqqWAEn6P+ec/OZjF4SbAJgvHj4ONwIbtg/A7Y/s7s34d/9uz0v8JAAAtDACgDow/YpFmoDR5CxrtNL7EXIjJt6GG4H1Zf1wBFBnwpWU8UuSBvJFSeF0/9oMQMK1Pc+0C5dUEwC857XLN/35mtVHtIdnDh0DWnmcGTFyVNK8hDeRHwQAgNZEAFAHpgfApxcRTc61J/oH4Xe7+g+lB8tsCn7lfnwqF5gAICK1Rx1J2UJQLJXT+WFNwIO5hrhnJ9zBoZ+xoWmI5V2x8HFfTWGPX40F0jWdwXv6cpUv4r1ULgMAgBZGAFAHjtnWtEQEgObmVAOAkW2+w5z95fsv/uZD4dNcUPnHX5Z292UlRV0rHrUl5QrFVL5ytV4TANT0ALh27UV/1B6ShTiiMx4+rs0AhE3AmZrI23xr1RQIAQCAkQgA6sB1LElFNgJDkwsH8PgTqGfbuicVPi4UB6/Cn9+flhS17YRjS8oUimZ6T8yxnOrFvVtzlR/zhgYAQzMApx0zP+HaJ6/o0vB9ACoft9pdh/eEAUBANA4AwJgIAOrAtiKqGYUONCnLqvxBSA8drTOqvtxgv28+KEta3BVTGAA4EZMByBSK/UNHAGlYBsCxakd/xr0hf5ROXNb1+JVnferMl0sayA2WAAXVhFu2Zqk7qyVABaJxAADGRgBQB+Z2ZsA1B5pcKRytkx/9DvrQ8hwdSOUlBcWySX8dMz8p6bmDaUme68S9ykZg/dmCpLa4G74xWhMAxF0nXnPXPz5iD2Dbipjgobc2AxB2HeQHD+7prWQAmMkLAMA4CADqwDQBF0tkANDcwsL6sTIAMc+pfbp/IC8pX623OXJhUtLz+1OSPCdiLutz1RKgcASQqpNzjUR0SAnQsG9hdMRdSQOZwX7fQjUDUDsGNGwC9ouUAAEAMKbGBgBbt24999xzOzs7Fy9evH79+p07d5rjxWLx6quvXrp0aWdn54UXXrhv377xj89y5m4m+wCg2YUTPIcN1w85Q/9gPPxiz/3PHAjfddSCpKTnD2Zkpvt7tqRsUGkC7ogOZgBGNAEPqQga+X1N93DGD0rV9uSwzTc3pAk4X3mVYBwAgLE1NgC44YYbzj333O3bt2/evPngwYPr1683xzds2HDTTTfdfvvtW7Zs2bt373nnnTf+8VnOdWxRdYDml6921qbzo2cA8kOvrK+848kPfu3BXz53UJJjRZZ3xcP3Rl0r4dqSMvlS39BdwDS0CTjuWtGash+zf/Aw7TFHUrkcCQcBFaoryfmlsP9+V1/GPAj4MAIAMLZRsu11dN1110UiEUkdHR0f/ehH169fXy6XI5HIpk2bPv3pT59yyimSNm7ceMIJJ+zcuXPZsmVjHTdfrVwuDwwMhF/cPC6/5MDCxnOtiCSfEiA0ubCpNz1aBqBcNjVCwzcL+/XzhyTFPWvZvMGRnVG7Utmf8YOBXFFSZ3yMJmDXjteM7V9e80Vqz094VqZQ6s34nXFXQz9uOb+YjDo5v9iXrYYHdOQDADC2xmYAzNV/uVzes2fPpk2b1q1bF4lEenp6nnrqqTVr1phzjj/++EQisXnz5rGOh19tYGCgs8by5cslpVKpEd92upnp6dx0RLPLF6vb646WAfCLpXJ5lK2CzbW2Z9tLuxLhwagTMfN88oVSf8aX1B4fvLVvRSJhDiDuWrU9wSu7B79Ira6EJ6mnuhdYvjB8A+C+7GCHQEA0DgDA2BreBLxp0ybHcZYsWfLcc89dd911kvr6+iR1dnaG53R2dvb19Y11PHza3t7eV2PHjh2S2traGv0jvCQz3Xwio9OB2SysqzFTgH6/P/U3P3xid1/up0/seWrPQG6Mza539mQkRV1rXsILq/mjrm2mAKX9oDIGNDpkvE+0embcc6zIYFyxYt7oAUB3wpN0MFUJAPya1J8JAGq3CSvwYQQAYGwNDwA+8IEP5HK5bdu2veENbzj99NMzmUxHR4eqYYDR19fX0dEx1vHwaSQS6ajR3t6uapJhZrmWJcaAovnlBkuAAkl//A8PbPrltv/vxgc+estvPvHth3Nj1NXs6s1KMpfxSzsrl++ebSVME7Af9OcLqk7yCblWJR6IDZ37OS8xSg+ApO7kkAxA7dZjmUKgoQFAMeDDCADAmBoeAFiW5bruypUrP/e5zz3//PNbtmzp7u5evXr1Qw89ZE7YsmVLJpM59dRTxzre6BVOnckAMAYUzS7cXtf0AJh23j29OUn7Bwq1GYDasHt3X05S3HEkHbWgEgBEXSvpOZKCog4M5CV1xIdc2Vev/1XbACBprIjeBADP7Et9+1fbC0HJ94eXAKXytUNC+TACADCmBgYAQRB85CMfefbZZ4vF4vbt26+66qpFixYdd9xxks4///wNGzY88cQTBw8evPzyy0877bSVK1eOc3yWcyo7AXPTEc2tEITD9aL7+s4AACAASURBVP3hLxWL+ZoMwDELk+HjnowvyXMiko6cXzkec6y2mBOJlCW9cCAjqSsxJAMQlvDUbgLQNTRLUGt+Mirpn+77/V//4LGPf/u3tUU+JgPQX5MB8GkCBgBgbA0MAGzbXrt27Xvf+95EIrFmzZqenp677rormUxK+uxnP3vhhReuXbt25cqV7e3t3/nOd8xbxjo+y5mRJkFpNkwkAiYv3NIrPWIn4FxQCjMA85PeB9941LATYq4j6ahqYBB1bCsSMfP7D6YLkjqHXtyXS+EbB/8KLeqIjrW27rbBt//kiT09NZuCpfJFSQPZmhIgMgAAAIytgWNAI5HIeeedN+osf8dxrrjiiiuuuGKCx2e5ZLTya8z4QXK0fUyBphA2smdH7ATsB+VcoShp1fzEvZ86IxLRK5d1PrK958o7njQnRJ2IpFXVDEDUtSV1xt1wNOewACAc1FPbAbygfcwAYF5yyEu/29UfPjalSql8ITzCrnwAAIyj4T0ArSDm2LYV0dA2RKDphBuBDeSHFPwYpsYm7lau2F+9suttxy8OXzVX/GYzYFUbY7pq6v6HZwA05Br9pGWdki54w5Fjra17tA3CEp4lKZXzJQ1kB7MWAVOAAAAYG7er6yASUZvn9OX8VC5Qx0ufD8xCQakcbqmbLQSH0vlhJ/RlCpKi7uAfjdqLclPKv6QzZp4eShUkddaM9Bk2BcgfepP+Xy869Zm9qVev7BprefNHmw7UlfAyhZzJAPQXfEm2FSmWyj4NOQAAjI0MQH20xx1JqdG2TwKaQu3uual88WBqRACQ8zW0Zzfh2WEF/6K2qCSTCpO0q29I42/Ssx1ryHyfYRmAtqgzztW/pO62UQIAMzM0VRjsATBtxD7tOAAAjI0AoD5MGwAlQGhetQFAzg8OpocPAjLV/FF7yHV8V/XG/B8ct7D2+HGLOyV1xivpgnkjCniKo+8qNqZwf4DO2GAmoTsRVXUMaDrnS5rf5kkKgsP86gAAtBJKgOqjI0YGAM0tX3PRnMqXDg6MzACYEqAhY/sPpHLmweuPmm8e3PM/33LnY7v+/LSjVRMemA9IrcO9RR+2ECybF+vbXQlOuhIm8PZVDb/nJaNSiiZgAADGQQagPszwn1Su8JJnArNTbQZgIFc4lBkeAJgam7g35I9GGDVEncrxly1s+4u1q01OrKuaAegarYX3sITFRUu74uFBkxYw+xYPFIqSuuOOasYZAQCAkQgA6qM97koaIAOAplU79qc/5+8fGB7N9pomYHvIvfyPvuVlkq561wmjfs3wtn1t3c4UnbCk0+wvpmplUSZXktSXLYRHgqE9AA9t6/mr7z3amxle1AQAQGuiBKg+2qMmA0AAgGZlMgBdcbc365fLkecOpIed0Jf1JcXdIXcNPvm21e9+1dLjlow+/aozURneP2+0GT6H62/f88qfPLbnorccffN/P28aEkyT8UDelAD5krrbopL8oFwu66Fth45akFzQFn3fjZslFcu65pyTp74MAACaHQFAfbTFbNEDgGZmMgBtMbcQlDJ+8ff7hgcA5go7NrQEKOpYY139qzqTRyNmgE7O+tevXP/6lZI6Y54JAOa3RSVl8oGkdK4oaV7CleSXig+/2HPOTf/dGXce/eJZ5u1P7Oyd+hoAAJgDKAGqj7ZKBoDZI2hWhaAoybOtrqQr6bkDqWEnmBKamGOPfO9YOqtjQMN5oHURj1bWYC73U4UgKJZzQUlSd7KSAfj1C4ck9WWDsB/ADAsCAAAEAPXRFnNEDwCa0+f+7fH1//zLjF+UFHUjY5Xr9JsxoM5h/NEY7AEYkQF458lLJf3hKxZNYsHx6iQiM2UonQ/C5JvZm6xYKnVXQ46n9/SbBzkCAAAAJFECVC+mB2AgS5chmsxALvjWgy9KetPL5kvybKt9xMhOw0QIMe8wMgBhCVDXiKDi7977yjNPOOKtL59MANBWzQCYr5/OFyvlSa4VcyxJhUDp6uX+YzsrAUCWzQEAAJBEAFAvbbHBcYRAE9myu3J9nPdLkmKeMy8ZHef8uHMYfzRiru06ET8oj8wAJD3nnSctPczFVtfgVdZgWguCUvlQuiApGbVdx5IUFEvpakf+b7dVSv+zBWaDAgAgUQJUL23RwQ2JgCbyxK7K9XFfLpDkWda8cWd3Rt3IyIPjWNoRl7SkMzalVQ5lNhmoffDQtkOS2mOuY1mSCqVSqpoB+O/nDpgHQalcKrNBGAAAZADqxFRN9DMGFM3myV0D5kFfpiAp5lphD8DSrnj/Hn/YJbPnHkYJkKR/OP81LxxMH7UgOfWlhhLVUaSOFXHtiF8sX/WjLZLe8colnh2R5AelVL4Sje/oyYZv7M343VPekgwAgGZHBqA+TAYgzRQgNJvfVUvk+7O+JM+JmClAko7oiI5s+Y25h/dH45XLOidd6jOWRHTwzkVb9fFJyzo++YerHduSFJRKo27Ksa8/V9+VAADQjAgA6sNMAUoVAkoM0EQKQWnr3koAYGZYRZ3BDMARHdHoiMv9hDvzacNETRYiGa2EK+87ZaVrW44dkRSURt+UY99APnz80Laes677xX///kCDFwsAwKxDAFAfpgSoWCrnmDSC5rGzN1ushqx9GV+Sa1vzkmEAEBvZ8luXLb2mqHbrsbZo5Y/Yq1d2SfJsS1KhWMyM1pG/f2AwA/DTJ3Y/vWfgp7/b29i1AgAw+8z8zby5IeE6kUi5XI6kckH8MIukgZmS8wfj1f7KRr9OuGnXoo6oN6Lld+Q8n+n39hOX/NXbjzt5eZekPf2Vm/qvWNwhqVICFJRH3ZVvb39+d18u6ljdSc8M7aVxHwDQgsgA1EckUt0MmL3A0DzyweBkTLPPl2tFuuLVDEB7LDYimp0NAUAkov/xlpe98WXzVd2fWJIp/nHtiKRyNZ5Z3DFkpOmWPQNv+P/vecvGn6n6Uc3ygQUAtB4CgLqJu46kdJ4bimgahZoAwOzz5bnWvGoGoCvpmYqaWm3R2Zg2XNxVGTPqVhdsAoNV89tqT7vj0V2SBnLFYqlsdu1I5dkcAADQcggA6sZzbEmFIl3AaBr5ES0rSddur47/Xz4vPmwKUHvMtq3D2weg0f7pA695xeKOb/zZ681Tp7q83qwv6eiFCfP05OWdte/K+cWBbCAp4xOxAwBazmy8mdekzL1SP+CGIppGrjA8AEhEnUhE3734Df25YElnPOoNKQHqjM+6IfpnnbjkrBOXhE/doSmLVfMr+w+8ZuW8R3f0hcfThaLZKSyVp2sfANByCADqxtwrLRQJANA0CqXhCaukZ0t63VHd5mnMHpYBmO1/MWwrYtrxzdMjqxuQLe+Oz096B9MF8zSdD9L5QFKaAAAA0HooAaobz7UkMQYUTSQ/IgMQH1riH3WHZQBmvgP4JTnVoCUirZxXKQHqiDnHHjHYD5AtFM1OYTTtAABaEAFA3VRLgOgBQNPIj2hZGdbjO6wHoDPRBAGAG6msOeHZC9srU4ASUfeYRYMBQLoQpAq+GNsFAGhJBAB1E7UjGjpWBZjl8v7wy9/E0Fv+wwKAjuis6wEYKWwDaI+64aZmQbF8zMLBAKAn45tcnV8sByPqoAAAmNsIAOrGMz0AlAChefgjMgCJoRmAmDfkaWd8tvcAqLohgKREzA6HAnUn3Tcdu9CpRjf7+rPh+RmSAACAFkMAUDe2bZqAuZuIppH3i5Kcmpv+SW9YCdCQoZ9dzdAD4FYDADPP9MYPvPZjZ7zstGMWHruo7ZG/Oev0YxdK2t9fCM9Pj2iEAABgbmuC+3nNwuyZOnKwOjBrmaFV7VG3p7qfbnzo3E/PtiW5dsTkCjoSTVACZNYsKRm1Jb39xMVvP3GxOdIWddqitqR9qVx4fpoMAACgxZABqBtz35EMAJpIPihJ6qi5r58cGgDEHEtSR7XypymmAFnVn2BYNsMwEc7evpoAoEAAAABoLQQAdRNzbEk+GQA0D9Oy0hkbvKxPeMN6ACzV7P/VFAGAZ4VNwPbIV9s8R9LegXx4hK0AAACthgCgbsgAoOnkg7JqbvA7ViTsoDWijl17Qtus3whMkludXLS0uglALdPlvL+/JgOQYysAAEBrIQCom6jLFCA0GbNvXXhfPznilvmbjll45ILEe1+93DyNu6PcU59twsk/L1/cPvLVhGdJ2peiCRgA0LoIAOrGc2xJeZ99ANA0zD/XsMJn2DbAko5emLz3U2f8yZpV5mlTlACFAcBxiztGvprwhv8IGUqAAAAtpgkS+s3CsyMabbA6MAtl/eJ9T+/vyxYktVcv6xNj3OB3rMjlb39FphAsnxefviVO1v6Byt39o+YnR746MssxwBQgAECLIQCoG5MByFEChGbwqe88cufje8zjjuo1cdtoY3OMi99y9HQsqx5e7MmYB8P6GYzkiCxHhilAAIAWQwlQ3XgOGQA0jfDqX1Jndbp/tBlK/Kco7gz/o8cYUABAqyEAqBvPtiTlfDIAmO321QzBVM0+AFZklFvmTcd1IpL+4OULRn01WTPztCvhih4AAEDrIQCoGxMA+AFNwJjt/mvr/tqn7dXhnvacSAB89+I3vv+U5f/n3FeP+mrtTmeLO6KSBmrGgJbLenxnX5YwHgAwp9EDUDemB6BQIgDAbPdfzw4JAMwedpLsOXFH4FUrul61omusV+M1AcDxSzqe2pPK1IwB/dHjuy7719+uOXr+bRed2thVAgAwc+bC/9/PEp5jMgD0AGC2296Tq31qtrCQZNtz/19vsqbR+fVHLZC0uy8bHrn5v56X9OBzB6d/YQAATBsyAHVjKo8LRTIAmKUOpPLX3r31qAVtw+beeNVpOZbmQg/A+BLVkUcru+NvfcUi24o8uXvg6b0DLz+iXVKmwOcXADD3kQGoG1NHUWAjMMxK9z+z/3VX/+e3Hnzx736yZdjcm6hbuRFgWXM/AAgzAEcvTC5qj771uEWSvv3gNnOQkaAAgFZAAFA3pgk4TxMwZp8Hnzt4wdd+Zep7glJ5IDssAxCWAM39AMCt/rBHzW+T9IFTV0n6zm927u3PSUqxKRgAoAUQANRNpQmYEiDMPj97en9ZWnPUfPO0N+vXvhr2ADhzYgzo+MIfcfXiDkmnH7vgpGWd6Xxwxb8/ISnrEwAAAOY+AoC6MU3ABXYCxuyTzQeSXnfkPDPvp1ga0uwbZgBWzk9O+9JmwAWnrjp5eee7X71UkhWJfOl9J9lW5Ce/2/vrFw7RAwAAaAU0AddNNQDgAgKzTsYvSkp4dtJ1+4r+sFejrvXNP3/9jx7ddelbj5mJ1U23//XuE2ufvmJJx7mnLL/1V9u/cs8zM7UkAACmExmAujG3UQkAMAtlC4GkuGfHo4NT8KvT/xW17dOPXfil951cOyKzpfyPPzjGtiK/eOZAeCQozv2JqACAlkUAUDeVDECJEiDMOtlCUVLSsxPVbbAiUpvnmsd2Cwz/Gd/K7sQfrF5YeyRHLR8AYO4iAKibqGNJCooqc+sQ0278f3XpQklSPOq0Ve/xJ6KOCVlV0xfbyl6zcsjmwTmfAAAAMGcRANRNOF7QZxAQpteBVH7N3/7nlT/63VgnmBKgmGuF22DF3Ijn2GOd34JOWjGv9qnJmQAAMCcRANRNeD+VSaCYZnc9sXffQP7r//XCsPE+IRMAJD03rPJPek44/AeSXrmss/ZpjmYeAMDcxRVA3bjVTZToA8Y06273zINn96dGPSFdnQKUiFYCgLjnuA6lP4O6Em7tUzIAAIA5jACgbqxIxJRUsBkwplmpeuP/4W29o56QKRQlxT07Ud3zK+7aUTIAY6MHAAAwh3EFUE+eZYsMAKZd+E/ukRcPjXpCrlCUlHDtRKySAWjz7HADYBibLnz9qvkJ85gAAAAwh3EFUE+VSaD0AGB6+cXK1erD23pGvloql01Fe8Jzkm5NCZBNCdAQb1698L5Pn/HaVV2qbp0GAMCcRABQT2wGjBkRVp09eyA1cgernF95Ne7ZyWoGIOZaMaYAjSbu2KrmTAAAmJMIAOrJzFUkAMA086sX/eVyJNzBqlgqv/uGBz6y6aGwnzXmWuEUoIRnf37dCe0x5y/fduz0L3g2i3uOpKzPpxgAMGc5M72AOcXMVSywhyimV23febZQbIs6knb2Zh/Z3ivp0rdmJMVcy4pEkl4l5k94ztELk49+8UyLbcCGMnm8nB/M9EIAAGgUMgD1FK30ALAVMKZVUBsA+IMZAPPgse29kmKuLSkRrQy7jEdtSVz9jxT3bDEGFAAwpxEA1JPn0gOAGVDbdx4GAOEcm99u75WU8GxJSa9S9x8+wDAx15KUpwQIADB3EQDUk2dHxBQgTLvapFPYvRr2/j7yYp+kZCUDEE4BIgAYnYmUsgElQACAOYsAoJ5cpgBhJuSLg/UquREZgOcOpFTtbQ1v/MfdIRvfIhR3HFW3TgMAYE4iAKgnM2Q9nePeIaaVP6QHoJQuBN996MWdfZnac0wAkKhOAUpGyQCMzuyPZvIn9z+z/4+uu+/R7aPvrwwAQJNiClA9Le2KSdrWk3nJM4E6GhoAFL/wwyd+8PDOYefEXUvV+hZJcYfgf3S1TcA/enTXU3tS//HknpNXdM30ugAAqBsuAupp1YKEpBcPpGZ6IWgtfm0TcD4YefWv6i3/RPXGf9gMgGFirqNqIV9vzhc5PQDAnEMAUE9Hzm+T9MIhMgCYVrX7AOTGGF9jSoDibjUDQBPwGEyqJFsIJA1kfUlp+gEAAHMLAUA9rZqfkLTtQKbMTgCYRrVTgDL+6FerCbcy+D/hWeFTjBSrTAEqSurN+JLSeTIAAIA5hQCgnlbMS0Qi5YxfPJQuzPRa0EL8YlGSHZGkXGHI1apjVbb6ildrfs48YcnRC5NHLWyb1iU2DxMamR6A/lxRUipPBgAAMKdQB1xPnmMd0RHf05fbdig9v82b6eWgVZgMQHvc7c34+1P52pdOXtH5m22DG4FJuu79ryqXxRbAYzFbJptESl+2IClT8Gd4TQAA1BUZgDo7cn5C0gv70zO9ELQQMwWoM+ZKem7/kBaUVyzpMA9MObvB1f84TACQ80ulcjmV90UGAAAw5xAA1Nmq7oSkbfQBYxqZDEBn3JH0+wMDtS91xCsbfu1kOu3ELGjzJO3py/3g4Z3lckRSmgAAADC3EADU2eKOuKSD9ABgGhX8kqrX+rt6c7UvxVz71KO7Jb3nNctnZG1NZ2lX/ENvPFLSp777qDli8gAAAMwZ9ADUmWtHJPkBtwwxffLFoqTO6s3+WnHH/vqfvf75/emwFggv6Qvrjr/9kZ09mcp1P1OAAABzDBmAOnMcS5IfMAcU0ycITAnQKH3nMdeKu/bxSzuo+584x4qs7E6ET/1iOSjxiQYAzB0EAHXmORFJPhsBYBoVikXVlPvXirl8xidj+bx47VOSAACAuYSLgzrzbFtSQAkQppHZCbgjNkpFX9ShzG8ylncna59mCgQAAIC5gwCgzmzL0tCdWYFGC0qmCXiUa/2Yx46/k7G8K1b7lEmgAIC5hACgzlxHIgDA9MqZKUCxwR4A04wuKU4J0KQsm5eofUoJEABgLuHioM48y5bkF7lfiOkTFMuSuhKVHgA7omVdlRL2mEMGYDKWDe0BSOUDSbc/uuuSb/0m6/PpBgA0NwKAOvMqU4BKM70QtIqgVGk5D5uAF7ZHk9FKOVDUJQCYjOVdQ5uAc76kG+999s7H9zz43KEZWhQAAPVBg2CdubYliSmgmDZ+sRJthvsALGqPRt3KR5spQJMTRlCG2Qw4nStK6s+yLxgAoLkRANSZGQNaYAoQpkuhmm7qiFUCgK7EYDNAjAxAPaQLQfi/KSYCAQCaHAFAnTmWJSmgBAjTxWQAIpFyMlq51m+PuaVS5V8gAcCkffPP19z9uz0H0/k7H9+TLhQlZf1AUjpHAAAAaG6UB9SZ6zAGFNPKZAAc24pW+3074268WgIUdfiMT9Lpxy74X+8+cX4yKimVC0rlcqZQMo9nemkAAEwJGYA6M+MX8yUyAJgmZhcwz7IilcmfaovZllV5QgZgipIxW1I6H5hZq6pOBAIAoHkRANSZZ5spQPQAYJqYEiC35k5/W9SRAkmRSNn8g8SkJV1HUqYQhJsBp/I0AQMAmhsXB3VmpgCxDQCmjek4j9mDd/pPXNZlSoCijh2mBTA5yZgjKZUP0tXNgMkAAACaHRmAOnPsiCS/RA8AponZlspxLEm3XXTqk7v7z3j5oq17B0QDQD10xBxJfVk/W80ADNADAABocgQAdWYqLgqkADBdTAbA/MNbc/T8NUfPl5T0bElxhw/4VC1oj0nanyqYQUCS0mQAAABNjhuEdVbZCKxY3Z0VaDAzcsp1htT6JDxbUpRdwKZsYVtU0r6BXNgDkGYfAABAk+P6oM5MAFAuR4pEAJgWZgxodGizb9xzJMU9PuBTtbA9Kqk3U+jPhU3A5PcAAM2N64M6C2/EBkUmgWI6VKYA2UMyAEcvbJO0akFyZtY0h3QnvYhULke2H8qYIwM5pgABAJobJcJ1Fk5d9IvlmDuza0FLKBRLGlHtc9zi9p/9zz9Y0hWboUXNHbYV6U56B9OFFw9WAoB0ISiXxXglAEDzIgNQZ44VBgBkADAdzKYT4T+80NELk3F2AauHRe0xSS8cSpunQbESdAEA0KQIAOosEpGpxeASAQ1SLuvffrvzyV395mm+WJbkMfGzYRa2e5JeOJAOjzAICADQ1LhoqD+3shkwAQAa4nu/efGTtz1yzk2bzdO8XxQj/xtpUUdM0q7eXHiErQAAAE2Ni4b6cx1Lkl9kChAa4qu/eF5SulAslspff+D5K+94UtWwE41gMgC1yAAAAJoaFw31V90MmAwA6m9Xb3brvpR5/OiO3i/95ClJthV50zHzZ3Rdc5mZBForRQAAAGhmTAGqv2ilBIhh4ai/nz21L3z8iVsfyQWlV63ouvWiU+n3bZyF7cOHKREAAACaGhmA+nNsW5LP9T8aoC9TCB+/2JORdPnbj+Pqv6EWtY2SAXj+QLo/y4YAAICmRABQf44tMQYUjZEd2lye8KzXHtk9U4tpESvnJ8LHkUhZ0gPP7P/Dv7933Zf/61C6MPb7AACYpQgA6i/mWGIMKBojmy9KCrf9PWl5l2OxJVVjLe6IL6q2AXQnopJue2hHsawXezKX3vrwjC4NAIDJaGwAcM8995x55pnt7e0rV678i7/4i4GBAXP8kksucWtcf/315nixWLz66quXLl3a2dl54YUX7tu3b+yvPXuZLZkCpgChAbJ+UdLLF7ebp6dw+7/xIhG9elWXefz2Vy6pfWnzswd7MiQBAABNprEBwIYNG/7qr/5q165dd9xxx913333ZZZeZ48Vi8aKLLspWhcc3bNhw00033X777Vu2bNm7d+95553X0OU1iGOTAUCjZAqBpOOqAcBrV82b0eW0ilevqPyeP3Dqqk+9bbWkP3vjkcmoI6k/S0MwAKDJNHYK0E9/+tNIJCLp5JNP/tjHPrZx48bwpUgk4jjDv/umTZs+/elPn3LKKZI2btx4wgkn7Ny5c9myZebVcrkc5hAkmcfl8qy70e6aMaAEAKiff77/9/mgdMkZx6YLRUmrF3dIuyS9akXXTC+tJbxmZSUASHj2pWuPXX/qqq6E+5Pf7Unngz5agQEAzaaxGQBz9W/cf//9r3zlK8On3/zmN5PJ5JFHHvnxj3+8t7dXUk9Pz1NPPbVmzRpzwvHHH59IJDZv3hy+ZWBgoLPG8uXLJaVSqYb+CJMQZSdg1FVQLF9951Mb/2Pr4zv7cn5J0oJ275YPr7nlw2vmJYbvUYVGOHFZp3nQHnMkdSc9KxLpijuS+nMEAACAJjNN+wDceOONd99994MPPmie3nDDDf/wD//g+/5jjz120UUXXXDBBbfffntfX5+kzs7O8F2dnZ3moNHe3l77dGBgYPny5W1tbdPzI0ycKQHyi8wBxVQVgtLtj+0M60/ue2pfzg8kJVzntGMWzOjSWkvCs79x4etT+aA24mqPeZIYBgoAaDrTEQDceOONn//85+++++7Vq1ebI7ZtS3IcZ82aNddff/0ZZ5xx4MCBjo4OSbWX+H19feagEYlEap+GBxv+Axwm17Ek+SQAMGU/fWLPp77z2JuPrVzr3//swUyhKCnhsYXfdHvL6oXDjnTEHEl99AAAAJpNw8eAbty48Yorrvj5z39uKvtHMsFAqVTq7u5evXr1Qw89ZI5v2bIlk8mceuqpjV5h3Xl2RFKBncAwKc8fSPdmKjeVD6Rzknb05MzTh144uKc/KynuMsB35nWaEiAyAACAZtPAy4hyufw3f/M3119//f3333/SSSfVvnTBBRds3brV9/1HH330k5/85Jlnnrlo0SJJ559//oYNG5544omDBw9efvnlp5122sqVKxu3wgZxbUtSUCIFgMO2fyD/h39/7wVf+6V5WgjKknoyefO0WNbBlC8pTgZgFmiPuZIG8gQAAIAm08DLiHQ6fdVVV0k64YQTzBHP89LptKR3vOMd55xzzlNPPbVkyZJ169Z98YtfNCd89rOfLZVKa9euTaVS73nPe2688cbGLa9xKmNAg1k3ngiz346ebLGsbQez5mk+KEnqzw0vMol79nSvDCN0xT1JvewDAABoNg0MANra2saa0XneeeeNOuPfcZwrrrjiiiuuaNyqpoEpAfJLBAA4bOlCICkTVK7480FRUnHEv6WESwAw89rjrqT+nP/I9t6/+v5jf/mHx5514pKXfBcAADOOSuL6cytTgCgBwmFL53xJflAulcuSCmP0kpMBmA0647akA6nCu2944Ok9A9f957MzvSIAACaEAKD+qgEAGQActkz1it8U/xTG2E2CAGA2aI97kjY/e9A8nZekMQMA0BwIAOrPjAEtsA8ADl+62lGaLRRVLQEaKerwyZ15nTG39mnMISoDADQHLiPqz2MnYExWOh9mxQHn6QAAIABJREFUAIoao5As5ljW7Nv+ogV1xIcEAGOlawAAmG0IAOrPtSIiAMCkZAqV9t+cX1K1EGiYGPU/s4PZCCyUr1b9vXAw/Y8/fzadZ4MwAMAsRdFq/TlmJ2DGgOLwhVeNpgSodphs0rPTlW2ACQBmheEZgGq65h3X3Z/xi/sHcl/84xNnYl0AALwEMgD15zlmDCgZABy2wQxAUJSUq8kAHNERNw9izACdHdqHZgAK1YaNjF+U9MvnemZgTQAATAABQP15ti0pYAwoDl84BaiSAaj5V7SowzMP2sgAzA5hJ0bSszWiXivq0acBAJilCADqz7HMFCBKgHDYwhKgag/AYB354s5KBiDqUrk3u6ycn5AUDK36i9r8ZwIAzFIEAPXnOJJ0z1P7/vHnbAyEw5PNDykBqt0I7Ij2qHlQorps1njbK46QdPGbX6bqFKBwFlDUIQMAAJiluEdVf6YESNKG/3j6ore8zLG4DsBEpfxqAFAINLQHIJw5wx5zs8eNH3htb7ZwMF2QlCsWJZnHkvjgAwBmLTIA9ddVMxtkX39uBleCppPJVRpJd/fmfrOtp7aqJJz+SQAwezh2ZEFbtHbrj4Opykc+7ZOoAQDMUgQA9ffGly343DteYR7v7M3O7GLQXMwAGUnX3L31vTdufrEnE74UdyoZgDybTM8yZmPmQqkk6UCqspdzKufP5JoAABgbAUD9OXbkI28+es1R8yXt6iUDgMOQGnv3qKhbKSkJ2GJilvGqW3+Uy4MZgFSOjcAAALMUAUCjLJsXk7TjUHqmF4JmMs72sV51/H+BDMAsY0qAJAWl0v5UpQegP08GAAAwSxEANMryrrikXX1kADBRQak8Tn1/zK18Wo9ckJyuFWFCXKfyn6YQlA4M5M1jMgAAgFmLAKBRlnQlJO3soQcAE2U2/xpL3HV+eMmbzn7l4r8/51XTtiRMRJgBKBRLh9KVAMAvln12AwQAzEoEAI2yfJ7JABAAYKLShfHuGcdc+1Urum44/7XL5sWnbUmYCNuK2FZEUiEo7U8NVv48uas/51OvBQCYdQgAGmVZV1zSjkPZMh2bmJhMfryLxRgbS81irhWRdNO9v7//mf3hwXfd8MAHv/bgzC0KAIDREQA0ypKumKSMXxxgGiAm5qUyAGzbN3tFHVvS1ze/IKk2UPv1Cz0zsyAAAMZGANAocddujzmS9lWbAoHxZcYeASQpVp0ChFnIsQcv+x/467ceOT8xg4sBAGB8BAANFDfbAwU0AmJC0uM2AYdTgDALudX/Ou0xZ2lXvCNGugYAMHtxSdFAjgkAmASCiXnJJuBpWwkOV7Q6CCjp2ZLaagIAuoAAALMNAUADmeGAZAAwQQO5QFJ7bPQL/ZhDADB7hQFAwnMlJbzBACAfMAgIADC7EAA0kKnZIAOACdrXn5e0Yt4o5eMRyQyaxOzkVfcCa4takoLS4Kc+M25lFwAA048AoIHIAOCw7OvPSlrVPUoAEPesCNf/s5hTzQDEo66kAwOF8KX0uL3dAABMvwkFAL/4xS/K1TrW3t7e8PG3vvWtRq1rTnAJAHA49g8UJK1c0DbyJY/6n9ktWv0PlHQtSQfSNQEAGQAAwCwzoQBg7dq1xWLl/8MWLlwYPv7TP/3TBi1rbnBpAsbh2Nufk7RqaAmQubBsi7ozsiRMUFgCFPccSe977fLwpcy4vd0AAEw/ZtU1ECVAOCz7BnKSVi4YEgC8/IiO1x/d/ZqV82ZoUZiQ2GAPgC3psrcee8LSzit/9Ls9vbn0uBs8AwAw/egBaCCPDAAmrFQu7x/IS1o5tAegVNIX153wzpOWztC6MCHhRmBm/k/Usd5+4uJlnTHRAwAAmH0IABoo6liS8j73//DSejN+sSxJSzpjtcfzRf79NIFodZeGZM0OAGYkaKrgz8yaAAAYw0RLgD7zmc9YliUpCILaxw1cWvOLVnYCZh8gvLR9/TlJXQnXta0f/8Xp6UJwzk3/LalY5N9PE3Ct6j4ANfu1tXmWpCwlQACAWWZCAcAZZ5zx2GOPmcdr166tfdyodc0JZgqQzzZAmIB9A3lJizuiko5f2hEe90uUkDWBqBs2AQ8GAPGoI6YAAQBmnwkFAHfddVej1zEnMQUIE2cCgIVt8WHHAzIAzcB1Kj0Apgm48thzJGXywfce3v6PP//91z70uqMWJGdmfQAA1JhQD0Amk/nBD34Qjv83fvjDH6ZSqcasao6I2rakAhdwmIC9fVlJCzu8Ycd9Ashm4NmV6/5EzcDWRNSRNFAIfvTI7uf2px94dv/MLA4AgKEmFABcc801jz32WGToTqRbtmz50pe+1JhVzRGeGxFNnJiYA6mCpEXtsWHHgxIBZBOIVqcAJb2aJuCoLSmTCwqlkkgGAgBmjQkFAN/61rfWr18/7OD69etvvfXWBixp7vAsW5JPEzAmIB+UJCW84R/JIj0AzcBs+iEpWdMDYMqBMn7JD0piHgAAYNaYUADw4osvrlixYtjBFStWbNu2rQFLmjsqGQCfCzi8NHN72HUGLx/f8+qlkj72lmNmbE2YsPA/nCn7qTx2XUnpnG/+CBSYBwAAmB0m1ATc0dGxffv21atX1x7cuXNnR0fHWG+BqmXBPiVAmIBCsaiaaZKSvvS+k//0TUefuIxPWRPwnHAjsMEQLhmzJaULpXzRlACRAQAAzAoTygCcffbZ//Iv/zLs4Ne//vV3vOMdDVjS3OHaEdHEiYkxpWJm92jDta2TlndaQ3tvMDtFq03AyZoMgOkHyBZ88x+XDAAAYJaYUAbgYx/72Omnn57P588///xVq1Zt3779tttu+/KXv/zzn/+80etramZzUAp/8f/Yu/M4uco6X/yfqrPV2tVLls6OBAIksoMERTDkiogzLsydEUZHHLfrCC6zIANXAZUZEHDBjXBHnFFwuKCDMyBXBn6yCAQQwhJCEpIQsiedXqtrPVud3x9PnVOnlnSKkFr78/6DV/Wp6nAg3VXP93m+Sz1Eu09F4nK/IxVQjPPLTgBUCcCkbomVP7MBiYioTdR1AnDaaafde++9jzzyyOmnnz5r1qxTTz31t7/97d133718+fJG319HU6UAgLzFT306ON2y4WsnT53FdNN7wr5JwFFNApDXC2Lv32QKEBERtYe6TgAAvP/97z///PM3bty4d+/ewcHB4447LsDMhINRxBwABgBUB1EELDpHUcfxmjVJwdIbY1RTAGRMUwoEAeSZAkRERO2h3gAAQCAQOO6444477rjG3U2XUZUgAKvAT306ONEp0l8DQB2kZnaPSAdK5+2wAgCm7dgFxx8hEBERtURdAcAtt9xSMQbY85WvfOWw3k9X0eQgmPhL9TGLNQAMADqSWWt3X6QDOUDOsoDA1uH0Kd98+KJ3LLjyAm6jEBFRK9UVAPz85z+vDgB27NgxNjbGAGAKYjYQU4CoHiIAUFkD0Jk+cMLc7z68+djBmP9iyK0HcJwAgFf3TAK47Q9bGQAQEVFr1RUAvPDCC/4v9+7de/XVV69fv/7SSy9tzF11CREA6GwDSnXQbRuAzPyQzrR4ZuzZq1b2RVT/RUUKBgKOWP0TERG1jzeXb5DJZL75zW8uWbJkaGjo5Zdf/tGPftSg2+oOIp+bAQDVw7ILcFvHUiea3ROqKOEIBErzAfxyJuuCiIioleotArZt+84777zyyisHBwfvv//+97znPY28qy4hVgM1k4OJKohUMdYAdJmQIlU3At4/qS8aiLTkfoiIiFBnAPDoo4/+3d/93fDw8A033PDxj388GOQapS4iALCsVt8HdQJxUsQAoMuElCBylRf3p/IMAIiIqIXqCgDOO++8np6ez3zmM1u3bv3mN7/pf+raa69tyH11hWINAE8AqA5iErDKAKC71Mzp2jeZb/6dEBEReeoKAFasWFEoFNasWdPou+kyikgBKnD8Jx2cWUwBYsFoVwnVCgCGUwwAiIioleoKAB566KFG30dXEru5doHTf+jgTJuDwLpQqNZf6NCk0fw7ISIi8hz6amP9+vVf/vKXD+OtdB/N/ew32QiIplRwHNsBWAPQdUJKjU2W4cmqsgAiIqImetOrjVwud8cdd7zrXe86/fTTt2zZ0oh76hrebi5ngdHUxBQw8ASg64TVGkd/+1L6c2+MXXXv2smc2fxbIiIiqrcNKIANGzasWrXqV7/61d69e3/729+ee+654XC4cXfWBWS3XZLBEwCakndGxBOALlOzCHg4mb/kX5/NGoXhlPEvl5zW/LsiIqJprq7Vxl133XXOOee85z3v6evre/HFF2VZft/73sfV/0EFAsXBrjwBoKl5PyGcBNxlwrVSgPal9KxRAPDwhqGCwyYBRETUbHWdAHziE5/42Mc+9uCDD3LR/2ZpimTpFk8AaGriBEAKBlgs3mW0Wm2dUvnScJBnt46euXhGE++IiIiovhOAa6655pFHHnn3u9995513Ggb7V7wJoqsjTwBoaqIGQOHqv+vUbAPqd+8Le5pzJ0RERJ66AoCvfe1rb7zxxje+8Y177rnnqKOOsixr48aNDk+u6xCSJAAGZ4ERAODBdfue3z5efV2EiAorgLtOSD3IKeuDr+7hBgERETVZvQsOSZI+8IEP3HfffU899dQ111xz/vnnL168+NJLL23ozXUB0dTFsBksEXaOZT9/55r/eevq6qdEkpjMKWBdp3oOQG9EEQ8W9ocH46FU3n5041DT74uIiKa1ugKAaDRqWcWk1QULFlx77bXbtm37/ve/v23btgbeWleQpSAA3eQJAGE8W+z5mDGsiqdEDYDGFkBdJ6RWpgAtnhEVD2b3hP7kxDkAfrt2r7gymTN/9fwOf4UAERFRI9S14KjO+5dl+YMf/OADDzzQgFvqKmIWmFXgCQCVevyPpCp/oYpjgKWD5ItTx6k+AThyZlw8mBUPnbG4H8D20Yy48qW7Xrz8169cc9+6Zt4hERFNQ9xxbCxVCQLIswaAAMsu/hiMZvSKp0yrAECWmQLUbaqLgBfPKp4ADPaE+iIagAl3HNhjm4YB/ObFXU28QSIimo7qHQT2hS98IRisES2sWrXqsN5Pt1GlIADT4gkAwUsEG57MVzwlqkQ0ngB0nRoBgJsCNLNH6wnJACZz1rbRzGSumPnTH1WbeYdERDQN1RsA7Nu3r2YAQFMTXcB1dvkg37jf0bTpv/4Pv3r512t2wW0aS92k1glAMQVosCeUCCsAUrq18ubHvE4Bs2Ict0JERI1VbwBw7733ynK9LyZPWJMB5HSmAFEpABj2pQA5Dn7z4m7xmAFA9wkpZfsmUjAwvy8cCDiOE5jlBgB2eY0QS8GJiKjR+FHTWFFVQq2uLzQNme4e72iqFAAYdsFb/3EOQPcJyWUnACFFUuXgUTNiUjBw5MyoJkty1fS3ybwJIiKiRuKmfmNFNRlAxuAJAMF0a8GH06UAIKOXgkOFNQBdpyIFSJUDAH7xmeWj6fxgTwhAIqyMZsq6QiVzDACIiKix6goAUqmU5FuaPPXUU4899tiZZ565YsWKQIBJC1OJahKArMFPdILp7vSPpA3HgfjV8QcA1S0jqdNVpABFVRnAnERoTiIkriTCakUAMJmzCo4T5FsrERE1TF0LjmeeeeYjH/mI4zgA7rvvvrPPPvu2225buXLl7bff3uDb63gRVQGQYQ0A+VKAnts2dsI3Htw+mkX56RAnAXefqhOAyrfcnkjlsY/DdwwiImqwugKA66+//rLLLhOb/d/5znduvvnmHTt2rFq1ij1AD6pYA6CzBoBKcwAApPL2A2v3vLxzYjhVagmqcA5A16kIACJVTYF6w4p48N6ls1++5jxRCM4sICIiaqi6AoDVq1cvX74cgGEYzzzzzCWXXALg4osvfv311xt7d51PnPizBoDgNvv3rH595EM/fuqvbv+jd4WTgLuPlwIkoruwWvlX3OMGALN7Qomw0hdWwACAiIgarK4AIBqNjoyMAFi7du3s2bP7+/sBhEKhfL5ynhFViGgSgBxPAAiw7LJxEE9uGa14gcoGkF3HOwGIqTKAUFUz5Z5QMQAYiKgAEgwAiIio8epacJx55plf//rXX3nllRtvvPGCCy4QF9esWXPKKac08t66QUSTAaRNBgAEwz7IPDjOAeg+mpv0Hw/JADSl8q+4N1Kc+9sbVeAeCDAAICKihqqrC9C3v/3t888//4QTTli0aNHjjz8uLv7kJz+57LLLGnlv3SCmyQCyeaYAUbEI+MKT5sUjys9Xb6t+gcITgK4TDAQUOWBajngrCFfVAMQ19wQgqsE7AcgyACAiogaqKwBYsmTJli1b9uzZMzg46M0Dvu666xYsWNDIe+sGogg4azIAIFhWAYAiB0JVq0CBg8C6UkiWTMsSI0FCSuVbbsKtARiIqeAJABERNUW9C45gMDh//nzZl8C6aNGiYJDrlYMopgCxBmB6y5v2Q+uHJvImAEUOVm8DC6wB6Erir3vpnB4AR82KVTzbG/FOAHw1AHkDREREDVPXCcAVV1xh27X3sG+++ebDej/dhm1ACcCdz+y47oH14rESDFYMh/KobAPajS5556Jnto5/7U+WfuqsIxf2Ryqe9boA9cc0AL1hFcBkju8YRETUQHUFAC+++GKhcJD6RaoposoATNuxCo4c5PJumto3mfMeq3LwQBN/2Qa0K1264uhLVwDAooHK1T98KUD9ERVAT0QGU4CIiKjB6goAHnrooUbfR7eKasUlXc6wRRsQmobyZil+lqRApKoZvGA7Ts3r1MXm9YYVOTA3ERZzoMVcsAkWARMRUSMdypL0qaeeeuyxx84888wVK1aI8cB0IIoUlCVYNjKGxQBg2sr7qsBVSQqptX8SdIvnbNNOb0T53ZfOjrlvDlFNAZDVGQAQEVED1VV0+Nhjj334wx92HAfAfffdd/bZZ992220rV668/fbbG3x73SCqKGAZwPTmX9krQRyoC1CWE6OnpaNmxQZ7QuKxODPMGgwFiYiogeoKAK6//vrLLrtMbPZ/5zvfufnmm3fs2LFq1apVq1Y1+Pa6QVgTdcBc201fOaMU/smSFD5AEXCe7WKnPVE1lDW4X0BERA1UVwCwevXq5cuXAzAM45lnnrnkkksAXHzxxa+//npj764rRIqNgHimP33pZim5Xz3wHIAso8RpT7xdpA2+XRARUQPVFQBEo9GRkREAa9eunT17dn9/P4BQKJTP5xt7d10hVtzS45n+9JW3Shu6ihSoPgE4cmYUwKfPOqKZd0VtSJwA5HS+XRARUQPVVZZ65plnfv3rX//qV7964403XnDBBeLimjVrTjnllEbeW5eIaBwFMN3pvi5AclCqHgf7s0+ePhDVWCZOogYgZ1mOA3ZYICKiBqlrwfHtb3/7/PPPP+GEExYtWvT444+Liz/5yU8uu+yyRt5bl4iqMoAM6zunsfIuQIHqScBxTeHqnwCEVQmA4wTyln2gidFERERvUV1rjiVLlmzZsmXPnj2Dg4OyXPyW6667bsGCBY28ty4hknqzTOrtdo++tl+Vgu86akb1U3mrFADIUrC6BiCicalHAOAt+rM6AwAiImqUumoA/vCHPwQCgfnz58uyPDExIfqBLlq06K677mrw7XUD0eGbJwDdbTxr/PW/Pvexnz5rF2oM8zLKioCDIbXy9y4kc6lHABAMBCJqEECGjYCIiKhh6goAVq5cadvF9evMmTO9x5/85CcbdFvdJKLIYBvQbjeZKy7X/Nk+YxkjlbcA5MqKgIPVy31me5NHU8SZId8xiIioUZh23HCJiAxgIqO3+kaogRwU9/gzhh3VRN8ne8VNj/VGlMcuX1E2CEwKSMGAHAxYBQfAB0+ac+zsnpbcM7WnuKqMZ0yOAiAiosZhANBw/VEVwGjGaPWNUAMZ7hI/a1iABmD7aCaZN5N5czxr5E1/ABAEEFalVN6KKNIPLmIrLSrD0YFERNRodaUA0VsxEAsBGGcA0NW8PX5vmNe+yeKUjNf3p/2vVOQggLAcBKBVFQMQidpf1gAQEVHj1HsC8NWvfjUYDAKwLMv/uIG31i0GeAIwDZQCALcGYG+yGABsHioPAIIBACFVAhBVlebdInWImBgFUF4D8OCr+xb2RZbOZbYYEREdBnUFACtWrFi7dq14vHLlSv/jRt1XF+mLqgDGM2wD2s10d92fdSe+DU24AcD+lP+VIgVINIeN8ASAqoTF5BC99I7xxkjm83esOWIg8tjlK1p3X0RE1D3qCgAeeuihRt9HFxMnAMm8admOLLHbS3cqnQC4G7d7SicAZQGA+BnQFBns/km1RFVRA1CqG9kxlgWwazzH8cBERHRYHPoGpGmaP/3pTw/jrXSrRFgJBBwAEzlmAXUtrwg47U582+cGAJsqagCkINylf1hjFT5VEl2kcr5+siOpPACr4LAwgIiIDot6A4CNGzfec889mzdvBmDb9s9+9rNjjjnm8ssvb+S9dQkpGEiEWQbQ5bwTgLxRfDCUyokH+1NlHWBV0QVIEf/kdi5VimqVs8OH08W3jjG+hxAR0eFQVwBw9913L1u27KMf/ejSpUsfeOCBs88+++///u8/+clPbtu2rcG31yX6IxqAsTQ/vLuWbha3ZtNuDcDeZK7mK0UKUDEAYAoQVQlXjQ4cSRdjSAYARER0WNQVANxwww033HCDruvf/e53L7zwwoGBgc2bN1999dWJRKLR99cdBmIqgBHOAutkm4ZSv3lxt+PUftY7ARDNWzKGlcrbAKp3+L05AHCXekR+kWIRcCnbZ8TdOxjlJgIRER0OdQUAW7Zs+dznPqeq6mc/+1nDMG699dYZM2Y0+s66SX9MATDB3btOduW9a//27pde2Z2s+axuFfdrxbptKKkDiGryvL5IxStVOQggpMhwRz4R+UW1IICMrw3oiDtTYiyTb809ERFRd6krAMjn89FoFEAoFJJledasWQ2+q24zEBE1AOwE2sHELuxEtnYUVzoBMG24U8Bmx0Oze9SKV8pBkQIkwT0HIPKLKDKAnK/e1zs85HsIEREdFocyCOyKK64QjwHcfPPNjbq1LtIfFTUATAHqYKZdAKDbds1ndbMYAIgTgJGUDmBmXOuNVv6KiRSgD548d93eyQ+eOK9xN0wdKhKSAaR9NQBDbh05B4oTEdFh8ZYGgVGdRArQKGsAOpllFQBYtdf/0O1icYDI3EjmDAC9UXlmTKt4pRQMADhxfu/dn1vesJulDhZVZQB5t6zcLjgT7sY/O4kREdFh0dhBYL///e+//e1vP/300319fR/+8If/6Z/+KR6PA7Bt+/rrr//JT36SyWT+7M/+7IYbbhBpRQe63ulEF6DxHI/vO5hhO/D1+6981l2uicyN8awBoD+izuoJNesGqUuIKdFZvQDgic0jX/z3F7zKc54iEhHRYXHog8DqceONN15xxRV79uy5//77H3744S9+8Yve9VWrVt13330bNmwYGhq66KKLpr7e6UTPR908wO4xdQKz4MBNBKqmW8VFmqgBGM+YABJhdWaMAQC9OWIScDJvOA6+9dtXJ3wbBzwBICKiw6KxXQgffPDBQCAA4MQTT/zCF75w0003ieu/+MUvLr/88tNOOw3ATTfdtGzZst27d8+bN+9A18V3OY6TSqW8P1w8dg7Ul7GdhFRR1ccAoIOJ+M0oDwBG0vqTm0cuOH5O3v3LFanbxRSgiDK7pzIFiGhqi2ZEFTmQzFlbhtOh8kkR424ukGkXvvJ/XzzjyBmfOHNRK+6RiIg6W2NPAMTqX3jiiSeOP/54AOPj4xs3bjzjjDPE9aVLl0YikdWrVx/ouvcnpFKphM/8+fMBpNPphv4nHBYhOQggf4DsEWp/jgOr4AAwyo9xvvPQa1+5+6X71u72ioOTeXP7aHYsYwLojygz4wwA6M0JK9Lyt80A8MiG/cHyNlGjWWM8a9y7Ztcvn9n+wCv7rv6vda25RSIi6nBNmkN06623Pvzww88++yyAZDIJwD9ELJFIJJPJA133vozH4/4vU6nU/PnzY7FYE+7/LdIUCYBhdcBhBdVkF4p/d1ahLIrbNZYHMDSR9/5y903kz7npUfE4EWYAQIfi3GNnPrF5+NHXhsbTxS3/f77w+KvufSWjW5/81+de3jnR2tsjIqJO19gTAOHWW2/92te+9vDDDy9ZsgRAT08P3DBASCaTPT09B7rufRkIBHp8RD2x/5ChbWlyEEDOZBFwp/IyfyqiOJHqkzHtvFnjeKc/qs2IMgCgN23FsbMAPPfG2K6JHIDf//05F5++UJEDALj6JyKit67hAcBNN9107bXXPvrooyKzH0B/f/+SJUuef/558eWGDRuy2ezy5csPdL3Rd9gEIZ4AdDiv9tcsVAQAJoBM3jIKNQKARESRpQ4IUKndHDEQ7YsotlM8euqPqoEAlsyKV7+y0AlFUERE1G4aGAA4jnP11VffcsstTzzxxAknnOB/6mMf+9iNN964bt260dHRK6+88qyzzlq4cOEU1zudOAHIswtQxyoFAHYhb9qf/Nkf73h6G7wAwLDzvrmtnr5I5Rhgojot6AuLBwEgEVYAHDenp/plNY+eiIiIptbAGoBMJvOtb30LwLJly8QVVVUzmQyAq666qlAorFy5Mp1OX3jhhbfeeqt4wYGudzpNlgCYtuM46ISUJarktf83rcJdf9zx2KbhxzYNf3z5ESndApDRrZrHO70Rpal3SV1kTl947e5JAL0RJRgIAFg6N441lS/LGbaYG0BERFS/BgYAsVjsQD06ZVm+9tprr7322jqvd7qQUjxpMeyCOA2gzuKrAShk8sXN/qxhiQyNtG7nrMoTgJASVKQggIf+9uyH1+9bv2fygVf2NfGWqbPNT0TEg75o8RzpuMEaJwBZwxoAD5qIiOjNaVIXoGlOc5t566bNAKATmXYxlDULTsD9C0y6E5qyulk9IVi3ihlfS2bHl8yO703mXt7DwJGPAAAgAElEQVSV/Phydm2nusztK46QG3ADgKVzE9UvyzGxkIiI3jwGAM0gBQMBwAHyVqHGJh61PbOUAmTDPdaadAOAtGHrZgFAX1TxRjU5Tlmy15xE+Mkrzm3O3VIXmNdXPAHojxUDgERYGewN7ZvI+1/G8YJERHQIuBvdDIEAwmoQ7jRZ6jj+ImCv86x3ApDTbcO2Adz12TNfvPq9LblD6jLzeotFwAO+UvKvnLvkPUtm+l+WrVV9TkRENDUGAE2iShIA3SroVuGNkUyrb4feHC/DR7ecQLAYAExkDfEgpZuiGUtck9n5hw4LLwCIhUrntBe9Y8G/feodA7FScXnOLADYvD/9gR888dD6oSbfJBERdSgGAE0SkiUAedP6i1WrV9z82NOvj7b6juhNKBUB2wUvs2cy76YA6ZYoEtCUIIBLzlwE4P1vH2z6bVL38CJJvarB1ECkNF1O1ABc+ss1r+6Z/Nwvnm/a7RERUUdjDUCTiKWhbjkv70oC+I8Xdp25eKDVN0X18oqAbbsQgJcCZFc8K6q9r/rA0jOPmnHWUTOafpvUPbx+wU6hMgDoj6nYX3wsagB2jGWbd2dERNT5eALQJKL5j+5mkkQUtu7uJP4TAClYXJBN5IyKl4m/ZU0Onr9sMKYxuqa35AsrFveGlc+ds7jiutcXCEDWsMFxYERE9CZxjdIkYhSANww4pDL06iSlIuACvLB5LF0ZAIjG/0SHxVffd+w/nHdMsGp2YF+0lALEImAiIjoEXK80iabIAFLuDKmwzNCrk3htQHXTDronAPtTZQ0ZFTnAMc90eFWv/lHeF4htQImI6BAwAGgSTQ4A2D9ZXDKqCpeKncRwp3pZvhqAkfITgBBHvFFTzOwpBQB5X2dhKch3FSIiqgv3oZtElIcOuXvGnAfQWbwaAKtQSrYez5QFAKLTK1Gj/ckJ814fyewYyf5+4/6MYTlukXBM408gERHVhXuWTSJqAIYmdfGlbjFzt5N4fX7yVsGNBTCS1v2vEY2eiBqtN6Jc8yfLTntbP4C8WciaxTeTeIgzKIiIqC5csjSJJkkA9iWLJwB5i107Oonh9mK37NIhQMaw4WvopDIFiJpIpJzlDMsrRucPIBER1YmfGE0SUiUAQ5M58aXBtn0dxSq4NQBWwbbL/u76Y8Vt16jKhDpqnqgqAcjo9pibisZdBSIiqhMDgCYRHeL3p7wUIH5WdxLDLJ4A6LZdUb7RG1bEg1MX9jX3pmhaCykygJxZGPUCAL6rEBFRfRgANImmSPDN69FZBdxRDO8EoFCw7bLJrH2RYlP2dx7N0b/UPGHNTQFyAwC9MjglIiKqjQFAk2jl+bmsAegsXhGwaTu2UxYA5N167jOPHGj2bdE0FlFkAHnL9orR/S2qiIiIpsAAoElEDYDH5F5dR/EHAFb5CUAyZ4oHCTcXiKgJIqoMIGvY49niT6BZ/pNJRER0IAwAmkQMAvPkWQTcUbxJwHbBMctPby4/75ioJv/zhce34r5o+gqLImDDGnVPABgAEBFRndi3pElCUtn/atNmANBJDN/fV94qO705+5hZr1x7XjDAIazUVGFFAqCbtncGZRccu+BwHjARER0UTwCaRFV5AtDB/EXbOaNsiJsiBbj6p+aLqBKAnGmn8qZ30SrwEICIiA6OAUCTaHJZDYDBLkAdxfKdAOSM0t+dFABX/9QSIgXIcQKjqdJEah4tEhFRPRgANElIKvtfrVvcqOskhi+7OudLAdIU/gZRa4TdEdR7JksBgMH2YkREVAcuX5ok5I6JDQQcVOWRU5srCwDM0mNF4m8QtYYUDMRDMoCMXspJm+IEIGfa9720ZzJnHugFREQ0fXD50iQhdw7Au46cAW7UdRp/29a8L31Llpj/Qy3TF6nsPDtFI6Cr//PVL/3fFz//yzUNvikiIuoADACaRHVzRc5cPADA4ByAjuLfWM35NlwrSjuImqk3rHqPRSQ6xQnAr9bsBLB6y2jDb4uIiNoeA4Bme9fRM8EagE7j7/3v7+CkMgWIWicRKQYAASARUcAiYCIiqg/nADTJkTNiITnYG1WPGIgCsAuOVXBkduzuELovsyJjlrKoGQBQC/VFi2/gsZAckiTA5CwwIiKqBwOAJomH5NVXrhSd+wTDKsgqE0g6g+k7sfHXb6gyAwBqmb6IJh7EQ3IwEARPAIiIqD5cvjRPf1QNK5K3Z6yzEVDnKJsDYLINKLWF3nCxCDgRUkU1isnuAkREVAcuX5pNCgZE5xidH9WdQxRti4Qtf+AmB3mGQy3T63YBioUk0WfMcCPV8azxH2t2jmeNlt0cERG1MQYALSBax+gmA4C2tmV/+pr7Xh2azMON1iJVKVtMAaIW6nWLgHtCihwUKUAOgIc37Dv5mw///a/Wfu+hTa28PyIialdcvrSAaAnKFKA297Mn3/j56m2/fn4nAKtQABDVKmtmQgwAqHX63AAgHpJlqXQCcM9zu8T1LSPpim9h31oiIgIDgJYoHtYzAGhvw2kdwHjWhLuxWn0CwEFg1EJeClBPSNEUCW4R8FhGF9f3jOcqvoV9q4iICAwAWkLkjXAUQJvL6CaAVL4UAMSqTgDEqouoJUoBQEQR5eiiCHgkVUz93z2Rc8rfZhQGAERExACgJUKKBBYBt71kzgKQ1i274NgFB0A0pFS8RgnyN4haxpsEHNNksbVv2jaAkXTxBMC0nYo6YI0BABERMQBoCfFRff/Lu0fT7NHRvlI5C8Bk3vZ6q0ermn6qMlOAqGV6wnIg4ADoCSuSCAAsGFYhY9gAFDkAYM9EFoBVKB4EqDyzIiIiBgAtoclBAHf9ceenfv5cq++FDiiZNwCkdMM7q+lxay49zKimFgoGAj0hBUA8VDwB+D9Pvv6DRzYDkAI4bnYPgN3jOQA5o1hxxKoVIiICA4CW0Nxa0pd3TrT2TuhAHAdp3QYwmbNEACAFA5Gq3VPup1JriU6giZCiyQEA20ayP3pkC4CBmDavLwxgTzIPIGtY4vXBAAMAIiJiANAKKhPH217WtETefzZv66YNQJMDStXuqRLkcopa6bPvftvZR8847Yj+iuregZg6NxGGewKQdU8A7AJ7DxARESq7mlATKGwe3/Ymc8Ud08m8KU4AVEkK1TgB4F8ltdLHlx/x8eVHAFDKO/wPRNW5fSEAe5NlKUA2Ww8QERFPAFpiMm95jwsON+Ta0WTeFA+ypi12T0OyVN1CkTUA1CYqDqNmxEPzeiMAdidzALJmMQAQI+2IiGia4/KlBbbsn/QeezvN1FYmc6b3eCxjAFCVQPXcX3YBojahlv9wDkTUGXENwFjaAJDVi+8zok8oERFNcwwAWmA0XVpcTuTYCbQd+QMz0VVdk4IVWRbgCQC1jYrEwoGY2hdR4I6yzjIFiIiIfLh8aYEb/+x47/FE1pzildQqXgoQgOG0DkBVpOr9fo3lHNQeKvLT+qKqGBOWylt2wfFOAGymABEREQOAlviL0xeu+8b7ls6JA6iY00ltIuWr0xhN6wBCSrC6CFiR2AaU2kJFDYBu2olIcXB1MmdmTS8AYNERERExAGiRmCb3R1TwBKBdTfoCs5G0AUCTg0rVCYDKEwBqDxXHU8sXz5CDgagqAUjmzJxR3Pg3LAYARETENqCtkyhm6OqtvhGqYVIvBWYjk3kAqiRpVTUA1SEBUUvI7nSRy9+35Owls44djAPoi6oZIzeRNTOcA0BERD7cv2yZvqgGIJlhF6B2lPSdzAxnDACaGqwOADSmAFF78IZSL54VP35eQjzuDYtdBiPnTgJ22HqYiIgYALSQ99nc6huhGvyzGkZSOgBNDlaX/FbPBiZqCa8hVV9Y8S72RhQAExkjY5R+nqsPAX7z4u6ntow0/h6JiKhdMABomd6ICmA8xxqAdpTKmQASYRnAqDgBkGS1armvVZUFE7WE1wWoN6p6F8Ux43jO8NqAArDKA4Dto9m/vfulj/30WR4MEBFNHwwAWqY3KgOYyDAAaEfiBGBuIuJd0ZRA9XK/ejYwUUu4JQDFo0VBRLDJrJnzBwB22Up/NFMsQ9qfyjf6JomIqE1w+dIyfWENLAJuD6m89dpQyn9F5EzP7tG8KyFFqj4BYBcgahOmWezzI44Wi4/DxVZjObOUAmSVjwJIu9luO0azDb9LIiJqD1y+tExfVAEwwRSgNvDVX710/vcff377uHclZxVQHgCoclBTKrtmcRIwtQkvy99fqSLeZMZzZkYvLforTgC8t6DtYwwAiIimCy5fWmZOIgRg70ROtzibs5UKjvOHLaOOE3h4/ZB3USynZsZD3pWQHKxe7jMAoDaR8SX5eBLFImAza/hPAJz/fHH3db9dn9Et+EaRbBvJNOVOiYio9bh8aZnBnnBvWLEdvLYvdfBXU8NsG8mKldAzr5caoehGAcCsnlIAoMqSplQFAEwBovbwoZPmAXj30TP9F/sjxTxDfxcgyy787/9c99Mn33jv9x7P6NaEm4W4fZQBABHRdMFBYC0TCODt83qe3DK6bk/yhPmJVt/O9LV214R4sG7PZEa3oprsOMiZNoCZ8VIKkFbzBIABALWHOYnQq994X1gtq1MvtgHNWZbvmHHXeDHi3TORf3j90Ljbh2DHeK6J90tERK3E5UsrHT8/AWCduwClptGtwpNbRgyrAODl3cX//3bBEWUAptspfVa8rAi4eg4AAwBqH1FNDgbK6tRFEXAyp2d8RcAbfUeOqbyZzBVHkWxnChAR0bTB5UsrvX1eL4B1uydbfSPTztX/+crHf/rsPz2wHsC6XUkAUU0G8ML2caC4/Y+KEwCpbBLw589Z/DfvWRzmHABqY+IEIJW3/XMANu4tveHkzYJXAzCRM1N5DiYnIpoWGAC00tvnJgBsGJqs6MtBjXb387sA/Pzp7QXHeXVPEsB7l84GsHsiBzcAkALo83VU1FRJCpa2V//x/cdecf6xTb5tojelJ1ScCSDOtCJqEMDGobT3gpxlj+VKw8jFzz8REXU9BgCttLA/okgB03L2Jvm52xq7xnNZoyAHA+9a3A9gz0QWgJiaFFKkqFba4FflQKByDABRW5OlQMhXuR7TFACv7ZsEkAgpAPKm7Z9FOJYxqv4MIiLqQgwAWikQwECxTQenAbTGa0OTABbPis3viwDYPZEHkDdtACE1GAwERGoQgJDMinnqPF4QK0sQGWt5swBg2fweALpREHMARLLQSIpzCYmIpgUGAC2WEOPAstx4a5KcaXvbnAFg8740gCWzYvP6IgD2TOS8FkBRRQEQV70AgL8s1HnibhZQVFGkYOlneOlgD4CcaSWzJoCjZ8UAjGYYABARTQvc1GyxvgjnATfV+7//h22jxYmnshTYNJQCcMzs+GBPCIBpOxf/y9Oi3afInYiHJNE0Ra0aAkDU/hJhFcgCCKtBN5hFRA3OiGsAhtOGKD86ckb0uW3jo2nuRBARTQsMAFqsL6wAGEtz460Z7ILjrf4BqFJQBABHz46pcnAgqo5mjGe2jolnw5oMIBou/o74WwARdYq4mwIUURWvSagqF3vaDiVzAEJycE5vBMAYTwCIiKYHbmq2WF9UAzCRY/e9ZkhWnLQEApv3pwEcM6cHwLzesP/JkCIBiKvFRkDVQwCI2p+XAhRRg7KbAhRSpZAiA9iXzAPojaoDUQXAME8AiIimB65pWiwRUQCMc+OtKUbKT1oyumXajiIFFvRFAMzpC/mfDSsBAD3h4gZqiClA1IF6QsUjrLAqKXLxBCAiy2ElCGB/2gDQF1YHYhpYjERENG1wTdNi/REVQJLzd5pitFaq1dzesGjwH9cU//WwLAGIqMWLTAGiThQPu0XAamlOcFgNhnwz7HoiykBUBTCc0gGYduHDP37qf//mlabfLBERNQkDgBbrjchgDUCzjNRqcz4rXtz4twpl49jCqgRAczf+mQJEnajUBUiTFPdnOKJK/gAgpkriBGA8YwJ4ccfESzsnfvnsDtMuNP1+iYioGbimabHesApggnMAmmI8U+P/86x4Mcv/yyuPHuzRvOtiheRlTagMAKgDxUPFhX5YlaWAWwMgy5pcGmsXDyv9UXEUaVq2I0vFp3aOcUAhEVF34pqmxfqKqbcMAJphtNaco1nx4qL/bTOiz1z1P05amBBfhhUZgCq5c5SCQQCcBUydpSdUjG+jmuyVsYTUYFgttYCLqlJvRBE/22NZI2vY4vrr+1NNvFMiImoeBgAtJuYAjOdYe9cMo7VqHGfENP+XPW4lQFiTAGjubqhInxbVAkSdIuYVASuSJBXf8MNq0D/YLhZSgoFAb1QBMJrWvQBg60gWRETUjRgAtJhIAUrlrYoEdGqE0VS++uLsRFn3z4RbNCnapMjlmT9edgRRR+jx2oBqkuyGr2FZ0nw1AFFNAjAzqgEYzRg5LwAY5gkAEVF3YgDQYqINKIBJDgM+VI6DX6/ZJTr6T61mEfDMeNkJgPc3ImoAVKnsd0QK8leGOkncPQGIKLIXAISU8iJgTYKbC7dnPJsxik3Jto5kmnqvRETULFzNtJgcDIgqvXF24D5U/2/d3n/41cvv/e7jB33laNoE8PlzFl948tz3HjdbXJxZngLUGynmTIsk6WVzE/5nmQFEncULAKKapEheG1A57AsA4poMYNm8BICXdk5kde8EgAEAEVF3kg/+EmqwvrCWymdZB3zIXtmVrPOVYxkdwIWnzFsyO+61OZ/VU34CEPJSgCQAZx0148Y/O/6YwR5xkTUA1FlKKUCqHAx6NQCSf7BdVFMAnLywD8CLO5KD7kjs0YyRylteCEFERF2DJwCt1xdVAOxJsuPeIdKkun6MrYIzkTMBDEQ1AIZVLLroc7f8hXh5ABAI4C9OX3jigl5xsb5/FVG7iPsmAXv5bCFZ8g+2E685eWEvgI37JkcmS82yRjiihIioG3E503oiyWTd7slW30inUuorzJ3IGgACAac3ogDIW8U8h4pN/V63BkAMAqv8dwU4D5g6iSIFxWZ/VC0VsETUYCBQ+sWJajKA2T2hwUTIAZ7ZOup9e0bnySQRURdiANB6J8zvBfDSjolW30in8hr1FJypOiklcyaAmKaIFX/ebXVSwdcFqMZa/6jZ0bdyq0TN16PJKM4B8FKAZAARxSsPKD44dWEvgE2+evqswWHARERdiAFA6520sBfAK7smbHYCPSSaGwDkzakWKxndhm+tc+Gp8wGcMK+n4mVeABCqFQDc/Bcnffjkeb/5wrve2i0TNc/nzjnyvUtnL5vb4x12aUrQ+yfcImAAi2fGKr43rVsApoysiYio87C6q/WOnhWLqMGsYW8dyRw9q/IDmA7Ky2zIGlakVt6OIJIZvBecv2zwPy9911FV/8NLJwC1/qjBntD3P3rSW79noqb5zLsXf+bdACB7NQBKEEAwWJYCBEDMAvPLGNZrQ6mPrnr6snMXf+bdi5tzw0RE1Gg8AWg9KRgQZQAv7Rhr9b10JKtQTObJ6LWzegSRzBBTi2udQAAnLeiNaZUxcI8bALDfD3UZbw6ASP4p2MUTMy8A6ItoFd+SztvPbh2byJkPrx9u1m0SEVHDMQBoC6LL5PZRNgI6FF4/n6w7wKgmMd4oFjpIFa8XEoghzURdwzsBEKdbpptz6AUG/o5YUVUCkDXMiZwBIJljOyAiou7BFKC2INrwZfSp1q90IHahuJGZOUBdb/FZ3QIQVSuTHCoEAvjNF96VMayBGAMA6ipeVYsocLeqio76IqXfjplxLTOazehWMmsBGMuwHRARUfdgANAWRNpJigHAISmdAEz5P1AkCIW1g596iYboRF3Gq5YRBe62XRkA9PpOAGbGtW2j2YxRSOZNAOM5w3EQYF4cEVFXYApQWxBdODJ57rEdCsOu6wQga5gAYgc7ASDqVnKwLAWogKlOAGbFNQAZ3UxmTQCm5eTMqX6/iIiogzAAaAsi75wnAIfGtIoBQHbKoUUZowAgonGSF01bxd8UkQLk/eJ4YiHZ2+KfEdMAZHVL1ADAHaVHRERdgAFAW4iGJACpPAOAQ+GrAZh6DoCoAWDaG01T3pwMEQBUZQAhGAjEQsVfkFk9GoCUbosJegDGMqwDJiLqEgwA2kKPpgBI5XnCfigMdyGTmbILULY4B4ABAE1Tppssp0gHfOdX3TOAmTENQE63JjLFjf/xLHcoiIi6BAOAthALKQDSU2aw0IF4RcAZ9whlJK1Xzy5NFScB82eepinb/U2ZopY3rBQjZDERL21a425t0niGKUBERF2Ci6G2IGoA0kwBOiSm7Q4CMy0A96/dc9p1/9+/rX6j4mU5wwIQ1VgETNOUUSjLkfvZJ0+PKNIP//Jk/0VZKgYHYldiLGWabtgwkeMOBRFRl2A6RFsQcwCypm0XHIkTaN8kL7Ehm7cArN+TBPDqnsmKl6V1G0BEYdBL01RF1e+5x8565Rvvq3jDCcvFDwWxK7F7Ius9Nc4iYCKibsHFUFvwps9mp2xkSTV5NQBZswAgq9tw9/v9xJQAsa9JNA15obKnervBqwGIaDLKC4UnWARMRNQtGAC0BVUOysEAgJ1j2eoPaZqa7c0ByJsAskYB7tgvv6wpagB46kXTVKSOH35VLn4oRNXKhrnjOeYoEhF1CQYA7UJ037vgB0/85b882+p76TC+QWAFuAO/clU9ztO6BSBStawhmiY+f87iM44cuP7C46d4jeYFAFXRwliaJwBERF2CAUC76HGLU5/bNtbaO+k4XnfznFj6GzaAXFVLJc4BoGkuEVbu/tzyi9+xcIrXXPH+4wD89VlH+H9TRFbQRJZFwEREXYKLoXYhZoHRIbDcLkBpvQAgYxa8x6XXFBzTdsBJwERTOn5e4tVvvi+iyIEAFDkgWgAt6IvsGM+OMQAgIuoWPAFoFzHmph8qr7dJMflHNwFkzbJ85ZxbXc0TAKKpRVVZDAqIujMBjp4dAzCUyhWq52sQEVEHYgDQLuK+AMAuOBndenzTsGXz4/bg9NIkYBtAupgCVFYELAoAZKlU40hEU/OOy05e0CsFA6bl7E81vAyAXRCIiJqAi6F2EQuXAoC8Zf/g95sv+dkf731hZwtvqVN4g4qyhu04xVaqmfI2oFkxBUxhD1Cieu2ZyIsHF52xcF4iDGDnaHbK7yjaPpq99fHX07rlOPjE7c9e+ss1df4bf7du39JrHnzglb2HdsNERFQnBgDtIuZLTckbhR1jWQC73Q9gmoJVKG722wVnz0ROTACwCo7//ER0BQ2zAICobgv7wwA+cPzgjJgmHm8fz9TzjT98ZPO3f7fx/pf3jGWMP2weeeCVfXpVV66ann9jzLScF7aNv5XbJiKig2I+dLswfKvVvGmLsbV5k3PBkNGtkCJNMSDZ/79u/Z6kNwFg/d5JKRhYOqcnEEBGN8EeoERvxg8uPuWx14Y/f86RABYMRPD66M7RXD3fmMyZACZyZs59B8saliarB/1Gq1AAs4CIiBqPAUC7GM8Y3uO8ZWd9HS2ns+GUfs5Nj7xz8YyfXnL6gV4jioCPGYy/ti+1bs+kVSjGAx/80ZMAlsyO/eLTZ4jpYDFWABPV7aQFvSct6BWPF/RFAOwcq+sEwLRtALpZKAUAut0XOfg3il9e71eYiIgahClA7ShnWKmcBXd47XS2aSiVNQprd05M8RqR6nPS/ASANdsrpyhsGkr/9b/+cW8yB6AnzACA6FAsGIgA2Dle1wmAYRUA5E3b28Ko863MsgvwjfYjIqIGaWwA8KUvfUlRFEVRNE3zX7/00ksVn1tuuUVct237uuuumzt3biKR+NSnPrV///6G3l5b+ccLjpvvbpHlLSdtWOAJAJDKWwDS+lT/H0TCwInz+wC8sKMsezikBPsiyoa9qV88vQ3ArJ5Qw+6UqJst7I8A2F5fEbBuFgDopq37UoDq+Uaz4AAw7On+vkdE1GiNDQC+973v5XK5X//614VC2Y6Obduf+9zncq4vfvGL4vqNN964atWq++67b8OGDUNDQxdddFFDb6+tHD0r9uQVK44djAHIm7YYW8sagMmcASBr2vaBswLEfuHxCxIARKqP5/h5ifOWzgawaSgNYDDBAIDoUIgUoP0pvZ43JRGT65Y/BaiuAKBYA2AxBYiIqLEamxEhSZL3zwqBQECWK//tv/jFLy6//PLTTjsNwE033bRs2bLdu3fPmzdPPOs4TiqV8l4sHjvdNZhGU2QAOd1K5y0AOWvaBwB5bwfRjodq/Lg6TjFjeE4iNBBVR32lFAD6Y+pcX+rxYE+4kTdL1LX6ImpIDuatwtCkvmjgIOn8IibPG7aX+ZMz68rqsW0HblIfERE1TstqAO64445oNHrEEUd8+ctfnpiYADA+Pr5x48YzzjhDvGDp0qWRSGT16tXet6RSqYTP/PnzAaTT6Zbcf4OEZAlAUjfFJ2Cd5+ZdLJU3xYO0btZ8gXcyoEjB+f2V65KBiDo3UUo/m9WjgYjevECg+OuzP1XZm9iynY17J/1bMXmrAEC37bybxJip761MdPQyC9N944OIqNFaEwD8+Mc/Hh0dHRkZufvuux977LFPfOITAJLJJIBEIuG9LJFIiItCPB5P+uzatQtALBZr+u03UFgNABhJFbexc8Z0L4abzHkBQO01gVcvKEuBWfHK9X1/TJvb6z8BYAoQ0SGaGdMADFcNA/7+7zedf8sT96/d410RW/h5XxegXH0pQHaxCJgnAEREjdWapigiKUiW5TPOOOOWW25ZsWLFyMhIT08P3DBASCaT4qIQCAT8X3oXm3LLTaIpEoAR9yM2zyJgd90gcqKqWW4AoErBub2VGT79UcV/cTYDAKJDJWrohybzad2KaaXPjvW7kwA27UvhxOIVwxRtQG2vYCBT31uZSBRiDQARUaO1vg2oCAYKhUJ/f/+SJUuef/55cX3Dhg3ZbHb58uUtvbtmCysygLFMMQDITfsi4GTugClAz70xdvuTW0snAMFgdfZ9fVQAACAASURBVI1vf0Sb414MBByxhUlEh0AEAN/+3ca3X/Pf/71ur3d9JK0DmMiVym90UQRsF7w+ZnU2NLOdAgBj2tc+ERE1WmsCgE984hObNm0yTfPll1/+27/92/POO2/WrFkAPvaxj914443r1q0bHR298sorzzrrrIULF7bkDlslrAQBDKeKi10GABn9gClAf37b09/67Yb/emk3AFlCIFAjw2cgpoYUqTeiAOiPaLLUVedFRM00M6rCze//x9+84l3fnzYAJHOlMzrRBShnlE4A6pwDIIb6cRAYEVGjNTYAuP322xVF+dCHPmRZlmj5PzIyAuCCCy748z//81gs9qEPfWj58uV33nmneP1VV131qU99auXKlQsXLozH4/fcc09Db68NheQg3B01cA6Ab1WRzhs1X/D4a8MA5EAQtVL8+yIKgHm9YQCzWQFM9Bb4a+gTYUU8cJxiyuJEpnRG580ByL7JImDR/UCEAURE1DiNrQH49Kc//elPf7r6+kUXXVSzx78sy9dee+21117b0LtqZ6IN6Gi62GfDKjhWwZGD03ff2usClCovIvRajuwYywJQ5CBqtfkfiGkA5iRCr+6ZZAUw0Vsx0/cb5GXTpfKm2LBP5orbFgXHEUW8uuXk3aV8neVMYmIMJwETETVa62sAyC+sSgCG06Xd7ppjd67/3cbvPbSpebfVeGMZ485ntqWqKn0n3SsVKUB5N0t453gOgMjtqa7x7YuocE8ABhMcAkB06GbFS79fiptNN+weV05ki7+qhrfoNy1fEfCbmATMFCAiokZrTRcgOhBNDgLwf/rlDNvfcANAMmfe9vjrAL5w7lHi9V3gs794bs32iae2jN768VO9i46DlFsEnCmPDbymQGIOgCYFAUTUypFzIUUCcOEp81/ePfGRU+Y17PaJut9MX5vdiWzxF9NrWTbuFgGbbhNP3XJy7ro/e4A2vhXEr7PFLkBERA3WJcvHrhGqWtBX1wGXWmsb9mjauP7/bXhjJNOMm2ukNdsnAPxu3T7/xbxlew3BvVwg98uyeECuNW3ac+KC3v/8wlmnH9F/WG6VaHrqj6re4wk3Mt/vngCk8pZYvnsnAFnT8qqY6iwCNtwJYofplomIqDYGAO2leg+7OgDwTtVzpvXlu1647Q9bP7pqNTrNaNr45M/+6G8mWM2/yk8blrjy40c3bx/NVsQD8lTrfyI6DPzFSF51/ohvLthk3gRguMt303a8dX+dQ80LBQCwCqwBICJqLAYA7SWkViZlVRfP6e4GW84oPPn6KNw2fJ3lht9tfGzT8P+684UpXuNf5adzFoAfPrLppv/edMEtf5gsPwHwTk7u+V9nXnjy3GevWvmlc4/6j795ZwNunIiQ0S0x7terAYCbF6T7evh4k7zrLAI2CgX4koiIiKhBWAPQXrSqRvXVO2eixR6ArFE5G6uDeJ2OpjDp6ywuugC9vGsSQMaw0+VNgeRgMQB4x9v63/G2fgB/d94xh/FuiQjAXZ9d/vsNQz998g0Ak3mzP6qO+k4AxNg+wxcAeJlCWb2uTX3TtsEAgIio8XgC0F4iWmVIljMrPzh1yz7QUx1ECh78Z6/sBEC3ABzRX+zks3U45X+lLE/fTqlETXPm4oGv/cnSqCoBmMiaW4cz96zZ6T0rTgD8c3y94QCp+nYrRP9Pu+AUHMYAREQNxACgvYSqktlr1QB4XfY6uFQuOGXW/iMb91/zX+v2p/Nw8/szugXA2xn8w6ZRAPFQMV5S6ggniOiw6IuqAEbT+oU/ecpxSrH3RNYAYPj2770aAL2+Nyvbzf63ah0CXPfA+i/++wsMDYiI3jqmALUXTSmti6UAbAd5wzLtgmk7Xn1w3ipmv2Q6eU6wmN17IJ/6t+cARJ6XAAz2RHaNZ0VBcEov7iM++8YogGVze57ZOgZ3EBgRNUEirOwaz63bkxQZPsvm9vRHtSc2D9/x9LZj5/TUXOvnTNtxEDjYQZ3pNgA17YJa/kvtOLj9iTcc4KoP5OdUjfwjIqI3hcum9hJSSn8jJy3oBZDKW+/97uPnfucxr/G24X5G1llX1568JfsU+3li+3D5kf1wuwBlcmWp/8cN9ogH6VxdPUaI6K1LRBQAr+6ZBHDkjNgDX3r3gr4QgDU7Jj5/x/M1x3g5TiBvHfz9yvve6mHApl18rqNPPomI2gQDgPYSdk8AFvVHFg1EAIxkjG2j2X3J/Hcfek08lTPd2TruB6G/PV+n8G5ZLAv8/wkV6b+ffOciAKblmHahovnPjHixMfm+ZK6RN0tEJX1hBcC63RMAFvaHAYSV4mHyttHsWKZ2un+ujg0L2zlgCpBudUPqIxFRm2AA0F5CbgBw6hF94vGo22Xvl89u35vMw3cC4E3Z7MR5wJKbAiSS+1XZ32K8tIA4420Dx81JiN5Iwyl9srz9f9TtmtqJjVCJOlQirADYuC8NYGF/BEBUK+UuvrRrvOL1gYAD9zd9CnbB8SoKzKoTAG/d728zSkREh6bzFo7dzQsATlrQJzbVht0ue7aDDXsn4Sun82oAQkrnzcEy3Wq/jG7D1xTItAtjmeJqXpbwhRWLpWBgwUAEwNaRjFcDIPSElObdMREBcFOAhAX9EQB/deYRf3ri3ERIAfDijsoAIBFSUccwYH/uUHUKkG/+CfP9iIjeKgYA7cVLATplYSKsSQBGfHvbI6k8gLz7QTjuHg6Eq+YHtz/d/RQX+4JeClBGt0fTBoBF/ZEt//SBc5bMBHD0zDiALUMpES0M9mjixfGQfMaRAwAGWRRI1CyJsOo9FgHAzLj2w4tP/qszFwF4eeeE/8WKFOiNKAD2Tx5k9Id/AHD1KACv/bFusQ0QEdFbxQCgvchS4O/ee/TfvOfIZXN7w3IQwFimNGdHDN30BoHtdw8HpIM212g/3hADEQB4af9ZwxrNGHBbDQpHzooB2Lw/LVqgHj+/V1zvCSs//suT//qdR9z56TOad+tE09sRM6LeYxEACG+flwDgbwwKIKJKJy3sA7Bme1lgUM2f929VnwB47Y/rKCYmIqKpMQBoO19aueSK848LBCBOAEZ9FXUjKR2A7rYB9QIAs9B5SbGGXfwUF+19vOmhGcMWQ4JnxjTvxYtnRODbWTxxXkI8iIWUGTHtmg8uO2pWrFk3TjTdrTx2VjxUPHVc6AsAls7tqX5xWJFOXdgLYM22UmrQT594/Yv//oI/58cqOP7q3uoUIG/dr3fyAEQiojbBAKB9xVQZ5ZVz+1MGgLxR/Pwbco/Uaw7NaXNZ979CjPj1Pu8zuiVqAPqjpTzjI2fFAazbMwkgJAePGoyL694gMCJqGkUKfuSk+eKx/3dwXm+4+ixSU6RTF/UDeGHnuNvJE9c9sPH+tXsfWLtXfGnahf956+oz/vn33nfVSAEyvRoAngAQEb1VXD+1r7gv0VYYyRjw5cKOuDUA1btl7c9w/ysyedtxSvV/Gd0SNQD9vhOAI30pBz0heWFfcdORAQBRS1x+/rHbRjNnvK3ff1EKBhIRxZtYIvRFlWMG4xFFyujW5qHUUbPiklvws3koJR78n8dff6m8csCsavXjawPKImAioreK66f25V/d9kWV8Yw5PKnDVwTsbaJXf1i2v7zprvgN01/8lzHssawJYCBaCgD6o2oiLCdzFoBISD5yZhSALCHOLkBErRAPyb+oVXjTH9EqAoCTF/ZJwcBJCxOrXx/73bp9P33y6QvePkc8tW8yDyCtWz98dEvFn2NVpTX62oB23oEnEVG7YQDQvvwBwKL+6HhmYrRYBFx5Am5PMU23XeWtUhcgwxfAZHVrNKMDGIiVHYAsmR1/bts4gERYDSnSmq+9NxDoyAloRF1sIKZsHSm7cvqifgAz4hqAW36/GcCv1uwUT+0czwHYOpzJV6X1G1WrfO8EwCuCIiKiQ8YagPblb3Iv2m4k86ZhFao/GqvzZdufXuoCZOtlAYA9ltYBDETLAoClc4uFv3FNAjAQU/ujlSlSRNRavZHK38rTjuiHb2af32v7JgHsnchWP+UfBOY4eGLzsNdFNMciYCKit4wnAO3LfwIwJ6FJAdgORjN69W6ZXXAKjhPsqGaged84M/+HfUq3RLdTfxEwgOMGiw1G4hp/aIna1IxYZQAwK64BCNWaVTKRNUfTxlCqxhhv/6ngz1e/ce39670v2QaUiOit4wlA+4r5VroxTZ4ZCwEYThn5WifgHdcIyNv1T+dN/4d9RjcnMiaAAV8RMIBl84oBQCzEjX+iNuWdAIipwG93G4PWPAEAsGkotTdZ4wTAKJRW+dc9sKHsKd8OyI8f2Xzjf298a7dMRDQdcTO1fWmyJEsQu10RVR6Iq/tS+eGUXrMNtmkXVLljwjm74Hhtf9K65e9i9MZo1nYgBQMz42XDfZfMLrb+zBplJYZE1D4G3IO7z69YPL8v/O6jZoovwwd4d9qwL7l3osaEYG+Xo+A4/nEBAHLu4aFVcG5++DXHCXz23Uf2VaUeERHRFDpmyTgNBQKIacVP07Aiz4yrAIZTujdCy6+zOoH67zZrWP4uRiIteE4iVFHgq7kLiO2jNfYLiagd9LqVOXFN/tMT5vZGiu9gkQNk7q3bldyb1Kuv/+O9a6//3UYA6/ckK57SS+2AbDF1OF/VF4GIiKbGAKCt9bhlANGQNDseAjCUytesgeusFCD/B3bGKOi+eGDTUBrA/L5w9Xctm9sD4P3HDzb+BonoUMyIFg/uVKksgI9W1QAM9mgAXtqV3JfMAZjbG6p4wW2Pvw7giS2jFde9IijvLLS6LIqIiKbGAKCteX3uo6o8ry8MYNdYrroNKMqbZrQDx8E37nt11eOv13zW3/YnlTeruxgt6Iuiyh2fPuOHf3nyZ969+DDeJxEdRn1uCpAql634w1UnAO88agaAN0bS28eyAI4cqPErbxecXWOVJ37eJETvIFHvwEEoREStxQCgrXmNgMJKcF5vGMDuZDbv+7QLycGoJqP9UoA27J3819XbbvjdxpojCvwnANnyOQDCov4aJwD9UfVPT5irdU6pA9F00+/m4leUJEWUygBg8YzoYI8mcngALJpRIwDIGnauar+jNBDAOwpgXyAiojeJa6m2VjoB0JS5IgAYy/mbYCyZHROfs+2WApTMFUt1a0Ym/h27jGGLAODomVFv03BBre1AImpz3nSOinekSFUKUCKiHj+/VzyOh6SecI0igbRuVR945ozKEwCDKUBERG8SA4C25p0ARFRpfl8EwJ7JnH9L7KjZcVkKoP1SgLzP5oxeo2mpOAEQW385s9gFKBqWl80pTvtaUOsEgIjaXMRt95kxrPLrlQFAT1g599hZ4vH83mio6ogAQFq3vOW+xwsJvJPDPFOAiIjeJAYAbc0behXVpDmJcCDgmFZZTs17lw4qsoS6U4Ae3zR8z3M7Dv+NVpnMF08Aqj+/4Z7d90YVAJaNrG4B0GT5RHdHcEFfpAk3SUSHlzeNsKIzT7g6AAgpF52+8MY/O/7E+YlPvHNRzdS+jG7lq97ZdHcUupf5kzdq7DLUo2aCop9VcPYma3QpJSLqdAwA2pqXAhRWZFkKzI6V9sXv+PQZ13347ecvG1SD4gTg4ClAjoNLfvbHr/7HK2+MZBp0w55UtviRnKn12Sw+uWe46cLjWQOAEsTCgeJ/4IzyKWBE1CkueecRgz3aR06e778YqRoElggrgQD+4vSF/3XZWRe/Y2GoVgBQMwUobxbfUrynqoOEevzsqa2nfOuhTUOpKV7zj/+x9szrf79u98Qh/PlERO2MAUBb89UASADm9Zc65b3rqIGPL18UCECWggDMOsrgsu5aPKMfnlladsE5UFf+iZzh/kvtvcnct+5fv9PXzUN0Mo2GRfoSkjkLgCoF/+K0hUfOjH70tPmBQI0/k4ja3zc+uOzpK/+HNwFAqJUCVBYSaDVTgPJWtuoIMecm/Bh25VHAm/LN+zeMZ83rfrt+itdsGU4B2DrC2SNE1G0YALQ18RkpS1CkIIC5ieIGuRwMBN01siZJACqGZdY0ki4uyhW58sP40Nz44MZzbnr0sdeGq59K5r1gw7rr2R23P/XGnc9s954VH9ghWRLjgZJZHYCiBHvCyiN//55v/88TD8vtEVFLVAfwNQKAUFmEEFZqpgCZ1V2A8pY3CMyNBKxDb4FQMXCwgigv1s1DTDEiImpbDADaWiwkAwi7e2Pz3dJYf76sIgH1fQSOpIsTN+3D1DLo9eE0gK0jNc7QJ70TAN0SHYEmsob3rKgBCCnBqCIDGM+aANQgfxqJupMmS4FA2dtOT7gsAAgpNXYlJvOWKPBN+KIF03JE7r638V9zNEqdwlW5SX7i366/hQCDiKg9ccnV1sTHnjdEc+ncYpMccSBQfCwHAZiFg2fBDrsBQD0vrodVKMAXezz3xti//7FYYTyRLWYZZc2CKAf0H+WLLF5NkUJqEMBkzhRfHpa7IqJ2EwggLJeW2vP7IhVVvzUDgKxh6YYNoC9WFi2Ipb9edRRwCKqLE/wsywHnDBBRN5rqvY9a7ogZ0UDAWTQQE1+et3RQPJjIlZL45aCE+tqAjqSK7SzqHBpQcJx1uyePGYwfaPaWyMH1GhD9+W1PA1g8I3rGkQNJtwtQxrDEx3N5AOAA0OSgSAwYEycAEsNRoq4VVqWsaQNY/Y/nVi+7NblGKk5at8Tie2ZM2+ZLxM+bhZAieVsP+frmANgFZ+O+1DGDcTkY8Pr/RNSp3nZEupHOOQNE1HW45GprC/sjD37lnNv+6lTxpSYHl86JV7xGbJyZdXxEjaSLi3KrvqYZv3xm+wd/9OTf3PH8gV5gWg6qpvBs3p8GMJHxUoBMcUCf8+XRipzasCxFNQVuxbAisfKXqGtF1WJF09zecEWJMA6QipPKWzmjgKq2YM+9MVpwHC/zR7csAI6DX7+wc/2eyZr/9uGU/pEfP/WBHzzxo0e2APBKCyLaVAePRjEFqMYbpmU7f3PH87c/uXWKbycialsMANrdMbPj/g/LH3/s1ERYvvgdC7wrYuPcqiOrx6sBqKdiGMC//OENAI/UqvEVDMtG1eGDYdsAJr0iYKMgev5kjNLLxAeqJkui8i+ZFSlA/Gkk6loRLQhfRVOFmm1Ak7niJv9ATPVf/+wda+5+bqdePghsw97Jf7hn7eW/frnmn/+9h19buzsJYPNQCkDKPaJUpUMMANbvnfzdq0P/8gcGAETUkZgC1GHeNiP6/Nfe668BkKQg6hsENuqlANUXAIil/BTE0l+EAd6fKc7lk742oOIYPecbCCCuhNSgKG8Q0YLMFCCi7iVm/Uar2gEJXgnQe5bMfGnXREiR9iXzw+5b1oxYqOL1tz3++oWnFkcNiENIUeM06m5zVNg5VvyjxFult0MxdUFUsdigVpGxuPhWyg+IiFqIS67Oo5QvlFWp3kFgI25azkFX9oJ+sKBCLPrFR6D3GWlZBbvgpPLFLzO6KTJ003opAEjlLQBRTRHbgXZBlASwCJioa8VUCUDoAAGAVwS8ZDD24tfPu/L9xwEYTekAAgGnOmw4aUGv4S6+xVtQRrdw4HqArOnOJtctuI0HAEzxJmcXHPG2WnN7RVys5+iViKgNMQDoeCIeqKeud///z953xslR3dme6gqduycH5YCEhEAkgYQQwZjktOzzetcRB4wjNrb3mfXaXj8M5jnAPrPO2Bhj44iNiQ5gMgKRQSAJCeWRNNJock/Hyu/Drbp9K3TPjJA0o9E9H/Trqa6qrq4uVf3DOeefd2pjXf3F6/7y2qgj7kfdJ3nuEilwmZnKma9UY/1SxSRVNFYEPFjSADQnlUSs+lyX6xpyc3BwHNEgoX+yhutOzGUAChAEweEL9RU0AFFRlAICIVkUNa8LEOkxVmpYghbdAkRBNwCMuBQgo3YJn8b9oWV+8u4Y9cccHBwckw2cAnTEQxZFuDyc+uh3E4BfrunaM1RORqUvXLCwzvr6aN1thwJkeuL7kZKeY0yKioZBcoMi0wEYLGgAGpMKGw0ovAPAwTF1QeS2wYlgBLQDYNo2gIxjD6ADiCmiHOAHljSd6ndJ0E9URqpp2rZnEhkx/Cmozg2qVDHhNiFRt4Tv6zD4QBaO0VGNg4ODY7KBJwBHPBwXoNHqUKphFd0YfaiowWvLEwrDHo0CZFhwDYhoB2BENYbL1ZlfpYpFJHq6aZuWLUYEuB5BTQmFtf4I9QHk4OCYGiDZfrKG6w71GjZNy7daTBZFd0rg207o+Ou6HgBF1czE3a6jYzNAvIAE3bQUd2+Wbb/7p0/HJKngRvwFzUMBqiOIoglAaFeBCA9swLDs+uOEOTg4OCYheAJwxEMemwsQq41zIvLRxluO2lQgIgFSCau42cVwURthOgAlTafygKJqfPnOdb15tSevAmhMyHFm+o9U146Dg4PjiAahANVyAYq4RXtSyyAGwc6GUoR6BN/47pNPmLHj23/fVDYs1TUWI2ycohviV3STJgBdA6Xndw6xH5SvGJf88MlX9uTIn3U8kWnhXw8TTWmW6b5rkWEsHBwcHEcQeAJwxIMkAKPSdUYYXj4R3b7xecAkhSDhfck1+cmr+p6hqrqgpFl0Xs+ND77+13X76FuNSSUZrXb2o3wOAAfH1EWSuABFR3nomJYFIB2rrhaXpTcvbhOAU2Y1KFLk2I40gGJFV5NOklDRDABFt6VZMayMuy3l+lPkKwaN/gHoY+oAhNwqaQFFN6w4n2LOwcFxpIGLgI94yJIA5llVC2XNX8QyA0++ompc8dsXf/HUWJ2tSeFNswgFyDmAoZK+uWcEwIkzsgCKml5xc4Nb13SxmzcmlARTDpT5HAAOjqmL0+c2yaKwfG5j/dWIoRmbJ0TlSGNC2XDtxX/85EoACVkEUHBHjMO1Hi4xHQC6bX++SkcMRZ3eqWp4KEb+d91PGYsFMwcHB8dkA+8AHPFQIiLq1rEISpqf8c86hxY146mtA3e9tOfv63v+uq7nsjPnjfq5tk1tQA0wGoBCWSejdk6Z1fDKntxIOVwml4xKihRJsI95LgLm4Ji6OHth68Zr3xL08/HBsiwAMUkUIwIpUiSUCBj1MLlpVDRTdWvwZcMAUNJDKPvU+gyAINi27f90s7aKV6smGCEUIJo56DwB4ODgOALBE4AjHoQdq49G2C8GOgCs+u1Hj2798aPb2Hft0cwtaAOBiOFomX9ENTbvzwM4aVYT1nQNl/0teILGhAKvJciMhvgoH8nBwXEkY9ToH64GQBCQiUtDRR1AzFsaIGLiomYyATrRADi3GrZg31eo0hGzMaWg+e+U2hgSgFCCpep+SqhHkM+JiIODg2OygZMujnhIEtEAjBKwBylA7JOwq7/EvmVYdpmpogXJQmAa3+TpWK6W36zeggbgxJnZOsfTlJDhFvMI5rYm638FDg6OKQ+qyp2WdSoCca9zKPmzpBqq6RQd9g5X3vq9J17c5Yh9N+3L/eO1/eR1/0i1A5CKSUlZhhdm7fp9pWoDGnoDdDUAgRTimnvXL//mQ4PFUdhHHBwcHBMIngAc8XA6ALUr9kMl7RdPbd8zVPQtZ0tfxKR/cUeG/sna9rMk14JqXPKjp37y+Dba+HYGgXkTjI5srC0dCx4MnejZQBIAVzzX0RDjQjoODg7amaQJQFT0dQBEAKaNklq957y2L58rO7es//jzuo/f9sITm/sA9DHuZ6moGA+YkI7JBjSsv+qrgLC4dU1Xb179xZM7au35kOLHj279/sObx7WJbeMrd776vYe3HKJD4uDgmITgCcARD4XYgNamAH3u9y9fe9/GGx7wPxLY0le+ogO48vwFJJ0oVIwCmwAwT7hfrdnxyu7h7/x9E00AiBloyWuVvbAtFZMjguB/uJ44q4G8aEoqYGp7C1rSo39VDg6OqYvzF7cBuHzVXPJnezZKXsQUz3Mq4Q4PGSjUK7E/vKkXQD+TAMRkKTiGzKhdOmEmAYfcXZkKSHgPYaQG+/GQQjWsG/6x6bsPbmHHsY+Kzb353z23+8YHN7Mn43fP7Hp4Y+/BP0QODo7JAa4BOOIhiREEmKwF1UgqEiGhPrGlP3RDtvSVVw0AmZiUiklDRT2vGqyyjSW50im/uvfp6OsALJ3ZEBGEuCT5EoMTZ2TXbB0AkInJYDQA81oTY/7GHBwcUxA/++CygYLWmnbi/s6s00KMeqN2SRSkiGBY9nCpXgLQO1IB0MtQgNJR2XJveiuPaRYRWb21r46BMvX5UcNcgDS9nkIAQEGdgASgpBlE6FzUDNZKtT6oUUNJM4j/0ub9+a/cvQ7Azm+/7dAcKcehhWXbRdUc+zXAcRSCdwCOeCiiAG8CsHHfyPFXP/Bfd6+rv2FZt/75R09d85cNAEZKBoB0TM5EZQBF1Sgw/tlsB0D3Wu/B5eyWvS5D/3LKDACpwN1nUYcjDCBpAzX7m9nEFcAcHEc1IoJAo38A7W4CECQHkjnBteW7gFv778uzFKBIwqUAnb+47f1nzAJg1ekAuIX/UI812hao2QEYTw3+YIE6IAVFX3VA5cp5t/FLuyt1zg/HZMYnbnvxhK8/sL3PT/3l4KDgCcARD1kSAZhW9XZ/w/2bAPz22V31N3x+5+Da3cO3PrkT7ricTFwiIXtBNQrM04s86mwbg0WNkb5RFzwbXus9AHNbkgAak4rvQ+kDXjVtMI/29ixPADg4OKqYlnW6grFAAhAfbZoYgN68WtJMtgMZj0pJlz6UictyxGOfsGeo/CozIAxM59O07KBUgG5YKwHIV8YRgh8sUAek0ngSAPpN6W2f+jWFzkDgmPx4cON+AL9+eucEHwfHJAZPAI54SBEBwJptgzc9vo0Ua/bl1Fori5EQazrdtMhjMhOTU1EZwEhFZ21DSQfg//3j9VO+8eD9G/bRrcgL0h8nJtzEr+8H7zuZvNWc9HtuNKeUtnQUwHnHtrHHc8rMUcYDcXBwHFWgFKB4YEJIYgyGMs0VRQAAIABJREFUAXtz5d58hV2SjsnJmLNhNi6TGJcORF/1nUf+6YdP7hkq0/VZ85+gDEClGgBv7YNWzCeEAkQL/8HBL3VAyzdUOSBFIr4dchyJGHVAEMfRDM4PO+IhuzH0t/++qSMT++eTp+/LldkVBIDeA9JRKWjMvy/nPCYzMTlDOgAV07T8GoAfProVwEBBZxcCsIHfP7f71d3DAK5++5Lzj2vvdMv5xOyfRWsq+tcrz1rXnTv32Fay5P7PnVXQzOmNvAPAwcFRRXvGSQCCk7ZSyuhPLt2wX941zC5JKKJuOCWJhrhC6hpkEBh1Pd7aW5jh3ovY+V+qbiUV/OmFXX157VPnHiMI1cK/5o2x6NHmKxORABwQBYjaHNGkhZqxFjWjGf7bOMeRglEHBHEczeAJwBGP2S1V+/yv3rXuvEVtvhBfjAi0f52JhyQApOgVkyKSKBBybVFlaf/QDEsLCN1Ym6Av3/kqeZGOyZ0Mmac5GfVt1ZCQI4Jw3qI2umRRZ2YM35KDg+PoAnUIyAVuWYmAm2cobnp8G4CObKwnVwGQioo0Os/G5eGSDkCzLADdbuFfZ7iUrPkBCfevumMdgCXTs+csbKVqKN1LkqFbjcuHpw4quvn8zqHlc5sUafSOPU0AxkcBcr8C1S3Q/sao+7Ft2LAjfOzZpMSoA4I4jmZwCtARj4Xt6cevetP6ay7qyESLmrlhb5XGatm2ZliKVL01p2N+Tg6APYNFAJm4DFe2m6+YXg2AtbFnxLdVIezxFpc9V1RQA8CfExwcHONCMcBmGQsFCMDrPXkAl6+a42ylSHTDbFwm/EPiC7R7yJmEOMxM79JMTweAzkO856VuuJkDAg5sGpMAHBQB7X/++dVLb3n22r9sGMvKZbcuU1IPiALkzlLQqwnAKPt5/y3PvOV7q6mP0OotfTsHuPB0sqDOgCAODp4ATAXMbk6kotLMpiSAV1wdmywKH/z5s6de9yA70zcbD+n5dA9V4Ib+aYcCZBQZAmvFMAjDh0W+EuLBl/CK8xoTIfkGBwcHx1jwmfOOycbkj50137c8GVbIqIVLTppBXqRjMmXrUA0AIfDsGXQSgMFiNd6tGCwN0qR91Ac39Vi2Xe0AmJ4aOVULGJYdTF0OAHev3QvgN8+MYurgHLMbuI9LvEtXpn1d2seo3wEwTHvN1oHXe/Ib9uUAbO8rXnrLc1f89iXTskmDhWNioZmcAsRREzwBmDpoSysAnts+QP40TPvJbQP5imMLTZCOhzw4dw+W4BrzE3JtQdVzTIFfN+xXvP4YYAzjWPj8OppcCtCC1iSAt53QOd4vxcHBcdTiixce+/LVF8xu9g8JSbidxlr9xPOObb32kuMF4KoLF1IlUjIq0SA+JovEBcgyLLg0SABDzGwB3SMCthhyv7muO0dpMz4XIJY4xI4hOzyouClHSR9H/F3Rna2oboF+2WJdJQPtD5CpzN3DZQB7hkofuuXZk679B28FTDh0buLEURs8AZg6aEvHADy7Y5D8Gdr5S0fDEoDhEoCGhAQgHVcAFFRjkJmyqRoWyywiGAsFqCnlPHpPm9v80tcuoO5AHBwcHGNBKGkw4Q4YicqRq99x3Glz/B5iqbj0wTNmb7j24ivOWyCJQkKJAEgqosF4G4iOC5ANYI9LARoqVkN2dv6XxiQAAHb2l/SqIbKXAsSsVn9W8bgQcEIKR1mnI73GJQL224DSPka5bgRJzeKIToM0EEbKxpPbBgDc9WL32I+B4yCCEn8mNv7/27p9K771sE+LzzF5wBOAqYO2bAzMHTkU2bDWOSnbpGMKgJQiAhipmIPeB2FQh1cI6wDEve4cTW7tLSpFmpIKFwBwcHC8cVA7f1mMfOTMuX/65ErfnY1UOqiMOJNQAKRjsskE66QDQHoCuwedDsAgQ1xRTY8Oig30B4uqWh2JaGqG9fS2ASISYNOGfq8P6RuBEhlTBlAtyWvjCP20gAuQ2xJwSvu1QL2GSK+jUNHA1J5Eid/wJwZUrxJ07zic+MeGnp5c5YktfRN4DBx1wBOAqYPW9OhmbdlEiAZg73AFADEATcVlAPmK3lvUAHQ0xABophWsJxXCxtzQJy4BFQFHxyba4+Dg4BgVVMtLHQ5804JT3nzgixcufO/pM0+Ykf3Y2fOSivihlXPgDiEhfse7qAiYpQDpHg2AbnhK+1UbUMO+4ncvvffmZ/70wh74OgC1efDfuO+1S3745EigsFILY7EAAsPmL+vj6ACUAy5AVRFwXSpRSXPe7RtREeCFyiIPMCYGqkmFKBOpASDlSD5KYtKC//+cOmhPj26lH+oCRJCJSwBSUQlAsaIPFFQAMxviADTDqAQeJ8GeAAIaACoCZjvvHBwcHG8EtNBAeI8APnnuPHaFtLcS8a5TZn7rnUuliDCtIb726guv+aclAGSXAlTUDKpYJXNO9uUqummxbH5Vt9jIfrCoGu67FcN88LX9AH719A4AKnOrZAlFLCzbvuWpHa/syf3iqZ3s8puf2H7Stf+45t4NQQtRRRxTNZ3eqIvjcgGiHQC3rEMrx8W6nYSy+25foYIALzRSU6NxOGBY9ub9+aPTBYfKV/QJ7QAQT6rywZDCcxwK8ARg6qAt4zfdDyId5gLkvBWV4SYAPfkKuYN0ZGIASroV9JQoaiEJgK8OR/OB+n1kDg4OjrFjxbzmtnT0LUvab/rAMrLkgyvn3H3FmTddeir5MxmreaOjZWlJjAAwDLsnVyXqDJXUhzf2nvGth6+5b4PmcQHyaACGilrFLbI+tbWfvJjTnIS3AzBYCC+f7xuuuNt62BH3b9g3XNJvXbPz5ie2AVi9pe9PLzjmP4o8pqE9NNgaV9Slubf3vOY0QCgpqL6WoOTmG30FDQFeqGpMZOT3/Yc2X3jjE39Zt3cCj2GiQK/VyoQmAAXdwDjZaByHE3wQ2NRBW9pJAEQBmYQ8VAx59qRrT9AkHYC0OwcAQEIWswkZwIhbHmuIy3SOGHWMZhGtIVUrjacfzcHBwVEHizozz331fHZJRBBOmtnw9DYnFs/UTgAopIgAwHZHoadjUr5iDJf0y3/1PIDfPLPrtDlNdGXNMFgNQH9Ro39u3Jd3FhZUeDUAQ8VwEfD2fsce54WuwZ6RSoc787jfFQ3nKoZt49JbnqObKGIEwGd/99LeXPm3l6+I1SBVVg5oEjDlC43QOQAuibxct5NA+wx9eaIBML3vTuRtf1tfAcCO/snuRGTZB3+Mmh6Y40YujFqXzSECKfzR/tLNT2z/x2s9v7zs9OQYJnmPC5ZtW7bzP5pj7OAdgKmDhrhDuE/FpHjY//OYFFFq///PEBEwY+TfkopGRREADfrZKb8+i+urLlr4l8+eWes+Nq5+NAcHB8cBgJoQjGVQAA0X9gyWASzqyACwXQ2rKDhkHrLaVXesu2X1NrrtcFELOqz35lX4OgCl8ARgW6+TM9i28BQjkRx0EwbdsAa89KGoFNFN675X973YNXzfKzXddWjAN66aC6UtldwInroAFep2EmifgaQuPg1AqFHEYQN5Qk0s/6SoGbc8uZ3OmQ7ip49vP+HqB14NuGy/QdCLkPwElm1fdOMT53/3CSoOPjwgn15xr8n/+7eNz+8c+uWTOw76B733Z8+eff0jE6t4PhLBE4CpAxp8p2NyTArJsOOKKEVq/uLtmSjccWAETWlZkSMAciUdQEyONKaqj9URL93znIWtx09vCO6WjB47Z2HrOL4JBwcHx/gRc5Wy6ejoJUbRZdXvHS4BmNkYSzJbLZmWUU0LblMUwJ0vV8kk/UWNnRJAQISwbBQyVCMBYMvS9EZqmDal/mumtcudTUagyBGaHjyxub/Wl6K1/Pr2nT5o7nfJa/RgXDFxfQoQdQHKVwDkvcKwia37FFULTPQ5Ibj+/te/8ZeNb/vB6tB3bRvf+vvGombe9vTOg/u5VQmHSkg4Ztdgac9QKagtOaQgHYCi7vnQoYM9Ic628eyOgb3DlVf2cL/R8YFTgKYgUlFRCCvFJ6NSrR6ZKGDpzAYAMUkkrXAArckYofQMlzUAMVlsZOaIFb3dXuIiGsQDXzjn+Z2DbzmejwDj4OA4tKBuY6kxUIBktxqyZ7gMoC0TTyoijVl106mCy957ZkNCHi7poUFMSTeLqkGGajUm5aGiXisB2N5XDe4pS5ttFxiWTZ1JCaRIdarAI5t6NcMK9QViKEDjCPXKbohWVA3TssWIQIlM9YN46jpdMayiZvjawmwHoGeksmeovGy2f2LDoQMZZj+ueQgHHY9v7gVQayjyZrcRNLPJP+ruDYIdUmFYNr0qfEPrDjVI6O9TAB70Oj1ta1iHt78xBcA7AFMKbzuhA8Bn37wwKof8sglZlGpYSRw/PUtYQ4KAU2c7hfympEz2M1zUACQUMcskAL7WcLrGE7cjE3vH0mmcnMfBwXGoQSnOoRMPfaA3w+6hCoD2TJRweAgM0ySRSq93mFe7y9cPRW9eJTFWZyaG2sXOHQMFAIs7MmBI9oPM2GDdMHd7x+jqhk1JQUXNfKFrKHTP1LloXIGvynQzyIaURF6/k1BmYrv+vOZrC5OhBINFzTDtT/76xXf9ZM32vsPHyHc8KI2JTACU2i13AA+/tp+8eCMSgKJqGIHAlxWsl1SDpnPqYRTjGaZNumSq9xJSD/YvQj1PTR7/jxM8AZhSuPHdJ9//ubPeenxnLEyMG1fEWsbMrNxt2SzndXM6SrznBssagKQsNiSrZX4fmzA1hp47BwcHx6FD1C2Kx5XRH20RQRAEG+4kxI5s/N3LZgB416kzAGiWTSKVD6yYzW4Vl8V0LOTuOqMxAaB3pKIy/mn5SkhwphpW93AJwOJpaTCR+gCjGNZMu8vbAdBNu59JRQZqGIzSvY2LfqMyJI3ndw5eestzL+0acvdTzWG6Bkq+ngZb8u8vqL4PLVTMroHSKd948F9+8lTXYBHMxOXDANeD0ok+uwZKj28+3BOpalXcCB59vZe8OOCi+FBJW3L1A+8IUIxY98+iZlaH1h3GDkCxOpPOc1Uc9JSMJhiHWeEwBcATgCkFRYos6swIAmLeDgDhts5qTtYaJnNcZ4a+PtVNBlpSCnmgEsv/uCJOy9YcNTDGOTUcHBwchwjV0b/x0TsAAEQhAmBfrgygPRO95pLjH/3iuSTiNy2bMOM/vHLOje8+iW4SlcWmhN9wOaFEpjfGAewfUUkw15qOkuwiF2gC9OVV2xZkSZjZmABDARpg4nvTtHYPeYrlhmmyKxTD5jCCiXeHSvqKbz40RlY0axb5m6d3rt7St6mnQP6kGcVgUXvz/3vsfT971vNxTEW5e7icr3i+bEEz7lvbDeCVPTlCB8ofJFVAUTXuX99Tf9hZUbfAUKHOueHRD/3iuVqdkzcIw7T78iEpmVzDFg+Aadlrdzu/zgELFVZv7gfjQ0XBBvolrTrGRx2PMuQNgsb9vp9JPdgUIPpl9cNLcJoC4FXbqQlZ9Nx3zl3YctmqeQvaUnuHw+0I3rS4jb4+caZDAdIMOx2NACAZezwq/69Tphum9eKu4fteORrNlTk4OCYzYrJ4+8dXABijz6AUEQzLJoXD9nQsJotzW5Lru4cBGIZNyqhRKTKvJUk3kSNoTMldg579ZGIycWHuzask2EooUiYm58rGYElrTjmN04GCdvPq7UumZwA0xpW4IgIYKqpX37P+mR2Dm/ePwJ2cpZnWHq91jGbaA8XqvIKy7o+ky7p5xwu7t/cX6JKeEfW6v7z2p0+uHPU8sHMe+wueQJYmAN3DZcOyCXmp+qFMcXd7X9E3CKykGpJbGCJskGLl4AhAP3/72gdf2/+hlXPITLcgbJtMKRaIiJmOA3u5a+hQ6BA+cuvzq7f2PfCFs49tT7PL65TFugZKlKl/wB0A2f0A2/bwiNgEoKiatDR+WDsALj3MnwAc7LEA6gFNv+YA7wBMVcS8N564Ip06uzETl6UABehz5y14/qvnNyaq3J6EIjanZAAr5jVHmekzcSmSVKQPnzl39sFWLHFwcHAcFCyf17x8XvMYV5alatDU6s5RkUQRgGqZpKAoS5EocztVxEhzoAOQicltqSiAvnyFbKXIYkNCgSugIvjPO1+96fFtn/3dywCaknJCkQA8vLH3V093vd6Tt20BQENcBlDWTJ93pGpZ/flq9LxroPix215YzViI3vTYtq/ds8H/Bcc6P7gak/k0DzTTIJF0RbdYokVeNQF0NMQAbOzJ+UjYRc3wHUBeNVTD+vc/rv3bun2+Y3h6W/+67ppumL7iLhm9fNvTNQ0lK4ZJzicJCmlrIhamjnvjWL21D8CfX9ztWy6JNTsAG3tG6OsDpsWLrrjOd340JhQuqjrTATh8ITLlg/mS1crBpgBpY3Os4giCJwBTEzHv2EjLLYAEKYktaYU++Sge+Pw5d3xq5UkzGxQmYUhGnXtZjLN9ODg4jnyIrkazISFTEiNxLDBMm4SzihhRGCKHKEaakv4bZjYht2ViAPa7HYCYGCFVlQGGNP/CzkFmk2hcFhCY1dqejQHYPVT20ZktwxosqnBj+lvXdD342n52UtiabSHeoG3pepJlClJDTSoiAuqCkuY8PWgrgK2zVjQLwPGdGQCvBMzsS5olevWtBdX83bNdd77U/enfvsQu3z9See/Nz77jB0+GHt69a/cu/j9//2sgZ4gy4fVTW/v/+cdPru8e/vfbX/79c7up8wyZh7DXHfZcayrt3uHyAfsF0fA6eGHI7rcP1vhf38ckAAcqX6Wn1+e/pFmsqtuaIA2Ac1oME4Zp0yZMnQRgS29h58C4ZeL03E7szIcjETySm5qIyp7bLr0bBOcAhJYoWlJR0idl3YSoxV708E4T5ODg4DgUoPWNjkw1dCNVElpNlCKCtwMgzGjyS6EyMZnMUekdKRPikCILTQkZ3mHAScabKBOTYmE8pfZ0FMBI2U+V0UybkHPm1GjAtqT80SfGXPElPirNyShcrg6Fadmkukwp3ay5Z0nTAZAJMD3DFXhhWvaIl/SfL+vDYSPqu11uqh0WCV/5h5cNE1d4cwYAMaX6JLr75b1rd+X++4HNd76890ePbqEBMWlu9LgJQKgx66Z9I2d955Ev/fnVkM8eA3a7vZpgvyXiVuiDM9E29uQBzGlOAFAPNHI13fPlK34bTEZRVA0acx/OqQgs3ausm/RQa+kQcmX9gu8+fu4Nj4VeA3VA+ye1sjuOWuAJwNSEb+I39QQIdgDkulxZtgNABXaHqIvKwcHBcThBtVJNjL8ZmQ9A3XtkKcI6HMhiZG5zEl5k4xKxB+3JaaTaqohiUyoKbwKQYO6cTQk5EXbz7czGEGgLANAte6Coo7ZnfCbMiDk3BtGtbTtRckMiXDlNgunqjGHG+pPU1xd3pIjiGV5WFYD+Eb+iQJFCWEmmG7Aa1ugxHG1os485kooMlXUABdUoUf6JZsDVeQMYCnNPWr2l37TB8qnGhZ2uLiLovGS4hxp86/V9eQAnzWrEGHSxFd187PW+SiCdo7Fv0RvZ60yVvaiZNObWDqNPTokJ9Mt6VYdQi6m/rc/VnQf0LfVBs9yDTi6a8uCR3NSEz5PHcu+qcqADoNQmKcJb7Ke6uiinAHFwcBz5oDbtbG3eVyWRRY8GQBbFea3+EDwdk0kC0Fcok2AuKouEzT/IJABxpmLdkFDYP1fOr5ovM7utxvSaYQ4WKwBmBtIPgoIaEv0EPYiCoPTxplR4AkCqy1WDUY3tAJgAmlLRTtcgblo23hCXk4pI6Ol9eU9bIK8atGzP0tb1MahU6TAZOlcrytSnyEEOlzQAmmHSgJgc4T63wzAYdkI27M2R3bI/1tixa8DxNg2W+Wls6nuropu7hkoAls7IAKiMxsz52t0bPnzrc1ffs96//2rx20sB8nYAqM2r6s0Tntza/+NHt4634j5GFBlFeFkz6WzpWopnyj0rjHNcMf2yXAMwXvBIbmrC1wGg/+NCOgA1JgMQNDOFsThNAJjC1eWr5s5oTNz0gVPfwMFycHBwTABoPYQNtX23RFEQ2HqKIglzW1K+/TTElbZMFEC+YubKGtkJ6Sqw832pjApAQ1KJM3fpE2c61jSdzKAx9varmzZhOMxoCPdizocZ7OTLo8dSVQp7Inyae8lJAFwKUEUH8Mru4X/58VNdAyUACUWiRkkNcfmuK86897OrGhISgF6vOWa+rEddQcUIc2ymW6LyEZBY0AoU5fMUtOpXLmoW3ISnrFnMRGfbsm2qARgOowC9tteh42/tLQTfHRW73IkNwciVhqS+BIA4awtAZ5ZQgEaJXP/04m4At7+wx7dcc0+Xf9quWf2zohkVdzWf2OC/7l53/QOvb9g7Jq/Y8YJNFMuaQS2PalGAKIUsmEfVhzoJNABF1Tiw7HFiwROAqYmot65P4/7gRN7aPsUA0JGtPo0o84eth50+r/nJL73p4uM73sDBcnBwcEwAaGSfZuYYsjdJKSIIgqehqohCMjD0MB2Xk4qUUCIA9gxWAMTkiKMKyFVL4GKESQDicpxhBGXj8q8uO/3qdxy31HVhBhAPcIRkSWgLjCJ+eGPvV+9ax8Yff7vyrMtXzYUbaNYHoRsJgp2tMTyBBFh06G9JszbtG7nkR0+9uMsJHBOKSKgsAEqqMbclOb81lVJkAH1eU9GiZtDC/wiTsVDyRtDKndan6XC3/W5XgU0hSPBH5gzYwDDzxSu61eN2AIInRDWsbf2O8HTr/gNJALrczfOBBKCiO0fvC2oJDSYRlchT9YCt8WmHwadg1pg8SjMtteoC5DkMoscYqTFToj4Gi9qvn95Z5wJjWUll3aLkriC9jWBvrmYeVR+TQQNw5rcfOeUbD4YqTCYzeAIwNRF1eZanzWmc1hD7z7csJn8GbUCjdSlAcVmktbGkQkXAHlO8g3LAHBwcHIcZZBAYgHSMpQB56v0AIoJACyVyGAEyGxcFAa3pGIDdw0UAihTpbEgA2JOrunlWmPCrIaHEGRFwKiqes7D1I2fOZe+oSkBtlYlJicDCj/7q+d8+u2v93qqrzHHTMh8/Zz6AkYpujcbwINFhVBRDRckAntsx8IGfP/N81wD5s6gav3/e43cZV8RPn3tMRzoG4ITpTgJD2h2+qQKFSnUq7Yg3RicvghoAGjrTtjbtAOimTfdW0Awws2D7C8zMBM3cm3MOY0d/8X8e2rJrsDqQ+PWePN1qS69/olYdmJZ918vd+3LlnYNOAhAk+tNKvD8B0EwAMVkg/ZADNuehX9/30QYTZKumTRMA3dsBKOoGDpQ584lfv/C1ezZ84Q8v11qhpHlEwPSjS1r4NUmF4CMHmgCQNFI3rQ/c/Mz/PLRlXDt5gyAJ5wu++SCTHnwQ2NQEZelc8aYF5x7bSpcHOwD1KUAAOrOxfKUARgQcZboGY/SZ5uDg4JhsoByclIcCVL2nyRF605MM04CbHsiSwJJV0nEFQEc23jVQIvbziiQQOW/PcIUOaWI9eRriMqsBSLkiBPaGHCyvJGU5Eeg/hIKU822gqJrpmKQZ1khFD3UKIhXZmCwma9i7XXPfa+yfRc3o9xJ7koqUUMSHrzrnrpf2nLeo3VkYlRAoyuZVQ3PDNbZ4XFWpBihANIWgUeN+RlicK+tkBFvJKy0dZLyGSprRM+JE/Lpp/89Dm+9fv/f+z59DlmxgEqetvePwoLz+/k0/fWL7WQta97gUoOCc4yoFyDciTTMBJGWZtNOD6t5QBB+2NHPwdwCYjELTzYq7JXsFGqZNruHxim4Jnt85BOCR12sqp9mvXNR0qgGwbaGsmcE22r5hVwMwTgoQvWaIx9HGffkntw1s6Bn5/PkLxrWfAwa9MnOlI8yHlJdvpyZocznuLRdFhKAL0CjXQHvaoZzGwkTAvAPAwcFxhCLiigAyrAiYcUqgnB2aFRDXhKXTsux+CIOojdHvxiSR+vnQSJcttTYk5LjHYsF5zcq0oqJw0wdOvWBxe3W3csQXOfmKqZ86d949nzkTQFSKEEMeUmj/px+uXnbdQ10DJSPgA+MMLpDEeNSfACSUkNt7UTV9NVqSySQV6QMr5kxzJQqhw5gLFZ0yQHKsTSTjMbqj3xOF02SDhte9I9XqPj23FS8JfpAZZ9aTq/jykE09VarPtt48gKXTswC29I5gbNAM66dPbAeweksfPaXByJVG9kXVQ5Uh8XoiGiG9ek0fkw432KLR3MSppHv2z4qAVcOk7p+eCcHuOdcOzXQw1gWoolvshRca4ncPu1rqyjiINIZV7W+Qq4ic6sM58ow2N4aONBkAj96mJqh7D+uUDEAQ/KT/UUv47VnnqcZ0AKqbZGs4x3FwcHBMctByO9sBEITqgFXqM0OnH5KKyvfee8pJMxv++19PJAtJBNzODBNQxEhMFomxJvWgLDPEjIaERwRMD4AtqUhi5OLjO27+0DJ6PPGoFPfe0iteSeXlq+afOMMh4RBjUBIik5D3a3evO/7q+//w3G7bxjV/2fC+m58uqsYDG3oAROVIIhBfZqIhsuCSpo+UNTD95GBjGW4HwIeCplMTmDxTLqUB+tfv3fCm/37sj8/vom/1uh0AKkLoYVhVNAHwTcJitQfr9+YAdGRjoQ+7rsESgLOPbQXQM6KOypgiuO+V7uDCIAWoylBSPT9TSdUBxBSR9Orr+1fSQ1ICx08pRmW/DSjTATBtes5VrzuQs61uAegaKP189bYnNh+gF2oQBVbjoRlsAlAMOFaZlr3fZXYFGym18Pr+/NKv33/D/a+TP8uGCffrlHXzELkbBUGFK4OlEJPZyQyeAExN0CJ9LNDVlQTPjz5qCb/D1ZwlaFLh8osaEvIxbX5DDA4ODo4jAvTumI57olUa0NI5iVQHTKYCz2iM333FmZecNI0sJKF8OzN2l5RgpmVjAPa69iZskNqQkCWxKi1IuSIEVoFA27P0eGKymJB9CYAnlmLtjLKxKADiSkTkYHMNAAAgAElEQVSwZttARbee2d5/y5Pbbn1y55ptg1+7a/0PH9kKYLikhyQAiZAgvqiaJOw+eVZD8F2KxmRI8mCYyLsh+zBzYDQCfn7nIID/+PM6Gr31ufX+imERsn4/U90ntj+mZfvY7azbz7ruHIBjWj32qXT/hMBzXGeG/FnLpd6H53Z42N7zWpMIiIBNy2aaA54KPQlSE4pEntSsaU8QVOscNOCm1CmfCSwJSUkOpupmmTKsdJaWU00etvUVzrnh0ev+uumTv35xjCkQQZ36IUvKKqpVG1AAedUvHe4rVHOTsYuAv3HvhpJmlbxKaPK/zLYF9UDHAtj2WElZBDS/YvtORwR4AjA1Qe8U8UAC4BvUMqoGgBoBxQMUoDPnNwc5RRwcHBxHBETBuT2yImAw81JogE4rKSxFR4o4NJs5LUkArD8PKaxMb0iA6QCobp1bloSYJIK5P6fcejlbpaYfSss0cVnwhels6VeWPI6lmbgEIMeEUyQeHSjq33nAKZpu7XNkr3Nak77eArzpBEVRMwl75yNnzgUwpyV8MFlzDVNRys4f8frE+1Z7bHMvecGG+yQ6J59O/HNyJQ1hHPo+RqWwfk8OwPzWFJskENMk20bXQBHAwvY0Oe/B4nQo+rwqiJOmN8DLbBkoaGu2DdA/i2EuQEnZSQDU2uanYKYXqwGtMKX0VLwNEN2yAKQVCYBmWarpzgFgOgPVDoBhbt3vXAYl3azUsOkMRR0KMTmT2ThpcVi6Wa8DsI8ZIz1Sw7vWtvHY632srNznakoSAHoqSgc6FuD6BzYu/tr9r+7JjXF92gHwXRWTHzwBmJqgT45gAiB6OwCjJgDtLrE1XnUBcl6sWtAavg0HBwfHpEdVBOzlq8hB5o+7hLVNEwSs/dqFr159IbnNtqWrIS+xSiMyAGJvYtsoG05o0hiTSeUkLvkTALYlS5MBGmbFJTHhZeqzfAnftyBO/Pmy5ivpdg+VqYI55wZbV563IBFMAKIhDM9CRSczB06e1fDoF8+994pVwXXgnWjGoq9ITTz1rb2F7z+8uagZQQf3hzfud9ZnRomRCJv4hxKxAUkGgqHeECMC3txbAOBrVhPTyaGSVtJNQbBnNiXI1w/SeEJB5hs0uMapS2dmAeimTWPBz/3+pUtveZau7wtqyVCFmBwhjhpsryAImgBQEpRtO9IOmlL6KEZkOdGL67pVdlerhCYAmllhMhBfMrYvV2Z10j6ItSuA5IcjP1NZM1l/p6AGoL9Y/ZWLYXb+to27Xtrz4Vufu+jGJ+hC3fIcKvnWNLs4MHejkbL+k8e228A9L4ewvEJBc5tengBwTAZQmn6wqOOz/QwdzM6iwxV1VSlA7tNoxbzmN3aYHBwcHBMG0Y22M95SN9X+ihHKpXQzAW9NPBmVMtUosIGuRuL4zsY4gP25MgDNtIhBEIAGlx5DNVqUMc9SgGJueqBQTYIsxiRREKrh2lCxGnNkvH0McmC5su4z1x9ggi0yp+yqCxe+eXFbSAIQ1gEYKOiEW5GJy3Nbkpka0wMak+HLKU0iV9a+c/+m7z645d61+4Il/AF3NbYDQGJWMt1sVlMcbgITTABygbFo89vSHQ3VFs2+XAUA8QNtT8eikqOuLgbYKaHoz2sAzpjnzG+mYxBoaLt1wCNl9ncAVBNAQhGpp3YdvgodkVsxLMLP+Y87Xj35Gw9u6smrJmW/eDsAtg0gFRUBaIalu6uxZXjK0a9oZskz3dmzqzO+9cjbvr+6a6CEMARHixIYlk3Mmo7tyAAo64bBfnRgekCZSWCCHYCfPr795Gv/8f1HtwAYYIS2vrFxpK9Ck5zSAemA//ySM22tNROewQZBKUCsPP2IAE8ApiaoDWgsMOhL9mYAo3YAqLUFvVVl4vKHzpj98bPnzm0JH0rPwcHBcQTAjR98tfOomwFQwiS9T8q1B6ckFenNi9qcPTgagDiA7mEVTD1y+dxmQp6By6sUmFYtK6ilHQDJrbkkFEkQPH3dHBMtJb0RPMkHhkuGb84UuwmhrRP/n0SgXRwa3PfkSgDEiJAIzClj0RLQAJB0gkb2I2WTxN9dA8VgBE+ZHtQcBkBRNVXD8ZOZ0ZiESwEaywjY+a3JX1+2/FPnzls5vwnA3qES3ARgZlMCAGmtjGWYlGXbfYUKgOVuCWxBe4r8WLT8PFL0xLi+qnZRdxIA2vCpNR8XwHDRT4L604u7Tcu+9cnttYbgElFBKi4BUE2bsnrYRIu69KiGVWa0AaFx86vd4dOCWcssFj25imnZsiSQwdUlzdQDBkTX/eW1b/99k/OhzAVQ1Pzpwbf+vnG4rO/s9ychpndqRMkw4JlYN25TTtvG759zBOhjp0JRIlZfQTO9nZyiajyyqdcwD5ceeZzgCcDUBCnSS2JIgu77HztqAtCaji6dnj2uM93E3NCvueT4r7z1uIN0sBwcHBwTABr3+CxrJBr3u5kA0wGod8O8+IRO8oIEdh2ZKICekTLc0E0ScfsnVrz39FlkNTLdNqFUmRQiI6tisg6XgKREwJAwAQyVqtGST77ZkFAA5FVjVEUjGTkcnDAQbCAD2DuiAkhHpfr6r2Zm5oAUEZKKOKMhAUZ7mitre4fLALqHSkHp7UBBJ99oW18RbiZWVA1CfRFcgfWdL3UPl/Ratd50rNpgaUvHFrSlvnTx4mPb0wD2jagAdvUXAcxuTgJIKRLcEj5LNB8setj8AIZLTiX9TYvaxYiwsD2VVCTi40TK6rpp+Q6p4J22S3jqMUUSI44QvM4w4AF2poFq0miyIaFQ8UDRm7fougXXiVXVTWbQMivMpVx5g2XLhDJnagmDa/132D1YBDA9G0/GJARsQPMVozev/vzJHTc9vo0kA+R/IjkVJCn1jZALhS/C1w3btGyaa1XGTwHasHd4szsNeuw6YJrb2N4GBYAfPbb1sl8+/66fPnXYLInGBZ4ATE3MaEz800mdHztrfvAt33/YUROAiCDc85lVf7nyLK735eDgmEqgsY7oNbKkfzIdALcnUPeGef7i9mxcmtGYIOFgUyoK15GGxBM+URYpuvuYNrRqQycBUwoQ6eimlWphnvXSKXtrloTBnytpY0gARDBGzxRBEzm4gWO2BvOHgh06dvcVK//0yZWNKc8mPbkyCfX25sohKt5C5fN/ePnzt7+sm7YUEY5tSwMoVHQiAEjFpKZkFECuon/wlmdqyT3JOgAWdaTo46sjm4DbAegaLMNlEyWjMoCiZtz54p5l1z1029NdZP0v3fHq+25+5tHXe+luHQFAQp7dnLjvM6tu++hyuKMkCpoJ74wz9qQB2JcrX/mHl9ZsHwRAJq9FJQl1KUDDTI5X1IzdQ04hPCaJWo0OADmd6agIQDUttdoBcF68snt4R59DUiobJnvlsCeThq1mDYmCUqMD0D1cATCzMUmSkOGSxlbB86rBKhDgVuvb0jEA+bLx++d2LbvuoVuf2hG6cwojoIquGCZNJtkc7M8v7n51T04zrH25eiydu17aS1+Ppa1EwDY39ntZQC91DQFYuyv3yzWjfJcJAZ8EPDUhCPj+e04JfUvxZgBjmeQlCBDAo38ODo4phVqejzTgplXuoCFPKOKy+OSX3ixGBMLkaUooAHJlw7BsEujEvZxMEtD7Su+KGCGVWjpznVKASEk+Ea0eA8sP8VWRyXiyomZWaleXncNQRITV+2O1v2w2PkrwwGYIx09vQGA0WK/LBeoeKk93lWYU+Ypx91onGpvbnMgkZAAl3SI5QzYuX7ik/ZdrUpt6CjsGSrUSgM5sjJDXz5jfQhdOa4wB6BmpAFi/dxjA/LY0gKQSAVComK/uGQLw0q6hty/ttGyb+BE9va3/Tcc6/C5i9tKWigI4bprjH5qMinAtLNmQnYCWpa/8/VpidQqXeaWIQrFuB4CVeZRUkypNRyo6TRsKPgqQVRUBs6kFCVVXb+m79Jbn6MKyarIMpSIjn6Bxv+Ul29DEgI3/dw2Wfvfsrg+tnNOZje0eLAGY0RRb0JYEsH7viM7sIV/RqwMcVLMl5fSF2jLRvcOVEc348p3rAFxz32uULBeKoFy4rJnlgAvQgxt7/vefXgWwsC21ubfw4L+fsyDMvty07LvXdgM4aWbD2t3DY+8AsEPHekdUTK++1eYKCe55pfuDZ8wRwyZmTCB4B+CoA7kE6YU42a5IDg4OjsODWtQRav9PQ/Bo1Q5olBtmOibRUno2IRPBbq6kk2TDN5mRaAD8JqRu2O0bPgAgIUd8O2EN731VZBJflsdAASKNiKBlXCxsEjBBLe0vRfDJEiopBrB/RM3XtX6f05oiyUOx4lCA0lG5Kanc+pHlAEqqUcvvhQ6xWckkAEScMFDQC6qxaV8ewLLZjXBpYCVNJ8Hr1v35N93w2LLrHiJ0n1d2V51wyGiCNq/NUTpOCFc6GN8eult6hDT6B0AcXQmhq44GgGWVFDVjR7/DUcmVdM0IqXbDDUnJCTeYQWCkA/CTx7Z6VjZtlWEQlT1DxJzXvg4AXc7WE3/+xPabHt92xrce1k2LOF/NaIwvndkgAD25yl5Gy1FwR0nA7Y0Q4n57Jgag6F4MAQGjB7aNXGBmcFkzi9XBwM6LB9Y7jlLED+rv6/fR9YdL+uuuBeq2vsJAUUvI4luO78R4XETrDDkmMuXFHZnbP75yEsZaPAE46iBHBLgFLSkicF4PBwfH0YlaOj8aCVfZONUX43hoShGBKHEHS1rZ1X2yK5Cie9q7UAl8KLVqI0MYU4z6dpApNjfGPSEpyRYK+lg0ACKAiCBQqQP7caEYlQIUhC/PobCBHYPF0LcIjmlLEn1zUTOIvQ9pCJCFph1CuSGgeoNTmJllZOZaSTVe3jVkAzMaEyTuJKytomrsGSoDWL93hLUSWt89TCUWZDhxizcBSJKzTToATMjemFAAlA0jyAKPOxQgMgrAOdS7Xu5+6/eeIOpkgi29Bfq6rJk7+51zlVcNOvG37I07CTeGqBo03aTZhW5ato1X9nhsPcuq4RvaRV/TzMGnYq1y5xhX8e19znH+8OGtuwdJApBMKtLCjjSA57dXM5+RkkabJKSKTyhA7akYmKFpZIxGLZR0I0ibKutmSfXTora4IT4BK15/z8/WXHTjE8TnlPy7ZHqGDNAY40g4ABpjRuRrShDi0wdXzg4OcZsMmIzHxHFIEYlE4KqEx/Uw4+Dg4JhKqBUZR+ggMOq/6VYj64uAgyDx32BBJSFa1FvVdErvfgmyK/kNfGi8dgfg2I70D953MrufZEwGUNFGH+1Ed+gj/YdqAAhG7QAEkWQmGFB5LoHPz7Et5XEQOqY1RaL2x1/vXds1DCATleBW0FHDflGMCA1x126V+SLE8Smv6s/vGASwbHaDe3iOCLjbHdzGoqiZ1Aqzb0QFw+5wdhuXAHz5znU/X72NHb7WlJDgDqb1mf2TX5P8SylAX7h97Wv78l+4/WXy52BRI5+7sD1FDmOHmwAMl3UqAvZ1AIjpvjMJ2LTodV7Rzdf2jfg8SSuGyS4p69W0h7LbfYOWaXBsobq80VV93PNqN/FumtEYh5t9PbdziK6ZVw3KayKFdmJJRJoq1C23I+snhhGQVGq4GJL1lXWz4ir7Sfpn29jeX2DXYa/DTT0FAH98YTeADd05AMdNy5LE7ABEwABKXhtZktcpo7UNJwo8/jvq0JmJwv2fKY82BICDg4NjqqKWT0jVfoeScNwIclTXBB+aUwqAwZJOdJbx8A6AdwyZm37QuIFKkGMKsethbEBLOoDT5jQ+8Pmzl7h8dIKkY2tjVYxR5IyU/ONrUETlOhSg8EG/LHxPF7YDcHbdIZKdjZ7S74zGBIlln9w2cMtTO+DKGyTR0VoMFEMcY9Ix6fPnL7hgcfvvPraCXe5Sfczndg4COH2OY+WZlCUAO/pLvmwkIYuzmxIA6GjY3nwIBWhWo2OK/btn9wyXqseTTTirlTRz96DHyDIRlQEoYggF6MUux3bzxZ2DABa0JgmdqaTqO90JA7mSRiv0uuEZJUZSPkIB0k2LZheaYa3Z2u87URXNqmgWXMoNy6diRMZeFyM3OGZjX7pwZ3+JdFFImHHyzAa4RCYSchQq5ojbXSGcmZJqAGhKR1mejGGaCNMfkw8dDmv7VDSTUnfIMXcNFvNeCyaaDdIztmewBOC1fTkASzrTJB8O5ZXppvVPP1j9sdteYPs5msfh1PM7kr6PVNs7eGLBE4CjDv/3nUt/c/nylce0oLaJLwcHB8eURy11LK0Xy9R+x437a00+qgXSARgqaKQw6fPa78jG4PrQU1TjftoBcO/TRDScYhIG0gEI5erEndG2emgHgGXk0wQg6esABLIdevyZ6OgxjU9UkGKyi7MWOILaWFiOMS1Tde8579jWU2c3Jb1qhLQrQSbV3L6wCazZuDy9MX7zh5atnO8ZWEk2sYENe3MAlsxwsiYimdjspYu8f/msR64699xFbQA27HWC8j5CAUrF2DU/de78b79zKYDt/YVtfVVGU0yOkKi3rJlbfVwURQTVAAToLCT4fnHXMIBTZjeSvOWFrqFdg06DYqSiV5itbrh/E41oyQvia1TWq52HimHtz/u7JUVdJyliSyIGoKiZqmH947X9Rc2goa3qzSFpcGwynQHVWzI/tiNNXH0WtFfz0kZXKTHkhu+kZE5sQFNRib22SSgflEeTJaz6pbqJXhU0k32+vMs/wYBmFDmXhrR7qGTbDgXouGkZct2GUoC6Bkqvdo88+Nr+TT1VGpXO/AqlMA3AqMKhiQKP/446NCWVVce0EPLPeNvZHBwcHFMG1//LCQCuunChb7lYHQRGOwAHogEA0JxUAAwWVRLN+DoA71s++xcfPu0T53r8mmm9kCosZTdKJpv/67JZZy1oveC4dgBDFR3M6HcWhCJf1k0tLJRh57rQo4p7exGxgC/QO050Bh1kE6N3AKLeqD3FdACWuzN057f6/VgEoM3lfvz00tN+8ZHTJVFIKB7GEVUgEPZUf1gHoKHGEcZlZ5QyKQw3uquRubm+kbdLOrMdmdic5gSA3e5bpJmT9LKYklHpPafPXNSRAnD/+h66XNVNkjWVdHNrv0fq4CQAkgAmzKWJ2Su7hwG82DUEYNmcRvIb/f653QCWTs8CGKnoGhMc//SJ7au39JHXZDlRNVBGDQDdtHsDCUBFswgFiPi0llXz2vs2fPy2F75613qaAPiiYfon6+1D+EgdbvL2b8tmEIUhe803JhUQF6AS7QCYcAvncSlCPJqcT9FMhFFxSLI06E0AEkoEwEBRpW098j+ud8R/bWi6BWB99/DWXir/Le7oL+bKhihgYbuTAIQ6BFB+0b2vdFd3aLIaAM9WRKUtTz75LwGP/45SkCty0lLTODg4OA41/u20WS997YIrzlvgW06r0pSNw7gAjVMDkIwCGChqpNsQ9RbFo1LkvEVtPuINrRdSN1LFTQlIaHLyrIZff/T0k2Zm4ZYYfYE7AakZV3Qr1M+kheHZU1IE2c+CVofNEhwk/8lzjyEvxmJp8t1/OwlMfsV2ADIx+aoLF56/uO0jq+b4torKETrhldqD+sZCZdwOQFoWAfTnQ9ggxJg/iIggxKXq6aIBdzJs/elNcQAzmuIAdg05pXcSkgZPDoDl81rgnc5W1i1yVv/66r6fP7GdXTnuJACEcW4BsGybSmCf3T4AYHNPHsAJMxrZ0viX3rIIQElzxo19859PIMt3u80BErinApPdVMPodzxMq7++appkPy3JGICSZvz22V0A7n65m9a2K15mC00ADCYDUU0DwCqX3PW/Tp5BXrBNnsaEDKCgmlQnTeS/RLCbiEo/u3TZqmOcjg05z0EqDqFL5bwJAJnm1jNUKbuHSi77fMV/baimubW38PYfPPXunz1DlpiWfc/abgDzW1OKFCH/HULbg3Tn972yj7KAWIGETwNA2EpKbS3NxILPAThKITmjgnkGyMHBcfSCLYRTiCFGnM6zcrzdfIcCVNaJajYRFqn7QD+CZgs0goozsVSUiWJDPUZoXjEYsKUHU/kGE6JduKRtR1/+Rx849cmtfauOaWW5QwlZ/MS58+e2JD965tw7XtxzzsJ6JH6CNx3btuGai+iUZbYDEJUjJO96be+IbytZjJRc0jYlXL3lhI6bHt9G10lFnYMnsfVgMUQEnKk9qSAVFWl9lyoTkoFwGW4GMrMxCWCPO4HLVXaGnPPlc5t+tWYnu6SsGeT0/s9DmwHMbkqohtkzosJN58i7qm4AKFQMWrDfm6vAtcRpSMh0WMSSaZkV8zykpotP6Hh9/8ivnu7alyu92DW0ZFqGuAMFEwDDBPno46dnH3m9jy4kUXJzSobX/pLWtn08HGo6pFksBcgC8NYTOhUxsrgzTf9nsQps0hAzLbvH1W2TDgD50GRUmtmU+M3lKzbtG7n4e6tJmlEJkKPIwfisn+a1JDfuy+/NlasUIM0EUFT9F79m2MGr7vEtvQDaM3G4iVmoQIhmPnuGyl2DxTnNSQAaw4+iJqT7Ryqq4cw/Hm/V4LCBJwBHKcjzIjpZtSkcHBwcEwXaGhUD7p/jfZa3pGQAAwWtPR2Fa79WH1J16jAVAbuNCCaWYuUEoUz6qCQKgm3bwmAxhC3d6mpYZVGgU94/umreZWfOEwQsbE+DIcQfPy1z92dWEcXtf739uP96+3Fj9I9mo+oUozqg53Ou221g37p4aeeda7vJgF6CE2c0rP6PN921tvu7/9gMIJtwonaihy5pIcXahkRNn6JEVEJBA5BQItToKck0KLIxmXiATnMSgDiAXNkoqEYqKhFvRyWsA7ByfosoeEwzS7rJTkD76aWnXvuXDSQKd+YAODagNrxBbUk3ddMiu0oqElV+n3lMsxgRkopI2SZRKdLREAfwm2d2/eSx7cvnNpNBYITsRDIK+mLvUBnA0pmNNAGA66hDjE1pApCOSdRmtOR1t6STg02WAqTbAFJR6ZvvPIFdmZWCZOKyANjAbredUnLCdAMMWYhkZeSt4ERekoANeV2AZrckAewaLFHBA9EA5FV/HG9Y5t6A0dOmvXkAzWmFHnBFNx/f3LeoI92eqbKS2Oyo4PYWiA2oJMIwUao4J+SSHz01UtJJFsopQByTC2IkgkmsTeHg4OCYKFD1LeXeUD8cZbw2oMkogKGiSuqRyTF0AJRAuE+Ph6VTK0r17h1KRxEEEOp8aALQ6BZofQQkNrJnqUE0UBYEHNj0GLYgTVOa4PSxqBwh1j13X7GKXT6zKXGsO8C1ytupfT7rGJXSI8lEleBCACuOaQLQEJfJyUlGpYa4DNcuhmgqQrsuDQn5DK/muKSbbNsnm1Bi3l/TEQGbJoBcmZn5pRrUkj+uiDQ/IVONs0x6E5VE4hFE5qk9u2OAEMMUKUJ9Pui3I8yWJdPT7EGSNKM5FQUw4nqYNiWVqgjYS4inVHjdtL/99013vrgHAFESB08L2wGQIxGSB9LRb84gMDIlQ/acGd20LdsuByTsbgfAo6qf15ICwKosyno1p0owchRNt/cHEgByWpoTbAJgfegXzy3/5sOsLITVQlA6kG7ZALIxBUBJ1wEYpt2Tq5R0c/+Iikkstpykh8VxqEFCf54AcHBwcPhAg11aWD9gDQAhQqzfO3LbM10AYmMwz6HxEqPRcoqacU8HoBpWBtW6BGQ61VAhRCPb7CYAwRC8ulv3rToDAcYOGrXLkmcApa9Ur4gRQcDK+c1BdtbcVn8CkGCidt/TrM6oMkr3zySqm7O7OuuYFrgulgTkNfHxVN3wOnTnb106jf1zYWuKJW5l4hLN4iRHiReBK9slQS1BWTNI3V0WBSkiUNXsaXOa4IabAATBFiNCh3coAYCOTLQhIdPWUFKRiPQZgChgfkuabk43aU7IALa40tiEItIRV2UvD4cWwiu6ddPj2/79T6/YtkMBCiYAihipfrQk+AZCF1XDsm1CNqOZEj1FFd0KeliRbGS4rIGZxjCnJQmgZ7hKBiurOtzJXNOZkQKaZe5hVmMvv6akjEA/7VO/eYHZJ2P44/VCzbryBjC0JfK1Jy0FaJIeFsehhhQRMYkTUw4ODo6JAq2MVNk4rs2ONM5ufqPXi2YsFCCxOoXA+XTKs2ADcbYbEPTrdNaJSgAGwkYmNSejwX36QI82lGI0XlA6kOWN6KjSd9TPIkJPME2SBLNya9bjy1knAUi5aRgbjNKFbSnln0+e8bYTOj573jH0XWLVunuYJAAmaicAFx3XQV7c/vEV71424/p/PZEW78WIkJAlv9WSXGWcsxSgsm4WXWY8gE73LJFaPu1vRCVREPwzs47rTP/m8hWyGKEyv5gs0rlyranYnJbEuQtbLzq+nSYSAJpTMQB0Rm9JM2kHYLCg3/Vyd3WgWEAgO1zWNNNEQOYOQBCqI+2USCTjTQAKqknL6pTmRLOIim4G7ThJB4DoFiiTjTg1efasmQAKZQPAdGayhK8DsKij2gwhZ8D3FV7bl6fOoSVmShrNgojVT2Pc8VBCwLlo0lZaD238d+WVV8qyLMtyNOpJT03TvO6666ZNm5bNZi+77LLe3t76yzkOOgg1rdZsdg4ODo6jFtTiRnHj/pgkkeVjcb9h0ZqOksf/0umZk2ZlL3Cjwzqg0S19QW1GWOEpS/uJKeGPcsJgCZ2T1ZyiOtqaCUC0Ssk4CKECPWDfaKdp3gSgjtFqVIp84ux5bzm+41g3aEsw0eTMBk8IWCcBoKynNOP8Q8vPs1uSqaj0o/efetHxndWdN8XhMtcJ5aNWAtCcUm677PSbLz11+bzm77zrxI5MLO72atIxSRD8GQ4JdjVG2EqSzJJqEVN5crTvPGXGl96y6O+fO4tsRSXOpLrcwSQ/j1117t8+d/YxbSkww6SzcZnWoVvSSkQQfnnZ6T/9wDLakhIEuzHpOWNl1aBzvl7tzn3h9rUf+9WLzlsBgeyuwZLjcxV2WuhPL4qCL755R6oAACAASURBVOooqXpJNckB0NUigkDOUkkzgzagFeZcUbPXhoSS9e1ZNwGQiWMzGD2JblrdTAfg2HYmAUjKAKSI4Mvz6TGUmHZEUXOSAaKUIEeS13S4nk4UR2kH4MYbbyyXy3fccYflTfmvv/76m2666d577924ceP+/fvf85731F/OcdDxpkVtX7xg4RcvOnaiD4SDg4NjcoGK9qrqW+kARVMJRfzd5Stu//iKez971t2fXsWySmp+OnUBcmMp043DWOaMpwMQNggMbrU4VANAOwCJ2gkAJW/EwzQG40Ut5cD/vtDzGKofLX35rYt/8oFTqWo5yXzx6d7x9nUSABqDsh0AKifwdSQIZjYmAOwZKJuWTRKY0EiX4OyFrRcsqWZ6NEshEaqPA0OoRyROJUHttGwcQFHTSQeA/IhRKfKpc+Yv7sz4vh3JUVke10ym2k0PsjEp02yWnWFMmzxxWfRNqStqpuat9K/e2rd5f35frhwMyncNOhOUo2GXCs15ZCGS9noTlTTHpjYuix79ieRMsajUEAETFUGrm8dKEcGXSVZUE0Be1QHMYM5JoWIMMP8jFnVW55S1pJ08ypcVM9OFqwdDrVGJVxIR1dToAEzSBODQugCJokj/ZXHbbbddddVVy5YtA3DDDTcsWbKku7t7+vTptZaTrWzbzuerg/TIa9u2wTF+xGXxM2/2u19zcHBwcIiudFKKvNEEAMBpc5vGtb4cGARmIMTlxuvjGR6gk7jQYCru1N+miXYAagf3hLxR0a06ScIbx6KO9LqvX3T/+r1X3bEOjN56LKAHJgpoSysAMjFpoKCjbn+bbsWOM6OWo9PCkrRFHRkAz3cNUnr32OXgVIGajUsALl81/64X977dHalGQlhyzCQB6GyM7xoqFTWjWNFRQ6TRmnaOPBhws02qqBt6ZuJyVBIBD20GjIg2Kos+blJJM7UA//7CG5+Y3Zw4a0GLb/nW/QV3P2GGVO6niJLgs1stqgaJqn3Em5gioqyXNTM4xYKIsIlgupWZx9yZjW7sAYBkVCqqBvmlihUT3mHbu4c9CuCFTAegiRHGUJkyWM0DczBUok2UEkRLUDEs07KpSJrgKKUAhWJoaGjTpk3Lly8nfx533HGJRGLNmjW1ltMN8/l8lsGMGTMAFAqFw/8VODg4ODimKqqMfzdWISpb5bD4JtNKLSXDmGZInWt6Q5yGFbWCZjbYunzV3E+cPe9dpzrjmRrislPdr2tMRDKfWiLjg4V0TIq6tfxx+SzRUL45FSU146b46NSmVLUDELIOifV9OHlWYzIqDZf0l7qGyZKxm2hTChAh7jenlKe/8ub/evtx7pHH4E46GyEJQDYGoKLbZYOMHA75gY6f3kBe1B9NTU9mYyJKs8RmJgGg2UVSkXxpng2MBEz0AXQNlIYCPSU6VTfUkIoK1mUxQtULy+c2A9g1VHrb91cDSHuHPZOmQUU3g3oDVbct2y6oBoD5bdVJ0lQiQsx8Krp15R9eIpuznbeugSKYNGlaQ5yKNOh0PF/SRQv/bDayN1f+xVPbB4saGYfc4F5UFd2sGJ7/sJO2AzABh5XL5QBks1m6JJvN5nK5Wsvpn+l0Osdgz549AFIp/yBxDg4ODg6OAwYdAKxEnDhgQVvqfafP/MIFh6NrKlUVCG4HIKzRLYnCdDesCeVdwBsEnzir4ctvXdzZEAUgAFFJdAZR1Q3uydDcWhSjgwi5OmlhHMkGDeWbUwrJVRrcIi476ti/VZTWxT3rXP2O49516oy3ndAZ3EQShTPmNQF46LUeuN47YzxI+itQ3g7LdXEnRVTgCnCJp2dJNUiMmwjrAJw0o8G3ZF5rEsAqrwkpzQyzMelT58wjme2CtmrNmx5bQhGDfZ7hsBFyALb3lXxLtuwvABBqjIiOupa1cqR6eb9/xSzygqS3iagnHCXfuqybQRegimnk3YlpFx/f8clz5v/3vy0F8MGVc8gKu9yRbfeu3UdezGD0Ib15FcCSTuckNCcVMgBBlgSqA/H9pyh5NQDkO/5qzc5r79v4qzU7ybzkZMxJ3IsB3cJ4vYMPGyZgEFgmk4GbBhDkcrlMJlNrOf1TEAT2T7rw0B4uBwcHB8fRBMoGoU/uiCB8851LD8+ny4GhY1bITFIAmNUU3zNUhndCMIsUU90nJdWELANIRCVC7ylpVmjJloJEkPXXOSignzAuy1Eav7YkYzHHs1/8/ceW66bt819iQW1A015X1o+cObfOZ517bNtDG3sf3LgfrvfOGEELzKGjCQjvfKCkW7Y9UjYAEE9P2/VvTYVxmSjffafrUv+LD5/2u2e7Lj9rPrsavYSyCflfl826aEnn6/vzp85upCvQ7kRMEumZ78hEh0t6xbCGvPLxxoQ8VNIBbO3Lw4tt/UUAUSkSelqqIuBIhM6lPnO+h0fki7lJdlrWHBeglcc0R4DevLp5f0E1bNIqiUkRRYr851sWkU3mtiQ/de78nzy27X2nz7r9+V20bRaTI41JeUFrcktfdUrA7ObkN/7XCQIERYq0paNdA6XmZJQevM+ty0cBakg4NDMAvfkKcSWKymJCEYuaWdKMsp8CNEkTgAk4rKampoULF77wgmOtunHjxlKptGLFilrLD/8RcnBwcHActaDU/wkZlU7KtKzjEDVj8YHKPWsF6Ky3PQn1SBpA5gOQ6DlRdzQB8f9JHAwXoPqIBuYfjwVUuducVlrTMQAtqdgZ81vOXthabys6CCxWM0kI4vS5TQD2DlcwzpAuUU0AQj6ODGQwLXu4pBNee4cb3PeTccVhGVEwzp7TnPzKW49jBb5gCELEpT4Tl0+b08QG6TOanc+KKxK93o7rzMSjIoDhiqcDcP/nzz5rQSsYWyoKRxhdIxGl16csCp8+d35HJvrdfz0x5aU2ifB8JTLDrqw71fRTZjb+5vIVZAbCSFkjeW8wofqPixbdc8WZX33b4h+875QEw26KCMLfPn/2t5kcPh2TT5zRsHRGFkBLKgpmMgaYzH9aQwxMAlDUDQAtjPBgpKwblgUgKjryhpLq71qM1zv4sGFi8pL3v//9119//fr16wcGBr785S+vWrVq1qxZdZZzcHBwcHAcHlTNfyYiAyC8I5kJGo5pC2e6znKljUHzdQI2uCf1XZISEN4/WVK/4k5kD/V1AgcFVcf68XQbaHG9OaFcvKTjv/9t6VVjsLajaUOdacFBsCvXZ977QM9eJizXksUIcQfqL6hEBNycVEjI2F/UUDtDI5yf+qCBbC1PpPMXtZMXUal6vZ0wvYEw8oeLnkp2Y0KZlvVPHGMxKhVNioiLOzPPfOX8d546w3cOt/YW2T+Jsy11ASI9LkWOAPjJY9vfe/MzCIyQAyAIOHFmQzIqvfWEzv+42LkSiO2SLEbS8eplHGVy2tZAAqC7xpXTGxJgbE+JY2kzwy7LlXXilSRLDoeqqBkqMzetFi1qMuDQJgC33HKLLMuXXHKJYRhkIEB/fz+Ar3zlK5dddtmb3/zmWbNmpdPpP/7xj2T9Wss5ODg4ODgOD6TqILAJqJGREjgbS33hgoUfWTXnrk+f6VtzVosTAtYansVOCyYUeRK7tKQVuKXlOpOA4frkZMN0qAeAOqVQWvgfVweAtjiaU4oiRd51ysz2TKz+JmBmfmXi4/hebCVeHp9VkWsDWoOV1JyKAhgoaCQByMZlkqL05SvwWp2y+PH7T00q4pdcAkwo6FXUmAgP3IkSF8Dm/XkA71ja2ZGJfmTVXKcDUPaIfRUp0smQ6YNT7Wolb5Sixl5rviZGztttIK2nsmaQ6jshCPk+0eco6sPMJud/Bx09pjCXX5LJadszUQBtzJVTdi0+ybZknHB/QSV8pGbmdxwpG6QfIosRkgCUNFPTqh0SabJaAOFQawA++tGPfvSjHw35VEn6+te//vWvf32Myzk4ODg4OA4PGBb+BDy8JSkCxoAIQDIqXf32JcE1aQegVhU/GegAnDq78RuXLDl1dhPcumz9Kb9feeuiRzY1nnNs2zi/RDgUMWLUEDTQevCB2YDWkfwGkaxOAh5HByDBCioOkAIU/nGtmej2/kJfQc2rBoBsXI4rkVwFA3kVQLxGB2BRR3rdNReFk+5dUBvQWh0AGp6SkPf77z3Fhh0RBJIW5pgZ0qSMTTsAsxoTmmX15Crs3tg2AgsqIpfCWmrZuJQrG1ddtJBdSNxp6SRg0kWJSpJ3w3o/H5XIp+jMBHaQNnOZvWvZzO7h8gdXVhUg1O7TielV846Xdn/xj6+ShYQyRJCr6A0RBYAkOtqSomqUjWrnZFzNosOMCRABc3BwcHBwTFrQOQATot4LdgBqgSYAtRSprA0oqZ5GBOHSM+a4SyR449ogFndmFneG2GIeGP7PO5b8552vXr4qRGtLT7UyHgoQja0bx5cAOBFhZjydDUkURMGxrKmfNfkQdAHyoSUpA9g5UCRM+mxcTigyoPYVNLiDwEJRP/oHY2jbUDtWvvPTKz//+7VffdsiAIIAAQLcJslAqSoCJgkk7QAsnp7e2O2XAis1ElHKt/GVwz+wYvZDm/b/7bNnlTXTN8aL/LJl3VJ1G26fypcc1mdwUevPiFuO9wzSZg61PRPzSfzLujcB0I2du6oMJZYsNFLWE053QkxG3enFjFuoPFktgMATAA4ODg4ODhYMHWUCHt4kTBlL4bAhrqya3zxU1juy4byXuBIe8RAc05FcvbVv/hio5AcL/7+9ew9u6r4SOP67V7qyLEsWlrGx8QMTEmpIyYtQ8KaQQBYzBTZ0Q6C7XQhMlgQwxMmkZdjZpmk6SzOzE6Z1SBuXnbYzS9I8hiGTbmY67dBANmHadJx06LYppUzS8goGHIiRn3ruHz/r6mJLsiRfS7Lv9/OXdS2k62MB99zfOef3T1+ou/tzU6tKE+y0pV8nZTQzMd7OW5TBvXz9kjqjFQAhhKvI5h8Iiwxv68ZXAJK8nRwE9PHlXiGEZlecmk12XX/WHxRJmoDTNBgbop/iZvkd9WXv7F467KC8425s9pUJpGyKFULMrfae6uwd9qeS5UV6adCwFYI9X/78f0Q/ryhCjPgMOmP19AOhkIh9eoetMKReAdB/y9dixUXGj1bqvFcf4yOf1h8IXe6Jr3UYN1LwDwbLQg4hhF1VZFlRz0Bw0LB3ASsAAABMDHqpen5KgGyqSO8es6KIlx5eFI0mmAkjeZ2pdgt+cuXch/5upnGT1Byo9ia4+heGUGfWXxv7oRLOykym3O1YdIOvxGFP3f+Q4O3sNr8Ii+ynACW+4pKNGR9f8otYJmPcwMGVstI9tf7M9y2WPCPqjmRKoKea9b4El9DJmtHjPQAjlneSfXTlr2YwEJE9AEN7VtgyKAHSyTxKXP9bS/2rL3FqMtOT9Vd9g+ErPfF2CJ+h+TgUFj39QSGEwz60lXJfIDxgaAIu5B6Awk1NAADIPVueVwAUYRhFOqoUZSC31U358u01QghvsX3kzrg2Vcnx1X8K8R6ATC5VbarylTtr722snFPtGf3ZMaqivPpI0483L8h0GyF9nk9GjQp6NVeyu85yCo0cg+MtdojrmzdKUs5pTa1vMPEA2VG5RqyouOQA2di00IUzfbYRH9FkrRF67X76GbWcWtsXCA31AGiqEKJIu+6P67N6UuuN7eNrzIKSbZ0h7d8wv7HK/d8PfaFkqK83IrcPk+SKje7TvqCQU4aKbEII/2BwIBA/sYLdBECwAgAAgNHIrbhySTZKZnSJmYzDrrZ95bZHl92o2dSCHUYuZT169T8fuHUcTicxfbMqRyYnqVf+GGvHjeQUILndrFwlKDZM/kldrJLasC1p01cyIl0sji1EvLNr6bWB4PQpxfonqqxEu9obFMmTN30fifTTWpmv9oeG9gGQkR/WY2C8K5/Qf6y5+en/+XDvutvkQ+PiUup1lVtrp/zi8buFEB9d9gsh+gKhLkMCUH59w4ns3HDY1TJ3kTyrSDT+dy2jhDbHSAAAAIjTYpcpeVm+v7HSrSjR2dMyuKWd2qyKxNsIFJR4E7AZmc840etGMurstNuUD55cLpLX4cgxlJLs1jUu14y8Fk9ffyA0+pMSGbnzg17HX1NWXCOKheHHqfQ4hxKAJLmKXs+WfhYq79D3D4aHxoAO9QDEQ2G3jbJzsxBiY1PD+gX1RYnaS9Lc2qJY04QQ3X2BXkNfb8JeDodNneoqEkJc6Q0a6/cKOfEmAQAAIC67enSz3Dy99Lf/vjzZ3eLJKh7zAr5j6o5di6fePW2k8pRDiox7F0wpcQhD24AYWw+AL9tPkTHrcGm2vmD48b+/cdhz9F9Zpcd5stMvhChKkjDrJUDpb6whL9D7g+HuvqAQoszlEIZ9APauv+VLN1eXpBEZ4w14YwFSmu0fsv7qzNU+40FXopRMsyk+t0MIcblnsMLQJUwJEAAAE4N+mZKvu3eVnlT7rU5KhjGghXvBpN82Nrc7fKq7SBFCDtyRja3GbapKxlAC9J1/nLf79f/bumRWpn/Q+KZt/3z7/PqykTmMTR26DtZXMJLuBKxlvKQmt+89e6VPhqXMpQnD1Xyl25nO1f8w1/cApJUAFNtVIcTZq31CGKt6EiUAdlWG6ErvoHG6VCF/nkkAAACI0/QpQAX8n/cko18aFnLNtF7aMXIT3LGwq0qF23GpJyBimy4bC1RcY2gCrvO5Xt6yKIs/aHxTZ+zSdhi9zqXCM/TdZBe7Tj1xSjujLi8pEkJ0XhsUQpQ4bDI/1KcMGbfiSp9xQW9kT3xCcvklGr3utBP2jjtsqjznT3sC00rjlVd5mSSWpsL9mwYAQO7pKwBa2j2LGCNVUeSVUiHPTddrP0zPUipjVUClcgpQ7I0UJerMZGc0sxhLgJIVsdhixytjU3GcSa6q4z0Aaf9yjSmHvLAWQtjjKUdWCUDmKwDprzM4YmlSbyB8bSCeAKTf95x7hXtmAADknn432lbADXyTj7zQLOSSCT0ByGi74nTobQBTXLIJeCgIdVNKMp1VaopKw9ZyyX4jeqqmZy9JVwBiV9vplwAZuxemxObu98fGa5Zl1dtgvBZPWMc/UpoLBUIIzaaWOodu93/yWb9+PJ0tvfOFEiAAAOJkoYJdVfJy7WVZml0dCEUKOQGIl7KYvUyhl9HLWfJ6ef0jd99g7hulqcrQl5zshzU0Acfu0Cf5CxOfnpT27XDNpnqdWvdAUAjhcw8lAPNqvZWeojpfcXbNOcazS/M3aNyG+f47aj785NqGhfVJTlhRFFFe4rjUE/AbVwAKuASIBAAAgDjb0K3owv2fe1Iqcdr9A6GEMxYLhH4/2NweACHEtNgGyVNcDiHE1JKhIKy/s87cN0rTVHeRTVX0CfcJn6PX8+gFOcFINOEzs1gBEEKUuWMJgMuhv86x3ctMuaROM7c3bsJw8/TS766/LeHTbIpQFUUIUeYuunT97gRaAf8zUripNgAAuTfNU+TU1Bm+CTA+fzL5zpp5//alxobyknyfSFKu2P5cmuklQLEyejkFaNmcabu/1Pjz1sX5Wg+xqUpFrAo/WVeGvgLgjhXKJ9t3TO8ByKimrsI9FJMyV7zi32FX1RwuzBlLgOp88U/mTRUlQohV86rkw3As8akYUZtUyD0ArAAAABBXWqwd/fpS9xjmryML986pvHdOZb7PIhW9IMT01aFp3qFrXK9LE0LYVGX73RnP7jTXtFKnHMKTLAmJxO736zf4B0KJEwD9IjjJCkFi+jKIXgKUe8YtvZbcNFX/+lDLXSc7/bfUTfng9BEZJWlkc0IhT7Uq3DMDACAvqr1OOYkc0BXHhmMWZbgR2Kj0wqfS4kKpgJoe6wNONshSv+2tX+MGgpGEzywttjdMdc3wuTLa3q48tipSVpK3bTH01YZFN/iMu7+VFmsLZvqK7OrPH1uy5KapO5cN7ZI2dcS81EKeJMY/cAAAAKPQm1mTbXmbtRsqhspL9CqjvKvwjDLbJxLLAOyqes/npr59sutfFs5I+ExVUd564p5ohiVAerag9wDk0YNNDQmP+0ocB/51of6wfESuwk7AAAAAE1h8DKjZKwBlLscvHltcpNkKZ/CUL7bZVrIegEjsVBVF/HjTF7r7g77kN/izmKir9xaneNkcOLi16fTV3pXzqtN5sr5qoSvkzQRJAAAAAEaht4Q6xmGDiMbqUtNfcyzKYyX4yVYAwoaKfpuqmH6ZXh7LQPR9AMyiKBn0IiyY6Vsw05fmk5tmDX9mdhNLc6NwUxMAAIACURxrCS0qmEKd8aOvACSbYxOJJK74N8tUvQTI7NRi/Db4aygvGZauFPI0YRIAAACAUbgco9wUn0zqfS75RbKqpEA4k5k+mYuvABSbnACM62jO1bdMNz40fWKsiSZ/FgsAADBGxY7YCoAFEoB5Nd6dy26c5kk+gWd8r/9Ffblrfv2U6WUu0zfTVcU43pX/WvPs337UtWBm+Ssdp6NRhSlAAAAAE1hxrPJn/GpICsrXmz+X4rvhcS4BsqvKoZa7xuOVbWZnFEZlLsfhr90jhDj4wdlgOFrIi0WFe2YAAAAFQp8CFM5oR6tJKjRhg5Cb/E3uG5BsF4VCQAIAAAAwCn2mOwmAEGJWbO+CCSc3Zy7Hp7IPAAAAwASmKKJqirPzs4GbpxfWyM68eKK5MRgRa26bPvpTC8bBbU3/9b8fP/UPc3PwXkUaCQAAAMDE9+6upYFQpKSIayfhcdr3fPnz+T6LzCxo8C1oSHeo/xjFVgAKtwSIDzEAAMDoNJtayPd0UTiccgWggPvF+RwDAAAApqkrKxFC1Ma2UyhArAAAAAAApvnuV247e6VvTnXhtouwAgAAAACYxuO0zy3sZnESAAAAAMBCSAAAAAAACyEBAAAAACyEBAAAAACwEBIAAAAAwEJIAAAAAAALIQEAAAAALIQEAAAAALAQEgAAAADAQkgAAAAAAAshAQAAAAAshAQAAAAAsBASAAAAAMBCSAAAAAAACyEBAAAAACyEBAAAAACwEBIAAAAAwEJIAAAAAAALIQEAAAAALIQEAAAAALAQEgAAAADAQkgAAAAAAAshAQAAAAAshAQAAAAAsBASAAAAAMBCSAAAAAAACyEBAAAAACzEnu8TyF40GhVC+P3+fL17T0+P2+1WFCUvJ2ARxDkHCHJuEOccIMg5QJBzgzjngBWCLK+T5TWz0QROAHp6eoQQtbW1+T4RAAAAoED19PR4vV7jEWVkTjBRRCKRCxcu5Ctv8/v9tbW1586d83g8uX936yDOOUCQc4M45wBBzgGCnBvEOQesEGS5ylFdXa2q15X9T+AVAFVVa2pq8nsOHo+ntLQ0v+dgBcQ5BwhybhDnHCDIOUCQc4M458CkD/Kwe/8STcAAAACAhZAAAAAAABZCAgAAAABYyARuAs6vaDTq9/s9Hs8kHh1VCIhzDhDk3CDOOUCQc4Ag5wZxzgErB5kEAAAAALAQSoAAAAAACyEBAAAAACyEBAAAAACwEBIAAAAAwEJIALIRDof37Nkzffp0r9f70EMPXbp0Kd9nNIG1trZqmqZpWlFRkfF4siAT/Oy89dZbzc3NHo+nvr6+tbXV7/fL48TZRH/5y1/Wr1/v9Xqrqqq++tWvnj9/Xh4nyOMhEoksW7ZM07Tf//738ghxNtGOHTs0g+eee04eJ8jmeu+99+677z6PxzNnzpzDhw/LgwTZXOXl5dr1zp49K4hzFJl75plnampqOjo6zp8/v3LlyqVLl+b7jCawUCgUDAbfeOMNu91uPJ4syAQ/O83Nzb/61a+uXbt2/PjxxsbGTZs2yePE2UStra0HDx7s7u7+6KOPmpublyxZIo8T5PHQ1ta2fPlyIcTx48flEeJsoq1bt7a0tARjwuGwPE6QTfSb3/zG7XY///zzFy9ePHHiRGtrqzxOkM0VNGhpafniF78oj1s8ziQA2WhsbGxra5Nff/jhh0KIc+fO5feUJro333xzWAKQLMgEPzuRSET/et++fXV1dfJr4mwiY5Bff/11p9MpjxBk0508eXLmzJkyaHoCQJxNtHXr1h07dow8TpBNtGbNmpaWFv2h/g8IQR4nPT09paWlL730knxo8ThTApSxq1ev/vnPf164cKF8OHfuXJfL9etf/zq/ZzXJJAsywc+acZeTd999d968eYI4m00GORqNdnZ2HjhwYPXq1YqiEGTThUKhTZs27d271+fz6QeJs+lefPHFkpKShoaGxx577LPPPhME2VSBQOCXv/yl2+2+9dZbPR5PU1PTsWPHBEEeT6+++qrD4Vi7dq0gzvQAZKG7u1sI4fV69SNer1cehFmSBZngj117e/vhw4e/973vCeI8Dg4cOGC326urqz/++OO2tjZBkMfB3r17a2tr77//fuNB4myuH/zgB59++mlXV9drr7329ttvP/jgg4Igm6q7u3tgYODFF1/cv3//mTNnVqxYsXLlynPnzhHk8dPe3r5582an0yn4MJMAZKG0tFTEPjpSd3e3PAizJAsywR+j9vb2J5988vDhw7NnzxbEeRxs2LBhYGDg9OnTTU1Nixcv7uvrI8jm+tOf/rRv377vf//7w44TZ3PZbDa73V5cXLxw4cLnnnvuzTff7OrqIsgmcrvdqqpu2bJl0aJFZWVlTz31lMPhOHLkCEEeJ++///4HH3zwyCOPyIfEmQQgYz6fb/bs2e+//758eOLEib6+vkWLFuX3rCaZZEEm+GPx7LPPPv3000ePHr3zzjvlEeJsOlVVNU2rr6//xje+8de//vXEiRME2Vy/+93vLly4UFtbq2laTU2NEOKOO+7YvXs3cR4/NptNCBGJRAiyiYqLi2+//XZVHboMUxRFVdVAIECQx8n+/fuXL19+0003yYfEmSbgbHz729+uq6v7wx/+0NXVtWbNGr2jHFkb2QScLMgEPwuRSOSb3/xmTU3NyZMnh32LOJslGAxu2bLl1KlToVDozJkzDz/8cGVlP/sCLAAABANJREFUZU9PT5QgmyocDusDPeQsv46OjlAoFCXOptq4cePJkycDgcDx48fnz5/f3NwsjxNkE7W1tVVXVx8/fry3t/eZZ55xOp0XL16MEuRxcPXqVZfLdejQIeNBi8eZBCAbwWDwW9/6VmVlpcvl2rBhwyeffJLvM5rAfvSjH9ntdnkXxG632+32y5cvR5MHmeBnQZ/6b49xuVzyW8TZLJFI5JVXXrnlllscDkd1dfUDDzygT6chyOPkwoULwjAFiDibSP8wz5gxY8eOHZcuXZLHCbKJwuHws88+W1dX53K5Fi1adOzYMXmcIJvu+eefnzZtWiAQMB60eJyVaDSax/UHAAAAALlEDwAAAABgISQAAAAAgIWQAAAAAAAWQgIAAAAAWAgJAAAAAGAhJAAAAACAhZAAAAAAABZCAgAAAABYCAkAAAAAYCEkAAAAAICFkAAAAAAAFkICAAAAAFgICQAAAABgISQAAGBFoVBIS6SoqEgIsWrVqieeeEI+c9WqVZqm/eQnP9H/7B//+EdN07xer/EJRkeOHEn2vqO+2qlTp9atW1dVVeXxeJqbm1O8FAAgOyQAAGBFNputP2b16tUbN26UX/f29gohQqFQOByWzwyFQo2NjS+88IL+Z9vb2xsbGyORiP6E7du39xvcc889yd439atFo1GZIbz33nsXLlzYvXt3W1vbOPz0AGBpJAAAYEWKotgNbDab/vXIJ69ataqzs7Ojo0MI4ff7X3755a1bt6Z4NVVN9Z9Lile7ePHiqVOndu3a1dDQ4Ha777333p/97Gem/cwAACEECQAAYFSapm3btq29vV0I8dOf/vSuu+5qaGgYj1erqKiYNWvWnj17Ojo6BgcHhRCKooz9/AEARiQAAIDRbdmy5dChQ1euXGlvb29paRn23X379hl7ALq6urJ7NZvNduTIkYqKinXr1pWWli5evPiNN94w/4cBAGsjAQAAjK6qqmrFihXbtm3z+/0rVqwY9t1HH33U2ANQXl6e9avV19f/8Ic//Nvf/tbZ2bl27dq1a9e+8847Jv8wAGBtJAAAgLTs3Lnz4MGD27dvt9lsw741rAcgnbqdFK8mlZWVPf744zNmzDh69KgJZw8AiEnQ7AUAwEiLFy8OBoOpG3zH+Grnz5/ftWvXzp0758+fHwgEXnvttdOnTzc1NZnyjgAAiRUAAEBa5G3+hAnAsB6AAwcOZPdq1dXV99133+7du30+X21t7QsvvNDe3r58+XLTfgYAgBBKNBrN9zkAAAAAyBFWAAAAAAALIQEAAJjs3LlzygibN2/O93kBAISgBAgAAACwFFYAAAAAAAshAQAAAAAshAQAAAAAsBASAAAAAMBCSAAAAAAAC/l/oBojGXfDUeQAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tdnpathviz.visualizations import plotcurves\n", + "plotcurves(welding_dataset_new.loc[welding_dataset_new.WELDING_ID == 854],field='RESISTANCE',row_axis='TIME_MS', series_id='WELDING_ID',select_id=None)" + ] + }, + { + "cell_type": "markdown", + "id": "ae924828-6e92-4003-93c9-b66aeec1821f", + "metadata": {}, + "source": [ + "

    The above graph shows the variation of the resistance of the welding with respect to time. We see that the most interesting part lies between 40 and 400ms from the start of the curve.

    \n", + "\n", + "

    Next we apply the window function on the resistance to smooth the resistance and taking the mean value.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "516d8fd4-ab2c-44cd-89d2-d8075e40cf82", + "metadata": {}, + "outputs": [], + "source": [ + "# curve smoothing\n", + "window_for_smoothing = welding_dataset_new.RESISTANCE.window(\n", + " partition_columns = \"WELDING_ID\",\n", + " order_columns = 'TIME_MS',\n", + " window_start_point = -15,\n", + " window_end_point = 15\n", + ")\n", + "welding_dataset_smooth = welding_dataset_new.assign(RESISTANCE_SMOOTHED = window_for_smoothing.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6c351bab-cd80-452c-b600-79efaec9f769", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28f1b58f8da242acbd3aae6f80816278", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCERESISTANCE_SMOOTHED
    14192025-06-188541353.0226900449998253.14252688841657
    14192025-06-188542335.5825378948886248.69892486462675
    14192025-06-188543324.9522665624502244.90621844326972
    14192025-06-188544297.6567809200622241.13418644931798
    14192025-06-188545288.1532672344735237.60587172607387
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE RESISTANCE_SMOOTHED\n", + "0 1 41 9 2025-06-18 854 1 353.022690 253.142527\n", + "1 1 41 9 2025-06-18 854 2 335.582538 248.698925\n", + "2 1 41 9 2025-06-18 854 3 324.952267 244.906218\n", + "3 1 41 9 2025-06-18 854 4 297.656781 241.134186\n", + "4 1 41 9 2025-06-18 854 5 288.153267 237.605872" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "id_curve = 854\n", + "single_welding = welding_dataset_smooth[welding_dataset_smooth.WELDING_ID == id_curve].sort('TIME_MS')\n", + "single_welding" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "44d1ffb7-1bf2-4770-8b0d-f21ed5a589e4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGQA+gDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivL5ZvGfiH4heKtM0rxeuj2Okm18uJtNhnDebDuPzNgjkHuevbFbfw48S6n4g0vVYtWktri60y/ksjd2oxFcBQCGHvz29qAO1oryDwVB8RPGHhGw17/AIWGLT7WHPkf2Lbybdrsn3uM/dz0710Xi7W9f8P6b4c0WyvrabWtUnW0fU7qEJGpC5Z9g4DE9F6UAd7RXI6DpHjbTdVjbV/FFnrGnsrearWC28iHHG0ocHnGc9qraX4lv/8AhMvHltdytPY6NHayWsCooKhoC7gEDJJI7k+1AHb0V5Z4ePxF8W6JbeI7bxbptjHdqZIdPTTlljVcnCtITuz64rpdZ0LxnqUtrNp3jKLRwtsiXFvFpkdwjTc7nVnOQDkAD296AOuorybwAvj7xVoOneILjx4EgkmbzLP+yIDuVJCpXeMEZC9ccZp/irx5rOm+PGaxmQeG9FktYNYBjU5ackZDEZGwFDwRz1oA9WorkPifrWo+H/h5qWp6Rci3vojCIpdivt3TIp4YEHhj2rP0vxdqN58MtcurlxB4j0W2uYLvCj5biJGIcDGCGwGHGOSKAO/orz298b6lp3w+8LXNvDHf+ItdgtordJMKjTPGGaRguMKM5OMdR0p0eg/E2PbdN4102WbOTZPpaiH6CQHfj3xmgD0CivOPEV14q1P4pL4b0PxN/Y1qmjLfMfsEVxufzih+9yOCO/bpzXTeGdI8R6W9yde8U/22sgXyV/s+O28ojOfuE7s5HXpigDoaKqanqljoumzajqV1Ha2cIBkmkOFXJAH5kgfjWL4e8f8AhXxVdva6LrENzcICxi2tGxA6kBgCR9KAOlorl9W+I3hLQri7g1PWYrea1kWKWNo3LBioYAAKS3BByMgZGa2dO1vTNW0hNWsL6GewZS4uFbCgDrnPTGDnPSgC/RXl/i74s6G/hTVj4V8Q27axbeUY8R5yDKitt3rtf5SemfWvUKACivL5ZvGfiH4heKtM0rxeuj2Okm18uJtNhnDebDuPzNgjkHuevbFbfw48S6n4g0vVYtWktri60y/ksjd2oxFcBQCGHvz29qAO1oryDwVB8RPGHhGw17/hYYtPtYc+R/YtvJt2uyfe4z93PTvXReLtb1/w/pvhzRbK+tpta1SdbR9TuoQkakLln2DgMT0XpQB3tFcjoOkeNtN1WNtX8UWesaeyt5qtYLbyIccbShwecZz2qtpfiW//AOEy8eW13K09jo0drJawKigqGgLuAQMkkjuT7UAdvRXlnh4/EXxbolt4jtvFum2Md2pkh09NOWWNVycK0hO7Priul1nQvGepS2s2neMotHC2yJcW8WmR3CNNzudWc5AOQAPb3oA66ivJvAC+PvFWg6d4guPHgSCSZvMs/wCyIDuVJCpXeMEZC9ccZp/irx5rOm+PGaxmQeG9FktYNYBjU5ackZDEZGwFDwRz1oA9WorkPifrWo+H/h5qWp6Rci3vojCIpdivt3TIp4YEHhj2rP0vxdqN58MtcurlxB4j0W2uYLvCj5biJGIcDGCGwGHGOSKAO/orz298b6lp3w+8LXNvDHf+ItdgtordJMKjTPGGaRguMKM5OMdR0p0eg/E2PbdN4102WbOTZPpaiH6CQHfj3xmgD0CivOPEV14q1P4pL4b0PxN/Y1qmjLfMfsEVxufzih+9yOCO/bpzXTeGdI8R6W9yde8U/wBtrIF8lf7PjtvKIzn7hO7OR16YoA6GiuV+IfiW78LeFWvdPjha8mnitoWn/wBXGztjc/sOf0qlpWi/ECz1C1uL7xfYalas4NxavpyxAJ32OpyT6ZoA7eivK/GfjPXPD/xQsbeG7A8P29jBc6hAYkPySTtCX3Y3DaWQ4Bx8v1qf4veMNa8P2Vva+HLpbe+EUl7cy+Wsnl26YXGGBHzO6jPsaAPTaK4XxP4q1i3m0LQPD8dtLrurRGUzXOfLt4lUFpGA6+w9R+FZOq6j46+H9smtazrNp4h0VZEW+RbJbea3ViF3Jt4YAkdf06gA9QorivGHirU7bUtI8P8AhiO1m1fVg8iTXBJit4VGTIQOue30/CsTVdR8dfD+2TWtZ1m08Q6KsiLfItktvNbqxC7k28MASOv6dQAeoUV5/wCMbLxjFa6tr+jeOFtNPgtWuYbEaXDKMJHkjzGOTuIJzjjPtUfgmy8a6hY6Nr+peNxdWd1bJcy2H9lQpkOmQvmLzwSOQOcUAeiUVyPww1rUPEXw60nVdVuPtF7cCXzJdipuxK6jhQAOAO1Ytj4p1mbwn8RL6S8zc6Pe38Vi/lJ+6WKMMgxjDYP97Oe+aAPSKK8w0PRfiJrOgabqn/CyRD9ttYrjy/7Dt22b1DYzkZxnGcCr3jm+8SDxb4T8P6Hr39lNqa3fn3H2OOfJiRWHyt/wIcEde+KAPQaK8x1HWPGvw/a1v9f1Sx17QXuEhurhbUW09uHOA+FO0qD+P0r06gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDx6LwN4e8Z/Ffx4NdsWuTbGxELLM8ZTdBz90gH7o656Vv/AA2kbQ5dY8DXOwTaNJvtXCBTPaycoxwACwPDH1x3ruobCzt7u5u4bSCK5udvnzJGFeXaMLuYctgcDPSkOn2R1H+0DZ2/27yvJ+0+UPM8vOdm7GduecdKAPAvh74Z+FOoeBdNuvEdxpaas4k+0LPqzQuMSMFygkGPlC9vevU9efwD/wAIvpml63cac2izIqWJmmJjIRQAVlzwQP4t2evPWtP/AIQTwf8A9Cpof/guh/8Aia0n0bS5NOTTn02zaxjAVLZoFMSgdguMCgDyjTrzS9D+Inh/TPBPiS41SzvWkW+08Xn2uCGILkOrc7CD784H49D4auIbX4n/ABKuLhgsMQsHkYjOFFuxJ/Ku107Q9J0cMNM0uysQ/wB77NbpFn67QKnisLOC6ubqG0gjubrb9omSMB5towu8gZbA4GelAHjuuxfDK10q91vw74oj0fUPLaaIaVqBQvJjKgwZ6E4BG0fhXp3g2+1DU/Bmj32qoUv57VHmBXaSSOuO2euO2alHhXw6t59sGgaWLrOfOFnHvz67sZrXoA80+FepW+j/AAUt9Tum2wWi3c0h9lmkJ/HiuN0KLxpqHgLV7V/ALX6+JGlvJL5tVhiJMoBRgjDIC/KQCe3bNe3romkrpR0pdMshpzZzaC3TyTk7j8mMdeenWriIkUaxxqqIoCqqjAAHQAUAeKaxrk2ufs33Juwy6hYyQWN4jfeWWK4jU59yNp/GtL4oxv4UuNS8QQI39na5ps2m6iqj7s3lMIJf/ZCewIr0t9C0eWC6gk0qxeG7k825ja3QrM+QdzjHzHIByeeBVi9sbTUrSS0v7WC6tpMb4Z4w6Ng5GVPB5ANAHkmprLpngr4Z+LBDJNa6Lb25vFjXcUhlgRWkx324H513R+JXgoWa3X/CT6YY2GQonBk/74+9n2xXSwW8NtbR21vDHFBEgjjijUKqKBgKAOAAOMVmx+FvD0N59si0HS0us7vPWzjD59d2M5oA8y8aaZ4U1X41pB4wktY7BfDyvGbm7Nuvm/aGAwwZcnBbjP8AKuz8DaV4F0g3sXg24sJDLsa5W1vzcnjO0nLtjqfStzUvDWg6zcLcapomm306oEWW6tElYKCTgFgTjJPHuafpnh/RdFeR9K0iwsGkADta2yRFgOgO0DNAHPfE3W5tB8IefBFalpruCAzXkfmQ2wZx+9de4UgEe+K83S9uH+JnhB5PHNj4knF0yn7DYRRrbq0bDBljJznkbT6E17tcW8N3A8FxDHNDIMPHIoZWHoQeDVC28OaHZLCtro2nQCGTzYhFaovlvjG5cDg44yOaAOQ8IWFpJ8TvHl49vG9ytxbRLIyglVMIJAPbPf6CuWazuW+FvxMsdKjKmLW7tY4ox92IeUzqoHbbv4HrXskNlaW1xcXEFrDFPckNPIkYVpSBgFiOWIHHNFtZWlkZja2sMHnymabyowvmSHGXbHVjgZJ54oA8V+I/iPwNqXwqt7PRp7GacGA2VvBgyW2HXcWUcp8uQc4yTXuNZP8Awi/h7FwP7C0zFzjz/wDRI/3uCGG7j5uQDz3Fa1AHj0Xgbw94z+K/jwa7Ytcm2NiIWWZ4ym6Dn7pAP3R1z0rf+G0jaHLrHga52CbRpN9q4QKZ7WTlGOAAWB4Y+uO9d1DYWdvd3N3DaQRXNzt8+ZIwry7RhdzDlsDgZ6Uh0+yOo/2gbO3+3eV5P2nyh5nl5zs3YztzzjpQB4F8PfDPwp1DwLpt14juNLTVnEn2hZ9WaFxiRguUEgx8oXt716nrz+Af+EX0zS9buNObRZkVLEzTExkIoAKy54IH8W7PXnrWn/wgng//AKFTQ/8AwXQ//E1pPo2lyacmnPptm1jGAqWzQKYlA7BcYFAHlGnXml6H8RPD+meCfElxqlnetIt9p4vPtcEMQXIdW52EH35wPx6Hw1cQ2vxP+JVxcMFhiFg8jEZwot2JP5V2unaHpOjhhpml2ViH+99mt0iz9doFTxWFnBdXN1DaQR3N1t+0TJGA820YXeQMtgcDPSgDx3XYvhla6Ve634d8UR6PqHltNENK1AoXkxlQYM9CcAjaPwr07wbfahqfgzR77VUKX89qjzArtJJHXHbPXHbNSjwr4dW8+2DQNLF1nPnCzj359d2M1r0AeafCvUrfR/gpb6ndNtgtFu5pD7LNIT+PFcboUXjTUPAWr2r+AWv18SNLeSXzarDESZQCjBGGQF+UgE9u2a9vXRNJXSjpS6ZZDTmzm0FunknJ3H5MY689OtXERIo1jjVURQFVVGAAOgAoA8U1jXJtc/ZvuTdhl1CxkgsbxG+8ssVxGpz7kbT+NaXxRjfwpcal4ggRv7O1zTZtN1FVH3ZvKYQS/wDshPYEV6W+haPLBdQSaVYvDdyebcxtboVmfIO5xj5jkA5PPAqxe2NpqVpJaX9rBdW0mN8M8YdGwcjKng8gGgDyTU1l0zwV8M/FghkmtdFt7c3ixruKQywIrSY77cD867o/ErwULNbr/hJ9MMbDIUTgyf8AfH3s+2K6WC3htraO2t4Y4oIkEccUahVRQMBQBwABxis2Pwt4ehvPtkWg6Wl1nd562cYfPruxnNAHmXjTTPCmq/GtIPGElrHYL4eV4zc3Zt1837QwGGDLk4LcZ/lXZ+BtK8C6Qb2LwbcWEhl2Ncra35uTxnaTl2x1PpW5qXhrQdZuFuNU0TTb6dUCLLdWiSsFBJwCwJxknj3NP0zw/ouivI+laRYWDSAB2tbZIiwHQHaBmgCt4quvD9tocieJ3tl0y4YQuLlcoSeQD6dM57YryjUp/DvhbU9Fb4feJZZ7y4v4oTpFtfm6gliY/NlSW2YHfPH6j2y4toLuBoLmGOaFxho5FDKfqDVLT/Duh6TMZtN0bT7OVur21qkbH8VAoA4fVtLg1v4yalpd0MwXfhEwv7Brhhke461y+q6B4gtPhj4t1bxVEqambG30+ACRX/cQlfnyCfvuWYivavsNp/aB1D7LB9tMXk/aPLHmeXnOzd1255x0zTruztdQtJLW9tobm2kGHhmQOjj0IPBoA8y8RXSeFPG/hbxbfK40iTTTpl1OELC2Jw6M2OxJxn2pfiN400XXfCk3hvw9f22ravrGy3t4LSQS7QWBZnK5CgAHr/LNenNBE8BgaJGhK7TGVBUj0x6VT07QdH0h3fTNKsbJpPvtbW6RlvrtAzQB574j2eBfHPhfxDel20dNOOkXVyELCAggo7Y6Bjx+FHxG8aaLrvhSbw34ev7bVtX1jZb28FpIJdoLAszlchQAD1/lmvUJI45o2jlRXjYYZWGQR6EVR07QdH0h3fTNKsbJpPvtbW6RlvrtAzQBleJLQWHwy1ezDFxb6PNFuPfbCRn9KXwD/wAk48Of9gu3/wDRa10M0MVzBJBPEksMqlJI5FDK6kYIIPBBHakt7eC0to7a2hjhgiUJHFGoVUUDAAA4AA7UAeK/DD4W+DfEXw60nVdV0c3F7OJfMl+1TJuxK6jhXAHAHapfDlhbaV8Mvilp9lH5VrbXupwwpuLbUWAADJyTwO9ew2VjZ6bZx2lhawWttHnZDBGERcnJwo4HJJ/Go10nTUgu4E0+0WG9Z3uoxCoWdmGGLjGGJHBJzmgDxrw14U+Dk3hrSLjUbrR11B7OF7gSa0yMJSgLZXzRg7s8YGK6nxtqVjYfFD4f315e29tZqmoE3E0qpGAYUA+YnHJI/Ouo/wCEE8H/APQqaH/4Lof/AImr+o+H9F1dIE1PR9PvVgBEIubZJBGDjIXcDjoOnoKAPOPiT4q0jxZoX/CG+Hb+DVNT1aeKLFo3mpDGHV2kZl4AG31/lXq0aCOJEBJCgAZqpp+j6ZpEZj03TrSyRuq20Cxg/goFXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorm5gs7WW5uZo4YIULySyMFVFAySSegAqWud8ff8k78S/wDYLuf/AEU1AB/wn3g7/oatE/8AA+L/AOKo/wCE+8Hf9DVon/gfF/8AFVvoieWvyr0Hal2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq6DYn91fyo2J/dX8qAOf/wCE+8Hf9DVon/gfF/8AFUf8J94O/wChq0T/AMD4v/iq6DYn91fyo2J/dX8qAOf/AOE+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KroNif3V/KjYn91fyoA5/wD4T7wd/wBDVon/AIHxf/FUf8J94O/6GrRP/A+L/wCKroNif3V/KjYn91fyoA5//hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq3ysaqSVUAckkVD58Z5WCRl7ER8GgDG/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qtnzl/wCfWX/vgUecv/PrL/3wKAMb/hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq2fOX/n1l/74FHnL/wA+sv8A3wKAMb/hPvB3/Q1aJ/4Hxf8AxVH/AAn3g7/oatE/8D4v/iq2fOX/AJ9Zf++BR5y/8+sv/fAoAxv+E+8Hf9DVon/gfF/8VR/wn3g7/oatE/8AA+L/AOKrZ85f+fWX/vgUecv/AD6y/wDfAoAxv+E+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KrZ85f8An1l/74FHnL/z6y/98CgDG/4T7wd/0NWif+B8X/xVH/CfeDv+hq0T/wAD4v8A4qtnzl/59Zf++BR5y/8APrL/AN8CgDG/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qtnzl/wCfWX/vgUecv/PrL/3wKAMb/hPvB3/Q1aJ/4Hxf/FUf8J94O/6GrRP/AAPi/wDiq2fOX/n1l/74FHnL/wA+sv8A3wKAMb/hPvB3/Q1aJ/4Hxf8AxVH/AAn3g7/oatE/8D4v/iq2fOX/AJ9Zf++BR5y/8+sv/fAoAxv+E+8Hf9DVon/gfF/8VR/wn3g7/oatE/8AA+L/AOKrZ85f+fWX/vgUecv/AD6y/wDfAoAxv+E+8Hf9DVon/gfF/wDFUf8ACfeDv+hq0T/wPi/+KrZ85f8An1l/74FHnL/z6y/98CgDG/4T7wd/0NWif+B8X/xVH/CfeDv+hq0T/wAD4v8A4qtnzl/59Zf++BR5y/8APrL/AN8CgDG/4T7wd/0NWif+B8X/AMVR/wAJ94O/6GrRP/A+L/4qtnz4xy1vIo7kx8CplWNlDKFIPQgUAQ2Go2Wq2aXmn3cF3avkJNBIHRsHBwRweQRRWJ4I40G5/wCwrqP/AKWTUUAdJRRRQAUyWQQwvKVdgiliEUsxx6Ack+1PqOdpUt5HhjEsqqSkZbaGbHAz2z60AYUXi63866gvNN1CxuILR70RXCJmWFOGZSrsOCQMEg8jipdO8SfbdOl1G60q+0yxS3+0+feNCVZMbsgRyORgc8gVg6bo2oDxNe6oujXcNrNYSQzW+q3qXDXEhYFVQ75PLj++CMgHI+XiqY8IT6jLq8Nhog8N6de6RPZPb74gJp3xtk2RMygKNwz1O7pxQB1Oj+KrbV71LQ2V9ZTTW/2q3W7jVfPiyAXXaxxjcuQ2GG4cVD4+Zf8AhXniUZGf7LueM/8ATJqp6ZZ6xqXiPStR1PSzp0el2MsBDTI/nSyGPJTYT8gEZ+9gnI44qv8AETwxoNx4Q8SarNounSaiNOnkF29shlDLEdp34zkYGD2wKAO1T/Vr9BTqbHxGv0FOoAKKKKACsrw/rP8Abul/bDB5B8x4zHv3Y2nHXArVrlvAvy6dqcP/ADx1OeP9Qf61pGKcG/QzlJqcV0dzqaKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3fMaKejSKCPUZqR54Y22vKin0LAUy66Q/9dVrO1Lwtour3f2q/sVmm2hd5dhwOnQ1UeW/vEy5re6aX2q3/AOfiL/vsUfarf/n4i/77FYX/AAgXhj/oFJ/38f8A+Ko/4QLwx/0Ck/7+P/8AFVdqXd/cv8zO9bsvvf8Akbv2q3/5+Iv++xUwORkdK5z/AIQLwx/0Ck/7+P8A/FV0McaxRrGgwigKo9AKmSh9l/195cHP7SX9fIyNa8Qro97YWSabe391feYYorXygQEALEmR0HQ+tUn8bWI0a11GCxv7hrm9NgtoiosyzgsrI291UYKEZ3YpniXw7LrniXQJWW5Flarc+fLbXb27oWVQvzIytyQen41zl34W1a38OWmjLplzd2+m62s8UlpdJDNcWxDNv370IkBfaxJBYjdzmoLOsuPFP2KzilvdE1O2uLi4FtbWbeS8s7lS3y7JGUDCsSWYY2mpW8TQwwWb3en39pJdXq2SwzIu5XYEgkhipXA6qT6djWM2mrPoJgl8La1OiXQl8i+1VZLhTtwJIpDO+0jpjenUnvzQg0LxFMLPzoLoWkGuQ3Vvb3l2s89vbrGQxeTcd3zEkDcxAPU9gDpLbxVFe38kNrpepT2sdy1q98kaGESK21hjdvIDZBYLtGDziqn/AAmdx/a39l/8Ilrn2zyPtHl77P8A1e7bnP2jHXjGc1l6jo+qDVmk0PRb3TL171ZZL2PUF+xyJvBdnh3/ADMy5z+7zk/e71tz2N/F44m1iK0M1uukGBNrqC8okLBBk8ZHc8e9AFq18TWN34mutBjScXNuhYysgETkBCyq2eWUSR5GONw98UrbxzpVyfECrHdLJoXmG5jdAGkVA2Wj5wwyrDnHI5xWLbeEtb0+w0vVF1C8utVguReT2B+zrEXmb/SFV9gYgB325cj5V9BijrHg/W30TWrrTrVf7Xe8vhDEZVAubW4+UqTnA/hcZxgoOmTQB2F14qtoZLS3trK9v726txcpa2yLvWI4+ZizKijJxy3JBxnFRXXi0Wz6fAND1aW8vjKEtVWFHTywC24vIq4wRghiDWfBpuraFrEGrW+mvqEc+l29ndW8U0ayxPEWIK72VSDvYH5h0BGareJLDVNY1Hw/qMug6mYrY3PnW9jqKQzxhlUIS4ljHODkK5H1oA7Owupby0WaexuLGQkgwXBjLrz38tmXn2NWazdCQxaTFGbPULTaWxFqFyLiYc5yX8yTPt8xwOOOlaVABRRRQAUUUUAFFFFABRRRQAVXtOFlUdFkYAelWKgtes3/AF1P9KAMPwR/yAbn/sK6j/6WTUUeCP8AkA3P/YV1H/0smooA6OiiigAooooAKKKKACud8ff8k78S/wDYLuf/AEU1dFXO+Pv+Sd+Jf+wXc/8AopqAOgT/AFa/QU6mp/q1+gp1ABRRRQAVy3hD5L7xHD6apI+P94A/0rqa5bQf3PjXxNb9mMEy/ihz+ta0/gkvL9UY1Pjg/P8ARnU0UUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBBddIf+uq1PUF10h/66rVS+1O4tLjyotMubhcA748Y+lRUqRpq8i4U5TdomlRWJ/bl5/0A739KP7cvP+gHe/pWP1ul3f3P/I2+qVey+9f5m3RWJ/bl5/0A739K2UYsisVKkjOD2rSnWhU+H8mvzM6lGdP4vzT/ACHUVxnjXWLvT9a0K0i1LULG1uhcGdtPshcytsVSuF8qQ4yTnC/jWNJ4p1eTwLouoPqNxC15q32Y3dpapJPJbbpAreVscByFXKhSQcjA5FamR6ZRXC3WoaumgxS6VqGu3iNfKl3c3WlBLqCHYSTFCYY9/wA2wZ2N1brjAP8AhIpls9JFjrkl8ZNais7hp7RYZlRkJMciFV2twDnapwR9SAd1RXCQ61qUGvyrrerXmmZvzFb276eps5YS+I/3+377Ljq4wxxtOMUotdc/4TY6L/wl+r/Zhpwu93kWe/f5m3GfIxjHtQB3VFefaT45S98ctbHW7Cawu55rO2sUljM0LxAYkYD5sOVm68cR4+9VJfGOtWb+KUvbpTETfDSJvKUeTLArHyjxhvlAcZzna+c4oA9Oori4dS1bXdYg0m21JtPSDTLe8urmKGNpZXlLABd4KqBsYk7T1AGKr+JNQ1TR9R0DTpde1JYrk3PnXFjpyTTyBVUoCgikHGTkqoH0oA7yis7QpPN0mKT7Zf3e4t+9v7b7PMeT1Ty48e3yjI5561z/AIm1HVbTX1R7vUdP0YWodbqwsBdFptzblk+RyihQpztGcn5higDsaK89vfFl/aeK9Ikj1SC50FtPhlvHjjUI/myNGJg3JUBtmRnAUn0rOtvHGun/AISC7MsbxzGw/siGWIBIFuZpIkdiMMwKqkhBPfAxQB6nRXHXl3q/hbU9Ia91eXVLLULg2kyS28aPE5jd1aPy1X5fkIIbJ5znis1NV8STeBG8apq6q32RtQXTPIj+z+SAX8stjzN+0Y3bsZ7YoA9DorhL9tXk8SaFDa+KNVgs9XWeZo/ItCYQqB1VSYScDdj5ix4696ms/FTab4n1rStSm1O8jtBbLA8OmSTnmIFixgiIBJ5wcewAoA7WivLY/FWq3Wj+DZbjV9Rtv7SiuXupdP09Z5nKAbfk8p8DnnC/Wtie71K4v/DenWXiDV4ob37W01zPZRQ3D+WAVBSSABQCT/AMj160Ad1UFr1m/wCup/pWDoOo6iniLVdA1K5W8a0hguYboRhGeOTeNrheNwMZ5AGQRxW9a9Zv+up/pQBh+CP+QDc/9hXUf/SyaijwR/yAbn/sK6j/AOlk1FAHR0UUUAFFFFABRRRQAVzvj7/knfiX/sF3P/opq6Kud8ff8k78S/8AYLuf/RTUAdAn+rX6CnU1P9Wv0FOoAKKKKACuWtfk+Jl+o/5aadG598NiuprlvufFL/f0f9fNrWl9r0Mav2fU6miiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqC8vLewtXuruZIYI8bnc4AycD9SKjGp2J1FdP+0x/a2j81Ys8lfUevSmot6pCcktGy3VTUtRttJ06a+u3KwQjLEDJ5OAB9SQK5Gw8aCPxrqel6hM32dp1htTsG1GHBBPXk4/+tVr4iytJ4Z+xwspkubqKAqDzkncB/46K2VBqpGMutjB4iLpylHdXOqtriK8tIbmBt0UyLIjYxlSMg/kalrC8F3P2rwdpcmfuwiP/vklf6Vu1lOPLJx7G0Jc0VLuFFFFSUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEF10i/wCuq/zqemyRrLGUboahCXS8CWNh6shz+hoAsUVBi7/vw/8AfJ/xoxd/34f++T/jQBPRUGLv+/D/AN8n/GjF3/fh/wC+T/jQBXutIt7zWNP1OR5RPYCURKpG0+YADu4z2GMEVkXXgmynSVYL+/s9+ojU08gxnyZtuCVDowwxJYgg8knjNb+Lv+/D/wB8n/GjF3/fh/75P+NAGZ/YV21mYZPEmryTCTzEuf3COnGNuFiCMOejKeaqw+CrCORZ5bu+uLv7fHfyXMzpvlkRNihsKFCheMKBW7i7/vw/98n/ABoxd/34f++T/jQBi33hKPUpSt5q+qTWJnWc2DyIYiysHAJ2eZtDAHbvxxjpV2fQ4J9Yl1QXFxFdSWRst0bKAili24ZB+YE/T2q7i7/vw/8AfJ/xoxd/34f++T/jQBmv4asm8O2eiI80VvZiDyJI2HmIYmVkOSMZyozxzk+tUtR8DaVqmhajpFxJdeTfXb3jSo6iSKRjklDjjuOQeCQc5rfxd/34f++T/jRi7/vw/wDfJ/xoAyLnwrbSyWlxa3t7YXtrbi1S6tmTe0Qx8rB1ZGGRnleCTjGaiuvCX2p9OnGuatFeWJlKXStC7v5gAbcHjZcYAwAoxW5i7/vw/wDfJ/xoxd/34f8Avk/40AZDXmpaMqWg07WteONxvA1mnUn5SC8XT2Xv1NOuNMutZSO7Goazosjx7ZLaOSAkDJ65Eig89UOenPFauLv+/D/3yf8AGjF3/fh/75P+NAGNZeDNGsNiRwGS3TT1077NNiSNogxb5gRySSc5OD6U+58I6VeSamZ43aLUbeC3lhDbVRYSxQpgAqQXJznjAxjFa2Lv+/D/AN8n/GjF3/fh/wC+T/jQBkWfhaKHUra/vdT1HU5rQMLX7Y6bYdw2kgIi5bBI3Nk4J55qmfAenm2bTxf6iNGZyzaUJV8g5O4rnb5gTP8ACH29sYro8Xf9+H/vk/40Yu/78P8A3yf8aAK11o9vd6vp2pO0izWAlESqQFO9QpyMeg4wRS2ekW9lq2o6jG8pm1AxmVWI2rsXaNvGenXJNWMXf9+H/vk/40Yu/wC/D/3yf8aAOeHge2htNGhstV1KzfSVkS3mi8lnIk+9u3xsp6dgKmu/Ckl5Jp1xJ4h1UXtgZfKu1W23sJAAQw8nZjAGMKDW3i7/AL8P/fJ/xoxd/wB+H/vk/wCNAFLR9BttGe6mSW4ubu7ZWuLq5fdJJtGFBwAAAOgAA5PHNXbX/lt/11akKXTcGWJR6qhz+pqWKNYowi9B3PU0Ac/4I/5ANz/2FdR/9LJqKPBH/IBuf+wrqP8A6WTUUAdHRRRQAUUUyVDLC8YkeMspUOmNy57jORmgB9FeYXWq6j4d1DXfs41a3WDRLm6t7fVLn7SbmaMj97GdzhVAIyuRnevyjFP1O+1DwiiyWOpXuoNcaBeXsgup2mHnQrGyyruztBLkFVwvTAoA9MrnfH3/ACTvxL/2C7n/ANFNWXpS3Gj+KdFso9Tvb+DUtNmmuPtVw0v7yMxYlXOdgPmMNq4XpgcU34iXHiBfCPiSODTNNfTf7OnBne/dZdvlHcfLEJGRzgb+cDkZ4AO2T/Vr9BTqbH/q1+gp1ABRRRQAVy118nxMsW/v6c6/k+a6muW1P5PiJoTf89LadPyGa1o7v0f5GNbZeq/M6miiisjYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM6bW7KDXbfRpHYXlxGZY1CnGBnv/wABb8qs319a6bZvd3kywwJjc7dBk4H6muJ1udIPi5ojsQALQgk9s+aP61leI/Gtt4m8M3Vna2s0cpeLhsHd8/QY+g/OutYbmcWtna/3nHLFKKknur2+46j4jSBfBN2M/wCseNf/AB8H+lcdDqIbx/ot8xxFHZw+Y/ZQ0Jzn/vqqVrNO+i2vh29lQpPdK0a853FuhPpk80gufsQuZzCF/s++gt5VIB3IN4OR7bMDr1NRTrScHDDx5t/e2jrZX7v5J+pVSlFTVTES5dvd3lpd27L5tehqvMkmhXagk3Uurm++6cBcjAzjrisvSIbttcg+0srifU7e6lfdxlS+evP8VdBe27R/BZC5JcqkpJOSd0wP8jVLTtMa68U+HbVyzW0mkxzzJk4I2t/XFOKxcYyanF7/AGWtvPmdvxJl9UlOKcJLRfaT38uVX/Ar6L4i1XR9bsPD6BIbNNQaMkpzIjPjGT25JBFdbqN/dxfFTSLJLiRbWSzYvEG+UnEhzj1+VfyqLxXoOnaXpo1W3i8v7LIjFeWH3gA3rkEjp2zWFHq41vxzpGtIY0jiUQON/TO7n2+/0NZxxak71ocujV94t9NbaP1t5XNZYRxVqM+bVO20kuunVel/Ox6VHqFpLfzWMdwjXUKhpIgeVB6Z/wA9x61Zrz3wneG8+JHiKQnJIZQfZHCj9AK9Coq0/Zyt5IqjU9pG/mwooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zwR/wAgG5/7Cuo/+lk1FHgj/kA3P/YV1H/0smooA6OiiigAqOeCK5t5LeZA8UqlHU9GUjBFSUUAZFj4Y0jT7iW4it5JZpYjC0l1cSXDeWeSgMjMQp44HHFN03wrouktI1pZYMkXkHzZXl2xf8813k7U/wBlcD2rZooAyNJ8MaRoc7TWFq0chjEQZ5nlKRg5CJvY7Ez/AArge1VPH3/JO/Ev/YLuf/RTV0Vc74+/5J34l/7Bdz/6KagDoE/1a/QU6mp/q1+gp1ABRRRQAVy3ib9x4l8MXfTbdPDn/rouP6V1Nct43+S30Wb/AJ5atA2fzrWh8aXr+RjX/ht+n5nU0UUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5dRWNjPdzHEUEbSN9AM1PWH4wcDwtfxB1WSaIxoGYDcTxxTVr+87IUr2fKrs8s1bVbrxLqiaxbRCGaKJEKBshMs4zn8vzqPSY7a11ex01FMstzPHHMc4wCwB/Qniuj8DeHLO6kukmcusOwyoCRvYg45HTHP51R0/S5k+LeJYJEja9nlRmQgEAMwIP5fmK6FJYxyi9KUVotubzfl2XXdnK4SwajJa1ZPV78vkul+76bI9FuvDOnXWp6bfPGVbTwRDGuAp9M/Q8j3rM8WeGYJ/DuqjTLJftt1IkzhOsjKw/oW/En1rrKKyhUlC1uhvOlGad1uc7qugTX3gYaHAyRzC3ijUv8AdyhU84/3a1tLsRp+mWVs215be3SAyAYztUD8uKuUUnUk1y+dxqnFS5vKxT1XTotX0q5sJmZY502ll6j0NeP32nQ+Hddv408x7WxntvMHd42XJB7ZOa9sqpfaZZanbvBeWyTROVLK3facjpWlKqopwmrxe6Mq1FzanB2ktmeWWlxe6G7albQCG+urMGOKUfwmQYLD3CNj6iuq8E+KrnXr/V0vJFRElU20bAKyqdw2++MD8SazPGlo1z8QdBhQNtlRUcL3QOS36ZrL1jw1d6FqFhqTrGzwzJJuiyVcq2cHjrgcVmuWglCp8Etn1jrs/Lon02Zb5q0nOn8Ud10lpuvPq113R6nZ31tqEHn2kyzRbiu5emQcEVYrh/hZOZfDE6McmO7b8iqn+ea7inVh7Obj2HRqe0pqfcKKKKzNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zwR/yAbn/ALCuo/8ApZNRR4I/5ANz/wBhXUf/AEsmooA6OiiigAooooAKKKKACud8ff8AJO/Ev/YLuf8A0U1dFXO+Pv8AknfiX/sF3P8A6KagDoE/1a/QU6mp/q1+gp1ABRRRQAVy3j/5fDiTf88ruF//AB7H9a6mub8ewPceC9REYyyKkn4K4J/QGtaH8SPqZV/4UvQ6SiobW4S7s4bmI5jmjWRT6gjIqasnoap3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKq3Oo2dnc21tcXCRzXTFYUY8uR1A/MfnVqvN/idcm31Xw/Ipw0MjyAjt8yf4VrQp+0momNer7Km5/1udxrl9LpuiXd5AivNFHmNW6Fugz+JryTxB4iv7mJVvLhZrpQQpRNqoCeoH5e/FbPinxZJds/kvLHbMPJWBiMOwckP8AiNp/D3q7B4TtNT8aa9bXkMn2VEgaModvUA8H8CKijBVZP2i/dx/8maa09E9+702RdacqcUqb9+X/AJKmm7+rW3Za7s6HwroVzotxrDzhAt1eNJFtbPyc4z+ddHgZzgZHeloonNzfMwhBQjyoKKKKksKKKKACiiigCpLplnNqUGoyW6tdwIyRynOVB6/1/M+tVPEmnXGqaLLbWnl/aCysnmnC8MM8j2zWtRQ/eVpaoF7rvHR+R5fdXF/4HGpW8cYaK5jYrInBV9pCyL+OMj8a7TwfdzX3hLTri4maaVoyGkc5JIYjk9+lWNd0aLWbHym2iVMmNmGRn0I7g1znhfW7bTLfSNCEbM08k6bt3+rwd4B9c7sVNKo0vYS1e6fdJbPzX4rzuOrTV/bx0WzXZt7ryf4PysdvRRRVCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnPBH/ACAbn/sK6j/6WTUUeCP+QDc/9hXUf/SyaigDo6KKKACiio55hb28szI7iNC5WNSzHAzgAck+woAkornovF1uZryC707ULG5trRr3ybhE3SwrwWQo7LwcDBIIyMipdO8SfbdOl1G60q+0yxS3+0+feNCVZMbsgRyORgc8gUAblc74+/5J34l/7Bdz/wCimqXR/FVtq96lobK+spprf7VbrdxqvnxZALrtY4xuXIbDDcOKh8fMv/CvPEoyM/2Xc8Z/6ZNQB0Kf6tfoKdTU/wBWv0FOoAKKKKACqWrp5ui38ZGd1vIv5qau1m2d8NW0y4byvLcGSF03ZwRxSVSMZqL3f6DcHKDktl+pV8Gv5ng/Sz6QAflx/Styub8Avv8ABGmn0Vx+TsK6StaytUkvNmNF3pxfkgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzr4hQR3GsWonH7mO1Zic453g/lhTXT+KNffRdL8y0WKa6eZYFVjkISC2WA56AmsnQYL3Wdcl1e8hjNhJE8YDkHJyBtA9AA2feplOpFqNN2bvr2XV+vRefoOMKc05VFdK2nd9vTq/L1MHwZp1trGuXq39sk0EVvDJEjjIG7Dg/XH+FepVQtNItbLVL3UIQwmvAgkBPyjYMDA7VfrWbikowVopKyMoKWsqjvJt3YUUUVBoFFFFABRRRQAUUUUAFFFFABXnesWTaJ4sjvjaldP8AOjkidSMBsHco9+GP0NeiVzXjy3km8KXE0S7pbV0uEGM/dPP6E0nT9r7l7Po+z6P/AD8roPaez9+10t13XVf5edmXfDutnXbS6mMIiMNy8AAOcgYIP4gitivOfBXiSys7YrcholupU2sFyAx+X5vbhRn6V6NRGTkrtWezXZrdf10G4qOid1un3T2f9dQooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOc8Ef8gG5/7Cuo/+lk1FHgj/AJANz/2FdR/9LJqKAOjrJ8S6rLougT30CxGVWjjUzE+WheRU3vjnau7cfYGtasbxXePYeGru4WFJkXYsyvH5iiFnVZGK/wAW1CzY74oAyPC/iPUL/UItOv5LW4l2XxllgjMe0wXZhU7dzYDryB6o3J7dVdyzQWU81vbtczJGzRwKwUyMBwoJ4GTxk8VyPhe68OJ4iksfCEOlNpzWjTXcunIm1Jd6iNS6cEsrSHb22e9dpQBxPh631W4m1DUNc8PXf9rXNqyMbmW3+zhB0to9kjkKSSSzL83JOOFGePCE+oy6vDYaIPDenXukT2T2++ICad8bZNkTMoCjcM9Tu6cV6NRQByGmWesal4j0rUdT0s6dHpdjLAQ0yP50shjyU2E/IBGfvYJyOOKr/ETwxoNx4Q8SarNounSaiNOnkF29shlDLEdp34zkYGD2wK7eud8ff8k78S/9gu5/9FNQB0EfEa/QU6mp/q1+gp1ABRRRQAVh6d/ofiTUbM8JOFuox9eG/WtysPXP9D1HTdTHCpL5Mp/2X7n6VzYr3VGp/K/wej/O/wAjpw3vOVP+ZfitV+Vih8O5EPhOKBXUvBLIjKDyvzk8+nWurrkdGtodI8f6pYWqCO3urRLvYOisG2nH1JJrrq769nNyXXX7zgw91TUX00+4KKKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArhNX1q9HibxDYLdOtvBo0kkaKcbZAoIYHrn5jXd14j4pjfUfHmolSwi8zy2YeiqqkfyH410YfkXNOo7JK5zYnnfLCmrtuwnhS1kvNRg+1yyMt1Mi4ZiSwGefrjIHtmvbY444Y1jiRUReAqjAFcF4L0i01OK21UMyGxupVjCY2yDYo59gc4rv653zTm6tRWlLp2XRfdq/Ns6IKMIKlB3jHr3fV/fovJIKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFNkjSWNo5FV0YFWVhkEHqDTqKAOY8V6bZW/hwSRRJCtnt8sIuAFLAY+nOfwqrY+MvsuhS6jrYwPt32ePyE/hKhhxnt835d67B0WRCjqGVhggjIIrxvxCZb7UNY05GKmC8acKOnUgH2+9j8qiKUKntJfC/i8u0v0flZ9BybnT9nH4l8Pn3X6rzv3PZaKx/C+rTa34etr+5jSOd96yIgIAKsV6HntWxWkouLafQiMlJKS6hRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zwR/yAbn/sK6j/6WTUUeCP8AkA3P/YV1H/0smooA6OsHxnqk2jeFLu+guVtWjaJWuCgfykaRVdwp4ZgpJA5yQBg1vVk+JL670/RWlsAn2qSeC3jZ1LKhlmSPeQMZC792PagDE8I3ulz6jLHYeMrnWX8kubWRYAqjcuXxHEhzyBycfN0rsa8/8Ia1rFx4vutM1HXBfmFLsS2wt44zbGO4VImbaM/vI2DAH0brxj0CgAooooAK53x9/wAk78S/9gu5/wDRTV0Vc74+/wCSd+Jf+wXc/wDopqAOgT/Vr9BTqan+rX6CnUAFFFFABVLV7P8AtDSbm2xlnQ7f94cj9QKu0VM4KcXF7MqEnCSkt0cPpV79r8cafdE/PNo5jf8A3lk5/lXcVw8NkbH4jW6qMRsJWTjs65/IFSK7ilSqOdKHNulZ+qbX/BCpTUKs7bN3Xo0n/wAAKKKKskKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqO4nitbaW4ncJFEhd2PZQMk/lQBJXlVhoV/r+mag1sUjuGlebe5wGkkcZGcf3B+BNd1qetodMt301xLLfL/o7DjAxkt7YFQ+CHWbwnazhNvmtIx9T85Az74ArJylOfIlpFpv13S/V+i7mijGMedvWSaXpom/0Xq+xsafZRafYw20UcaBFG7y1Cgt3OPc1ZoorZu7uzJKysgooopDCiiigAooooAKKKKACiiigAooooAKKKKACuG0XTop/H3ihZkDxlI0YH0cA/wBK7mo0ghjlklSJFkkxvcKAWxwMnvirjJKMovqrESg3KMl0dzgvDmrvYax/Z8l3FFYRvLG4kwv7zdgHJ75BH416DXhusTC18Y6vaTDME105IPYsc/1r03w74rXV7yWwuIfIuEUPGd2RKvGSPQg9R71HspUZexe1rp94/wCcb2flZlKtGtH2q3vZ+Uv8na687o6Wio4LiG6hE1vNHNE2cPGwYHBweR71JQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnPBH/IBuf+wrqP/pZNRR4I/wCQDc/9hXUf/SyaigDo65zxgdfXToG0NrKMJcRSXEl1cNDtRZUYgEAjaVDhs9jxknFdHXPeLZbKbQ7y3n1OGxe3NvcmWVdyxkTBoyy5GVZ48EZGRmgCvo1zql74omGoX+jrJZ27Ry2Gn3LSvucoVeUMAVwEIXj+M11NcL4TfRrvXYp7PXLO/vorS4M4t0KmRppkkdzknCqQqqMnAJ5ruqACiiigArnfH3/JO/Ev/YLuf/RTV0Vc74+/5J34l/7Bdz/6KagDoE/1a/QU6mp/q1+gp1ABRRRQAUUUUAct4ou10zWNHvgvzBnVj6rgZH5FjXUKwdQykFSMgjuK5Tx5EptNKmfIjj1CNZSOyMCrfzrT8OzyC2m064OZ7F/KJ/vL/Cfy/lWLj7Kqn0n+a/zVvuNlL2tNrrD8n/k7/ebNFFFbGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWH4tvIbbw3eQySqkl1C8EIP8Tsp4qO78RSW3jaw0AW6tHc27SmXdyCN5Ax6fIfz9ueU8Y+Jbe8iZRCyfY55EUsRiQjgEfUhvw5pz5qSUrXb2Xdvb+u2pMeWreN7Jbvslv8Ah+Ohy1/rT2OnnS13tKIFiSXeVMS7g3A9/wCRr1XwQnl+DNMHrET+bE/1rzm78NT6347FlGMRCC3lnIYKVj2RhiPfnivW9N0+HStNt7GAuYoECKXOSfc10Tpwo4eNNO8n7zfdvdnNTnOtiJVGrRXupdktkWqKKK5jrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8h1jSrif4rfJaSyQG8t2dghK7SFJyfoG/I1o+KfDVrpMdjDbXU8ayBkEjNlwRznIxnjt/s16bUNxaW92oW4gjlAzjeoOMgg49OCR+NXiKkqsY20cdn523/zXYyw9KNKUr6qW68r7f5Pucv8ADseToV1YmQObO9lhDDow4II9jmuurkvDjW2k67qek+Z8zSKYyT1wvQ++0rXR6fqNpqloLqymE0JYqHAI5BwetZxre3vO1n1XZ/1t3Rq6KoWp3uunmv637MtUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDnPBH/IBuf+wrqP/pZNRR4I/wCQDc/9hXUf/SyaigDo6yfEl5eWGhT3NikjzI8W7yojI6xmRRIyqAdxCFiBg5I6GtasTxa14vhm6Ng04mzGD9nOJTH5i+YIz/fKbgvfJGOaAM7Qb7WrvxEZriS4OnXdvNOlvLbCP7MFlVYecBsyJvYhskEdq6idZXt5VgkWKZkISRl3BWxwSMjOD2yK4LwDPeT3oSKPVk062W9RzqCTLuLXZa3x5vzMRFuyevzKCcjA7u7tzdWU9us81uZY2QTQkB48jG5SQQCOoyDQBw83iDU9DufETDUZNZstK0x7mWWaGNDFcqCwhBjVQQV5IwSvGTzUd94g1rwkok1HUP7VE+jXV+FaFI/LmgVGKrsA/dkP3yRjrzW/o3g+HSNNk0xtUvr7TZIHha0ukgCkN95iY4lYsecksc7iTk80WXgywtmc3V1e6kDaNYxreyKwit2xujXaq5zhcs2WOBzQBT0u91nTvEeladqep/2imqWMs5JhSPyZYzHkLtA+QiQ/eyRgc81W+Imr3sXhHxJZp4e1KWA6dOv21JLfygDEctgyh8DPPy54OAeK29I8K22k3qXZvr69mht/stu13IreRESCVXaoznauS2WO0c1F4+/5J34l/wCwXc/+imoA6CP/AFa/QU6mp/q1+gp1ABRRRQAUUUUAc548h87wXqH95FWRSOxDg07TZf8AipZXP/L5ZRz/AFI4q14qj83wnqy+lrI35KT/AErgPBGtXN9r8LTyO6JthXceFUpgKPTlP1pYiDeHjU/lkvxtH9Qw80sRKn/NF/heX6Hq1FFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4jw14ltoDqaalf4eXVJkt1kYkkAA7R6D9OR6129fPFzLLNMvkgmT7bM6gep2f4V2YWlGopKWiOLF1ZU3Fx1f/DHUzeKTqPjPSNditCvl2pV4t+dvzSr1x7g1ieKbWaE2EhDmKa3M2cfKDvZTz9Av5j1rpvBHhy2vGuYbgs4jixIUOMM2cYPbHJH516Vb6fbW+nQ2CxK1vDGsao43cLjGc9egrCGIjLEKvFe7HSPmv5v0Xlr1Np4aaw7oyfvS1l5P+X9X56dCra6JbW2rvqil/tElukDLkbQF/rwPyrToorNyb3NoxUdgooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPF7vpHie4k+ztI2prCbZ0bBSRCFP44P6j8IrPxKfA1hcafLp8kspnZlXcFVCQvGeeOCRXd6voNtrNzp087ur2M4mTbj5sYODnscCsfxt4ej1Gxe8jjBkRf3uOrKO/1H8qKs4wlGslfpJd0tn6r/NE06c5qVK9usX2b3Xo/wDJnVxSCWJJF6OoYfjTq4Dwtqlzd+OJbZrh2to9LjCpuOzcBHkgeuSwzXf1c4pWad01f7xQk5XTVmm19wUUUVBYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzngj/kA3P/YV1H/0smoo8Ef8gG5/7Cuo/wDpZNRQB0dZfiLSZdc0SawguxaTs8ckVx5XmeU6SK6sFyMkFRjn8+lalFAGPpNjrtrcs2qa3b30OzAjjsfJIbI+bdvbtnjHf2rYoooAKKKKACud8ff8k78S/wDYLuf/AEU1dFXO+Pv+Sd+Jf+wXc/8AopqAOgT/AFa/QU6mp/q1+gp1ABRRRQAUUUUAVdStWvdLu7RGVWnheMFhkAspHP515dpmkTeGdTureWRZJbYW125Tp94gge3zV63XnfjbSJo/FGnasrIYbnFkV53B2DgH6c/pVSTqUKlFPdO3qtUQmqdenWa2av6PRnoYIIBByDS1naFc/a9Ds5c5PlhW+o4P8q0aypzU4Ka6q5tUg4TcH0CiiirICiiigAooooAKKKKACiiigAooooAKKKZJLHEAZJFQEhQWOMk9B9aAKt7q1pp9zaW9xIVlumZYhjOSBk/T/wCvXhiAaVamabDXT52L6Zx/hz+Vd78QLq3XVbOSSQ4tI2JC9VLkD88AfnXnGsB/Pt5JPvS26SewyO1bYan9Zbpp+59rzf8AKvK3xfd3ObFVfqyVRr3/ALPknb3n53+H7+x79pdtFa6dAscSRlo1Z9igbm2gZOOp4q5SKoRAo6AYpayZ0LYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrajb/AGvTLu2HWaF4/wA1IqzRTTs7iaurHkfgrVorW+hvbtW3eW8TMo525X5semcZrsdY8Vb/AAXqGraSzRzQOIh5qDKsWUHjkdGyK5Xxp4eNrq+j2GhxMks4mKKHxkk5PJ7YP5VHr0c9nZ6roEfzf6mRif72A3HscEfgKqUIUKkZ/wDLuTv/AIdf/SX+HptnGc69OVP/AJeRVr/zaf8ApS/H139Q06eS50u0uJsebLCjvgYGSoJqzWRZ39vp3hOzvb2TyoY7SJnYg8fKO3rnitOCaO5t454XDxSqHRh0ZSMg0pJ3b6FxkmkupJRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc54I/5ANz/ANhXUf8A0smoo8Ef8gG5/wCwrqP/AKWTUUAdHRRRQAUUUUAFFFFABXO+Pv8AknfiX/sF3P8A6KauirnfH3/JO/Ev/YLuf/RTUAdAn+rX6CnU1P8AVr9BTqACiiigAooooAK5/wAa2Yu/Cl6wyJbdftEbDqrJzkfhmugqK6t0u7Sa2k+5NG0bfQjFVCXLJS7EVI80XHuc94Ou/Ntp4TgZ2XKAdlkUNgfSumrz7wlcSWtzZRzY3QvLpcrDoWjOVP5ED8K9Brnox9m5Uv5W18t1+DOmrL2ihV/mSfz2f4oKKKK2MQooooAKKKKACiiigAooooAKKK474bahd6j4bnlvLiSeRLt1DyNk42q2M/UmrUG4OXa34kOolNQ73/A3vEGsLoOh3OpNEZvJC4jDbdxLADn8a8pGtal4qt4rW+kmdY7iSYFBjcSAEQY9CWP0P0rvfHgF3p1ppykPJNcozQg8ugzxx6nAqbwz4ZfRp5ZZ/IbKIIQi8x8fN+vHHYe9R9YtF0qPx9X/ACr/AD7L5voV9XcpKpW+Dov5n/l3fyXU8yubz+27XWbsl28i3QlnOd7tMgLe3HGPb3rXh0C11jxHoFldGQQy6PDMfLOCSAeP0rqrPwmJtd8TLfW5Fhf+WI2VgN38TYx0w2OtaMfhhYPE1hqcEwS2s7EWiQkEnAzjn6H9K74VKVGHs6WiS0+a/O+5wTpVa0/a1dW3r8m/wtsdDRRRXAegFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVprC1nvbe8lhVri2DCKQ9U3DB/SvMfiRHNB4rtprdivmWm4+hKb+v4V6vXK+MNB/tAxan5qqlja3O9SMlw0Zxj6GujDzSnaeqs0c2Jg3C8NHdM86X7RqNi7wM4a/iSBkLZHyyLj8tuB7V3/hDXbW38N6TZ39ysd08j2kaNn5mRsAfkVH4iuK0+zMln4QRXKreSTxyEdcCQfrSeItPvNI1SMLLvNpcm6G3qS20lh7/KMj60rKjJYab9xv3X23XK/0fy3tdJutF4mC99L3l32fMv1Xz729morG8P8AiBNeOobIhH9kumgGGzvUdG9s88Vs1lKLi7M6IyUldBRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzngj/kA3P8A2FdR/wDSyaijwR/yAbn/ALCuo/8ApZNRQB0dFFFABTZJBFE8jBiqKWIVSxwPQDkn2FOprsERnOSFGTtBJ/ADk0AZdh4k0vUtPvb63mmEFi7Jc+dbSwvEyoHIKOob7rA9O9GmeJNO1eJ5rX7YkKRiUy3NjPboUPOQ0iKCMc8Gua8NXcN1L4ugn03VTFe3ktzHHLp88Hnw/Z4UIVnVRuJVgFyDxnpzWcdLvL+DWdJ8PLrMWkT6LPbhdU85QtyQFjEXn/OBt3g4+X7uKAO10nxPpGuTNDp90ZJBGJQrwvGXjJwHTeBvTP8AEuR71U8ff8k78S/9gu5/9FNWXpTXGseKtFvYtMvbGDTdNnhuTc27Q/vJDFiJdwG8Dy2O5cr0weab8RPDtlP4R8Sam8+pCcadO+xNSuFiysRx+6DhMccjGDznOTQB2yf6tfoKdTY+I1+gp1ABRRRQAUUUUAFFFFAHkt1eT6f4t1uyMgSFJxexqVH+tLJg568hiK9Ts7lbyzhuU4WVA4HpkdK82+Kxe3vdNmjO0yROhP8AusrfzxXQeDNV/wCJS1vMRlIRcxjP8JGSPwP86eJjy1IVltNWfqtvv1+5E4afNCdB7wd16Pf7tPvZ2FFcn4f8bR6xcadaS2pjubu3eYlDlF2uy49edhP5V1lVOnKDtIVOpGouaLCiiioLCiiigAoopHYIjO3RRk0ALVS91O00+W1juZdj3UohiGCdzHtXOv43jki0Ca1tGaLVbkwnzGAaMBgmeM9zn6ViePdat317QorWdJXtLstMqHJRgyYB9+tdFPDyc1GS7/gc1TExjByi+34/8A9Fmfy4JH/uqT+leKaLevp+gRLJK0Ajv1vFJ4DALgZxzgnHHfFdl4o8YxrbPFZySRiORldwFIlXGPl65ByfTpnpXM6p4X1PWNK0e90yzaVZbctKokAw24kHkjsQPwrHDzlWvTpu0W9ZenRdL+ey9dtcRCNK05q8ktI+ttX1t5bv0Na0v7TWPEehyQX/ANruprl5Lj5SuwRplVwe3X649q9MrktI8HnTvEsOqlo/LSwSDYM7hIFCk+mNo/WutpyhSppQpbL833CE6tRynV3f5JWCiiioNAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKhvLZL2yntZSRHPG0bbTzhhg4/OpqKE7A1fQx9M8Nafptjp1v5fntYFzBLIPmUsSWPH1/QVl+KPDUl7Pc6tbM0lwtn5SWwX77BtwOc9cEiusoqpScr8+qe9yVBRty6W2sefeG5l8L6rNbahEYHvY45nG4ER9Rk49zgn1Ar0AEMoZSCDyCO9ef/Ey2v4fsWq2CPiJHindVDBVJUjI9M5qnBq9jYeL7fyNTnls7UMhiVjgKwOVx3wcHI9KylCdFKcm3Brfdxt0fl57rr3NI1IVZOnFJTT22Ur9V5+Wz6djqX8ZWSX32TyZS/wDaAsCeMbj/ABfTPFdJXhF9qBj8TTvyEOqm6Q+q7zgj8K93rsxFKMIxlHZnHh6spylGW6M281mKz1rTdMeNmkvvM2uDwuxc8/WtKuL8Ry7PiF4YHp5v6jFdbdXltZIj3MyRK7rGpc4yx6Cs5wso26r9Wawndyv0f6InooorI1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5zwR/yAbn/sK6j/AOlk1FHgj/kA3P8A2FdR/wDSyaigDo6KKKACiiigAooooAK53x9/yTvxL/2C7n/0U1dFXO+Pv+Sd+Jf+wXc/+imoA6BP9Wv0FOpqf6tfoKdQAUUUUAFFFFABRRRQBk614dsdcltZbtWZ7UsYgGwuWA6jvyAfwryDw7dXdq5bnbJvhB9CEAYf98/+g17rXnl74Fvv+Eav7aBomvDqDXdtsbGUxgLk4wcZ9unNbx5atGVGbte1n2e9/k9TnnzUq0a0Fe17rurWt81oc14CMsPjmztpuscUsa/TDN/U17RXnkekL4d17Q729kVcRneRglXMYVwSOq5bIr0JWV0DIwZSMgg5BFZTxXt372klo1+q8nuv8zWnhfq8fd1i3dPy00fmtmLRXD2fiXb8SdSsbrUGW0KpBbwNyvm/L0x0Od3Pv9K7iqqU3C1+uoqdRVL26OwUVjaN4hj1jVNWso4GjOnTCIuWzv8AvDOO3Kn9Kg1nWLix8TaDYxMohvGlEwK5Jwo289uTR7OXNy9f+BcPax5ebpt+NjdlmihUNLIkakhQXYAEngD61X1WTydHvZf7lvI35Ka8y8YeJv7b8NqHhWJ4dVZAqtnKohwf/H/0rUm8VXU2jaxb3oV/MmnRHbChLcjAHHU9cd6dWCoQjOfV2t1fp3JpVPbzlCHRXv0Xr2OUsriRtF8OmNSRaahM7HsoBib+prpNN8LXGoWeoarHsWa5MsiE8tK+SQv+yu78T+VZOh2sd/4lj0NkaGAwuzFOGGY8gj0IJz+FesafYxabp1vZQZ8qCMRrnqcDqfeliXVq29r7sXry903f3n+i07thhVSpX9n70lpzdmkl7q/V69kjzLwj4Sl1z7PrN5MDbSCeKWEgg4KlBt7DqfpivTdPsotN0+3soN3lQIEXccnA9asAADAAA9qWnVquemyWy7BSoqnru3u+4UUUVkbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBV1Kwj1TTLmxmJEc8ZQkdRnuK5U+BrS08GS2EuJ7uISXEc6ZQ+bg7Twe3Awa7SgjIwelaQqyirJ6Gc6UJu7Wux4roWl6hrthczXVuPscMLSrcMuAzL/CMd+vTpj3rprHx9LdX1mWmhFsoKzoq5eTjG7nkYPPA712Wn6JaaVozaZaBxBhwN7ZPzZz/OvPPh74Tiv7S6v78LJbTIbcRZIYEMrbsjpyo6U3h6cuedKTglskk1r5PZ+jRKr1YuFOrHnb3bbT081uvVMzbnxLd3vjbT9R1RFt7W2uAEKocLHn15ycVu/EHxPZyz2ml25Z5YLmK5eRcbMYOBn1+YGsrxHaS23ie90+zsvtFnb2yTOnBKIFXc3P3uefXNYd5Zx6tL9thuFDS/IqkdWVRkDvwMdjW0a6g4yxMbJLRq7j8+q+enmc86LnGUcNK7b1TspfLo/lr5Htx1S1GsrpJZvtZg+0AY42btvX1zV2vObfWluPHVtqsilIRp5icbgcOMttHTOT09ciuy0jXbfVfD8WsMPs0DqzN5rD5ArEHJ9OK5/clFSptNeTvqdac4ycais9d1bTT/M1KK4O/wDH0N1Ya/FaEW8lomy3n80HzSSVyo/Uda6zQbiS78PabcTOXlltY3dj1Zioyfzqp0ZwjeRMK0JytE0KK5mz1O4l+Impac0zG3is0dY88Bsrk/8Aj1ad3rUdpr2naUYmZ71ZGDg8JsGenfPNJ05J28r/AKjVWLV/O36GnRRRWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzngj/kA3P/AGFdR/8ASyaijwR/yAbn/sK6j/6WTUUAdHRRRQAUUUUAFFFFABXO+Pv+Sd+Jf+wXc/8Aopq6Kud8ff8AJO/Ev/YLuf8A0U1AHQJ/q1+gp1NT/Vr9BTqACiiigAooooAKKKKACiiigDkfG6zQy6TqSWUl3b2csjXCIM4jK8k+2Aa5pfF9tY3t2ml37QWSIrwpMS4csuSAMHaQT37ivT54UubeWCQZSRCjfQjFeCeKfDzeGr+3snmErvAJWdRgElmHH4AV00sNQxSUamkls1v3/roclbE18K3KnrF7p7dv66k0hul1yHXoSLtvtAuiB8u4hs4/MY4revNa1DWdUTVlmuIYbGWz32qu2wM2S3H5isLXNP1DwwdPt5XEc7QMzhDuH+sbHt0rsdM8L6hdeD7i5njRdTkTfaqrcFcAjPOMtz9MirqPE0kn7s1sm3yu1+qSafqrehnTjh6ra96D3aS5le3Rtpr0d/UreHNaGkaj4nv5YGdri4DwxZCmT536E9sNnNUZdbvrjUtL1TVpYfMs5pHVV+UFTtIXPtyM88Y61nXmnaquqafozu0V3dQo5ydu1zv4OPwz9KwLy0u7fUm066z9ojlKMM7vmOAee/QVUcPiKkm5TjG/ZXdrW0bdvwJnicPSilGEpWfV2V731SV/xOysPDby6Dc63Gd8EaS3EZdsl2Gd2B2+71xmsDS9D1Xxa1w1ttZ4NvysdqgMSOPpj9O9e02eh2lhoH9jQeZ9l8t48s2WIbOTn15NGg6QmhaLb6akplEIb94Rgtli3T8awozhRcqmsp9G97fkvRWOitTlWUab92HVLa/5v1dzF0/wzPbfEC/1lkRbNoFSDDcltqg8dsbT+YrrKKKznNzab6aG0Kagml11CiiioLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLOyttPt/ItIUhi3FtqjjJOTU9FF+grLcxJPDcMniC81Vp2P2qzNo8W3gAkZOfoBxXP8Aw50ZY9ClOo6eBcRXkoQzR/MoKIrYz2OCPwru6K29tLkcfT8DJ0I86n6/ifOn267sLhoFkysLGPY3I4JroLHxDc6jpcmhhZEtp8qsaIGBOdxwQODnJ/OvUo/CmiRxX0f2FGS+bfOGYncck8c8dT0xVTwh4fk0GDUYpURVmvHeIKc/usAL/WtMR9WrXqJOM+6dn/k7eaZjh1iaLVNyUoPo1df5q/lY8lXw4zyxJ9oRFMTszkfxAMQMHHXCj6mvTfDfiFII9A0NraUyT2QYy/woVB+U++EP6evG3d6JpsenSiKwtkMcDrHtjGFHLcD6kn8TXlujWWq6vot9qlvJAos8ZWQEZCoSxGB1Py/nWbni60Hzcsku94vX05v0NFTwlGa5eaLfa0tvXl/U6GDUY7L4q67dy58qKyYttGThEQnH/fNOuNdtdY8c+F720ZvKeOThhgqTuUg+/FctBeGTS5tXkQIsj/YppBy53x89s4xkdcjiqEui3iSosE+1FX93uJDANz2HIOfxzWqxFODtiU4O1tdU9Lbr9bMydCpNXw7U1e+mjWt1o/0uj1PxBrc+n+K/DtrFNttrp3WVBjD5wq/kTXVV4rcJdS2+iYkUzaYhB68kSZHb+7iu78R+L7ZNJni03zLi4midFeMbfKOMAnOD34xnpXLPEYWXLGFSLe267nXChio88505JaPZ9jr6oavrFlodkLu/lMcJcICFJJJ9h9CfwryqHxHd6T4SvfD7R3Mk3mtHDcqcIqEjgH3+b8xWDfavqGr6dYWPmXE0drFhkyWBfc2GPvtIH4V208Gpe85e738u5xVMa4+6o+9bbz7H0FXO+J9auNJvNEigdVW7vVilyoOUPB+nUVzXhvxzIfEV3ZanJM8V5dbbP5PuZYgD/d6D6/jVH4k69EdesLSBWMmnP5shPAJO1gAfoP1qaeGkqqjJFVcVF0XOL6/qeq1h+MNTudH8LXl9ZuqXEewIxUHGXUHg+xNaGlagmq6Ta36JsWeMPtJztz1Ga5z4lOV8HyIOsk0aAevOf6VjRheqovub1p2oylHsWJ/EdxHqfhmBVi8vU42ebIOR8ikbeeOTXT14lZ+I21HXPC8Ri8tbBooN27O4ZUE+3SvVLLxDBdavq1i6rCunmMGV5Bh9wJ/DBGK1xFBwS06a/f8A8MY4bEKo3r10+7/hx3/CTaQLSe6a7CQQXJtZHZSAJMjjp0569K0LS8t7+1S5tJkmgfO10OQcHB/UV4NdajN/ZF5ZyI6i7vBdx5HVR5it+uPyNbmjePrjw/oNlp0FpFLtDMZHY8ZkJIwPbPfv7c7TwL5fc3uY08wXNaeiseyUVn6ZrVpq0t7HbF91nOYJdwx8w7j1HX8qdpGr2uuacl9ZlzCzMo3rg5Bx0rgcJLdHoKcXsy9RWN/wk2nPBq8kTvIdK3faF24OQDwM9eVI+oqP/hLNNi8P2Ws3ZeC3u2CKCu4qxzwcdvlPNV7KfYn2sO5u0VwKeLI5PGM95FNLJp6aQ0wizgEj584PG7GRXV+H9XXXtDttSWIw+cGzGWztIYqefwpzoygrsmnXhN2Rp0VT0/VbLVVnaynEoglMMhAIww6/X61crNpp2ZqmmroKKyvEGu2/h3Szf3CPIu9UCJjLE/X2yfwqr4y1W40jwtc3tlIEnBQRvtDYywzweOmaqNOUmrddCJVIxTb6am/RWbf6vHYeHpdWcAqkHmgf3iRwPxJArL8C6tfazoMlxqEm+4S5eM/KFxjBxj2zT9nLkc+iD2sedQ6vU6aioLq8trJEe6njhV3Eal2xuY9APesjxZ4iPhnSor0W/n751i27sYBBJP5KamMJSaS6jnOME23sL4s1+Tw3owvo7dZ2Myx7WbAwck/y/Wt2uI+Kb7fCkQ/vXaD/AMdY/wBKteHdcudQ8T39m8u63js7eSNMDgsiknP/AAKtvZXoqa8/0MfbWrOD8rfidbRUcVxDO0iwzRyGJtkgRgdreh9DUlc50hRRQTgZNAEcM8NwrNDKkgVijFGBww6g47ipK8btPEN9YeCbi7sZ2imbWdzEY5VkLYPtla9id1jjaR2CooJJPYVvWoOkzChXVVDqKq6bqNrq1hFfWcnmW8udrFSM4JB4PuDVqsWmnZmyaaugorlbDWr6f4kappEkoNlBaq8abRw2IznP/Az+ldVVTg4Wv11JhNTvbo7fcFFFFQWFFFIWVSoLAFjgAnrQAtFFFABRRRQAUUUUAc54I/5ANz/2FdR/9LJqKPBH/IBuf+wrqP8A6WTUUAdHRRRQAUUU2RS8TosjRsykB1xlT6jIIz9QaAHUVw9jr2oaV4d8Z3d7eS6k+iXMwgedI1ZkS2jkCt5aqPvM3OO9Vb7xBrXhJRJqOof2qJ9Gur8K0KR+XNAqMVXYB+7IfvkjHXmgD0Kud8ff8k78S/8AYLuf/RTVS0u91nTvEeladqep/wBopqljLOSYUj8mWMx5C7QPkIkP3skYHPNVviJq97F4R8SWaeHtSlgOnTr9tSS38oAxHLYMofAzz8ueDgHigDtk/wBWv0FOpsf+rX6CnUAFFFFABRRRQAUUUUAFFFFABXK6x4a/tbxlp97c2sc9hFbOkocjG7J2jHU9f0rqqKuE3B3RE4KatI8n+LSf8TXT3x1gYfk3/wBevULBPL061T+7Cg/QVneKNDOv6HPZRtHHO+3ZK6524YE+/OK2FUIgUdAMVrUqqVKMe1zGnSca059HY5vVPD815410fWI1UxW6OsxJwRgHbgd+WNN07wr9l8X6prVw0UiXGBAmMlfukk5HByoxiunoqPbTtbyt+pp7GF7+d/wsFFFFZGoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJl3wyJ/eUj9K4PwJbbfhzfHH+vM7f+O7f6V39VFsbe00x7S0gjhhCMFjjXAGc54+prWFTli492vwMp0+aal2T/ABPHLaHd8LLyXH3dTU/+OKP/AGau+fwNp+oyabqe+SK6jW3aTHKuEUDGOxIAGfbpXNaFpNzqvwpvbWzi8y4ku96JkDOCmeT7A16lEnlwon91QK68TWcW+V63f6HHhqKklzLSy/U4KTwher4l8QXBTNnd2cvkSBuVkYq2MdRggn8qyWW68Sv4Wt7WVY3+yF5yTgMFbaxOByflP516tXH+GvB1zomtveTXscsCRSRW8SrgorPu5P5/nWUasZxftLXW33WNZUZQklTvZ7/fcz9K0eG+8Z69aTqVtrXYYRH8nlluRjHtmubso1uPDfiC7WPyprF0ERX1LHcSOh4r2BLeGOaWZIY1llx5jqoDPjgZPfFeZabbFfCHjIBSSLmRcAf3eaxp4XDTbk6a+z0/TZ/M2q4nEwSiqj+11+7XdfIxJroWEmg3MkYMs8STiYgHym8xuQCO2AevWtLwh4eh1hJ72zt7fauYz9rRnGSOQByOh69RxWt4g0eOT4W2U/2ZDdW1pCwcr86qdu4Z7da6rwjH5XhHSl9bZG/MZ/rTqYelGlei3HW2kml9233WJpV6sqqVZKWl9Ypv79/vuebHxFNpmn2MEV5PbRxrIkaxk/KA5B3dcnPT0FWrTWbnxlqkWmNMZMSm4XzF2xgqOOnOPb3rnr/SL3Ude1i2tlUrYPPKwJxhA5Jx7810fw+0/wAjxZC2MZ0wT/8AfRUf1repgKUYOanK+/xGFPH1ZTUHCNtvhOYilsrf7S9tasJrYbyX7fMF4OTjlhU2kX9zq+r2dg4VfPnRGdQchc/N1J7fyrvvF/hjStO8K6td2VmI7l1XdIGJJHmqx6n/ADitTQPCOj2Vppl2lmBdxIJPM3HO9lAbPPPsO1Zujg3BzqRc3/e97p5miq4xVFCnJQS1933evkMi8EwJDCWvpzcxD5ZNo2g89FOcdfWuB1DRvM1fWIXs/OawDTzyqQmQRu3YyOvoK9nrMvtItHg1SaOBRc3tuY5ZB1cBSBXJRo0oN2uvSTX5NHZWq1ZpXs/WKf5pnluh+MYtJN2YVVDdtvlMysctzyMH3qz4S1yXRblES9a40sqwNuACVJ5BHvn6cH6VpeGvCtnrvw+UtBEL6RZVhuGHK4fjn0yP1PrVLwJ4Wtby91WDU0Ej6fdRgBT8rMpcEHI5U8cV2Tw0Yqfs6klbdP3vLrr+JxQxE5OHtKcXfVNe759NPwKdu86af4ggncLNq0iOrKCcfOS2c46g4puqMv8AwjFn4euZvIksZ2dmkwCc5IBBPB+Y132s+C7LU9Tsb+HbbzW0sZcAfK8aH7oHQdua4DxzpdxdeNtSFvG7t5CT7EBJICqp4pUY1qsletbrpFb7dbjrSo0Yv9zfprJ7b9LdTNs9MlnmVbW+EjzIbcCNAxYYGQBu9K6XQzd+Ezq1s/nItxATbJKpBV+Qp+nPJHpXRfDrRrvSNDnS/tTBcPcsyh8Z27VAP55qh43sftHjTwwcZEsuxvorqT+hNKSxEqjpqtdecU9telhx9hCmqrpWflJrfTrcoeE7yHwvNchvNlhuIoThQeJAPnPPbJOPXFdbB4z0ua5ljkMkMaqCsjrw5PUYGSMVjeKPBlx4i8XwTn91Y/YyskwIJEgLY479VP0Bp2vWSeFbbRNQtlJtrD/R7kKMb1Zdu8juc8/U1jOlXqNP2icn/df/AMkbwq0aaa9m1GP97/7U5DVrS+16+v7241FRbtJI8cDy8gLkRAL75/n61o+NNdn1DQ9P06zUTRNErXJVCWEgxx/PtXXeCLOCbwfps1xBHLMVc+ZIgZuXbufaqlx4AR9YlvLe/eG2ZldbQRgqPVRk8An06VftcSqlpOPu7aPX8Xb7mZ+xwzp3gpe/vqtPwV/vRla7rCXHgPTtIRJJLq4ggWTYAfK2lc7ucgnFbPhi7t9Lj8RNcOIrdNTlkDYJ+VsYwB1/CuU8KaJea/pcV+syl49QWOUOcKYQoLYAGM8in65ClpeazYQRql0Lu2jsz6LIMkY79MfjVSjitaSUX31atqv7rFGWF0qtyXRaJ30fmjY+Jd75un6VHbAzhphc/uxu+UDg8djurG8e+Izq8V1pSwALbXsfksM5kGyQMfz6Yo8MWzeJhNbCQRSLZArLgt5cnmEdCemB09zWjqWiHTfFOh6eI/Ns7pAkshyC7rneeDxkYP50QniabUXTjeN/tP1v8Ipww9WLkqkrSt9lelviLHxClGq+HdOjt5I3d5RKQHHGEP8AU4rB8IaxHpOuX1/qAkjhj01AcryxXy1AGepJrT07wbqbNe3OoXLRQ20kohh8tczAKdrZHbn9KxPDem61q5spxCJbKW4Mc0owCijGTwR2J7VUJYmNNxtBr1a313trt2RM44eVVTvNP0T202vpv3Kq+K7yzh1S60yZreS71HziSoJ2HccHOfavUta8QHTF0lokjkW9u44H3H7qsMkj36V53q2mLpviKfTJIEnK2r3ImKAeYFjZuhz/AHSOtZb6nbQDdJFOr+fHchW67iuVYDOMYx+YpzqSm05UX8rO/wCKf3ihTjTTUay+d1b8GvuPRvHtx5X9goCRnU4n4/2f/wBdXfEXivTdINzYzSlLw2jSxgr8rHBwufUkV5rq3iq7uzbjU4pWngbzIkkjVdoYAhuncYPStfRIYvHeqyzXT5lhiQSPJECduTgDt+OKycqkYJ1KMrK/WP8A8lsapU5Tap1o3dukv/kdzmL6KTS9Bl0u4ys0s9tdopHVWifP5EgV6Fd+LVvvDmuQRx7GtrGIiXdnf5qDPGOME4rM8U6aLbxFpun/AL28N1GdrzvuYMCenH0rmJ77UNOYW9zZvbNdQo0MbEghd+BvHcfK2Bx2Nb+1xFZJ+x13+Jf10MPZUKDkva6bfC/66nY/D3xFBBZx+H5o5Rcw+bIWwNoAOcfXrVnwp45u9eu9Q+1W8MUFtbecAmcjHXJPX/61V/EWnW+g6nZGCSf9/Bcs8rOCw2R7sZx/F0NcnZ6gulpcGWFrAXdlvUeWD9oViAFHHAIyc+1Ze0qVE5ewbb7OL667tGvJTpuMPbpKPdSXTTZMh0TWrqXUdZvrq4aS5n02ZDIeCTtAHT6D8q9C07xZYaJ4M0SfUHlYzxiNQg3N8vBJ56DA/OuVfwbd21g1zHpczAtsCxNudkYdcBunb1H61R23F0ZNLXS5pJdMgZxbSp8yjeuQBgn+Ld71pUxHtvhpS03+Ff8At1jOnh3Q+KrHXb4n5/y3PVk8R6YdKstSlnMNveMqRGRSDubOAcZx0PPTjrWHceLrh/G1rpVrGv2BZmt55SM75dpO0HtjiuDtbSTxLZF0tp/Is4sM4bCxBQWwBn64471fnSS28M6fOnnW4N208V+zgmSRwccY9F/SsFVpU3apCSe1uW9v/Abm7p1aiTpzi1o73tf/AMCt/Wh61PcQWyB55o4kLBQ0jBQSeAOe9cN8Q7r7FrPhi4LMBFdM5AOMgNHn/PvWR4g1ka34SsbC5uD9q8wSPcMihZNoYcc+4z9DVPxRct4gsNLERbzLOBldnP8ArHwvIPvjv60sPicNGalKdt1rdL72PEYfEyhKMYX2elm977I9H17X/wCw5LBBZS3b3c3lBIj8w46gd/0+tbNeX3GpT3nxFtLua4Y6XAyMnzZVCYucD/e4r1ClKVJpKEk3bWzvuVFVbyc4tK9ldW2CiiipLCiiigDnPBH/ACAbn/sK6j/6WTUUeCP+QDc/9hXUf/SyaigDo6KKKACmupZGUMUJGAy4yPcZ4p1FAHN6Z4Pi09tTE+r6jqMGpl2u7e7WDZIzIqFv3cSkHagGAcdeM80tl4MsLZnN1dXupA2jWMa3sisIrdsbo12quc4XLNljgc10dFAGFpHhW20m9S7N9fXs0Nv9lt2u5FbyIiQSq7VGc7VyWyx2jmovH3/JO/Ev/YLuf/RTV0Vc74+/5J34l/7Bdz/6KagDoE/1a/QU6mp/q1+gp1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdaKKAOY8A2Nxp/hWKC5hkhl82QlJFKn72Oh+ldPRRVTm5ycn1IpwUIqK6BRRRUlhWdpOjwaOL0Qu7/AGu6e5bdjgtjge3FaNFNNpWE4pu5HPBFcwSQTxrJFIpV0YZDA9RSwwx28EcMKKkUahERRgKAMACn0Ur9B26mZaaBp9jq13qcETC5uxiUliQecnA96tpYWsd4bxIEW4MYiMgGDsByB9KsUVTlJ7slQitkIyq6lWUMp4IIyDS0UVJQUUUUARW1rb2dutvawxwwpnbHGoVRk5OAPc1z3hbTbix1TxDLPC0a3F8zxlhjevJyPb5q6airU2k13IcE2n2CqS6VZrrD6qIyLx4fIL7jjZnPTp2HPtV2ipTa2KaT3Cq1xp9rd3Vrczwh5rVi0LEn5CRg1ZooTa2BpPcK5zx7F53gnUl7hUb8nU/0ro6o6zp51XRrywDhDPEyBiMgE9DVU5cs1LsyaseaEorqil4Pj8vwhpS+turfnz/Wtuqml2Z07SbOyLhzbwJEWAxuKqBn9Kt0pu8mwprlgkZuiaHZ+H7A2diH8ppGkO9snJ/+sAPwrkPEumNJ8TNBlUHZOVdh2LREtn8iK9BppRWZWKgsvQkcirhWlGTk9b3IqUYyiorRKxxPw/0C80e51ia7t2hWWUJDu6sqlsn6cjFdxgflRRSq1HUk5MqlTVOCghrqHRkPRhg1l+G9FHh/Q4dO84TGMsWk27dxLE9Mn2H4VrUVPM7cvQrlXNzdSNreB7hJ2hjaZFKrIVBZQeoB9K8u8VaANX+JsFg0vkreQB94XONqN2/4BXqtUZ9HsrjWLXVZIibu2VkjcMRgMCDkd+p/OtaFZ0pN+TMq9FVYpeaZyXj3w/YQeHb3U44j9qSGGDcTxtEijp69OapfC21+zXutowOUEAGfQ7z/AIV2niPSDr2g3OmrMITNtxIV3Ywwbp+FXbS1S0to4UA+RFQtjBbAABP5Vf1j9w6b1b/4Bn9X/fqotEl/mct4mgZvGvhaVUZh5koYgZxgKf8AH8q6mWytZp1nltoXlUbQ7ICwGc4z9Rmp6KxlUbSXY3jTScn3/wAjgfimkkek2N3H/wAs5XhP0dCD/KodT8D3OsaloUUoKafb6ekM0qMA6soPGD6kj9a7fVdJtNZsvsl6heHer4BxyDmrtaxxDhBKO6v+JjLDKc5OWzt+AAADA4ArMj0Kxi1251hVcXdxCIZDu+UqMdvX5V/KtOiudSa2OlxT3OB+FEQHh28k/vXZX8kX/Guv1HR7HVbaC3u4A8UMqyogJUBlzjp2wSMVS8KeHR4Z0uWyFwZ987S7tu3GQAB+Sitytq9TmqucWY0KfLRUJo8R0Xw9qWq6tL5VuZLSweSAkkDH3yAM9Tk9vUU3w1omoLqV5b3FrcW8h0+Z4w6FSCVwD+eK9uSNIwQiKoYljtGMk9TTq3ljpO6toznjgIqzvqjxfwPeT3/jix8x2KCNspngkREZI+vNe0Vx9l4Oi0nxrBqGn2/l2RhkMnz/AHZCeAB1xg/pXYVjiXTlJOmrKxthY1IxaqO7uFFFFc50hRRRQBzngj/kA3P/AGFdR/8ASyaijwR/yAbn/sK6j/6WTUUAdHRRRQAUUUUAFFFFABXO+Pv+Sd+Jf+wXc/8Aopq6Ks7xBpZ1zw5qekiYQm9tZbfzSu7ZvUrnGRnGfWgC+n+rX6CnVzYsfGYAH9vaHx/1B5f/AJJpfsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjorm2s/GYUn+3tD4H/QHl/wDkms/QJ/GeueHdN1b+2NDh+22sVx5f9kyts3qGxn7QM4z1wKAO0ornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJrN1K48Z6ff6Rbf2xocn9oXbW27+yZR5eIZJc4+0c/6vGOOue2KAO1ornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K4rQ7jxnrNhLc/2xocWy7uLbb/AGTK2fKmeLOftA67M47Zxz1rS+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6Oiuc+xeM/wDoPaH/AOCeX/5Jo+xeM/8AoPaH/wCCeX/5JoA6OiuK1K48Z6ff6Rbf2xocn9oXbW27+yZR5eIZJc4+0c/6vGOOue2K0vsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJo+xeM/wDoPaH/AOCeX/5JoA6Oiuc+xeM/+g9of/gnl/8Akmj7F4z/AOg9of8A4J5f/kmgDo6K5z7F4z/6D2h/+CeX/wCSaPsXjP8A6D2h/wDgnl/+SaAOjornPsXjP/oPaH/4J5f/AJJrN0248Z6hf6vbf2xocf8AZ92ttu/smU+ZmGOXOPtHH+sxjnpnvigDtaK5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSaPsXjP/oPaH/4J5f/AJJoA6Oiuc+xeM/+g9of/gnl/wDkmj7F4z/6D2h/+CeX/wCSaAOjornPsXjP/oPaH/4J5f8A5Jo+xeM/+g9of/gnl/8AkmgDo6K5z7F4z/6D2h/+CeX/AOSazdcuPGejWEVz/bGhy77u3ttv9kyrjzZkizn7Qem/OO+McdaAO1ornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjornPsXjP8A6D2h/wDgnl/+SaPsXjP/AKD2h/8Agnl/+SaAOjoriobjxnN4kvdI/tjQx9mtILnzf7Jl+bzGlXGPtHGPK655z2xzpfYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXOfYvGf/Qe0P8A8E8v/wAk0fYvGf8A0HtD/wDBPL/8k0AdHRXF6/P4z0Pw7qWrf2xoc32K1luPL/smVd+xS2M/aDjOOuDWgtn4zKg/29ofI/6A8v8A8k0AdJRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAHR0Vzn2Lxn/ANB7Q/8AwTy//JNH2Lxn/wBB7Q//AATy/wDyTQB0dFc59i8Z/wDQe0P/AME8v/yTR9i8Z/8AQe0P/wAE8v8A8k0AdHRXOfYvGf8A0HtD/wDBPL/8k0fYvGf/AEHtD/8ABPL/APJNAB4I/wCQDc/9hXUf/SyairnhvSJ9E0f7Jc3UdzO1xPcSSxxGNS0sryEBSzEAF8dT0ooA16KKKACiiigAooooAKKKKACiiigAooooAbI6RxPJKypGoJZmOAB3JNUtIu9JutOjGi3FlNYwgRR/Y3Vo0CjAUbeBgY4rH+IEMk3g26VYnliWa3e4jRSxeBZkaUYHX5A3Hpmqnh25s9S8daxqOjSRTaW9haxPPBgxSzq0pOCOCVQoDjpkDtQB2VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUW1rSl1ZdJbU7MakwytmZ184jGchM7ugJ6dBTL6+0aHULK3v7qwjvS++0jnkQSFsFcoCc5wzDjsSK5fxhr2j6f4z8Jpe6rY2zwXc0kyzXCIY0a1mVWbJ4BJABPc1ieJZbKBvHllqCq2panCg0uMrmS4H2dVjWLuxWUMeOhOTQB6Rc6tptleQWd1qFpBdT/6mGWZVeT/AHVJyfwq5Xk+uvb2tv43sNYCvrOo20S6ehX57k/Z1VBF3YrMHPHQnJxXqdssq2kKzsGmCKJCO7Y5/WgCWiiigAooooAKKKKACiiigAooooARmVFLMQqgZJJwAKp6frGmasJDpuo2l4IjtkNtOsmw+h2k4qTUZrO30y6m1AxiyjhdrgyjKeWAd24dxjOa80jvrXxfb+ItX0S+sRfy6JNaafYWs6NceX1EkiqSVYsVCr/CDzyxAAPQ9KvtGuVnh0i6sJlilYzJaSI2x2Ys24KeCWJJzySTUtjq2m6m0y6fqFpdtC22UW8yyGM+jYJwfrXmd89vraong8KZLfwzeW032dcGNmWMQwtjpIGD4U8jn1rX0K60zUvF2gyeHvLNvZ6RNDe+UuBEC0PlxP6OCrnaeRg+tAHoNFFFABRRRQAUUUUAFFFFABRRRQAVSv8AWNL0pohqOpWdmZTiMXE6x7z6DcRmrtcf45v7O3s57Yato+m309syE6jb+YZozuGxPmXJznjD4z93mgDf1O+0aya0m1W7sLciTNq91IifOVK5Qseu1iOOzH1qW+1bTdLWJtQ1C0tFmbbGbiZY959BkjJrzrT7rTNKvrC48Q25srGbwzbW9rHffMVILebCSQN0hBi4xlsdOKg0J7fQW0x/GAWKOTwzb20P2peNwZzLDz1kKmL5epx3xQB6wCCMjkUVgeCLe8tfAuhQX6ut1HYxLIsn3lwo4PuBgH6Vv0AFFFFABRRRQAUUUUAFFFFABRRVPVZ7y20m7m060+13qRMYIC4USPjgEkgAZ96AJI76zmvJ7OK6ge6gCmaBZAXjDfdLL1Ge2etVtMvtGvZrxtKurCeXzc3RtZEc78Bfn2nrhQOecKB2ry62ttUTUPFthbaTqUOp3Ph1C887QF5Jybk7z5cjfeY4UDONuOABm1fPb62qJ4PCmS38M3ltN9nXBjZljEMLY6SBg+FPI59aAPTLHVtN1Npl0/ULS7aFtsot5lkMZ9GwTg/WrlefaFdaZqXi7QZPD3lm3s9ImhvfKXAiBaHy4n9HBVztPIwfWvQaACiiigAooooAKKKKACiiigAooooAo6lrWlaMkb6rqdlYpISEa6nWIMR1A3EZqG81PQpNIiv72+05tMZkkjuJpk8ksGDIwYnbkMAQfUVl+Ll0qO5028v/ABBJolxb+abe4BiCsWADKfNRlJxjA4J5x0rm4NYklufCeu+JjHDZJHfRG6mj8qLzC6rDKwbhN8auRn+9jvQB6BdatptlYLf3eoWkFm2NtxLMqRnPTDE45qzFLHPEksMiSRuAyuhyGB6EEdRXlWkPb6Zd6BqephbXQBc6q1o9wuyOASTBoC2eFBj8zbnHDAd67DwBG0fhp2WNorWW+u5bONlK7bdp3aPg9AQcgehFAHUUUUUAFFFFABRRRQAUUUUAFFFFABVNNW02XUn06PULR75F3PbLMplUepXOQPwq2c4OOvavIfBVze2A8P2H9ox3erPczLqemtbRh7Q7ZC05YLvVt2MsxIffxjIoA9Otr7Rp9YuYrW6sJNTRFS4SKRDMqqTtDgHcACzYz03H1qWDVtNur+awt9QtJbyD/W28cytJH/vKDkfjXmfh97eW08EaZZBRr+n3LtqSbf3kA8mVZjL3AeQrjP3iQRml8OyW0tt4H0y0CjXdOuXbU4wv7yAeTKJjL3AdyuM/eJBGaAPV6KKKACiiigAooooAKKKKACiiigAqnqOq6do9utxqeoWtjAzBBJczLEpYgnGWIGcA8e1XKpavqdvo2j3mp3RxBawtM/qQozge56CgCt/bPh7VtGu5/wC0tMvNKAaK5k8+OSEAjlXOSvQjIPrVpdW006Z/aS6haHTwu77UJl8rHTO/OMfjXA3GmSaR4b8N3msKMNq41HWWIyqPIkhBb/ZSRoxnoAgPaqMr273s+soFbwx/wk0Vy0gXMRUWoRpvTy/P2nd0yCfegD1G0vLXULVLqyuYbm3kGUlhcOjD2I4NT1yXgt4ri/8AEt9YlTpV1qIktHQfJIRDGsjp2Klw3I4JBNdbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFQ3l3BYWU95cv5dvbxtLK+CdqqMk4HJ4HagCaiq6XXmtbmGGSSGdC4mXaFQYBGQSG5zxgHoc4qxQAUUUUAFFRQSvKHLwSQ7XZQJCp3AHhhtJ4PUZwfUCpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyPFWnnVfCWr2CwLcPPZypHEwBDPtO3r33Y/GteigDgdDsbVNV8LvpWjTWFrBb3S3K/2e9sElKQ8sCq8nB+bocHBOKx9G8FWyad4LM2jSrLK8iapujYM8fkyMEm9U3rHhW46DvivVqKAPLNQ0XVY/DxsbS0dNMttemL2r2kk6G0wxUCFWVpIw7KdqnoOhAweo8B2Ethpt6C7C2lui9vB/Z0lkkK7FBEcUjsyqSCcHHJbAxiurooA82m0Ke/tba1u9PuHgbxXPPKhjYAwnzsMf9g5Az0IOO9dJ4T046Te+IbKG0a105NQVrKIIVjCNbwlvLHTbv39OM5rpaKAPLJ/CKTWdzeNpVx/aMvibJnVHEotnugr4YciMxliccYJPvV+68Px20PifTYbK6tdIae0mhitLVnjJAUuBEuN6EqA6ryQT3NeiUUAc14J3LpNxGNLXT4I7llgCWz2yyptU71hf5ohkkbT/AHSe9dLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "figure = Figure(width=1000, height=400, image_type=\"jpg\",\n", + " heading=\"RESISTANCE and RESISTANCE SMOOTHED\")\n", + "plot = single_welding.plot(x=single_welding.TIME_MS, y=[single_welding.RESISTANCE, single_welding.RESISTANCE_SMOOTHED],\n", + " style=['blue', 'red'],xlabel='time in ms', ylabel='resistance ',figure=figure)\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "id": "299bf795-653e-45a4-8f39-5143d81173cf", + "metadata": {}, + "source": [ + "

    The above graph shows the variation of the resistance of the welding with respect to time and the smoothed resistance, as shown by the Red line, after applying the window function.

    \n", + "\n", + "

    The window function generates a Window object on a teradataml DataFrame Column to run window aggregate functions.\n", + "

    Function allows user to specify window for different types of computations:\n", + "

  • Cumulative\n", + "
  • Group\n", + "
  • Moving\n", + "
  • Remaining\n", + "

    By default, window with Unbounded Preceding and Unbounded following is considered for calculation.

    \n", + "\n", + "

    Next we calculate the derivative by using the lead function and taking the difference of the lead value and the mean value of the resistance. Applying a window function to smooth the resistance curve helps to eliminate noise and makes it easier to see the overall trend. The derivative of the resistance gives an indication of how quickly the resistance is changing, which can be a useful measure for detecting anomalies and predicting potential issues.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c3719c73-495e-4651-b764-c01678f07417", + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(welding_dataset_smooth,table_name='welding_dataset_smooth', if_exists='replace')\n", + "welding_dataset_smooth = DataFrame('welding_dataset_smooth')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "fccb6149-ce72-4601-983b-a87f2bc52417", + "metadata": {}, + "outputs": [], + "source": [ + "# let's compute the lead\n", + "window_for_lead = welding_dataset_smooth.RESISTANCE_SMOOTHED.window(\n", + " partition_columns = \"WELDING_ID\",\n", + " order_columns = 'TIME_MS')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e6a9bc90-f330-467f-8765-5a00578c6c6e", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cce13b3b0c7b4f79878530fbd803efca", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCERESISTANCE_SMOOTHEDRESISTANCE_SMOOTHED_AFTERDERIVATIVE
    141125/08/0511474.381162422724316.7743268301616311.4723766637594-5.301950166402207
    141125/08/0512428.56930331230063311.4723766637594306.6978645868533-4.774512076906092
    141125/08/0513398.452732368239306.6978645868533302.25553180871196-4.442332778141349
    141125/08/0514372.90267653201755302.25553180871196298.4338994297387-3.821632378973277
    141125/08/0515350.6458154372735298.4338994297387294.38610093105206-4.047798498686632
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE RESISTANCE_SMOOTHED RESISTANCE_SMOOTHED_AFTER DERIVATIVE\n", + "0 1 41 1 25/08/05 1 1 474.381162 316.774327 311.472377 -5.301950\n", + "1 1 41 1 25/08/05 1 2 428.569303 311.472377 306.697865 -4.774512\n", + "2 1 41 1 25/08/05 1 3 398.452732 306.697865 302.255532 -4.442333\n", + "3 1 41 1 25/08/05 1 4 372.902677 302.255532 298.433899 -3.821632\n", + "4 1 41 1 25/08/05 1 5 350.645815 298.433899 294.386101 -4.047798" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "welding_dataset_smooth = welding_dataset_smooth.assign(RESISTANCE_SMOOTHED_AFTER = window_for_lead.lead())\n", + "welding_dataset_smooth = welding_dataset_smooth.assign(DERIVATIVE = (welding_dataset_smooth.RESISTANCE_SMOOTHED_AFTER - welding_dataset_smooth.RESISTANCE_SMOOTHED).zeroifnull())\n", + "welding_dataset_smooth.sort(['WELDING_ID','TIME_MS'])" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "d019941f-4422-4012-8984-0dce20d10e48", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8ead2da622de485b9109f40a7498cb0d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCERESISTANCE_SMOOTHEDRESISTANCE_SMOOTHED_AFTERDERIVATIVE
    141925/06/188541353.0226900449998253.14252688841657248.69892486462675-4.443602023789822
    141925/06/188542335.5825378948886248.69892486462675244.90621844326972-3.7927064213570247
    141925/06/188543324.9522665624502244.90621844326972241.13418644931798-3.7720319939517424
    141925/06/188544297.6567809200622241.13418644931798237.60587172607387-3.528314723244108
    141925/06/188545288.1532672344735237.60587172607387234.07488665282776-3.5309850732461143
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE RESISTANCE_SMOOTHED RESISTANCE_SMOOTHED_AFTER DERIVATIVE\n", + "0 1 41 9 25/06/18 854 1 353.022690 253.142527 248.698925 -4.443602\n", + "1 1 41 9 25/06/18 854 2 335.582538 248.698925 244.906218 -3.792706\n", + "2 1 41 9 25/06/18 854 3 324.952267 244.906218 241.134186 -3.772032\n", + "3 1 41 9 25/06/18 854 4 297.656781 241.134186 237.605872 -3.528315\n", + "4 1 41 9 25/06/18 854 5 288.153267 237.605872 234.074887 -3.530985" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "id_curve = 854\n", + "single_welding_subplot = welding_dataset_smooth[welding_dataset_smooth.WELDING_ID == id_curve].sort('TIME_MS')\n", + "single_welding_subplot" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "0bd9b71a-b668-44f9-a0bd-e74b2c82462e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4AAAAQ4CAIAAABnsVYUAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nOzdeXxU5fk28OvMvk/2nSSEfVVRAREVpaLgWrGIIC4oBVyL/nCpffuigvVFrKilbIpCxRXrT62iIBaVUhdQNgEDhIRkss9MJrOv5/3jJMOQjQCOYcL1/fjHzDnPnLnP4IfoNXfuRxBFEUREREREREREREREvzRZVxdARERERERERERERN0TA2giIiIiIiIiIiIiigsG0EREREREREREREQUFwygiYiIiIiIiIiIiCguGEATERERERERERERUVwourqAkxeJRKqqqgwGgyAIXV0LERERERERERER0ZlLFEWXy5WdnS2THdP0nMABdFVVVV5eXldXQUREREREREREREQAUFFRkZubG3skgQNog8EAoKKiwmg0dnUtRERERERERERERGcup9OZl5cnZbaxEjiAliZvGI1Gk8nU1bUQERERERERERERnelaT0vmJoREREREREREREREFBcMoImIiIiIiIiIiIgoLhhAExEREREREREREVFcJPAMaCIiIiIiIiIiIorldDrdbncgEIhEIl1dC3UfgiCo1WqdTmcwGGSyE+tpZgBNRERERERERESU8Px+f1VVlcfjUavVKpVKqVR2dUXUfYii6HK5bDabSqXKy8vTaDSdfy0DaCIiIiIiIiIiosQWCoXKysrkcnl+fr7BYOjqcqh78vv9lZWVhw8fzs/P1+v1nXwVZ0ATEREREREREREltsrKSgBMnymu1Gp1QUGBVqutrq4WRbGTr2IATURERERERERElMD8fr/b7c7KyuLYDYo3mUyWmZnp9/sdDkdnXxLXgoiIiIiIiIiIiCiuvF4vgM6PRCA6FVqtVqPRSP/WdQYDaCIiIiIiIiIiogTm8/mUSqVcLu/qQuhMoVKpAoFAJxczgCYiIiIiIiIiIkpgoijKZEz56NcjCAJnQBMREREREREREdGvbcKECQqFQqFQGAyGs88+e+3ata1PRW3atAnAgQMHJk6cmJWVpdfrL7/8cumgtH7OnDnS49ZrQqGQoi1qtVp6yYIFCxQKxZo1a1qXt3HjxuiR4cOHL1q0KPp0+/btd9xxR0ZGhkaj6dOnz7x581wuVwfF03ExgCYiIiIiIiIiIqJfRjgcnj17ts/nq6iomDZt2rRp0/bs2dPiVNSYMWMikcj48eOVSuXWrVurq6sffvjhxYsXR9dHIhEAba6RyWTR61xzzTXTpk2THrvdbgChUGjFihVTp05dtmxZi/JMJtNDDz0UCoWiR6LNvBs2bLjwwgvT09O//vprm8328ccfA/jkk0/aK/5X+Dy7AUVXF0BERERERERERES/mMoGb3GNMx5XLkrT56cef6tDmUymUCiSkpIeeOCBuXPn7ty5c/DgwbGnYhdXVVUdOnTonXfeKSoqAnD55ZePHTu2xQVrampar5HJZNHBIzKZTBCE2Ctv3LgxOTl5+fLlhYWFu3fvHjJkSPTUbbfd9u67765evfrOO+9s8UaPPPLIXXfdtXDhQulp3759582bJ4XgbRZPncGPjIiIiIiIiIiIqPvYcrDu4XW743Hlx8b3n3lJr04u9vl8L7/8skwmGzZsWAfL0tPTi4qK5s+f/9hjjw0ZMkSj0bSeZ92ZNS0sX758zpw5Go3m7rvvXrFixUsvvRQ9pdPpnnnmmblz506aNMloNEaPFxcX79ixY+nSpS0uxfnap4gfHxERERERERERUfeRpFUNyjHF4590g6YzBbz44osKhUKr1T744IPvvffegAEDWpyKqqurUygUX3zxRUZGxo033mgymUaPHv3++++3uGBn1sSqrKzctm3bTTfdBGDWrFnvvfeeNJcj6uabb87NzX322WdjD1osFgD5+fkd31ds8Z35NIgd0ERERERERERERN3HuEFZ4wZldWEB995773PPPVdfXz979uynn376qquuik6uuPfee59//vnoSqm5uKCgQJrUbLfbX3vttYkTJ27atOnSSy+NvWZn1kS9/PLLFovFYDBIT8Ph8Lvvvnv77bdHF8jl8kWLFk2YMGHmzJnRg1lZWQAsFktOTk5799W6eDoufkyJRxSxr6pxy8H6UFjs6lqIiIiIiIiIiIiOIZPJVCpVTk7OqlWriouLX3311dhTsU3ELTLc5OTkOXPmFBYWfvnll+1d/LhrQqHQypUrf/zxx+hugevXr1++fHmLZWPGjBk3btyf/vSn6JF+/foNHTr0jTfe6OC+Oiie2sOPKSFd/eLXt7z8bZ3L39WFEBERERERERERtS01NfWhhx566qmn/P52UyyLxTJ58uQtW7b4fL7GxsaVK1eWlpaOHDnyRNdEffrppwCGDh0aTYrHjBmza9euHTt2tFi5cOHCN9988/Dhw9JTmUy2YMGCpUuXzps3r6ysLBwOl5WVPfPMM+vWrTulT+GMxwA68QgCkvRKADZ3oKtrISIiIiIiIiIiatf999/vcrlWrVolPW0xRnn16tVZWVnXXnvto48+mpyc3KNHj6VLly5dunTcuHGxF+nMmqgVK1ZceeWVse3JGo1m7NixK1eubLGyb9++M2fOtNvt0SNXX3315s2bDx8+PGzYMI1Gc+mllzocjugbtS7+1D+fM4Egiok6xqGxsdFsNjscDpPJ1NW1/NquXPzl/mrXP+4cflGf9K6uhYiIiIiIiIiIulJVVZXX6y0qKurqQuhMYbFYgsFgYWFh7MH20tr4dkAXFxdPmjTJbDZnZWVNmTJF2koSwD333KOM8cILL0jHw+Hw/Pnzc3JyzGbz9OnTa2tr41pe4krRqwBYXeyAJiIiIiIiIiIiotNXfAPoJUuWTJo0qby8fOvWrVardcqUKdLxcDj8+9//3tvsvvvuk44vXLhw2bJlH3744b59+2pqaiZPnhzX8hJXsk4NwOrmDGgiIiIiIiIiIiI6fSnievXFixcLggDAZDLNmjVrypQpoihKRwRBUChavvuaNWvmzp173nnnAXj22WcHDRpksVhyc3Ols6IoOp3O6GLpceKOEDkVaUYpgGYHNBEREREREREREZ2+4tsBLWXNoihWV1evWbPm6quvlo4A+Mc//qHX6wsLCx944IGGhgYAdrt9//79I0aMkBYMHDhQp9Nt3bo1ejWn02mOkZeXB8DlcsX1Fk5P0ggOOwNoIiIiIiIiIiIiOo3FN4AGsGbNGoVCkZ2dXVJSsnjxYungkiVLrFZrfX3922+/vXnz5ltvvRWAw+EAYDabo6+VplZHnxqNRkeMiooKAAaDId63cBpK1asA1HMGNBEREREREREREZ3G4h5A33LLLT6fr6ys7IILLrjooos8Hg8AuVyuUCi0Wu2IESNeeOGFjz76qL6+XtoeMTZxbrFnoiAIphhGoxHNTdZnGqkD2ubiDGgiIiIiIiIiIiI6fcU9gJbJZEqlMj8///HHHz98+PC+fftaLJDL5QAikUhKSkrfvn23bdsmHd+3b5/H4xk5cmS8K0xEUge01cMOaCIiIiIiIiIiIjp9xTGADoVCM2bMOHjwYDgcLi8vf+qppzIyMvr37w/g1ltvLS4uDgaDO3funDNnzrhx4zIyMgBMnTp14cKFe/bssVqtjz322OjRo/Pz8+NXYeJKMajBGdBERERERERERER0eotjAC2Xy8eOHTtx4kSdTjdixAi73b5hwwa9Xg9gwoQJv/vd7wwGw3XXXTdy5MjXX39deskf//jH6dOnjx07Nj8/32g0vvPOO/ErL6Gl6FQAHN5QKCJ2dS1EREREREREREREbRNEMVETzMbGRmmXwtg50WeIcETs/fjHoihs+9Nv0gzqri6HiIiIiIiIiIi6TFVVldfrLSoq6upC6ExhsViCwWBhYWHswfbS2rjPgKZ4kMsEs0YFwMopHERERERERERERHS6YgCdqFL0agA2FwNoIiIiIiIiIiI6XUyYMEGhUCgUCoPBcPbZZ69du7b1qahNmzYBOHDgwMSJE7OysvR6/eWXXy4dlNbPmTNHetx6TSgUUrRFrW6aFrBgwQKFQrFmzZrW5W3cuDF6ZPjw4YsWLYo+3b59+x133JGRkaHRaPr06TNv3jyXy9VB8bE6uBGFQrFq1aroyt27dysUCrPZHD3y7bff3nzzzSkpKXq9/rLLLlu3bl3slds82/EnEPvpSUaNGvXEE090/GcRPa7X6wcOHHj//ff/8MMPHfxxdwYD6ESValABqHf7u7oQIiIiIiIiIiKiJuFwePbs2T6fr6KiYtq0adOmTduzZ0+LU1FjxoyJRCLjx49XKpVbt26trq5++OGHFy9eHF0fiUQAtLlGJpNFr3PNNddMmzZNeux2uwGEQqEVK1ZMnTp12bJlLcozmUwPPfRQKBSKHonOKN6wYcOFF16Ynp7+9ddf22y2jz/+GMAnn3zSXvGxV+74Rvr3779kyZLo4mXLlg0YMCBaw/r16y+55JI+ffrs3r3bYrHccsstM2bMeOqppzo+2/EnEP30Yu89eqft3U70eG1t7apVq0RRHDFixAcffHBS/y40UZzKi6kLpRiUAOzuYFcXQkREREREREREp5PqPTiwIS5XLrwYPc477iqZTKZQKJKSkh544IG5c+fu3Llz8ODBsadiF1dVVR06dOidd96RZlhffvnlY8eObXHBmpqa1mtkMplMJoteVhCE2Ctv3LgxOTl5+fLlhYWFu3fvHjJkSPTUbbfd9u67765evfrOO+9s8UaPPPLIXXfdtXDhQulp3759582bF41xWxd/3CKjZ6+66qq1a9d+//33559/fmNj49q1a+fPn//II49IZx999NE77rjjySeflJ5Onz5doVDMmDHj7rvvTk1N7fhse5/AcbV3O9JxhUIxcuTIkSNHer3eP//5z9dcc0300z5RDKATVapOBcDqYgc0ERERERERERHFqNyBTU/E5cq/eaIzAbTE5/O9/PLLMpls2LBhHSxLT08vKiqaP3/+Y489NmTIEI1G0zro7MyaFpYvXz5nzhyNRnP33XevWLHipZdeip7S6XTPPPPM3LlzJ02aZDQao8eLi4t37NixdOnSFpfqZPDacZEKhWLmzJl///vfX3311bVr144ePbqgoCD6vrt27WrxvlOmTLnrrrs+/PDDCy+8sIOzd9xxR2dqOxW33HLLK6+8cvDgwb59+57cFTiCI1FJM6CtHMFBRERERERERESxUotw9i1x+SdzUGfe/8UXX1QoFFqt9sEHH3zvvfcGDBjQ4lRUXV2dQqH44osvMjIybrzxRpPJNHr06Pfff7/FBTuzJlZlZeW2bdtuuukmALNmzXrvvfekqRRRN998c25u7rPPPht70GKxAMjPz+/4vmKLP6Ei77rrrn/+859Wq3XZsmWzZ89u8b55eXktrpaZmWmxWDo+28GH0Lrg7777rvO3EyV9ILW1tR2/VwfYAZ2opBnQdjc3ISQiIiIiIiIiohgFo1Awqgvf/957733uuefq6+tnz5799NNPX3XVVdFRD/fee+/zzz8fXSn1CBcUFEiTmu12+2uvvTZx4sRNmzZdeumlsdfszJqol19+2WKxGAwG6Wk4HH733Xdvv/326AK5XL5o0aIJEybMnDkzejArKwuAxWLJyclp775aF9/5IrOzs6+44opZs2Y5nc4rrrhi/fr1Ld43NvsOhUI1NTXZ2dkdn22zzvYKHjVqVAdn22v0Li8vB5CRkdHxe3WAHdCJKtWgBlDv4gxoIiIiIiIiIiI6jchkMpVKlZOTs2rVquLi4ldffTX2VGzXbYvQMzk5ec6cOYWFhV9++WV7Fz/umlAotHLlyh9//DG6vd769euXL1/eYtmYMWPGjRv3pz/9KXqkX79+Q4cOfeONNzq4rw6K70yRs2fPXrdu3axZs2KHL/fr12/AgAFr166NXfn222+Lonjttdd2fLa9AtosWBCEk7idt956a8iQIb179+74vToq46RfSV0rRa8CYPdwBAcREREREREREZ2OUlNTH3rooaeeesrvbzfCslgskydP3rJli8/na2xsXLlyZWlp6ciRI090TdSnn34KYOjQodFodcyYMbt27dqxY0eLlQsXLnzzzTcPHz4sPZXJZAsWLFi6dOm8efPKysrC4XBZWdkzzzyzbt26ztxsZ4q85JJLgsHgQw89FHtQet+VK1cuWLCgrq7O5/OtXbv2vvvumzt3bnp6esdnO1PYyQmFQjt27Hj44YdXrlz55z//+aR3IAQD6MSVqlcBqOMmhEREREREREREdLq6//77XS7XqlWrpKct5g6vXr06Kyvr2muvffTRR5OTk3v06LF06dKlS5eOGzcu9iKdWRO1YsWKK6+8MjYw1Wg0Y8eOXblyZYuVffv2nTlzpt1ujx65+uqrN2/efPjw4WHDhmk0mksvvdThcETfqHXxJ1qk1HQsl8tbVPLb3/52w4YNP/zwQ8+ePZOSkpYuXfrSSy/Nnz+/M2dPWnu3Ix03GAy/+93v3G73li1bbrzxxlN5I0EUxVOstas0NjaazWaHw2Eymbq6li5Q3egb+fQmuUw4sGC87Nj+eSIiIiIiIiIiOnNUVVV5vd6ioqKuLoTOFBaLJRgMFhYWxh5sL61lB3SiStGpAIQjosPLMdBERERERERERER0OmIAnahUCpleJQdgcwe6uhYiIiIiIiIiIiKiNjCATmCpBhUAm4sBNBERERERERHRmUsul0cika6ugs4goVCo9STr9jCATmApBhUAKzugiYiIiIiIiIjOYCqVKhAIhEKhri6EzhQ+n0+r1XZyMQPoBJaqU4Md0EREREREREREZzaDwSCTyaxWa1cXQmcEh8MRDocZQJ8RMk0aANWN3q4uhIiIiIiIiIiIuoxCoUhLS7PZbE6ns6troW7O7/dXV1ebzWa9Xt/JlyjiWhDFVY9UHYAjdgbQRERERERERERntJSUFI/HU15enpKSYjQaNRpN50f0EnVGIBBoaGiwWq1KpTIrK6vzL2QAncDyU3QASuvdXV0IERERERERERF1JZlMlp+fb7PZampqbDYbAEEQuroo6j4EQQiHwzKZLC0tLTU1VSY7gbkaDKATmBRAl9s8XV0IERERERERERF1vZSUlOTkZL/f7/XyN+bplySKolqtVqvVCsUJ58kMoBNYQYoOgNUdcAdCehX/KImIiIiIiIiIznSCIGg0Go1G09WFEDXhJoQJzKRVmjVKAOU2fqlFREREREREREREpx0G0ImtIFUL4AincBAREREREREREdHphwF0YuuRogNwxOrq6kKIiIiIiIiIiIiIWmIAndjyU6UAmiM4iIiIiIiIiIiI6LTDADqx5acYAByxu7u6ECIiIiIiIiIiIqKWGEAntoJUHYBSK2dAExERERERERER0WmHAXRiy0/RAaiwecMRsatrISIiIiIiIiIiIjoGA+jElm3WyAWEImKt09fVtRAREREREREREREdgwF0YpPLhLxkaR9CTuEgIiIiIiIiIiKi0wsD6ISXn6oHUGblPoRERERERERERER0emEAnfCkfQiP2L1dXQgRERERERERERHRMRhAJ7weyToAZfXsgCYiIiIiIiIiIqLTCwPohNcjRQugsoEd0ERERERERERERHR6YQCd8ExaJQB3INTVhRAREREREREREREdgwF0wjOqFQAafQygiYiIiIiIiIiI6PTCADrh6dUKAG4/A2giIiIiIiIiIiI6vTCATnhSAO3yhUSxq0shIiIiIiIiIiIiisEAOuEZNQoAYRGBcKSrayEiou7MYvd6AuGuroKIiIiIiIgSCQPohKdTyaUHnMJBRETxs6vCcfGz/5777o6uLoSIiIiIiIgSCQPohCcTBJ1KBsDJfQiJiChuPt5VGY6Im4vrIxz5RERERERERJ3GALo7MKi4DyEREcXX5uI6AG5/qMzq6epaiIiIiIiIKGEwgO4OdGoG0EREFEc1jb6fq53S4z2Vjq4thoiIiIiIiBIIA+juwKRRAHAygCYiovj4+kB99PGeCgbQRERERERE1FkMoLsDqQPaxRnQREQUH18W1wHIMmsA7GYHNBEREREREXUaA+juwKhWAnAFGEATEdExKuzez/ZUneKugeGI+HVxHYCZFxcB+KmikdsQEhERERERUScxgO4O9Go5ADc7oImI6FiPrts58/Uf1u+pOpWL7LE4GrxBvUo+eXi+QiY4fMEKO/chJCIiIiIiok5hAN0dGDRKAC7OgCYiohiiiN2WRgDrtpWfynW+PFAHYFTvNK1S3j/LCGBPZeMvUiERERERERF1ewyguwM9Z0ATEVErdk/A4QsC+PJAvc0dOOnr/FzlBDC8MAXAkDwzgN2Whl+oRiIiIiIiIurmGEB3B0aVHIDLH+zqQoiI6DRyuN4tPQhHxA93WE76OvXuAIBMkwbAoBwTgN0V7IAmIiIiIiKiTmEA3R3oNQoALn+4qwshIqLTSEmdE4AgiADe31F50tepafQCSDeqAAzJTQKwx9LAfQiJiIiIiIioMxhAdwcGaRPCADugiYjoqJJ6N4ArB2bJZcLO8ob/9+n+8S98Nfv17c4THNlU1+gHkGHSAOifbZLLBLsnWOP0xaNmIiIiIiIi6mYYQHcHBo0KgJsd0ERE3UgoLHqDbf/FXtngff2bskbvcb53lALo4UWpF/ZKBbB086F9Vc71e6pvWLKl3ObpZBneYNgdCAPIMGoAqBWyHilaAAdqXJ2+FSIiIiIiIjpzMYDuDqQO6EZuQkhE1I3ctHzrBX/Z5PK38Xf7ws9+/tP/7hn316++PlDXwRUO17kBFKUbZo3prVHKzu6R9PiEARlG9YE697VLthw3v5bUO/0AlHLBoFZIR/pkGAEcrHWe6B0RERERERHRGYgBdHdgUCvBDmgiom4kHBF/KLc3eIK7Kxpan7XYPQCqnb5pr3z35ndH2rvCYasbQM80/aheqfufGv+/91w44+KiD+8bnWFU293B7UfsrV9V0+jb/HNdMByJHql1+gFkmjSC0HSkd4YBwMFadkATERERERHR8TGA7g70ajkAl58zoImIugm7JyCKAtrJeetcfgBn9UgC8Pb35W1eocrhC4ZEhUzITdLGHs8yafpmGAA0eI75qXGw1jX79e2j/rLp9le/W/Pf0qPv5fQDSDOoo0f6pBsAHKxzn9SdERERERER0ZmFAXR3IP1atIsjOIiIuot6V0B60GbOa3cFAUwd3gNAdWPbmwEerncB6Jmqk8uEFqfMOiUAu8cfPRIRxdtf/X79nuqwCAD7q46m3nVOH4B0Y0wAnWUEUFzdeMJ3FWNnecPLXx+KiOKpXISIiIiIiIhOfwyguwMpgA5FxNhfmiYiosRldTWlwwdajVoOhUWHLwhgcG4SgDqnPxxpI8aVWqcL0w2tTyXr1QAc7qNfW+62OCrsHp1SPvPiIgB1Lm/0VE1j0wiO6JFe6QYAdk/Q7gmc1M0BwJ8//Gn+x/u/KbGd9BWIiIiIiIgoITCA7g50zRtDtblXFRERJZyjHdDVLQNoKfYVBLFPpkEuE8IRsc7lb/l6oNTqAVDUVgCdpFMCaPAdHcHx2U/VAC7plz6yVyqAGsfRZFnqgM4wqqJHdCp5VpIGbY0H+WBH5fV/39JeU3asGocXQKmVczyIiIiIiIi6OQbQ3YFCJmiUMnAKBxFRd1Hvaspwa10B57F/t0vN0WatSimXSZMxqh1tBL4ltW4AvdJ0rU8laVUAbDGx9ed7awCMG5SVadQAqHYe7YCWZkCnGzWxV+iTbkRbAfSSfx/YccTxr52W496gNIG6wu457koiIiIiIiJKaAyguwm9SgHAzQ5oIqJuIdoBjVY5r9UdAJCuVwHIMmkAVLUVQB+qdwLo2eYIDp0CQIO36UdGmdVTXOOSy4RL+2VkmNQAGjyBUPNYj1ppE8KYDmgAvTP1AIprnVZX4J612zfsrQFg9wSKa1wAfq4+Tl9zMBzxhSIAKhuO3ytNRERERERECY0BdDchjYF2MoAmIuoW6p1HA+gDNcds92d1BQCkGDUAcpM0ACobWvYR+0ORKocXQFFaGwG0SacE4GjehHDj3ioA5xcmJ+mUKXqVXCaIolDf3B8tVZJp1MZeoU+GEcDBGvfznxd/vLt6/r9+EkVsK2sa6Hyg7jj7Ezq8TdM/LOyAJiIiIiIi6u4YQHcTerUcgNsf7upCiIjoF2B1+QDolHIAB+tadED7AaTolACyk7QAqlr1EZfUuURRMGoUKXoVWknRSW3OTd9ZfvaTNH8jE4BMENL1agA1jT4AEVGsc/kASLM+ovpkGADsqrC/9d0RAEds3pJ617bSBunsgWqX2Ma2iEdJ8zcAlDd4O1pHREREREREiY8BdDdh1KoAOP3B464kIqKT899D9V8W1/0672X1BAEML0oGcLDm2ADaFQCQapBGcGjR1giOA7UuAH0zDIJw7IlwEGJE2oTQ7vUDsHsC20rtAMYNzJaWZJhUAGodPgANnmBYBIA0w7EjODIMABzeUHRSx8a9Nd+WWKXH7kC4430Iox3QdY3+6BWIiIiIiIioW1J0dQH0y9A3bULIDmgiorgIRcQ7V3/vD0Z++PM4s1Z5cleQC0LLRLgddU4fgBFFaZt/ri+uPWakss3tB5CqVwPITtIAqG48to+4oTzJuvuRXuXD0w7h31+ioRz2UjSUwm1D2AeFtmdy4eYMvS7UgL/+wRzw7TOE6kyD8jxZSD4Xoji6h0oTUUR8HoiiNAA6SadUyo/5xjpZp0rWKe2eIIDLB2Zu3Fvzya6qvdUOAEaN3OkLH6hxZpuP2bfwmAKbO6DDEbHG4ctN1ra3koiIiIiIiBIdA+huwqDlJoRERHHU4Al4AhEAZVbP0Dzzib7cHQiNXbS5f7bxtTtGHHexKMLmDgC4oCgVgKXB7Q2GtUq5dNbqkTqg1QByzFoAFqkD2lWDbauxZx3qf74YuBiApa2rh7yyun2Fzc9kgAboYfsGKy9DWuSv+IgAACAASURBVD84Kh4OugHgI2CjuTBlwOv5vTaZb2h9md4Zhu9L7ecWJM27ZtDGvTW7LA4AGQbVOYXJn+2pKa5xXdw3vb0bdHiOTriubPB2HEA/8eFPP9c619wxQiHvXHhPREREREREpxMG0N2EQaUA4A4wgCYiigspEQZQbj+ZAPpAjau60V/d6G/0Bk3Ha6D2BEK+YARA30yjWatweEMlde5BOaamSlxBAMl6JYAsswZAncMn7l8vfHg3PDYAkCldqlSPYDCm52rTi2DORXJPJBdCnwa1CV47rAfXbdlVFzFNuvjsfXX+zT9VTJNvKCj/X9T/fEwdPoem8pvR+OaCunexfjoufACmnOjJ20fk9lY3Tv7NwNxkbf8sw/5qF4Dze6b0Sjd8hpoWGye20OA7GkBXNHjPb39lndP/6tZSAPurHYNzkzr+3IiIiIiIiOg0xAC6mzBoFACcXs6AJiKKC6vLLz0ot3lO4uXSLAsAeyobR/VKjYji/ipnvyyjXNZGV2+9KwBAp5LpVPLe6YbtRxoO1rqiAbS0K2CaXgUg3ai+oof4e/Ed4a0PACBzEC64J9RnwlkL/huOiN/MHqs1tZqDoUtBaq/F76sq7J4R4/pusle+WuKUX/zIY7/9M2p/RmrP9RXqZzceHNvb/Pgo3b4d/zHteT3XtQvfLsP3r+Dsm5F9NkJeWH686uBnV/mc+OQsjJh50znDnljvAnBeYUqaUQ3g52PnVrfg8Bz9utTS4ee5aV+t9MDJGVNERERERESJiQF0N2FQKwB4Avz/cyKiuLA3jy2usHs7Xtmm+samAHpXRcOoXqmrt5Y+8dHeR8f3n3VJr9aLrW4/gBS9BsCAHNP2Iw3fltRfd3ZT97Hd3TyCw+9UfLHg7/WvyMUAAIy8B7/5v1CoD1Y7wxHRqJFnGtudwpykVVTYYXcHpc0GM0xqpBQhpQiAor66xBbQVfiRNXxdUPauq3DZqMZRFatwZCt+WAOsOeZCVTvxv3ffqs/W9Jq+qPrs4T1TpUj9QI1TFNHewOsGTwCAXCaEI6LF0dHn+fm+aumBkzOmiIiIiIiIEpPs+EsoEejVCvD/z4mI4iY6guOI1d3xyjbVNjdQ765oAPDJ7ioA6/dUt7m4rtEHIFWvBHD5wCwAn+2tjogigFBEdHhDAHJ9JVh+Mb5dKhcDFv3Qg+PfwpVPQ6EGcKDWCaBXurGDDQ+TdWoAdq+/2uEDkGU+OoU5y6RFc8t2rcvf6Avt1Q7D9PW4cwPOmoL+V2PwjbjwD7hzA+YexOVPwJQjd1fdbFmwSff4QPf3Rak6uUxwB8I1Tl977+7wBgH0StcDqLC3u8wfimw5UC89boyZ2kFEREREREQJhB3Q3YRepQTg9nEEBxFRXNjcTQnyEftJjeBobOrz3W1xuP2hH8rsAHaVNzh9IaOm5c9iqycIIMOoATCqV6peJc/Twf7V8lSfBc6azzMrVBGP/h97EfLDlPNp0Z8e3pE2J9S3d/PLD1a7APTLNHRQT5JeCcDhCdY4/QCyYiZ1ZBjVAOqc/nBErG30A8gwaQGgxwj0aLWD4oV/wPCZ+HYpvlyU5CzG2htUPS9+bPDU+buMB2qcWa0HgAAAGjxBAANzzMU1Lkv7HeVbD9X7QhHpsdPLb1iJiIiIiIgSUnw7oIuLiydNmmQ2m7OysqZMmWKxWKTj4XB4/vz5OTk5ZrN5+vTptbW1HR+n4zJq2QFNRBRHVldTB66lwSs1I5+Q6AzoIzbvhr01YREAROC7wzYAEVGMvWS9SxrBoQSgFINrhu5+wzsz9d+P4L8vKva83dvxn3znjwj50ftyzPrP9/JzGn2hqphBFsU1jQD6ZJo6qCdZqwRg9wSbOqBjkuJUg1oQRBGwuQN1Tj+AdIO6o3tTajH6QczZjZH3QKbE4a/uKp7574wXlHU/tfeKBm8QwIAsE4BKh6e9j/PzvTXRx24ff8ARERERERElpPgG0EuWLJk0aVJ5efnWrVutVuuUKVOk4wsXLly2bNmHH364b9++mpqayZMnd3ycjkuaAe1iAE1EFB/RERzBkFjvOuFxEHXNATSA5V8ejD7eerBeFDFj9bYRT39u9wTQcASlWy5wb/5/vXbfov4aH/0Bz/Y6d898fdDWqMnFyHusFzy+LufhD3rPxx2fYOo70KVkJ6kBVDmOXv/nWheAvh13QOuUAA7XuUIREdIM6GYKmZCiVwEotbrL7W4AWeZ2Z0kfpUvFlU/j/h9xzq0i5D0bvx2x8QZ8/iRCbUzYaPAGAAzMMQLwBSN2Txufpyhi095aAH3S9eA3rERERERERAkrviM4Fi9eLAgCAJPJNGvWrClTpoiiKAjCmjVr5s6de9555wF49tlnBw0aZLFYcnNz2zsuXU0URafTGb249Fg88Ta0bkmaAe3m/58TEcWH3X00JC23eaQ5FZ1X5/IDyDJrqh2+/dUuAOMHZ63fU731kHXLwfpN+2sHZ6hk792JQx8COB84H0DTbw1BNGT9yzzlefuovw0dcaje9T///nFEUep1BSOls5lmLYDq5g7oYDhSVu8G0CfT2EE9Zp0SwL5qJ4BknVIpP+YL6UyjxuoKrv2mLBgW81O0han6zt5nUg9c99LOnndq/v1/+9s3Y8tz2PUmzrsLw6bBkBFdJc2ATjeoMwyqWlfA0uCVIu9YP1c3Vjt9OpXsN4OyDmw+5GQHNBERERERUWKKbwe0lD6LolhdXb1mzZqrr75aEAS73b5///4RI5rmSA4cOFCn023durW949GrOZ1Oc4y8vDwALpcrrreQKAzchJCIKJ6sngAAaVe/clvLMdDVjb71e6rDkabvRMttntiWZ1FsCqB/MyBTOiII4kPj+gHYV934l0/2Xl8QWhV81HzoQ8jkSOlVk3LeoaQLXD0uxTm34tYPhQf3fqi+qsQW+HRPVb3TDyBFp4xePDdJC8DS0BRAH653h0Xo1Yr25i9LkrUqAGVWD9pqcJbGT3+0sxLAtWfldrCZYZsyC/pdWfX7V3vMhz4LjZX44kks6oMF2XhxGD6fJzprGz1BAGadKidFC6DNMdBSOD4oJyndqEJzZk1EREREREQJJ74BNIA1a9YoFIrs7OySkpLFixcDcDgcAMxmc3SN2Wx2OBztHY8+NRqNjhgVFRUADIaOfsX4zNE0goMNYkRE8WF3BQH0yzKgrX0IH3535+zXt391oA6Ayx+6YvGXv/37f6Jnnb5gMCQCGDugqQt4ULa5d4ahb4bhusLQE4pVz9VMz/Ae9CmTcdu/cP8PNwf/z9jq+3aPeQXXvYSiSyCTjx+UBeCDnZXSKOrUmKHM2WYNgBqHT4q/D9S6APRO13ecGifpVQCkl2S3iqozTWoA0qDq68/JPbFPCsgyaTOM6icOFP006UtcvxS55wBA0APbIWx5Xlg8+M28f16RL5q1ylyzFkBFWwH0oVoXgD4ZBqP0Kz4BBtBEREREREQJKe4B9C233OLz+crKyi644IKLLrrI4/GYTCY0x9ASh8NhMpnaOx59KgiCKYbRaERzkzXp1XIAwbAYCnMmCRHRL0wUYfX6AQzJTQZgObYDOhQWvyu1AZBmX1TYPJ5ApMLu9QTC0gKp/dmoUZybnywdGd0nHa6alelvPV99+/l178sROmIa9nDaS/7ckQBsTSnz0akUVwzJ0inlZVbPhr3VAFJ1R0+lGzVKhRAWUW73ANhX2Qigf1ZH8zcAJMdcIbNVB3RmcyQ9IMvUO+OEv+gVBJzVIwnAllIPzp6yZvDqR/quPzJlCyatQc4whP3D69b9vf4O3abHz8/RALC0CvQBHKpzAShKNxg1KgAcwUFERERERJSg4h5Ay2QypVKZn5//+OOPHz58eN++fSkpKX379t22bZu0YN++fR6PZ+TIke0dj3eF3YNR3fTr2I0+9ogREf3CPIGQ1MJ8To8koCnqjdpb1egLRgBImxPWNW9RGN23sLbRDyDdoDFplX0zDADuMP+I54cWHHpDhkip6XzH5A+ucz/24WHZbosjFBYbvEEAaTFtznqV4pqzsgEU17gApBqP2TNwQKYRwN7KRgD7qhoBDMg++vVtm5JihnhkmrQtzmY0B9DXnZNz/E+nLecWJAPYccQWDEee++znt3fZx64p/yBwPmZ8UX/DuxbDUHkkgG+X3rR7+u96+o+0GmmC5g7o3hkGo0YBBtBEREREREQJK44BdCgUmjFjxsGDB8PhcHl5+VNPPZWRkdG/f38AU6dOXbhw4Z49e6xW62OPPTZ69Oj8/PwOjtNxKeRCql6Fdn6RmYiIToUUJWuUsj7SCA6bL/bstjJr7DKrq2n6s9Xd9EDqgE43qgEsueXcL69yZn5+D8I+MWfYZ+e9vHnESnP/MVJz9PZSu6152HRsRgzg5hEF0cfJ+mNOSXGzFED/VNUIYFCuGR06NoBu2QGd3tx8fe1ZJxlAD8tPBvBjecPm4lqHLwggGBIfeOvHdT9WHNCfO971pzf7/BWGDK1t/4Kau++KvAdnVezLwxHxsM0NoChdb9QoATRyBjQREREREVFiimMALZfLx44dO3HiRJ1ON2LECLvdvmHDBr1eD+CPf/zj9OnTx44dm5+fbzQa33nnHekl7R2nzihK1wM4XO/u6kKIiLobKVlO0ql6pOgAVDm8ocjReUfbS+3SAylorm/ugLa6jumAzjCpAfSp3VDwxd2IhHHWFGHGpiuu/t3tF/YEcG5hCoAfym1Sfp2iV8mOnTF1Vl5S3+ZpGGl6deypQblJAPZWOuyeQLXDh050QJs0RwPo7FYjOM7OT9Yp5VcNycpJatkc3UmDc81ymVDd6F/x5WEAd4wqmDK8B4B//mBxeIONvtC6xv6Y+VUod4Qq4r3gyFI8PwivXY2vnkX1HgCWBm8wJCoVQm6Slh3QRERERERECU0Rv0sLgjB58uTJkye38a4Kxbx58+bNm9fJ49QZRWn670vtJbWuri6EiKi7kbqSU/WqDKNaIRNCEbHG4ctN1gIQRWwvbWha5pYCaH/z06YAWgqmf5PpwtpJOPAZAAy+Edf9DcLRr4HPk1qGS+2vbDkMIC+5ZfIrCJg8oseTH+3DseOhAQzINgLYW9W4r8oJID9FK+1M2wG5TDBqFFKqK205GCvTpNk5b9yp7LKgU8n7Zhr2VTm/L7UBuH5YngDhje/K91oa7Z4gALNGCWO2cPu/3n7t+QsdH+e5dqL0a5R+jS/mY+yfyzKnAeiVppfqBOAJhiKiKOPGD0RERERERIkm7jOg6VdTlG4EUGJlBzQR0S/MJnUl69QyQZBy5yO2pr9sqxzeamfTRI465zEBdPTBIPHgxzmrrt1yHQ58BpkSo+fghuWQyWPfYkieWS6g1hVYt71CAB6+sn/rMn57Tp5GIVPKhaxjh2ZI/c7Vjf6vD9QBGJBznPZnSXLzFI7WIzgAKOUyheyU0t5hzTsuFqTqhuYm9csyymVCgzdYXO1A8wwQuVK1xDZ8dP0jh2/+ChMWofflALDpyQHfPNwnRdkr3QBAGsEhioLbHz6VeoiIiIiIiKhLMIDuPorSdAAO1Tq7uhAiou7G5g4CSDWqAOQn6wGUWZsG7m8rswMwaxUArO4gmtNqSA3RdT/jzZuu/W7qINvnQiSMXpfh7q34zTzIWnYoa5TyQc3B8SPj+1/YO611Gck61buzR70xY6RJe8wMaINakZ+iBfD+DxUABh1v/oYkSasCoFQIyTrVcRefhHOaA+jrz84VBKgVsl5pegD/OWgFYNY2vWl+qhbANmcyhs/ALetw9V8hk6eVvL9CsWhkDx0AtaIpCndyl10iIiIiIqIExAC6+yjKMAAotbpF8bhriYjoBFjdAQDJWiWAflkGAHsrHdKp7WV2AGMHZAJw+0O+YFhqfJ7S03tL1UIsGYGfPxUF2e6UK0tuWI9p7yOtb3vvcmGfNADjB2XOvLhXe2uG5JrPL0xpfXxQcxM0Ot0BLfUgZxq1cRprcU5+kvTgurNzpQcDc0wAimtdAMzNqXdBqh5Ama15B93z7sTU98KCumfjtzfs/x8EvQAM0hhof0djoEUR//Puztmvbw9H+FOQiIiIiIjoNMIAuvvIT9HJZYInEKlt/mVwIiL6RdjdfgCpehWAoXlJAHZWNM19/v6wFcCl/TMUcgCwuQOF+sD6rJefrrozv/x9QES/q5/Mf+2aylsD6YM7fpf7Luu76vbzX5wy7CQS4QG55ujjwTnmDlZGJemVALLNLQdA/1KK0gz3Xtp77ri+0h65AAbnHk3GpZ5xAPkpegCH62LmR/W6dHnhoqBco6/cgn/cAI/V1Gofwgff2THx7/9xx0TS9S7/uu0V6/dU72n+boCIiIiIiIhOBwyguw+lXJaXpAVQUscx0EREp8ThDUYnOKO5AzpFrwYwtIcZwN7qxlBYdPlD0r5/5xWkpOk0AITK7QuqZg1o+EKEUJZ+Ke7aFJr0+mvFcgDpxjZGLcfSqeSX9c9Qyk/mR/Og7KbQ2axVZJlabmDYpmSdGkCGMV4BtCDgf67od89lfaJHBuYkRR8nRTug03QAym1Hf3I1eIIL96UuzloIpR5HtmLlZb8r8CJmBIcnEP7nD5btRxqWbj4UfdXB5j14txTXxemOiIiIiIiI6CQwgO5Weqa16iMjIqIT5A2Gr3pxy6WLNruaG2ztngCAFIMKQEGK3qiRB0PigVrn1kNWEchP0WabNalG1XO9fsxad70xWGtX5z2Vs/Rm533IO8/q9ouiIJcJSTplR+96agY2j90YlGPqZAO1tMXfgKxOzev4RQyMGU4d/TQKU3SImakNoKTeBeC9ulzM2ARzPuylsw7ctahohy/QtAnhEZtHevDylpIqR9Mv/Rxs3gLhPyXW+N4GERERERERnQgG0N2KlCYcqnN1dSFERAls9dbSCrvH6QuV1jf9dWp1SR3QKgCCgCG5ZgA7yx1fFdcBuLhvOkL+F3SvTrQ8K0SC+5Muman766oSk80VAFDn9AFI1SnlsvjMWgYAZJk0SVolgIGdm78BYMqI/Pdmj/r9Je3Om/7FJemUWUlNbeDm5n0Ue6TqADh8QYe3qcFZ+j2e3ukGZAzA7/+N/FHKkOfGyoWjv5kBZzWAUmvT96y+YOTZz/ZLjw82f/n6fanNFwz/SrdEREREREREx8MAulvpma4DcLieATQR0Uly+kJL/9002KHe1RSJ2t1BNAfQAIbkJQPYbWn4qrgWwNSeHrwytnfFeyKEH/vMmdRwzwGHAMAXingC4TpXAEC66TjzN06RIGBYfhKAc/KTO/kShUw4tyBZpfhV/0tgSPOokCRt04epVymk4dplVk+jN/j8huInPtoDoFemEQD0abj9X7sGPBSSqYyWr7HsIhz5b2m9G0DfTAOA93+s2FvZCOBAcwd0MCRKO0MSERERERHR6YABdLfSK90I4BBHcBARnayXvypxNM8arnN6AYQionQkGkAPzTMD2PhTtdsf+nvR1gEfXYOq3SGlaWnuwvsqLmn0hfJTdEqFAMDmDtQ4/ADSDfEatRw1/7dDFt909oTB2fF+o1MRncIR7YAGUJimA1BS57ppxX9f+OKA0xfuk66fOiK/6bRM/p7mhv+TtdRt6gN3LV696uLqNQPTlVcOyho/OEsUhQ92VgI4WO2MXmrLQY6BJiIiIiIiOl0wgO5WeqbrAVQ0eIPhSFfXQkSUeOyewMqvSwBkGFQA6pwBAA2eAABBEKOZ6dBcM4Dhqb5/6v8yofJvCPnR+/JNY/+18FBuhd0DIMOoSdWrAVjd/upGH4BMU9wD6Jwk7fXn5HZyAHRXGZhjlB7EBtAFKToAf934874qp1mr+PvUYZ89eEnfTGN0gVGrfLNEu3boaxg0EWJ44L7F7/jvvl6x5fIBmQC+KbE6faFaVwDAbRcUAvjPgY7GQAfDkev+tuWetdt/+dsjIiIiIiKiVhhAdyuZRo1OJQtHxHKb9/iriYjoWD+UNXiC4YJU3W/P7QGgzukHYHMHAJg1qugQ57xk3V/6lTxXP7Og8YeITI1rXsDUd52qlOh10owqaayE1RX4uboRQO8MY+u3OwOdlZ8slwlZRo1CfjQpz081ADhi8wJ4dPzACUOyZcfm6Aa1AsB+axA3voIblrtUGYZAXdFXD06w/wPAHotjR3kDgAyj+srB2QB2VzZEJ0qHIqIoHlPDz9WNOyscH++u9nJUNBERERERUfwxgO5WBAGFqXoAh5pHYRIRUedZXT4APdN00sSMencAgNXlB5Cib25hDnqFj/9wc9mf1GF3lX5g5ZRNOPd2CEK64eiU51SDWlpvcwf2VTUC6N88euIMl2XSvDVj5Oq7hsceLEzVSQ+G5ppvOj+v9atMWiUApy8MQfAPnHSj+m9fZt0GQLPlmTf6bA5HxLe+KwPQN8OQbdYUpulEUfjqQB0ATyA87vkvr/vb15GYEPqw1SM9KLd54nKTREREREREFIMBdHfTI1UHoKKBHdBERCfM5gkCSNGqM0xqALWNfjTH0KkGFQBEwnhzCra9CghfZ077vfLpnF6Dpdem6o/OlEjVq6SnFXZvmdUDoH8WO6CbnN8zpV/mMZ9GYZoegCCIT/12sKytGSJGjQJAoz8EoNzm2V8XurtyAsY+AWBU+Yp3eqzbW2EF0CvDAGD84CwAr39zBMB728tL6ty7LI1WVyB6tbLmnRLKbNwygYiIiIiIKO4YQHc3qTo1AIc31NWFEBElHpvbDyDFqEozqAHUuXwALHYvgNwkDQD8+ymUfAG5pua6t24tGz+id2Y0ME0zHu2ATjOq04xqAN+U1ItAsk6ZFv9NCBPX0DzzHaMKnrpuyFl5SW0uMKqVAJzeAIDDVhekzPqiP2DcfADD6/65WvH0mDyhT6YRwK0XFMplwrcl1t0Wx8tfH5auUGE/+r1sibUpd2YHNBERERER0a9A0dUF0C/MrFMCsLv9XV0IEVHisbmDAFJ0qnSjGoDVGUBzdpmXrMP+j/D18wBw/ZLMIVfu7B/Uq4/+GJWGPkvS9OoUnQrAtlI7gAHZxtN8b8CuJROE/3vt4A4WSB3QLl8YQFm9F9GpHaPuc+l6qD+cme/88W+++2yaV4CCbLN2wpDsj3ZW3rv2hzLb0Wkb5+Q3pdtl0QDaygCaiIiIiIgo7tgB3d1IkYfdGzjuSiIiasHm8gNI1qvTDCoADl8wGI5U2N0D05VTXavx9m0AMPIeDLkRgEmrjG5LCEApl0k5KYBUg0qaAR2KiAD6cQD0qWkaweELAii1ugAUpOmlU4azr3+haLldk2cI1ud/cAP++zeIkbtG9wQgpc/Sn1CF/WjWXBIdwcEAmoiIiIiIKP4YQHc3yXoVALubIziIiE6YtXncs1mrVMgBoN4VuFh98I3gH7J3L4EYxsDrcPkT7b082gSdZlCnGo+OhB6QyQHQp8SokTYhDIpiUwd0z+Z9CwFUq3vO0D7/c+pYiGF89jhWX3OW3n5uQRIAuYCJ5+YhJoB2+kJ2T1B6zBEcREREREREvwIG0N2NWacA4PBwBAcR0QmzSyM49CqZIKTpNH1SlIavnryj+J4knyVizMakf2DSGsiV7b083agBIABJOmWa/uhI6P7Z5l+h+G5M6oAOi/CHwtIAjcJUQ/Ts6N5p26qCCw2P4uq/QqVD6RYsGfniWRZBECcPzx9emAyg3O6TFh+udwOQWtdLbR5R/PXvhoiIiIiI6MzCGdDdTYpODcDmYQc0EdEJs3oCaG5kvrBA80DN48btPwLYmXrVwOlLZfrj5MhpeiWa8+uU5m5oQRD7ZBo6fB0dh04lFwRRFAW7J1Bu9yBmBAeAa8/OafSFRvVKRcZw9PoN/nc2yv6Tu/H3+6+aLx911XeHbQDK7U1jN0rr3QAG55p3lTcEw2Kdy59h5P6QREREREREccQO6O4mWZoBzU0IiYhOUCAUcftDkP4i9Tn+WP9YvvPHkEK3Ku+pmY13Ko+XPgNINWoApBnVAKQp0gAKUvRapTyehXd/MkEwqBUA9lY6RUCjkKUb1LFnb72goHeGAQCSC3DbRzj/Toii+vPHFZ8+WpisAmCxe6VmZ2mEdJ8MQ26yFsARTuEgIiIiIiKKMwbQ3U2STgnAHQiHwvy9YiKiE2DzBADIZYK5+j9YeWlqw06fwvha7789ebBXbrLmuC9Hc+t0ul4FQKdSKBUCgAFZHAD9C9BrlAA27asB0DPNIAjtL5XJMeE5jH0CAL5blv2v24ZnK4Jhsd7lR3MHdM80XX6KFs15NBEREREREcUPA+juxqRtGk7q8Aa7thIiosRidwfG50c+zVourLkO1kMBddpfMv66YIcGQI9U/XFfDqBflhFAn0wjAEFAqk4FoH8OB0D/AkwqBYC3t5UDuP6c3OOsFgRc9AdM+gcUWqFk09LAY2dlKCvsXgAl0gjpNEOPZB2Acqs33pUTERERERGd4RhAdzcKmSBt1mT3BLq6FiKiBBCKiIFQBKKY8vNbL9TP6GPbDJkcw2dt+s2/Vpfopd8lyUvWduZSVw7O+uDeCx+dMEB6mmXWAhiYww7oX0DTPoQR0axV3HJBfqdeM/Ba3PkZDBmp7kNPKFeX2zwASus8AHqm6vNTdADKbe44Fk1ERERERETchLBbStYpnb4QA2giouPyBsOTV3zj9QXWF76TufsNAFbT4NSpK5A5KLSrMrosN0nXmavJBOGsvKTo0yevG7z1UP1l/TJ/8bLPQEZN0+/3TB9dpFd1+r9ess/CxFXi6mvOtv5LWX2Zw3trgzcIoCBNl5+mB1Bm5QxoIiIiIiKi+GIHdDeUrFcDsHs4goOI6DjmfbCnxu5+VrVSvvsNUSb/NHv2ovwlyBwEIE2vii7rkdKpDugWhuaZZ13SSy7rYFwxdZbUAa1XK24fVXhir+x5UenAewD0//6P7pLvAGQYVHqVoiBFD6CcmxASERERERHFGQPobihZpwDQt5T4LAAAIABJREFU4PZ3dSFERKe1f26vWL+nepl59VnWj0WZfOf5i2YdvkiuaOquzTAd3XiwkyM4KH56pun/P3v3HR5VmbYB/D7Te0vvQCAiXUABBbFiFwsgKoqKBRtY2HWxLXzYFduuZVHEtYuFFcQCKFjpSA+dkJCeTM30cr4/ThIiPchkknD//tjrzDnvyfXMdamzc89znhfAzWd0MDdsdXD0NhfcUWLoI48GMr64Ylr+1rxkPQBpBEdVXcgfjh7m3kp3IHDYBURERERERHR4DKDbIYtWBcDODmgiokOrrQs9+tWGl9O+61P7dUyQrTjluc+DpwGw6erzzWSDWjoQBDHTzAA6we44K/+/t5x2/3kFx3Cv1ai/X/nInqTBQix0Q+nUpy1fQ4yZtUqjRo7DNkHvdfjPeObHW95dcex1ExERERERnfAYQLdDVp0KgJMBNBFRE75Q9NcdNSt226WX60udj+VsOKfyHQBzMie9Utmjti4IwNowecOkUSpkAoA0g1al4MdlgulViqEFKcc2zyTbql1VHr7GNfH31GsBdN7yGj69QQh781MNAB6Zs8ETiBz0xp+3Vkdi4roS11+pnIiIiIiI6ATHb9TtkFWvBODycxNCIiJsrfS8tnj71W/81vOf3415e/mo/yzdXlUHIKd4zqiyZwF4+t794M4+u6rq7N4wgKR9jc9INqoBZFk1h/7z1AZkmDUCUFEXvq74snV9n4JMiS1fY+b50y9M06vkK4sco/7ze7krcOCNq/bUAvCGot7QwRNqIiIiIiIiOiIG0O2QRacGYPcxgCaiE9289WUXvPTz899vW73HGRUhCCKAXZVuLJrS+be/y8VIec6lsfOmAKhwB0udPgC2JnsPphrUAHKS9Akpno4XpVyWZtYAMGrkeefdjpu/gSEVlZvy51y+6IZ0q15ZWO45d/ri1xZvD0ZiTW9cVeSUDqrc3FaBiIiIiIjoGDGAbocsWiUAp4/tWkR0oltTZAdwcobxqSt6/vL3s6/snX1Brjjwt1vx60sAfk69cUHXaWadyqJTAtjr8AOw6fYF0MkGFbgDYbvQOUUPYPzQfItOiZzTMG4RbPnwlGV8funiEeo+ORZfKPb899suePmnrZUe6ZZqT7DYUT8eusLlT1jpREREREREbRwD6HZIGmDqqGO7FhGd6PY6AwCuOy33uoG5OTbdddYtr9SON1f8BoV2UddpNxZfaDNqAOQn7+txthn2BdBDClIUMuGM/OSWr5yOr6nDezxxRfc7zuxc/9qah1sXIvtUBD2Wz67+39Cql6/pk2pQFdX4hv/718/XlABYvcfReHslO6CJiIiIiIiOFQPodsiqUwBwcgQHEZ3wypx+AJkWHQBsnttv+V2aqMdh6orxP0/Z0wNAlkULoFOKsfGWph3QN5/RsXDahYPyk1q4bDru8lMMYwZ2UMib7GGoS8LYeeh6KWJhfH7TFdHvvrt/6JDOKYFwbNLs9b9sr1m1x964tsJ9kAnRREREREREdDQYQLdD1voZ0GFRTHQpRER/WbUnGI0d43/OpAA6y6JB4Tx8dpMQi26wXTjB8ELU1qXc6QeQYdYCyE+t74DWqxUqxZ8+GZVyflC2X0otRr2HAbcDwPwHbUXf/HfcqSP75QB4Yv7mFbvsANKNGgCVHgbQREREREREx4jfq9shi14JIBITfWGOgSaitm1TmfvUJxeN/2D1MfyiFghHHb5wF5uy8/rp+PQGiNFwtxG3ucctLfJUeQJREXKZkGpUo8kIDmuT9mc6IcjkuPA59LsZoogvbpUV/fLwJV2NGsXWCs/6UheAi3qnA6hyMYAmIiIiIiI6Rgyg2yGdUqGQCQBcvnCiayEi+kvW73UBWLi58vvNFc29t9wVuLpD+BM8pFj6MiCizxjhqv9U+yKRmPhHsRNAmkktlwkA8lPrR3AkGRhAn3gEAZdMR7fLEQvj0zHWcPWEc7pIV1KN6v55NgAVDKCJiIiIiIiOFQPodkgQYNMpATgYQBNRG+fy14+znzJvkz8cbda9brd7snNqkm8XtMkY9T6ueE2hUEgzN5bvqgWQJc2GBnJtOmk4sFWrPI7FU5shk+Oqt5B1CgIufHnbTYNysq1aAKd2sKabpBEc3FaBiIiIiIjoGDGAbp8sehUAB/chJKI2rjGArnAGXlu8o1n3Zi//Z3JgV0CdhLt+RbfL609aNQCW7bYDyLJqpZMKuZBj0wGwsQP6hKXQ4Op3oNJhz2/Kpa8+e3WvglTDmIF5afUBtJ/bKhARERERER0bBtDtk1krdUAzgCaits3liwDolWUC8J+fdx6mCVoUUe4K7EsJ136UtPVTEcLvvZ+FMaNxWY5VD2BbpRtAhlnTeD4/xQDAxhnQJzJbJ1z8AgAsefIM+5wF9585KD9ZmhIejohOPz9SiYiIiIiIjgUD6PbJolMBcHr5bZmI2jbph7Sr+mbr1YpwRCx3HnIU70/bqgc9/cPT324GgM1z8dU9ABan3bxR3bvpshybBoAoCgCyLPsC6LNOShEEsX9HW1zeBrUVva9DnzGIRfHNJHw+DiGvSiGz6JQAKjkGmoiIiIiI6JgwgG6fGmZAM4AmorZNGsFh1atTjCoAle5DhoCriuwAZv1e5F//P3x2E8RoUcZFD9delGXRNl2WY9M3Hmc2zIAGcMOgDhunXnhh9/Tj/haoLREEDP83LngSMjk2fYG3zoWjqGEKRzDRxREREREREbVJDKDbJ6teDcDh5SaERNS2OX1hABadMtOsAVBx6AC62hMA8EzeH5ovb4EYRY+rHxbvragLZzRJmQFkW/fl0Zl/zqb1KsXxLZ7aJEHAoHtw03zoU1FdiDfPvDOvDECly5/oyoiIiIiIiNokBtDtk/S8sIsDK4mojXP6wwAsWmW66QgBdDAU+TDn66tLnxMQjXUfJV45Y81eN4DMJnM2AEibDUr2a44m2id3EO74CVmnIOi6dPODF+eJh/lnj4iIiIiIiA6DAXT7lKRXAihx8NsyEbVtLn8EgEmrTJM6oJ1/6kL9ZkP5D4VV0vENwQ/PqP4IwA/p4/6b8bArKAYiMQAZ5j+lzKlGtUImANCr5EYNW57p0EyZuPk7ZPVThOsm+f/l8u3/UNHUuRtvmrU8EhMPejcRERERERFJGEC3TwM7JQNYtae2zMlHhomorYpERW8wAsCiU6YZNQAqPPt+V9tT67vrwzXjP1wVjMSwc3HfPe8AWNNn2riic9/4aeeeWi8Aq16pVvzpk04mCFlWLdj+TEdDocGVb4pyVSf3snP93zW94gtF311atGRrzdYKT6KqIyIiIiIiahMYQLdPOTbdgI5Joih8uXpvomshIjpG7kB9z6lJo0y3aAFUOPcF0As2VQAIR0RXdQk+v1WAuDplePKZt6YaVFWe4JtLdgDIOVjKnGPV4oAB0EQHl1xQferfAJy69QXUbGs8vb3KI4oCAOmnDiIiIiIiIjoUBtDt1qj+WQA+W71X5MPBRNQ2STsQGjUKuUzIMGkAVDaZw7tgcyWAbLPS9PV4+GuqdZ0fD1yfadbedEZHAN9uqgSQYT1Iypxr0+OA2dBEh2LvdXuJsY8y6sMHI+GrlU5uLXdLB8V2X+JKIyIiIiIiagMYQLdbF/XM1Cnle+y+VXvsia6FiOhYOP0hAGatCoA0A7q6LhSNiQDs3tCqIjuApy1faUp/F5Xal8yTy7yCQi6MGZinU8qlv5BpOkgAPbxPZkGqYXifrBZ7I9SmJRm1j6kfcqkz4CzCx9chEgRQWFk/eaO4lgE0ERERERHR4TCAbrd0KvnFvTIAfL6qJNG1EBEdC6kD2qJVAEg2qAUgGhNrvSEAPxRWiMDj+TuGVH4AoPysFz/arU0zqQGYtMprT8uV/kKW9SBtzgM6JS14YOiATkkt9kaoTbPpVb+U4dmkaTG1ESXL8PktiEX2dUBzBAcREREREdFhMYBuz67pnwPg6w0VkRjHcBBR2+P0hgBYdEoACpmQYlABqHAFACzYVDWqY3BM+TMAduaPXaoZAiDFUN/vPG5IR7lMAJBh0SWodmo/5DIhz6b/aJfu38lTY1Bgy9f43521DdNgiuzc7JeIiIiIiOhwGEC3Z6fkWQF4gxG3P5zoWoiIms0VCKNhBAeAdLMGQIU74AtF7Q7H3x3TVDFfibHP6/IbqupCAKSEGkCmRTvx3M7dMoxn5CcnqHZqV965uf/Ifjn/2pPxTvZUEXKsn/2UepZJowBQ7vJHovyVl4iIiIiI6JAYQLdnCpkgDUJ1BxhAE1HbUz+CQ6eUXqZK+xC6/Mt21UyRvZ0c2BXVpUzT/G11aV2VKwAgxbxv4MaEcwu+mXhm471Ef0WHJP3zI3u9e9NpT+zoODvvcUDoV/PVjOwFSrkQjYmlTjZBExERERERHRID6HbOpFUAcPsjiS6EiKjZnL4QAHNDiCx1QAdDgfzlj/W0fycK8rrL315QIpQ6/VWeAIBUoyqB1VK7N7BTklWvfGhrl9+6TgYwcO/bb560FkCxnWOgiYiIiIiIDokBdDtn0igBeNgBTURtkCsQAWBtGMGRYdYMyxFHrLsjb/enIoSK06dqO58pCGI4KhZWeACkGA6y5SDR8SKXCZf0zARw/doei9NuBnDOzuceyi/Zw30IiYiIiIiIDo0BdDsndQ66A+yAJqK2p2ETQoX0smuS4sm6xy32tUG5fkb20/rB41UKWYpeDWB3TR2ANJM6gdXSieCSnhnSwcTKi5wnXSMI4rjyKUn+3fstq/YEv1pbxtnQREREREREYADd7hnVCgAuHzugiajtcQakERz1sfJphc+m+Hf65NZHUl+b7+9p0ioBZNq0AERRAJBiZAc0xddpHW1Wff0vu3XnP+9JPU0V85+58h74apsue/Kbwomf/DFvfVmCyiQiIiIiImpFGEC3c1JAwxEcRNQWOb1hABatEgDWfWQs/FiE8Hb6Y5/vVp3RJUlak2XWNq5PMbIDmuJLLhMu7pEBQKOUZdhMu85706XO0Pv24v0rEXA3Ltta4QZQWO5KWKFEREREREStBgPodk6aAe3yM4AmorbH6Q9DGiVU+DXm3Qfgx/RbXtyZDuCMzinSmixrfQCtUcoMakWCKqUTyNX9sgVB7J9nlcsEgzXtmaQn/EorytfhgxEI1Q+DLnMEAOyu8SW0UiIiIiIiolaBAXQ7Z9IpAXiCnAFNRG2MKMITiADILf4fPrsRkSC6Xf6E+2IASoXQP88qLcto6IBONmgEIVHF0gmkb671mwlnvnptXwDZVt0nuzXPpjwrqo3Yuxyf3Qwx5glEXIEwAG5OSEREREREBAbQ7Z5RrQTg8oUSXQgRUfN4Q5EUnWJW3kLt/HsQi6LP9RgxSxTkAPrlWjVKubQs21IfQKeZVAmrlU4wJ2eYbHoVALVClmbUvLvLUH7ZJ5Crsf17LHu91FHf+Ly7xhsTuQ8hERERERGd6BhAt3PSDGg3R3AQUVvjd9V+aHjx7MpZADDoHgz/N2SKTIsGwOmdkxuXZVl10kEyB0BTIuQlGwCsCHfERU8DwMIpsvK10qVwVKxwBRJYGxERERERUWvAALqdM2sV4AgOImpzQl7LFyPznUujggpXvokLnoQgA3DnWZ0v6pE+ZkBe48LMhg7oFAMDaEqA/GQ9gMJyN/rdgm6XIxbOW3x3nzSldHV3DadwEBERERHRiY4BdDsndUC7fOyAJqK2IxrGp2OUlev8CvN/Cmag97WNV4Z0SXljTD9p+oHErFXqVDIAqSZNAkqlE96pHW0Alu6sgSDgsn/BmKn2FD+m/EC6uof7EBIRERER0QmPAXQ7Z9IoAbgDDKCJqO2Ydx92/ijK1a+kPbXYlXb4tYKALLMWQIqBATQlwKD8JAAbSt0ufxhaC66aIULoV/PV4wXFAHbV1CW6QCIiIiIiogRjAN3OmbQKAG4/R3AQURtR+DXWfgCZfMuQ197caTVrlUe8Y1B+slxA3zxLC1RHtJ90k6ZDkk4Elu+2A0DHIeuzxwC4vvy5c3OEPbXsgCYiIiIiohMdA+h2TuqA9oWjkZiY6FqIiI4k4MbXDwLA6RN+jPUBYNGpjnALMHV4j3VTLjgpzRjv6ogO6ozOyQCW7qiRXk7zX1Wj7aQO25/y/VMHBtBERERERHSiYwDdzkkBNIC6AJugiah1CYSjD3yy9rq3lvrD0fpTP0yBtwLWThj6kCsQBmA5ig5oQYBBrYhrqUSHcboUQO+qAVAXjKwq9T9neSymTUrzbvtbzeOxIDNoIiIiIiI6oTGAbrO81UezSiEXpO25OAaaiFoVTyByw8zlX64t/X2n/dv15QCw9RusnAnghy6PXvDayk9X7AVg1R85gCZKrEGdkgBsqaize0N7HX4A35cbMGZOSKbN9vwRmTsx0QUSERERERElEgPoNshbgzdOx0s9EfYfzXKDWgnA7Q/FuSwioqMVjsZGz1i6ssghvZzzRxn2/I7ZNwH4I+2qcT9rtlZ4pA7ognQO1qDWzqZXdU03AFi6q7bU4QeQZdXIsnp/0PkFEYJq02wUL010jURERERERAnDALoN0iUh4EHEj+0Lj2a5WaMA4A5Ej7iSiKhlLN9t31TmNmoUr1/fF0BedI/40ShEg9stg+91XtslRf/mmH4f3zZgwf1nnn9yeqKLJTqyQZ2SAfy+o6bE7gWQZdUB+DVY8EfyZQDwzd8Qi0ZjYpUnmNAyiYiIiIiIEoABdBskCOh2OQAUfn00y006qQOaIziIqLUoc/gAnJJjubhnxrCuSRNczwhBT4Wp9/2x+4aclD5/4pkX9kgflJ9cwH0FqY0YUpAC4H9ry9budQHIteoAdEw2/Fu4NqIyoGKDZ9m7l/3rl9OeXDR6xtKFhRUxkTsDExERERHRiSK+AfQPP/wwbNgwo9GYm5s7YcIEj8cjnb/77ruVTbzyyivS+Wg0+sQTT2RmZprN5ltuuaWqqiqu5bVhJ18GANu/QfTIgzWMHMFBRK1MmSsIIMOsAfBo0uJU346A3Piw+h/usOKfl3VXKfjjKLUxZ52U0ivL7A1G/vdHKYBsmxZAxxTdjyXiguSbACh/nNpF7QCwbJf9tv+ufmHB1oTWS0RERERE1HLi+yX/ueeee+ihh8rKyubNm7dw4cJ7771XOh+NRm+//XZ/g8bzzz333Jtvvjl37tzCwsLKysrRo0fHtbw2LOc06FMR8GD3L0dca9JJIzjYAU1ErUW50wcg06qDszh37csA5qbd/WOJOO3KHhqlPNHVETWbTBCmXdFDEOr7mqURHBf1yBzYyfaC86xKfYEm4ppWN+WHu/uM6JcN4LcdtYksl4iIiIiIqAXFN4D+7rvvzj33XKPR2Lt377vuuuvHH39svCQIgqKBTFZfxnvvvfe3v/2tf//+mZmZzz///OLFi0tLSxtvEUXR3YTUTy2emA+xCjJ0vQQACucdca1JI3VAR+JdFBHRgYKR2Mg3lz785YamMwekDug8qwbzH0A0UGPr90RZ34t6pA8tSElcpUR/Se8cy6h+OdJxjlULIMmg+uT2Qe/fNnjdkBlhbaqpblf+4vETzuoAYHulm1M4iIiIiIjoBBHfAFoQhMbjX375pWfPno0v33//fb1e36FDh4kTJzqdTgAOh2PLli0DBgyQFnTr1k2n0/3++++Nt3g8HnMT2dnZAOrq6uL6FlqvbsMBYPM8xI6wu6BJqwTg4gxoImopdm9obYlTOt5Q6lpZZP9oRfGrP+xoXFDh9AE43TkP2xdCplRd+a87z+787NW9ElMu0XHy0EUnW/VKi1aZl6RvPJll1Q4beIpy7JdQ6rDr55wV/6eQCb5QrNThT2CpRERERERELaaF5my+8cYbCxcufOmll6SXr732Wm1tbU1NzaeffrpkyZIbb7wRgMvlAmA2mxvvMpvN0kmJ0Wh0NbF3714ABoOhZd5Cq9NhMNRG+GtQsuzwC6UOaA9HcBBRS7nn4zVXvPbblnI3gCp3QDr58qJtCzdVSMdlrsC1nfwpv08FgGFTTTnd7xyaL/1aRtR22fSqRfefteCBoTrVAZNk0nti5CwIgrDy7de7FQLYUulOQIlEREREREQtriUC6DfeeOPRRx9duHBhQUGBdEYulysUCq1WO2DAgFdeeWXevHk1NTUmkwkNMbTE5XJJJyWCIJiaMBqN+HOT9YlFrkTXywBg/WeHX2iu74DmCA4iOm5EEVPnbnx50faDXt1VVQdgW1UdGgJouQAA93261u4N1QUjaQb5fc5nhUgAnc7CgDtbrGyieEsyqFKN6oNfK7gQQx8GcN6Op+7Id2wr97RoZURERERERAkS9wD6+eefnzJlyuLFi/v373/QBXK5HEAsFrPZbAUFBatWrZLOFxYW+ny+gQMHxrvCNqz3aADY9DkigcOskpoK3QEG0ER03JQ6/bN+3/Pyom3BSGy/S6KIWm8IQKUrAKDGGwJwzam5HZJ03lB05e7aMqf/7+Yf0nzboLPhyjchtNCzOESJN3QSTrpUhsg9VVNFv6PpFV/oCAO1iIiIiIiI2qg4fu0XRfHxxx9/5ZVXfvnll169/jTZ88Ybb9y2bVs4HF63bt39998/bNiw1NRUANdff/1zzz23cePG2trayZMnDx48ODc3N34Vtnkdh8CYiYAHhV8fZlXDCI5QS5VFRO1fsd0nHVR7gvtd8oej4agIoNITAFDpCgJIt2j65lkBbKmsizjLzq2cBQDDnoAxowWrJko0QYar3gybOhjDVZfvngZRBFDu8t/94Zpuj38367fdia6PiIiIiIjo+ItjAO31eqdNm1ZaWtq9e3elUqlUKvX6+j15Lr744pEjRxoMhuHDhw8cOPCDDz6Qzj/88MO33HLLueeem5ubazQaZ8+eHb/y2gNBhlPGAMDaDw+zyqRVAHCyA5qIjp+9dq90UOne/wkMhzfUcCkIoNoTAJBq0HTLMALYUuZKX/mMMhawW3qi97UtVzFRK6E2eofPjMhUuTU/i7+9+tXasrOfXzJ/QzmAVUX2RBdHRERERER0/Cni96cNBoMoige9NHr06NGjRx+kGoViypQpU6ZMiV9V7U2f6/Dzc9i5GO4ymDIPuqS+A9rHTQiJ6Lgptvulg6oDOqDtvvoAusLlB1BdFwSQalJnybUA+su22rZ/KUJY3nXyRRy+QSckU6d+8zMnXLb3BeHHqZU5hkAkPUmvqvWGXPykJiIiIiKi9ohf/ts4W0fkng6IWPvxoZZIAbQ3FI3GDv57ABFRc+111gfQUsrcVGMHdFV9B3QQQIpRfXKGcWTH4LW7HwGwNvnS7couLVcuUWsiE4SPY+ett12EWHRs6WP39Io+P7I3mvx4s5/dNV67l3O0iIiIiIiorWIA3fadcj0ArP0Qh+g3N2rq+9zrgpzCQUTHR0lt/QiOKs/+Izjs+0ZwBKIxUdqQMNWoThYdjzke1kUc1fqCJ6M3Zlp0LVkwUauSY9M9GLil1NBLHfFOqHgkTxsA4PQfpAO6qNY77OWfbntvZYvXSEREREREdHwwgG77ul0BuQb2ndi74qDXVQqZRikD4D7YN1siomNQ4qhvfJYGPTdV660/E4jEiu2+aEwUBDFZGcVHI0yBcqcm6x+6qavKwxlmTYtWTNSaFKQbt9vDj2gmuzUZKndx3ve3dE1WOr0H+Zj+eVtNOCKu2eMMR2MtXycREREREdFfxwC67VMb0OMqAFjzwaGWmNQKAG7uQ0hEx0MoEmsc/Vx14CaETebYbixzAeiUpJPPG4/yDWG1bZrlqR9KRAAZZm1L1UvU6pyUbgKwZK+4ZvAMaIyKspXTVf9RyIUDU+blu2oBiECx3ZeAQomIiIiIiP4yBtDtgjSFY9MXCB3826lBqwQw/fst509fMndtWUuWRkTtT6lz39znqgM6oO11+85s3OsC8LTtG2yeC5ly61lvfFGklC6lswOaTmDdMkwapcyokZ/SbxBGfQhB3t2+6MW0Bc4/70MoilhZZJeOd1XVJaJSIiIiIiKiv4oBdLuQdzosHRDyovCrg16X9iH8cWv19mrvy4u2t2xxRNTe7HX4AChkAoDKhhnQ1Z6gNIje0WS3tA1lrqfyN51W/BYAXP6KmDtIOm/WKHUqeYsWTdSa2PSqL+8846u7h5i1SnQaiktfAnBu5Uz5nl+aLitx+BqfNthVww5oIiIiIiJqkxhAtwuCDKdcBwBrPzro9dM7J8kFnN8tTSETdtXUbWcXFRH9BSW1fgC9c8wAXP5IMBL7fmP5qU8u+tfi7QDs/ggAafT8UMWWa8qeBYAzJqLP9V1SDQIAIN3C9mc60XXLNHVK0de/6Dd2c9rlAkTL/PGoq2pcs3J3beNxUS0/u4mIiIiIqE1iAN1e9L4OgoDdP8NRdODFvw3ruvXJi9+6sf+ZXZIBfLuBUziI6NgVO3wAemRZlAoBQLUn+NO2agArdzkAOLxBAAWpxus6+W7a+7BcjFRlX4jzpgDQKOV5yToAWZy/QfRnbxvvqtF2kvmr8cU4xOr3bFix246GeTU7+OMxERERERG1TQyg2wtLDjqeDQCr3z3woiDUPyx/YY90AN9uqGzR2oiofSmx+wDkWDVpRg2ASndgc4UbQLHdC6C2LgTg/M7GSY5p6oi3xNjn195PQqj/uOmeYQIHQBMdwB6Sv2h5JKbUYvfP+G6ydHL5bjuAUf2yAeyqYQBNRERERERtEgPodqT/zQCw+n1EQ4dacn73dLlMKKxw76nlKEkiOkZ7nX4A2VZ9mkkNoMId2FbhAbDX4YvERKc/DODamlds/j1eRfJj6ocUSl3jvRf2zNAp5Wd1TUtQ7UStlEWn/Gi3duOAFwBgxQysmllTFyyq9QEY2T8HQG1duC4YSWyRREREREREx4ABdDty0kUwpMNfg8L5h1pi1akGdLIB+HZjeQtWRkTtitTpnGPTpRo1AFbsqvWFYgCiIrZXeqIx8Zn7Lr+FAAAgAElEQVT8jck7vxBFYUbaI0v2ilJOLbmsV+bG/7tgWDcG0ER/YtWpAHwb6YdzHwcgzv/b+h9nAyhINeTYdEl6FYDdNd41xY5rZizbUuFJbLVERERERERHjwF0OyJXou+NALBq5mFWXdwjA8C3GxhAE9Gx8IWiDm8YQLZVm2pUA1iytbrx6toS5y2d3CPKpwP4IX3cKzvTAKQY/zRwQyYILVoxUVtg0asAOH1hDH5gZ9olghg9c+0DD+RXDMpPAtApxQBgd4336W8Kl++q/XTFngSXS0REREREdNQYQLcv/cYCAop+Qc2OQy05+6RUAOtLndGY2IKVEVE7sdfhA2DUyM1aZZpJA2CPfd9IH5+j8r7aKYpYUOx8/qO1F0gnU4zqg/4pImokdUA7vSERwp11t2yzDFHEQveUT/5HdyeATsk6AD9uqVpZ5ABQbPcntloiIiIiIqKj17wAWhTFDRs2zJ8/PxaLRSIRUWSC2cqYs9FlGACsnnWoJakmNQBRFNyBcIvVRUTtxl6HNABaB6DpbA2lXEg3KC/c8ogpWOHRZQtXvx2IAYBGKTOoFQkqlqjNsOiUAOy+iMMX2lYbvCc8Qex0tiwW1M4eieKlHVMMAL5au1daXGLnRg5ERERERNRmNCOALioq6tOnz8CBAy+99NJYLDZ27NhPPvkkfpXRMTr1FgBY8z4igYNeV8plerUC0nO+RETNtK3SAyA3SQcg1aRtPD+0IOWxlJ+yHMsjgmpOl+egtUj90ckGDUduEB2RVacE4PSHpHDZHZIL136Mjmch5MMHV52n3QFAFOv/Xdrr9LEHgIiIiIiI2opmBNAPPvjg0KFDnU6nQqEAMHny5GeeeSZuhdGx6nw+TJkIurB57qGWmLUMoInoGP22vRbAaR1saHiiQjK+By6omAHgq8yJa4KZANKMagDJBlViCiVqUyw6FQCXN1zs8AHIsmqg1OK6T9DpLIR8+YtuvqWTG4BZoxQE0ReK2b2hxBZMRERERER0lJoRQC9YsODxxx9XKpXSy65du27ZsiU+VdFfIJOj300AsPKQWxHWD5r087srETVPMBJbuacWwOAuKQDSGnYXPCXb2HvVZIUY2m08dWrpqVaDCkCaSQsgzcwB0ERHZtEqATgDIWnKTY5NBwBKLa79BB2GCCHvpOqHr+4QvqJvVppBC6DEwSkcRERERETUNjQjgNbr9Q6Ho/Hlnj17kpKS4lAS/WWn3ACZHCXLUFV40OtWrRKAo44BNBE1z+o9jkA4lmRQFqQaAZi1SqVCADDF8p2yfGVIrn1JN8EdiCRpVQDybFoAOVZdYmsmahOsehWAQDi2vdKDhjHrAKDUYvRHSO2uC9sfczx8ex9tTpIOQHEtA2giIiIiImobmhFAX3PNNRMmTCgvLwfgdDonTZo0YsSIuBVGf4EpE10uAoDV7xz0ulnqgA4wgCai5vllezWAIZ1TpLHOgoA0o2ZyfnHvHa8D+Cbr/rl75ABsejWAMYM6PHpJtzvOzE9kxURthF6lkAsAsHGvC00DaAAaE26cI1ryLMHSrLmjh+XKAZTYvYkplIiIiIiIqJmaEUBPnToVQGZmZiQSSUtL83g8U6ZMiVdd9BdJWxH+8SGCdQdelNqsnF7OgCai5vltew2AwQXJjWduLIjcVDkNENHv5ln+wdJJaQSHRae8dUjHFCNHcBAdmSDApFMC2F5Vh4Z9PvcxpAlj58KUiZqt1227d1CmvNjODmgiIiIiImobmhFAWyyWb7/9dvfu3d9//31hYeGiRYtsNlv8KqO/JP9sJOUj5MXajw68WD9okpsQElFzOH3hDWVOAIM7p9SfiobGlf9THfEiewAufi7XVh+Z2XTKRBVJ1HZZtWoAIgAg26o94HIH3DgP2mS9c8szkWcjET7GREREREREbUMzAui6urpvvvkmLy9v2LBhBQUFCxYscLvd8auM/hJBhgF3AsCKNyHG9rto0akAOPwMoImoGZbuqhVFoUuKPt1Uv/cgljwrr9oMrQ3XvAe5KsdWH5lJj1kQUbNYdQrpQAAyzQcE0ACSO+OmuaJKn+dec6vjFYhSWI1568sGPrXoj2Jni5VKRERERER09JoRQE+cOLGsrEyQBn8CVVVVd999d3yqouOh97VQ6lG7EzsX73fFoleAIziIqJl+3V4NYHCXhvkbpavx20sAcNnLMKYDyLXqpSs2BtBEzSf9PAwgzaKpHwh9oLTu3stniqJwcuU88efp0rnvNlRUuINLtla1TJ1ERERERETN0owAevbs2SNHjmx8OXLkyC+//DIOJdFxojag740AsOyN/a5ID/k6fMGWL4qI2q4d1V4AfXJtABAJ4Ms7EIuixwh0Gy4tyGuYWmvRMoAmarbGRwdyLAdrf26g637hvKz7AQiLp2HjHAAuXwiAkw82ERERERFRq9SMANpoNBYXFze+LC4u1ul0h1lPiTfgdggCdiyEfVfT01a9EoDTH0lQWUTUJjl9IQBWab7zLy+hdjv0qbjkhcYFBWlGhUzIteoO2bxJRIdmaRienmM73P+/kgnCdNeZy1NGAsD/7kDJcrsvBMDu5VRoIiIiIiJqjZoRQI8YMWL8+PE7d+4URbGoqOi22267+uqr41cZHQe2Tuh8HgCsnNX0tNSc6PCyA5qImsHlDwMwa5Ww76ofvnHRs9BaGxckGVTz7h388e0DE1UhUZtmbQygrUf4gT/Xqp/oGOXKOR+RID4a3dMcAD/WiYiIiIiotWpGAD116lS9Xt+5c2eNRtOxY0cA06ZNi1thdJyceisArPkvwv7Gc1KPlTcUjUTFRNVFRG2O2xcGYNEq8fWDiATR6Sx0v3K/NSdnmLKsh5seQESHYtYeVQc0gBybpqIuPK/LNKR1h99+q+vfJo2CHdBERERERNQ6NSOAtlqtCxYs2L59+7x587Zu3bpkyZKUlJT4VUbHR+fzYclG0IVNcxrPmRq+4ro4L5KIjk4kKvrCUQDpRXOw60co1LjkRQgctUF03Fj1aukg50i/4uQm6QGsKg/iqrcgU3Zx/DQpa7Odn+lERERERNQqNSOABiCKosFgKCgoUKlURUVFRUVF8amKjh+ZHP3HAcDKtxvPKWSCUaMA4PSzW4qIjoo7EAZwXUe/+tsHAWDIJCTlJ7gmovbF0vDzcPaRRnBILdJFNV6kdQ8Ouh/AyMqXelvqA2iXP1xTx3EcRERERETUWjQjgF68eHFWVlZGRkbHJuJXGR03p9wAmRKlq1H2R+M5qzQG2sduKSI6Ki5/uHeq8kHXk4gG0OlMDHkw0RURtTdWnQqAXCakmTWHX5ll0QKo8AQAlPa8s1qbr424HvU+HQr6RBHDX/v1/Bd/4kNORERERETUSjQjgL7nnnvGjRtXWVnpaSJ+ldFxo09B96sA4NeXGs9JY6AdPnZIEdFR8QbC05TvJPl2QZ+Kq2ZCJk90RUTtTZc0Q+8cy4i+WQrZEYbbpBrVAGrcQVFEpVd82TI5JNPmeNYKc+7yBEJFNT6HL/zbjpoWqZqIiIiIiOgIFEe/tKioaNKkSWazOX7VULwMnogNn6JwLmp2ILkzALNOBcDliyS6MiJqG9I2z0yp/VYUZMKId2BITXQ5RO2QUi776u4zjmZlskENIBITnf6Qwxf6cLcuLf/Je0onKbfMCRtzgIEAftlefXHPjPhWTEREREREdBSa0QHdq1evwsLC+JVCcZTWHQUXQxTx64vSCateAcDJDmgiOhq7lqT8Ng3A0s4PoOOQRFdDdKJTKWRmrQJAtSfo9IYBvLgzfXbWPwDoVr46Pf8PAD9tqxbFxJZJREREREQENCuAPvvss0eNGvXyyy9/0kT8KqPj7MwHAGDdJ3DtRcMMaDtnQBPRETn24NMbIYjrki7+VHZJoqshIgBIM2kAVHmCDn/9b8n/2Nmjqu99AK4smz4pv6zMGSiq9SayRCIiIiIiIgDNGsExf/58s9k8c+bMpidHjx59vEui+Mg+FR3PxO6f8du/cPGzlvoRHAygieiwwn7Mvh5BV11Sz4eCN/dQcPQzUauQbFRvq6yrcgWa7ie8JGPc2R12phTNu738MUf+S79ur+6YrE9gkURERERERGhWAL1u3br41UEtYfD92P0z/ngP5z4qbULo9IUSXRMRtWKiiPkPonwDdMmLer645bvqwScrE10TEQFAqkENoKouaPfu+yiv8AQ/zfzH5fbSXPeaSZUPfZH+FtAhYSUSEREREREBaNYIDmrzOp2N5C4I+/DHR1adCoCDATQRHYooYvFTWPshIGDkrKU1agAmLQNoolYh1aQGUO0OOr0hABatEoCjLrSpMvCAfLLT0l0bcV254a6ofQ8AUcTdH66+adZyJ598IiIiIiKiFteMADoWi3322WfXX3/90KFDz2gQv8ro+BMEDLgTAFa8mWqUAmh+ESWigxFFLHgUPz8HABc9g45nuv1hABatKsGFEREAINXY0AHtDwHIT9UDcPhC5e7gqvLw1vPfq9V20odqYh+ORNCztcI9f0PFkq011721lL89ExERERFRC2tGAP3UU0899NBDp5xyyq+//nr55ZeXlJT06dMnfpVRXPQeDY0R9l2dXcvAAJqIDmXxE1j6bwC46HkMGA/AFQgDMGmaMbiJiOIn1aQFUOUOOrxhAB2TDQCc/lCVJwBAaUz6svurXkWysnYrPr95TVGNdNfmcs/oGcuaTu0gIiIiIiKKt2YE0DNmzPj4448nTZokk8nuv//+zz77bPXq1fGrjOJCpUefGwFYN7wDwO3nV1CiE1GVJxiMxA55uehX/DIdAC57FQNul85JT+6bdRzBQdQqpBjUACo9fmk7h07JegD2uvoAOs2oSc3Ofyl1WkSmxvaF/QufNmkU1w/ITTIot1Z4bpi53BOIJLZ+IiIiIiI6cTQjgC4vL+/duzcAnU7n9Xr79u37xx9/xK0wipvTboMgKIt+vLFTnS8UCx0mhCKi9qjY7hv09A93vL/y4JcDbnxxG0QRfW9Ev7GNp92BCAAzZ0ATtQ7SDOgqV9AdCAPolGoAsLPaG4kCQIpRfU7X1Hf3mN/PeBQQCopn/yt9/k1ndJx9x+lWnXJTmfumWcu9IWbQRERERETUEpq3CaFCoQCQn5+/ZMmSlStXWiyW+FRF8WTriJMvBzAq8DkAp59TOIhOLNsr66Ix8ZdtNb5Q9CCXv/0bPGWwdMAFTzc97fKHwQCaqNVINWoA+MJRURQAdEzWA/CGogAsOqVKITNqFIM6pUzdmf/rSf8AMLTiv122vZ2fYvjw1oFGjWL1Hudz32458M9GYuK0eZvfW7qnRd8MERERERG1a80IoIcNGyYIAoDJkyePGDFiyJAhEyZMiFthFE9DHgTQvXbh1R3C3IyI6ETjCYQBREWsKXbsf23zXKz7BBBw9QyoDY2nY6JYF2QATdSKGNQKpVyQjvVqhbQnoSTNpJEOLuqeDmDMup4LMsYDwKJ/YtU73TJNT17RE8Cy3fYD/+yCTRUzf9s9de5GPiBFRERERETHSzMC6Pnz58vlcgAjR44sKSkpLCx85JFH4lYYxVNGb3Q5XxDE6yJfurgPIdEJxt0w+3XFrto/XfBU4OuJADD4AeQMACCK2FrpCYSjnkBE6rJkAE3USggC0kxa6diqU5k0SkEQpZdpDWH0+d3TpJO37z6zuvddADD/AWz4vG+eFcDOak8kKgLYUOp686edgXAUwKzfigBEReysrmvZN0RERERERO1WMwLooUOHRiL1sUVmZmZBQcHQoUPjUxXF35AHAfSpmS+rK090KUTUojyB+ucelhc16YAWRcydAJ8dqd1x9j+kc8t21Vzw0s8Pf7FBmr+hUciU8uYNbiKi+EkzqaQDm04hlwlmjarhfH0wnWJU9821Ssfy86eg/ziIIr68Pbt2mV6tiESxs6YOwCNfrn/m2y3/N2/TpjL3yqL6tujCMneLvhkiIiIiImq/mhEl/P77701fRqPRZcuWHe96qKXkDqpNPlWOSIfVTyW6FCJqUW5//U+Ja4rt9U/Zx6KY/yC2fw+ZEiPehrw+xlq31wVgxR67FECb2P5M1JokN3Q6m3VqABZd/b+haaZ94zgu7J4BoFuG0WZQ45IX0GsUxCg+H3tnTwDYWuHxhiIbSt0APlpRcv8n+zaX3lLJAJqIiIiIiI4PxdEs+vDDD0VRjMViH330kUwmAxCLxTZt2pSXlxfn8iiO1nf/x1k/jUgu+hpFv6LD4ESXQ0QtxNMwgiMcEdftdZ6aY8Cc27FxDgQBl76E1G6NK4trvQD2OvxlDh+axFtE1BqkGepnPVv1CgAWnQq1PgDpZk3jmjGD8irdgUt6ZQKAIMPl/0btTpSuvnnP5B/Tniksd6UY1GLD4m1VdQCu6Z/96aq9hWUcwUFERERERMfHUQXQ06dPlwLo6dOnSwE0gPT09BkzZsSzNoqvSv1Jq1KuOLV6DuZPwp2/QnZU/zAQUVsntTNL1hXbT/p1omnHXMiUuOot9Liy6cpiu086WF3sAAdAE7UyyQ2dzlatCkCSvv7ZhVTTvgBaq5Q/eum+X5WgUGP0h/jPWXrPzv/oJv/kf2RNsQLA+d3SKl3+9aXuXlnmawfkfbpq7+YKZ4u9ESIiIiIiat+OKnNcs2YNgFGjRn388cfSPoTUDuQm6V6OjZ6pXKypLsTKtzFgfKIrIqKWIG1C2CPTtLHMnbfjfVPx3Bhkq09/49QeVwL4cUuVJxAZ3icTTQLo5bvsAEwaBtBErUjqvg5oNQCrvnEGtPqQ9wAwZuDaj2IfXJ3i23H1ulu2dLjhP5pLB3ayXdQj45VF224YlNcpxSgIYm1duLYulGRQxflNEBERERFR+9eMGdCzZ89uTJ8DgYDX641PSdRCcqza30qj36XeCgBLnkWQD9sSnRA8wRCA87ql35tffW7xqwC+ybxnjrsrgGhMvOvD1fd9uqbcFYjGxFKHX7plY6kLgJkBNFFrkmauD5otWgUAi7ZxBrTmkPdIsvoFbl++LukSAeLJRe+9nPZdvzxbpkX77IjePbIsOpU816YHUFjBMdBERERERHQcNCOAXr58+SOPPCKK4saNGzMyMiwWy5w5c+JXGcVbhkUrlwkv1AyIWfPht+P3fyW6IiJqCdImhGd31I+vfkKG2M7UCx4uG1zh8gOorgsGwjFRFDaXuStcgWjDaFjpwMwZ0EStSUpDe7JNrwZg06sACIKYbDhsBzQAQGdNu8M77ousvwM4p/KdXvbvml7tlm4EsKXcddxrJiIiIiKiE1AzAuj77rtv+PDhgiC8+uqrzz///MyZM6dMmRK3wijuFDIhw6zZ6wrXnPZ3APj9VXhrEl0UEcVdnT8MoNO2mfpQdcSY4zj/RXcgUuEOAKhwBaQ1Wypc0vwNocmNZh0fxidqRVJNWulAGr4h/a9Nr1LIhMPd1qBbmvHBnX1+SRsDQPbVPShZ0Xipa6YZwOZyz3GvmYiIiIiITkDNCKDXr1/fvXt3AGvWrBk7duy11167Y8eOuBVGLSHbqgWwUjsE6T0R9uHnFxJdERHFRbkrsK6kfksxdyByUW7MsOpfABQXTNPqTQAq3UE0CaA3l3n21PoA9M2zNP4Rk5Z7ABC1Ikl6lZQ0W3UKAMl6FYAss/Yobz8pwwTgvprhVdnDEAvjs7HwO6RLXdMMALaUcwQHEREREREdB80IoDMyMtasWVNYWGixWJRKZW1trdlsjl9l1AJyrHoAO2p9OP//AGD1O3CXJbgmIoqDce+uuOL1X0vsvkhUDERi46MfC9Egsgeg+xXSfmV2XzASFctd9UOfCyvcxQ4vgJMzzNIvVQBMWo7gIGpF5DKhb67FrFV0SDYAGFKQMmZg7t8u7HqUt5+cbgJQ6w3vOuMF2DrBXYYv74AoAjg50wxgW2VdJCYe4a8QEREREREdSTMC6Hvvvfe888477bTTxo8fD2DWrFnjxo2LW2HUEnJsGgAldh86nY3c0xEJsgmaqP0RRWyvrhNFYXeN1x0IP5+/vlftNwBw4VMQBJteJRcgikJ1XbCxA3p3tXd7ZR2AHKuuINUgnTQzgCZqZT694/TfJ59rUCsAaJTyJ67oOaRLylHe2zXDKB10zErDqPegUGP79/j9FQDZVq1OKY/ExF3V3KCYiIiIiIj+qmYE0BMnTly7du3q1atHjBgBoF+/fpMnT45bYdQScmx6ACV2PwQBZz8MAGveg2tvgssiouOqLhgJR0QALn9Q99P/jSx9RoCI/uOQ3R+ATBBSTBoAle5AmbO+A1oEfttRDSAvSXdSQ0pl0XIGNFHropALepXi2O7tnGoY0S/75tPz0kwapPfEhc8AwMIp2P2zTBA6pxoA7KrxHsdqiYiIiIjoxNSMABrAySefXFBQIB0PGzZMp9PFoSRqOTk2HYAShxcAOg5BhyGIhfELm6CJ2pVqT1A66LXjP5oV/wLwW9Y4XDK9cUGaUQ2gwh2QtiKU+EIxADk2XUGaSTrDDmii9kQmCC+M7P3Py3vUv+53M/pcD4iYPRauvTk2LYC9dn8iSyQiIiIionbhyF0z77333pgxY2Qy2XvvvSeK+48CHDt2bHwKo5aQY9UCKHcGIlFRIRdw9sOYdRHWfIDTJ8LWMdHVEdHxUe0JADgzW5a9+S0AX2ZOesM9ZKEgNC5INWkAV5U7WOkKAuiVZV5f6pIu5dp0jesYQBO1Z4KAS6ajYj0qNuCjUWd1e23+BpQ62AFNRERERER/1ZED6Ndff/26666TyWSvv/56JBLZ7yoD6DYtxahWKoRwRCxz+XNtOuSdjvxzsPNHzLsPN/4PTfIpImq7quqCAG6Xz5NH/cGk7lPKTuuU8qcoOdOiBVDu8pd7/ADO7poqBdBmrcKoUeSnGsxaRUyETc8RHETtmlKL0R/jP2ehctPlvrG/5U3b6wgc+S4iIiIiIqLDOnIAvWzZsv0OqN2QCUKWRVtU4yux+3JtOgC4ZDpeG4jdS7D+E/S+NtEFEtFxUO0JnJsjDKz+HEBR7wfc30Qsuj/9xz/VoAKwtdwtjYo+66TUV37YDiDPpgOgVsjm3TtEFKGUN29qExG1PZYc3Po93rtS7drzpP++VywzEl0QERERERG1eceYJgQCAa+XT2W2B7lWHYDixiGPtk44+x8A8P3D8NYkri4iOgi3P/zsd1u2VXqadVe1J3g7vlTEgtWmHiuU/QAYNX/qZU43awD8UeIEkKRXdcs0SY8/SGPiAeTadHlJHPpPdGJI6oxbF0aTuuoj9usrnhNj+49fIyIiIiIiapZmBNDLly9/5JFHRFHcuHFjRkaGxWKZM2dO/CqjlpGbpEfjPoSSQfcitRt8dnz794SVRUQHM3dd2RtLdr60cFuz7hoc/HVA9WcA5iXdUuuNADCq5U0XpJq0ABy+MIAMs0atkHVM0QPIsemPV+VE1JYY06PXvB8RVHmuFeFV7ya6GiIiIiIiatuaEUDfd999w4cPFwTh1Vdfff7552fOnDllypS4FUYtpEOSFsD2yrp9p+RKDH8NMjk2foHNcxNWGREdoMIdAFBUe7gHUJ74evM505dUe4L1r/f8PuiPfwBYkTpiWmG6yxcEYNIepAO66fGAjjYA3bNMx7d+ImorVKkFi7PHA1AuegTOkkSXQ0REREREbVgzAuj169d3794dwJo1a8aOHXvttdfu2LEjboVRC+mdbQWwptguNn3ENqsvzpgAAPPuh682MZUR0QHsdSEAZYfeFswbirz7e9Guau/slcUAULICH4+WIbLVOnSC/RoR2FPrwwEd0GlGdeOxFEA/ckm3j28beHGPjPi8DyJqAz4WLik19BJCXnx8DQKuRJdDRERERERtVTMC6IyMjDVr1hQWFlosFqVSWVtbazab41cZtYye2Wa5gNq6cJnT/6cLQycj9WT4a/D9wwkqjYj2V10XBOAKhOuCkYMu+HVbdSQmAvhqXRk2z8W7lyLgKjf2uj9yT0VdGMDOGi8Ak1bZ9C6jRqlR1n8cZJg0AAxqxaD8JLlMiOe7IaJWTatWPq+fFNYmo3ITPhyFsP+gyyrdgR1VdQe9REREREREhGYF0Pfee+9555132mmnjR8/HsCsWbPGjRsXt8KohWiU8u6ZJgCr9zj+dEGhxmWvAMCmrxA7eNRFRC3MXlc/WGOv4+BJ0I9bqqSDmwzLMftGRIPoPGy88Njm6rBZq2i8cb8RHIKA1IYm6AyzNk7FE1Hbkm3T/2+PYlHfN6ExomQZPhqNgHu/NaKIa2YsveiVn/f/GZuIiIiIiKhBMwLoiRMnrl27dvXq1SNGjADQr1+/yZMnx60wajmn5FoB/FFs3/9C9qlQ6RHxo3prAsoiogPUeEPSQenBAmhRxOItVQAe6ua4puxZQET/mx3D/7uuKiwIYkGaCUA0JgIwahT73Ztmqs+dMywMoIkIAHKsWgBflFlw3WdQaLF7Cd46B7U7m64pqvUW1fjCUXHZTg7sIiIiIiKig2tGAA2ga9euwWBw/vz5sVjsnHPO0WqZU7QHffNsANaUHDDeUZAhow8AlP3R4kUR0UHYGwPogzUbbipzVtWFRuVHby99VC5GdiSfE7t4ekVdBIBFp2q60+CBAXTj1abLiOhElm3VASh1BJA7CLd8B2MGarfjrbNRualxzbJd9bnzmhJnYqokIiIiIqJWrxkBdFFRUZ8+fQYOHHjppZfGYrGx/8/efQZGVaZvA7/O9D6TmfQKISC9CyhYEdu66mJZFXXXurbVdW1/y679VcGyVtTVVbF3xQYiIHYEpJNACJDep/d23g9nZjKEmhAIhuv36eSZc548Z8uQueY+9/OXv7zzzjv7b2V0wIwttgBY3+AMReOdX8sfBwD1vx3wRRH1WZFYfLs9P7tyoSeY6IdT5/DteMLCilabXnm772F5yNGiH3RT+Opl25xt3hCAbKMmU9/RdqNTD2gAOSZ18iCixlQAACAASURBVIABNBEBQEGGFkCd0wcA+aPxtyXIH4ugC3Omw1UnnbN0a+Lxqd+qd3iOioiIiIiICECXAuibbrrpmGOOcTqdCoUCwO233/7www/vt4XRgVOYobPpVdEY1tbvUARdMAZgBTRRj2l0BUff+/WdH6/txrWp8mfsogXHooqWv+eWZzjXQ6n7etSTq1siX6xpbPYEAWQbNJmGtAB6xxYcRg0As0apU8m7sTYi6nsKLFoAnmDMHYgAgCEHF32MzMPga8LrZ8LXJor4papNOnljs9cfjvXiaomIiIiI6KDVhQD666+//ve//61UJurmBg8eXFFRsX9WRQeUIGBMsQXAyk77EALIHwMATWsRC+9wHRF12dp6ly8c+3FzWzeuTQ+g65zBHV+1e3yn218CgCP/npXfH8APm9vbPGEAWQZVVnKbQQAmzQ4V0GYN0uqgiYh0KnmGTon0XU+1Flz0MUz5aKvE7MmetV82uUNyARl6ZSwurq1jFw4iIiIiItqJLgTQer3e4egIKKurq2022+4vWbhw4Yknnmg0GouLi6+//nqPxyONx2KxBx54ID8/32w2X3rppS0tLbsfp/1tXD8rdvr8bEY/aMyIR9BS3gvLIupzpEJCVzDSjWvbvGEAcpkAoMbeuQXHqlrn9bYV1kANdFYc+fdJAzIFYEubV4qEssyaTGOit4YA6FSdK6CPGpg5rsRy8ZEl3VgYEfVVRRk6ALXpbzjmAlz0MWwD4W0yfXT+m0WfTyq1TepvA7Bix6+xiYiIiIiIuhRA//nPf77++usbGxsBOJ3Om2+++eyzz979JTNnzrztttsaGho+++yzBQsW/P3vf0+NP//883Pnzi0vL29ubj7vvPN2P07727jiDAArd9xBSBASRdDswkHUE5z+CABPMNqNNtBSBfSgHAMAhy8SjGz3tHtzu+Pk1v8BwFE3QW00a5UjCkwAFla0AMgyKFMV0AaNQhA6T56hU3149eQLJ/Xr8rKIqO8qskptoLfr+bPcn3Oj9an24ZcBmNz61r2WL8eVWAD8VsMAmoiIiIiIdqILAfS9994LID8/PxqN5uTkeDyee+65Z/eXzJs3b+rUqUajcdSoUddcc82iRYuk8Tlz5txyyy3jx4/Pz8+fNWvW4sWL6+vrdzMuEUXRnUaqpxa7t5kXba9/ph5AszsUi+/wn6fUBpr7EBL1BHcgDCAWF/2R6B5PDm+/L2ibNwigNFOvVysANGzfhWP8xkeN4ZaINgeHXy6NHFmWBSAYiQPIMmozDYkA2rzDDoRERDtVaNUDWFjRkr536ms/bv14rWPc8qlfFN4IoGz9k9PFhQBW1Dh2+keZKGLplnbp6zciIiIiIjoEdSGAXrRo0RdffLF169b58+eXl5d/8803Vqt195cIaVV233///YgRIwA4HI6KioqJEydK40OHDtXpdD/99NOuxlMzeDwec5rCwkIAXq9372+BdiVDrxIEUUyWZ24nfxwANDKAJuoBrmAid05s6rVr6+qdw+6Z9+j8jamRdl8YQKZRU2DWAKhz+EPReKMrAACVCwbWvAeg9YT/QJFotTG5rKNLUpZRndqE0KhmAE1Ee+WssQVKufDT5vYnF1SmBlfWJrYsvnbz4d/l/gWAdeGtdw2sdvgidQ6/9NLWNt+GBrd0/MPm1j+/+MvtH605sGsnIiIiIqKDRRcC6BkzZoTD4X79+p144omDBg3q0q+ZPXv2ggULnnjiCQAulwuA2WxOvWo2m10u167GUz8ajUZXmrq6OgAGg6FLK6GdUsgEs1YFoNUb6vxaYh/CDYh23vSMiLrKlcydXYE9VEAv2tgaiYrfbuxohd/uCQGw6lWFGYmH4q94bdmURxZvqakRP74GwK/ZZ5mHn5g6f3w/q0KW+BYwy6hWymVmjRKAQSPvyVsior5rUI7xkekjATy5qHLB+iYAbd5QncMvCOLtpwyRC3hLdxFGXwhBvKTu7stLXVIbaE8weuYzP57x7A+tnhCAn6raAZQ3uXv1VoiIiIiIqNd0IYAeNWrU8uXLu/E7Zs+efddddy1YsECKrU0mE5IxtMTlcplMpl2Np34UBMGUxmg0Yvsia9oX2UY1gLYdA2hTAXSZEGNoWtsLyyLqW9z+cOJgTxXQGxvdAGrtHa1XpQpom15ZmKED8O6vNd9Vtg3JVFo/uVjwt9i1JS+q/yp155BolXJpf1EAWQY1AJtBDcCiVfXgHRFR3zZ9XOFfjuwH4M5P1sVFcWW1A8DAbOPfjilddte0Z2aMxx//g9Jj5WL4xpY7t1ZtFEW8tbTGFYxEYqKUR6+rcwNocQfZNY2IiIiI6NDUhQD6mGOOOfvssx966KG33377naQ9XjVr1qx77rln8eLF48ePl0asVuugQYNSWXZ5ebnf7580adKuxrt4R9RN0uP5bZ4dAmhBQME4AKjrztcPRJTOFUxWQCeTaACuQOTSV36du6oh/cz1jW7p/FTRdJs3DMBm0ORnaAGsrnMVmpVPyP5jsa+MKg1PZNyl1XZ+IuTIATYACnmi73OWSQ3AyApoIuqKO08dYtTIWzyhFdWO32qdAMYUWQBY9SqFXIBciXNfj2cP1UftF2y57beqhld+3CJduLLWKYpY2+AE4A/H3UG2gSYiIiIiOhQp9nxK0rx587Kyst566630wfPOO29X54uiePfdd//vf//7/vvvO7XsmDFjxsyZM4899ti8vLzbb799ypQpxcXFuxmnA8Cmlyqgwzt5rXA8KuejdhkmXX2gl0XUtziSbdbTg5ifqtoXbWy1B8Knj86XRoKRWHVbopVqjd0/osAMwCH1gNarovE4gKFZykeVLw60/xAVVP8tfPj1cv2dp1o6/bpjB2U9sWBTsVUvPSuSqVcCMLICmoi6QqWQTR2c88mqhi/XNZY3uAGMLt5+FxCNSXbBe5HnpuT4N7XNv8kf/qs0/Fu1vdEVSG0v0egMcBNUIiIiIqJDUBcC6NWrV3dpap/Pd//99wMYNmyYNKJSqXw+H4A77rgjHo9PnTrV6/VOnz599uzZ0gm7GqcDINOwixYcAIomAED9sgO7IqI+yBVIfMfjSgug/aEIAHdaV+jKFm/qUfVUAC3939NqUKkUstNK4nd578q1bxQF+ZyCfz1SbgUwvKCjZ5FkVJHlhQvHFtv00o9FVj2AHKN6f9waEfVhpwzP/WRVw1drm9yBMICxJZ2/7oKlKDz9Vfm704e1fvlQXul881lzVzWurXOtrHWmTmlwBQfndX6bIiIiIiKiPq8LAXRXGQwGcRfd/hQKxT333HPPPffs5TgdAIkWHDsNoPPHQhDgrIGvFfqsA70yoj7EHUykzC5/R9zsD8cA+IOx1EhFY0c3/Bq7H0A4GveFYwBsenW+YH/E8Q99uE3UWutPeP6+9xNTDS/YIRICThqelzq+8ujSwgzt6aPye/COiOhQcMxh2TqVrMkVBKBXK8qydrIFtH7wceuH3zJs7SOnNj47deKYhRsMvnDsw+W1qRManP4Dt2IiIiIiIjpodKEHNPVtWYlNCIPpg75wNBYXoTHBNggAatkGmqj7gpFYJJr4Wi59E0J/OA7AE+6IpDc0eQBIW6zWtvsB2P1hAHKZYFKJ2k8u14fbYrZBwt+W5I05MdugAlBi1Rk1e/hO0apXXTipxMRH4ImoizRK+XGHZUvHo4rMctnOt4DOP/mmTUXnChA1c696cKQdwOJNLQA0ChmABldwx0s+XFHbqQM+ERERERH1MQygKSHTqAHQ6unoAd3qCU14cOFlry4DgMLxANDAAJqo+1LlzwBc/o4AOhCJAfCFovHkUyMbmzwAJpTaAGyz+wC0e8MALDqFbMG/UbcUGqN8xnuwFMtlwh9G5gMYWWg+cHdCRIeek0ckHqcYW5yxq3My9OpBlzyPIacjHvljxT//XbZFFAUAxwzOAtDk6BxAN7qCN72/5p/vrYrE4vtt4URERERE1MsYQFOC1AO6PS2A/mVruy8UXVHjAJJtoOt+7Z3FEfUJrrSqZ0+oI4yWAmgke3GIIjY0uAFMG5IDoKY9AMDuCwF4vPhnLJ0NAGc8D2t/6aobThj0t6NLbzrpsANyE0R0iDr+sGylQgAwqmi3X3fJ5DjrJQw4Xh4NXFp312v95mcblccNygHQ4A50Ond5tR1ANC560r6fIyIiIiKiPoYBNCUkekD7g6nG3RsaXAA8wWgkFkfh4QBQtwLx2C6nIKLdSg+gnYGOL3uCyQBaimDavCGnPyII4glDswE0ugLRmOgLhN8p+vSYLY8DwNE3Y8hpqcstOuXtpw7pl9xpkIhof9CrFXefNvTscYXHDsrew6kKNWa8H5lwNYBjml57Ov+b0iw9gEZn5wro36Qvubd/eyQiIiIioj6GATQl2AxqANEY3MHEh8B19R7pwO4LI2swVDqEfWjb1GtLJPqdS2+74Ql2HPuS1dDeUBRARZMHQIlVX2zVKeVCLC42u/3jV94xqfVdAJh2L46760Aum4hIcuGkfo+eM0op34u/HmUK5akPf93/VgATql8aFKsE0OAKdNqd+rdqp3TgZgBNRERERNR3MYCmBLVCZtTIAbR5QwBEEesaEh8L7b4wZHLkjQGAWnbhIOomlz8MQNoq0BlIa8ERTlRAe4NRABWNbgBD8kwyQSiy6kwahWHxvzK3fhKHbNm4WZj8Dwg73/6LiOig8qvtT+WW4wXELF9dOzRLGYmJDn/Hwx+haHx98i8Nd5ABNBERERFRn8UAmjrY9GoAbZ4QgFZvyOFLfBps94WBVBto7kNI1E2uYARAsVUHwJ1WDZ1qweENRQCUN7kBDM4zARiaY3g892vzmpcBvFNw58/64w74qomIuunGEweJpz0BfTbaK2dq5tj0yganP/Xq2npXNNnWy8kKaCIiIiKivosBNHXIMmoAtHhDANY3uFLj7d4wABROBIDapb2yNqI+wB2MAijO0ALwR2LReOJZ9EAkUQ0t9YBucQUBFFm08LX92//gCU0vAfh14E13VA3J1Kl7ZeVERN2gVymGlvXDmc9BEIa3fvay5TW7p6MN9IptjtSxx89NCImIiIiI+iwG0NQhU68E0O4JAVhflxZA+4IAUDwBANo2IuDsleUR/d5JGw8WZOikH1M9T/2pCuhgBIAjEAEwSrYFs4/IblgUExSLSm44d+04AMMLzQd+2URE+2TgNPzpeVEURrd/PnzpLandjH+rtadOcYVYAU1ERERE1GcxgKYONqMaQJs3DGB9oxuAXAAAu9SLQ2eDdQAA1LENNFF3SJsQ2oxqnVKOtJ6nwWQPaE8oCsAViFxX1lr61XnwtoSthz2Q/+ylGycCuGRKv5EMoIno92jkecsOfzwOmXXrXHxyDcS4KGLlNgeA4fkmbL9HKxERERER9TEMoKmD1IKj3dfRgmNsiRWA3ZvcMqh4EsAuHETd5AlEAZi1SpNWAcCVqoBObUIYigG4IKv6H/W3CGEfSiY3nfvFK1VGAENyTbefPKR31k1EtM9WGo99teAeUZBhzTv4/J9NzkCLNywXMGVgFgB3ILzHGYiIiIiI6HeKATR1yEpsQhj2BKM19gCAowbaALR6Q4kziiYCQA0DaKLukHbZMmuVFp0SgDuQ6HnaUQEdiMQ3L7my7jaFGI71Pw4Xfphts5o1So1C9vQFY1QKvmMT0e9VfobmvqqyBYc9AEHAilfUX99i0iiG5ZtzTGqkfSFHRERERER9D+MM6mA1qgC0eIIVjW4AuWZNWbYRgL0jgJ4AALXLEOdmQURd5vKHAZi1SqNGhWRLaAC+ZAB9pGy97J0/K+KhzebJwvlvQ6nVKOWfXT9lwT+PKcs29NayiYj2Xb5ZC+C+6iE441kIgrX89Zey3hlfkmHUKgC4A7HeXiAREREREe0vDKCpQ5ZBDaDdF15V6wQwLM9k06ukkeQZh0FtRCyI5vW9t0yi3yt3sgWHRasE4AkmK6AjMQCXDPAcs/xaRAObzZNvlt0sU2mlV4utuiKrrpeWTETUM/LMGgBN7kB81AU4/RkRwoTWjy4LzzGrlQDc3ISQiIiIiKjvYgBNHTINagDNnuDzS6oAHFlmsxrUABy+5MdCQZZoA80uHERd5w4lK6DVHT2gozExJmJaEW5quVMeD4WKjr468g97UOjltRIR9ahsk0YhE6Ix1DsCGHPh/NI7ARSse35YaBUAp3+fekCLIqJxsWcWSkREREREPY0BNHXINKoARKJiuy/cL1N30aR+UgW0KxiJxpKf6wonAEDNL722SqLfp2hM9IfjAEwapTnRAzoMwB+Ojs5R3ud/0BBpc+tL1k95utIesegUvbxcIqIepZAJg3ONANY1uCOx+LUVw1ZknQEgd9E/jiqQufetB/RVby6f8tAiX4j9wYiIiIiIDkYMoKmDXqXQJHc5e2T6SJVCZtYqBUEE4EiVJhUfAQDbvofIUiOiLkhtsWXUKExaJQCXPwIA7Zv/F745z7c+qDD+t+jhrV45ALNW3XsrJSLaL0YUmgGsrXdua/fH4uJM8a+wDpB5G++KzdbKu/9nRVwUF25oafIEq1p9PblcIiIiIiLqIQygaTuZRg2As8cVTiy1AZDLBItWBaA9fR9ClQ6+FjSt6b1lEv3+SAG0USOXywSzTmrBEUXl18Y5U62Bap8i84mchz/cpnb4owBYAU1Efc+wfBOAtXXuymYPgCBUOPt/kCkPcy6ZbXo1GO5mF442b1jqv+FjI2kiIiIiooMSA2jazrXHDThlWM6dfxiSGsnstA+hQo3+xwPAxvm9sD6i3y0pgDZrVQDMGiWA6apf8NZ5QthXaxj9j4ynXqjK8AVjUiPUDJ2qd1dLRNTjRhRYAKyrd1a2eAEMzDEifzSmvxQXZKPav1B8fgNi3cmg6x0B6UBqc0RERERERAcbBtC0nfMnFM++aHx6+GU1agC0e9M+Ew6aBgCV8w704oh+z6QA2qRRALDqVP8pXXH8+jsgxvyDp18YvfPbBgGANxx1BiIALDpl766WiKjHDc4zyWWCwx/5obIVQFm2AQCGn/l+yT1xQaZc+xaenYTKrztdJYrwh2O7mbbO6ZcO2AOaiIiIiOjgxACa9sCqUwJo94U6hgaeCAANv8HX1kuLIjqotXvDs5dUtXlD6YPuYDJZDnknrPq/MxseEyDi8MvWTphV7YzkmLQAYnGx0RkAYGYATUR9jlohk0LnZdscAAZmG6Xx51pGvpJ/X1xjg70Kb56Dt86Hqx7Akk2tF/73lzH3fT303/Ne/3nbrqZNVUD7dptTExERERFRb2EATXtgM6gAOHxpFdCmfGQPgyhi84JeWxbRQezF77c88lXF899WpQ+6/GEAp+c68cLR+o0fxQXZ4sKrcepj7kAUgM2gkjb8rLX7wQCaiPqoEQXm1PHAHIN0YNYq7q8qXTF9MY64HoIcm77Es+Pxy+zH55f/UNUuPRfy+s/Vu5qz0RWUDvxh9oAmIiIiIjoYMYCmPbDp1QA61XJi8CkAUMk20EQ7saHeDWBjkzd90OWPPDRg/Tmr/gp7lWjIfbzgiSu2HiVCCETiALRKmUGtAFDnCACw6tS9sXAiov1L2ocQgEYpK7BopWOTVgmg1iPHSffj6h9RNBFhP+b937Ohu87tH3rj8olyAZtavFvbfDuds86ebMHBCmgiIiIiooMSA2jaA5tBDaDdv/2+QANPAoDKbxBnv0WiziqbPQAq2zwdQ6J4auuL59c/KI8FMeD40JXfP7M5KxpDIBKTepvqlHK9WgnAH4mBPaCJqI8aWWiRDvpn6uUyQTo2a5UAXMEIAGQPwaXzcNrjcYW20Lv6/zVfNSXy8xGlNgDz1zftdM4GZ7ICOsQAmoiIiIjoYMQAmvYgQ68EYPdGVtY4L3rp103NHgAoGAedFSEPapf28vqIDjLuQKTJEwTQ5AwmNs4SRSy8t7TiRQDVI67DjA/UxmwpeXEFIoFIFIBWJZf2J5RYtKqdTk5E9Ls2JM8ktRtK9d9AsgLaHYyKIjY0uKNxAeMv+/jIj7cZxyviIbx30YN535k0innrG3c6Z2oTQj83ISQiIiIiOigxgKY9yNSrALR6gre+v+r7za1zpCaMMjlKjweASraBJtrOppaOzhuJB8YX3o8fngAwN//GpcV/g0wuCDBpFQBc/nAgHAOgVSl0qrQAmhXQRNQX6VTy/pkGAGXJHQgBmLQqAG5/5Mt1jac+9f09n60H8Nr62IXh29qHXgRRLFn+4HM5n25p8TW5g50m9IainmAid/aGGUATERERER2MGEDTHkgtOLa1+ytbfQDW1rsSLwySunB83WsrIzooJZ4SAABUtXqx9EX88BiA7wbcev2Ww20GjfRSpk4FwO6PBCOJFhxGTUfoLNUDEhH1PdNHFyjlwolDclIjJrUcgCsY+W5jC4B3l9U0ugLrG911rkjkxFmYdh+AKc1vPpfz6ZKK5k6z1TsDqeMAK6CJiIiIiA5KDKBpD6RNCFM2NLqiMREAyqZCENC8Hp6dPxJLdGiqbHKnjgsbF+KrWwHg+Lv+r34SAJsh0VvDolcBaPeF/IkKaLlJI5deMmrkimRrVCKiPua6qQMrHzx1cJ4pNWLWqQC4ApF1DW4AkZh450drY3Ex16TOtWgx+Qb84TEAU5rfHL7+UYjx9NnqHR0BtDe83UtERERERHSQYABNe2DRKaV2jWaNUq9WRKJiZYsHAHQ25I0BgMpvenWBRAeXjS1eAINyDFcPsI9adjMgYuxfcNTNdl8YgE2fCKCtBhUApy8ciCRacBjUiRYcZq1651MTEfVFJo0SgN0X2tic+AJv0cZWAIf3tyXOOPxy79RHAAyrniO+91dEOxpxNDgDAKSu+v5Q5ICum4iIiIiI9g4DaNoDuUwwa1UArjiq//B8M4C1dc7EawOnAcBmduEg6rCx0QPgtrG4ofl2eSyIsmk47XF/JB6MxJHsaQPAplMDsPsjgVAMgEYpM6gTbTcsWsXOpyYi6ovMOiWANfWuaAxGjVyvSjwOMq7YkjpHP+WqD4rvigkKofxTvHo6vC3SeJ0jAKDIqgXgZwU0EREREdFBiQE07dl1xw04ZVjOJVP6jygwAVhXn+wwMPBEAKhciBhrjogAwOEPt/vCp5fEjlt6hSbqaTAOj5/9GmSKdm8IgEYp0yWDFYteCcDuDQWiMQA6lcKgSeTO3IGQiA4pZq0SQCQqAhhRaDl7XKE03lEBDQgC3o8c9XT+rJjKgLqleOFo1P8GoN7hB3BYrhGAL8y/RoiIiIiIDkYMoGnPLj9qwOyLxuvVipFFFgBrGpIV0PljoLUi4kPdr725PqKDRmWz9/gi4X73HTJ/c7u2/y2qf9X5BQDtvjAAa7L/BpK9OOy+cCASBaBTyY3JHtDSMwdERIcIU9oWrMPzTRcd0U8uEzL0SilWThlRaPpPVc7nE96CbSA8jXjlZKz7uMEVAHBYthGAh5sQEhEREREdlBhAUxdILTgqGj3RuAgAMjnKpgFAxZe9ui6ig4XD0f6Q/25zoBaWwueLH/2xPlbV6gXQ6g0CyEzb0tOqVwNw+MOBiAhArZTp1YncOUPPAJqIDiGmtL5DwwssZdmGj64+8v2/HdlpO1bpj5A5mxS4cjEOOxXRED645CLdLwDKso0ApI5GRERERER0sGEATV3QL1OnVyuCkfjmFm9iaMhpALDuI4hiLy6M6KAQ9k/48aoc36aI2oqLPm2IZwCoavEAcHjDADINHcmyVA3d7gsHQhEAOqXCkKyAtmjZgoOIDiHbV0CbAYwqspRlGzqdNrzADKC8yR1TGnDemxhzMSCesfX+maVrBuUaAQSj8Vh8r/4aWVPnunfuek+QFdNERERERAcCA2jqApkgDM0zAlhX70oMDZwGpQ6eBtSv6M2VEfW6sB9vnZPRvjws05ZPfQW2sgFZBgBVrT4Abd4wAKuhowI6Q6cC4PCFA2GpB7Q8FcFYdKyAJqJDiEoh0yhlAHRKeb9M3a5O65+p1yhk/nB8W7sPggynPxkac4kA8ZyGR8oaP5POCUb2qgj64Xnlr/y07YXvqnpk/UREREREtHsMoKlrRhZYAKxNBdBKLQadAgDrP+69RREdCLG4uGB9k3enPUajIbx1Lrb9EJHrHs97NJ43GkBZjhGA9LhAuzcMwGZIb8GRqID2RWIAtCq5QZ14CD1Dp9jhFxAR9WUmtQLAsAKTTBB2dY5cJgwrMAFYW+cCAEG2duS/lmX+SYCo+PSaBwZsBOAL7zmAFsXEDB+sqIvz+S0iIiIiov2PATR1zfBCM4BlW9s7PrINOxNgFw7q+55ZvPmK11dc8sqynQQW827Dtu+h0j+RP+v5qoxcswZAaaYOQKUUQPvDADLTmjtn6JUAIjHR7g1DCqA1idzZpGMLDiI6tJi1SgDD8027P214gQXAuobEt+DbHP6rHBdsLvgTIM6ou29O8bxwKJQ62RWI1Nj9O75h1zn8UvONJlfw56r2nrsJIiIiIiLaOQbQ1DWTyzKVCmFDo2fJptbEELtw0CGgxROavXgzgGXb7P/7Ydt2r614DctfgSD4zvjfc5UZcpmQZVAD6J9lAOD0R5z+SLsnDMCWFkDrlAqlQgAQjMYBaJVyY0cFtBpERIcSq1EDYFihefenjSgwA1hb55Z+bHAE2n2RN7NvxrhLBEE8umVOzvunwVUHIBKL//Hp74+eufjYRxc//FWFL+3hlXUN7tTx+8tre/xeiIiIiIioEwbQ1DXZRvUlR/YD8MhXFYk6UHbhoEPAY/MrgtG4WasA8Mj88qrW5D6ctb/iq1sA4Lg7N5snAcjSq+UyAYBepcg1qQFsafO2+YIAbMaOZFkQYEvr9axVprfgYAU0ER1abpo26JIjS04bkb/706QS6XX1TukvkHpHAIDFoMYf//Nx2YNBhVHZvBqvnAJ3w+drGmvsAQDV7f7nl1SlB81r650AhuSatRGJ9gAAIABJREFUAMzbVWMlIiIiIiLqOQygqcuuPrZMr5KXN7nnrmpIDEldONZ8gPhebf5DdNCat77pvBd/bvWE0gc3NnveW14H4OW/TjiqLCsSFW/9YDUANKzCm9MRDWHQqTjqpiZnAECORZO6sDTbAGBLqy/RA1q/XbKckV4QrZLr1QqNUiYAmQZWQBPRoWVCf+vdpw/XKOW7P60s26hUCL5wrMbuRzKALrRoALxsH3WzbXbEXAxnDV79w/qKjQCuOW7AH0fmAahzBFKTrKtzAbhgYlG/TF0wEv9yTcNOfxcREREREfUUBtDUZRk61TXHDQDw6NebojERAAadBI0ZviZs/a6XF0e0b55ZWPnLFvsnK+vTBx+dt1EEThmWM74kY+Y5IxVyrKh2tm1egddOR9CDokk4+yUIskZXEEB2WplzaaYeQGWL1+4PAbAZNOnTpldAq5VyuUyYfeG4py4YI/VCJSKiThRyYVC2EcDGRjeAWkcAQL5FC0CvUX5eLVt3wtswF8O+5bpt1108wH/5lFKpbXSLNyjNIIqJjZRHFFrOGVsI4LM1Tb10N0REREREhwoG0NQdl0wuNWuUdQ6/9CkOCjVGnA0Aq9/q3YUR7YtgJFbe6AawucWTGqxs8S4obxYE8ZaThwDIM2umDsp5bMBK61unIORCwThc+AFUegDNniCAfHNHyjwgywBgVY0zGgO27wENICNZ6ayQCQqZAOC4w7L/OHIPT6ATER3KBuYYAWxu8cZFsd4ZAFCYoQOgV8oAbA6Z8NfPfbpCS6j+383XW+sXZ5vUANqSz7U0e4IOf0QuEwbnGo8dnAPgt2p7LM5dlImIiIiI9iMG0NQdOpV8TLEFSJQRAcCoCwBgw2cIeXd9HdHBqNUTisTiANY1uKWa/s0tHf8zfmFJFYATh+WWZukBIBZ5GI+fVT9LFg+h9Ghc9DHURunMZlcQQK5Fm7pWCqBX1zkA6FVylWK7t1xrMo/WqxT77eaIiPqUgdl6AFWt3jZvOBoXBSDPrAWgVSkAeEOxemRfo59VYxqriPrx9p+PaXrVplc2uRMBtNQAekCmXqOUH5Zr1CnlvnCsstmz619IRERERET7igE0ddPIQjOANXXOxM8F42AbgGgAGz7pzWURddHqOueEB7+57cM1AFZWO6TBqlafdNDkDn6yqg7A1ceUJS6Yf0fG1i/ikM3Lu7rtT+//WBc5/tElC8qbpJMB5Jo6V0AHI3HsrLNzRrIFh3ZPbU+JiEgyINsIYFOzV2oAnWNSK+QCAINaDsAfiq6pdy2pFR+yPYjxl0AUrUtnvm18Kl+b2KNifb0HwPB8MwCFTBhbbAGwPPnmT0RERERE+wMDaOqm4YUWAOvqkwG0IGD0DABY/XbvLYqoyxZsaBaBuasaPMHoqtpEBuEMROy+MIBXftgajeHwfhmjiywAsOJV/PoigM8Pe+SqrUe982vt9W+v3NLmfffXWgANrs4BdJ5Fo1Em3mYzjdv130DanoRqFd+KiYj2ykBpc9c2b63dD6Ag+dCJTqUA4IvEmlwBAJCrcdp/8MenICgHOb9/zPt/YVczgPX1LgDDi0zSVeNKrACWb7Mf+BshIiIiIjp0MPWgbpIqoCtbfMFILDl0HgQB236As6Y3V0bUFcu2OgBE4+I35c0rapyp8aoWbzASe+OXagBXH1sGAFWL8cXNAHDcnXW5xwN4dMGmdl8YQEWTF0CLKwQgN60HtEwQSmx66ThD1zmAtiRbcOhUrIAmItorJVa9XIA/HF9R4wBQlHyP1WsUAAKhqNRtI/Fd4Li/iJfNDygzcvybFK+cBMe2tQ0uACPyLdJV4/tnAFhe7dzxF/nCUV84egDuiIiIiIioz2MATd2UY9TY9KpYXCxvTHZONBeg/1EAsPqdXlwY0d6LxsTVyarnV3/a1uQKCsDh/TIAVLZ6l1c7fOFYrlFz7GFZ2DAXb56DeARDTsfRt5w0PFe6Si4TANQ5/I2uoD8SA5CTVgENoCwrEY5kGTu34LDpEyMMoImI9pJCLpRk6gF8W9ECIN+SeMvVKeUAvKF4szsIICf5XaBQOO4/xc+4VHky51ZxzhkDDBEAg/MSFdBjijMEQaxz+FuSuxRK/OHY0TMXnfn0D9EY9yckIiIiItpXDKCpmwQBIwrMAFL5HQCMOh8AVr8NkR/Y6HdgQ6M7GI0r5ACwutYJYFCucWSBBUBVs/fHzW0ALh9jkH37EN67OJE+n/USBGFAlmFglh7ADVPLso1qAN9ubAVg1Cg6pcn9Mw3SgW2HHtBWXaIFB3tAExHtvcOyDQCq7X4AhRk6aVB67/WHI43OIJI7E0qWeiy3Wh6NGAoFx7YHIo+OyNMbNYmtXw1qxaAcE3bowrGl1dPujVS2+r7e0HQgbomIiIiIqE9jAE3dN0pqA93g7hgacgZUOti3oG5Zry2LaK8tr24HMGVAVj9bIsIYW2wpyzEAqGzxOBz2jwvfvmz5qVjyCCBi9IU451UoEjnyMxeOm3nWiGuPGzg41wjg203NAPLMmk6/YkB2MoDWd27BkZEc0TCAJiLaa9I+hJLCZA9og0YJwBeONrkDAHJNHd/5ZRk082uElVOejyu1/d3LHjFs9zX54f2sAFZs224fwjpnUDqY8/O2/XMTRERERESHEAbQ1H3DC0xI34cQgEqPwacDwKq3emlRRF0gJQ6H9884bVS+NDKmyFKWbQAwXF5z27YrxrR9JsSjKBiHs17CGc9A1pEUH5ZjPPfwYrlMGJJvBvDDpjYAOUZtp18xIGuXFdCprtCsgCYi2nsDczoC6IKM1CaEcgC+UKzZtV0LDgA5JjWA71zZa8fPBDC09h28fQECicR5fEkGgOU12wXQ9Q6/dPDLFvvmFu9+uxUiIiIiokMCA2jqvpFFFgAbm7yB1D6EAEZfAADrPkA0tIvriLpvzs/V89c19shUoogV25wAxhZn/GFEnjQ4ujhjiM77btHH/6y5JiNU51Pn4JIvccUijDgHgrDTeYbkGgH4wjEAOebOKXNpsgf0jhXQKoVMr1aAPaCJiLqiLPlkCYD8ZAW09Hba6AoFo3Fs344/26QB0OoJvuYY+WHBraKgwKYv8dyRaFgFYHw/K4B1dc4auz91SZ0zkDp+85dt+/NuiIiIiIj6PgbQ1H05Jo3NoBSB8sa0Lhz9psCYh5AHm+b13tKob2p0Bf796bob310d74km4w3OQJMnKBcwujhjcK7pwkkllxxRMnDDM4bnx05sfV8RD282T35v/Nsombz7eVKbWQHI36EFh0GtKLHqABRZdTtea9OpwACaiKgrSrP0giACyNApU0+QSG+k9U4fAKNGkf5kSbZBA6DZHdrS7rupanT5aZ8gox88DfjfyVj3UWGGdsoAW0zEvXPXpy6pswcATB2cDeCD3+r84bQv2omIiIiIqIsYQNM+GVVgAfDD5raOIZkco88DgNXswkE9rM0bBuCPxKSDfbSixgFgWL5Zq5QLAh44ufhu//3CkocRjzRbxz9d+Nh01w3Zufl7nGdAll6RDDpyTZ1bcAB46a+Hv3bphOKdBdAZBhUADQNoIqK9plXKCyx6AEUZHW+5epUCgCgK2KEdf7ZJDaDFE9zW7gMg5o3C377HwGmIBvDBJVhw94NnDpELWFjRsrC8RbqkwRkA8OcJxYUZOk8w9mNV6wG6NyIiIiKivogBNO2TU0flAXjh26r29EBw5PkAsGkBfPzARj3JHYhIB7VpD0p324pqB4BxJRkAEPLglZOxcR4Uavxp9n8Kn3hsc547GD2i1LbHeZRy2YCsREPSnB0qoAEMzDYcMyhrp9dmaJUAtCpFd2+CiOhQVJalB1BgSQug1R1vpJ3a8WcbVQC2tfmd/giAfjYdNCac/y4m3wAAP/6nZO45j52UBeDeuetD0TiAekcAQFGGdlShCUBNew/8o0NEREREdMhiAE37ZPqYwuH5Jl849tjXGztGsw5DwRiIMaz7sPeWRn2QOxiVDnokgK5s8QAYVmCGGMcHl6F5PQy5uHQ+Rl0wIEsPYEiuybpD4+adktpAA8jdWQC9GyWZegC5xs6do4mIaDeGF5oBDEjbjVCv7niUpFM7/myTFoA/EgNgMygTUbVMjmn34dw5UOpRu/TMX/9879DGGod//vomfzjmDEQAFFi0RVY9GEATEREREe0bBtC0T2SCcPfpwwC8/WvNdp2gR14AAKvYhYN6ksufqICucfRAFlDXHgBQbNVh8YOonA+5Ghe8i/wxAP40pujogZn/PGngXk6VagOda+paAH3jCYOemzH2zDGFXbqKiOgQd8VRpf/vzBGXTylNjejSHiXp9FZs06tSe8iWZhrSX8LQM3D1j8gdAb/9L1tumlM8b3Ozq94ZAKBXyU1aZbFNhx2+9Xzg8w3HP/at3dcDzaCIiIiIiA4FDKBpXx3ez/qHEXkisF0R9IizIMjRuBot5b23NOprvKHEp/3a9sA+ThWNi/WuAIARjR/gu0cB4IxnkD9aetVmUM25bOK0Ibl7OdvQPBMAhUzI0Cu7tAyLTnnqiDyVgm/FRERdYNYqL5hUbNF1vOVqlDJpZ0IAudtXQMtlgtWQOLPEpu88l7U/Lv8G4y8DcHTLnOlV/3K4vQCKrFpIX1IC29IC6LgovrW0Zkurb8km9hkjIiIiItorTD2oB1x2VH8A6+rSKqB1Ngw6CQBWvd1Li6I+yB1ItuBw+PZxqiZXMBYXXyj9Xvv1LQAw5UaMPLfbs40tycg1qY89LEsmCHs+m4iIeppMELSKRBH0ju34c4yJkf62newHC4UGpz3uOnV2TFD0a14wePHlo7KV+eaOALrW7o+LiXS7xu6XunmsqXXslzshIiIiIupzGEBTD5AeaG3yBH3haMfo6AsAYM27iEd3cR1R17iSmxDWOYL7OFW4ccOX+S+f1DAbAI6+GVPv3pfZDGrFD/839b8XH76PqyIiom7TqhN/1ubt0A0p25Soie6XZcAuGMaf/1LRw1FBZar//sXonScXxQDkm7VymRCJia2ekHTahobE1+1r6l09u34iIiIior6KATT1AItOKT0Gu60trUnioJOgtcLbhKpFvbYy6ls8yQroRlcgGhe7OYuvFR9eWfre1KH2hQBwwt04/l/Y58plhUxg9TMRUS8yqBJ9NnLN2k4vZRkSI/13bMGRJJcJ34SHPZb/eEBhzvFvmr78AlT/qJALeWYtgJpkF44NyR0v1je4u/8vERERERHRoYQBNPWMAVl6AFvavB1DclWip8Fvr/fSoqiv8YQSAXQsLja5ulUEveY9PDUOa98FxArLMV8c8S6m/LMnl0hERL1Ep5YDkAuw6lWdXspJdoUu2WkLjqTh+ebZVdbbbM+0aMsUQTte+QMWPXh4sQFAtT3R+mlDsvA5GIlvbvHuci4iIiIiIkpiAE09o3+mAcDW1u0/iY25CAA2fgW/vTcWRX2NMxBOHdembQmVIu6+Fu27x/DRFQi5kDPskwlvnNz0t1rNwJ5eIxER9Q6DWgEgy6TZsR1/tlEDwGZQ6tWK3cwwssgCYG61/FLlw/7B5wAivpt5T8uNF/QPpDa/3dDgAWDUyME20EREREREe4cBNPWM0kypAnr7TDB3OPJGIB7Bmvd7Z1nUt7iDUQAKmQCg1t55H8I7PlpzxCMLnf7Izi9e+iIW3QcAR92MK5e8utUKoMi6u1I4IiL6HdEq5QByk8XO6fpn6gAMzbXsfoaRhWbpYF1L2PeHZ3H2K1AbzY619zf+bVr7G4hF7L5wkycoCOIfR+YDWFPv3u18REREREQEMICmnlKaZQCwZcdnUUddBACr2YWDeoAnGAEwKMcAoMYe6PTqZ2sam5zBVbXOzpeJIn55AV/dAgDH3Iap/4JcWevwAShmAE1E1FdI1c15xs47EAKYXJb51PljHjprxO5n6J+p1ynlAJQKwWZQYfh0XPurt+g4OaLDK57E06NjS/87NEtZbNUfUZYJYM2O/+IQEREREdEOGEBTzyjN0gPY2u4VRcRF0e5LtkoYeQ5kSjSuRd3y3lwf9QlSAD0s3wKgzrFdub03FPUEowDqHNtXRkdD+PQ6zLsVACZejWNvBxCIxNq9EQBFGQygiYj6CCmAzjXvJICWCcLpo/ILMzpvTrjjacMKTADyzdpEHw9T/raTX3274E6/ygZnXdZ3d8yJ3HbWEP3IAguADY3uSCze4zdCRERERNTHMICmnlFi0wuC6AnG2n2hWfMrxt6/YOmWdgDQWTHiHAD45bneXSH93sVF0RuKAhiab8QOPaDrHIHkQXJzwpAXv/4Xzx2BVW8AAqbdh5MfgiCkTtar5Gat8gDeARER7UfD8k0Axvaz7ssko4osAIosHVF1QYbu9qphZ6ufj508K6yyZga3XFJ9a7FRMGuU0bhY0eTZx2UTEREREfV5DKCpZ6gVsgKLDkB5o2fOT9UAlm5Lbjw46SoAWP8JPI29tj76/fMGo6IoABheYAZQ69iuBUd98ke7L4TapZj7dzw6EF/eDHsV1GZc9BEm34DktlRSeF1s0+2wTxUREf1eXTK5/2//miZ1Z+62k4fnaZSy44dmp0YsWpVeJd/QGtlSesHz/Z8MyfXG1pXCuzOuGyUCWFvr2td1ExERERH1dQygqcf0txkA/Pe7Kl84BqDFnSxEzRuF4iMhxvDrS724PPq9kzpsKOXCgCwDgBZPKBTtePC53hkAcO2AtpvrbsDLJ+K3OYj4YRuAU2bhn+sx4Pj0qWrafQAK2X+DiKhvsepV+zjD+JKMdfeefOnk0tSIIKDYpgOwqsb+5FrFU7kPQa5G1cIrVp/7k+3/ldW8gwA7QRMRERER7Q4DaOoxpVk6AN9Vtkk/NrtDHa9NugpAaOn/XB4+qUrd5A5GAJg0ygydSqeSIa3qGYA21DYv78Vb6q/Pdq6EXI3RM3DJV7huBSZeCbWx01S19gCAEhsDaCIi6kwh6/x0jBRA3/rhmlhc/NReLF48FwOnQRTyfesmbHgQM8vwxT8R9u1ssm5q8YREcbuRQCT2/vKadm94F1d0Xzgaf2HJlo3N/AuNiIiIiPYXBtDUY/pn6tN/7KiABjD4D351jjpsd/z42oFeFvUV7kAEgFGrEASU2PQAfqpqBQBRxLqPzvhp+mDHt3FB9lvm6dHrVuLM51ByJHbRYqPG4QdQbNXv9FUiIqJ0JVYdAFEUSrP0L140TiiZhBkfiDdVfN//+lZdGcQIlr2M56eg/rce+XU/bG6b8OA3M+eXpw++v7zulg/WPvHNph75FekWVzQ/9FX5Q19u6PGZiYiIiIgkDKCpxwzINkgHGoUMQLM3rQJapvg++3wAeaufRqzni3fo4CeK+OC32q1t3S8QkwJos0YJ4NzxRQCe+bYq6m3D+3/BB5eows4WXdkDec9NrzuvLm4RRcxeUvXQVxVzfq7+dau9Ux1ZnT0AoMiq3cmvISIi2t6Jw/JyTerLj+r/5fVHDc03SYOCKXdt8V8Ot9/30fDnYMqHfQteOgE/P4NO/+R03dp6F4DVtdt19tja6gGwuaXn65TbvREALekPrhERERER9SgG0NRjSjMTAfT5E4oAtHmCqY9g3lD0SedknzJTHWjCytd7a4XUi37Y3Hbze2tu/WBNt2dwhaQWHCoA508ozjao/pK5GU9PwIZPIch/LLjsPDz82jYzgHpH4Meqtke+qnhhSdW/P1137gs/T31syRu/VMdFEUAsLla3+wAUsQc0ERHthfElGb/cccJdfxiqUcrTx88cUwDgphVm+8XfYujpEGOYfyfeuQABx778Oqc/AqB1+0S4yRUE0OAI7vyafeALRwG4g7Een5mIiIiISLJ/A+jrr79eqVQqlUq1Wp0+fu211yrTPPnkk9J4LBZ74IEH8vPzzWbzpZde2tLSsl+XRz0rz6LJNWp0KtllRw0AEI3B4U8UO29r825ojSzKvBAAlsxClFU2h5x1DS4AFU2ubleGeQJRACatHIBGjo+HLL6q7jZFqB1ZQ6KXL5xRNXWLPTwszwSg1h5YUe0AMDBLP21ojl6t2NLmveuTda/+tBXA2nqXPxIzauT9MtmCg4iIui/foj28X4YoCu+t9+KcOThlFmRKbPwSz0xC1eJuT+v0hQC0bt/uudEdAtDg9sf3ucK6E28oCsAT5ANqRERERLS/7N8A+oknnggEAh988EE8Hk8fj8ViV155ZSDp73//uzQ+c+bM559/fu7cueXl5c3Nzeedd95+XR71LJkgfHTtkV9cf3RhhtaiUyKtDfTWdj+AZz2T/epseBpZBH0Iqmz0APAEY6mvJbrKHYwCMGtV8LXhjTML1j4rQFyW9aevjny7Vj0IgE4lG15gBtDg9K+ssQOYMankvxePX3rH1EuO7Afgk98aAHy7sRXAlAGZO24zRURE1CXTxxYC+HRlAwQBE6/E5QtgLYWvCa+fic//iZC3G3Pa/REAzkAkGuvImps8QQDRGFo9PfwtfqICOhDt6WSbiIiIiChh/wbQcrlcoVDI5fIdXxIEQZEkkyWWMWfOnFtuuWX8+PH5+fmzZs1avHhxfX196hJRFN1pPB6PNLhfb4G6JN+ilbYizDWpAbQkPyPVtPsAVLRFFmdfDACLHkKIm60fWja3Jv4b73YbaE8wAuAEcz1eOApbvoNcs+GIx86pPee1ZU11jgCAArO2wKIBUOfwr6x2ARhbYgVgUCuuOa5MEMQ19a5GV/DbjS0Ajj4spydui4iIDmknDcsFUN7kbpO2vsgfg6t+xPjLAGD5y3jmcGxe2OmSZndQ+mdrV6QWHADafYm/o+Ki2OpKfKlf79zdtd3gC0UBiIA/HO3ZmYmIiIiIJL3WA/r111/X6/X9+vW74YYbnE4nAIfDUVFRMXHiROmEoUOH6nS6n376KXWJx+MxpyksLATg9XantIT2tyyjFmkB9NY2v3Qws3WiaBuAQBuWzOq1xdEBJ4rY3Jr4v2q3A2izLPJGyRfHfX8B3A2wluJv3+rGnw9g2Vb7xiYXgAKrttCqB/DD5nZXMKKUC0PyjNK1WUb12OIMAO8vr5G2dTr2sMx9vi0iIjrUWfWqIbkmAD9tbk8MqXQ47XFcPBeWYnga8OZZWPFq6vxoTDzj2R9PefI7T3CXaa8rkHhUqC3ZhcPuC6eKoXs8gPaGEt2f3bteEhERERHRvuidAPrZZ59tb29va2t79913v/3224svvhiAy+UCYDabU6eZzWZpUGI0Gl1p6urqABgMhgO+fNqzHJMaQLM78RlJ2vMNQLUz4jrqPgD45TnYt/bS6uhAa3QF/OFEH54tbXv7pVF5o3tzixcAxDjWvn/F6rOnNL8pIIYhp+PKJcge0s+mL7HpYiLe/bUWQGGGviCj45uP0UUWpbzjLe7EoXkAnltcJQIDs/R5Zm1P3iERER2qJg+0AfhxcyuAdfXOy15dtrXNh9JjcM1SjL0YoojPbsCyl6ST19a7mlxBTzC6tt61qwlThc+pbhtNro7QuX631dPd4AsmCq7dyQMiIiIiop7VOwG01JpDq9VOnDjxySef/Oyzz9ra2kwmE5IxtMTlckmDEkEQTGmMRqM0eODXT3uUnWjBkajckTJH6b+qjcZJKD0e8Qi+vqvX1kcHVmVLR+i8tXWvKqDdgchZs38849kf/dUr8N+p+PByTbDFpcrbfMLL+PPr0CTeGY4fkg2gstUHoCBDW5jRESuPKbakT3jy8FwAwWgcwNGDsvf1loiIiAAAk8syAfxYZQdw1yfrF1a0vPrTNgBQ6fDHp3DEdQDwxU2YfyeiwV+2Jgql19btPIAWRbgCiSA40dYDaHZ3bJ9Q5/D37Pp9kcQ3xO4AA2giIiIi2i96rQVHitQhOh6PW63WQYMGLV++XBovLy/3+/2TJk3q1dVRN2Ub1ACa3AEAvlC03RsBMKLADKDOGcDJ/w8yOSo+x9bve3eddGBUNrsB6FVyANva9uqTc2WL1x+O31RYoZlzKhp+g1K3tN8156ufqsk8Ov20qYM7WjkXmLXZRrUi2XN+TLE1/cwSm25wbuKBiWMHZ3X/ZoiIiNJM6GeVC6hz+L9a17Sq1glgXZ0z8Zog4MQHcPTNAPDzM/jv8QZHhfTK+kbnTmfzh6PRREsMtKYC6GQDaAANPV0B7U1VQAfYgoOIiIiI9oveCaAvvvjiTZs2RSKR1atX33jjjSeeeGJ2djaAGTNmzJw5c926de3t7bfffvuUKVOKi4t7ZYW0j3LMWgDNrhCA6nY/AItOOSjXCKDJHUT2EIz9KwB8dRvisd3MExfFh74sn7uqYf8vmbrGHYi88cs2uy+851OBymYvgOOH5ADY2ubdm61DK5u9T5cuvaT+blksGC+bhhtW3dIybUNrxKRVpp82oZ9Vp0q8jxVatTJByDfppB87VUADOHFoLgCNUjahv21vlk1ERLRHerVidLEFwO0frZFGyhs98dQ/dYKA4/+F896BLhPN62esuvD1kq+GZinX1bt3OltqB0IAbe5kCw53AEBhhg5Ag6vHe0AncmcPW3AQERER0f6xfwPol19+WalUnnHGGdFoVKlUKpXKtrY2AKeeeuo555xjMBjOOOOMSZMmvfHG/2fvvuOkqM8/gH9me293t9c7Rz3KAQIiiEgUa8BeYze2xBpjND9jjSYxMXY0ajQIdrGDiopK7xxwd3C97+5t77N1fn/M7t5eAY5yFnjef/hadmdmZ4+Em3n2+X6eJfz299133zXXXDNv3ryioiK1Wv3uu+8O6+mR4cNnQPNLR1vsfgAlmYo8rQyAyR0CgJP/DJkaPTXYvmQ/x6ntdr/0Q/MDn+7u97w7GInGh1DFJMNmyYa2//uo5sXvG4eyMT+BcO7ILKGAYaNxi5c94C4Tu5ac3f00A25L5sIPRj4BVTbfmaWRidI3k4gEJ4xItDPn6+QA8vQyADkaaY5G1u+Y508t1MpF508ApGGZAAAgAElEQVQpkIp++sUfhBBCjhonlGciWTtmGC4QibU7+i73GX06bl7Plp8uQHy25Y03I7efo2kKhAf5Dt4ZCKUe9yR/XfLXTpOLtQA6HEe8AJ3KgKYOaEIIIYQQMiyGtwpz7bXXRiKRWCzGcVwkEolEIpmZmQAuvvji6urqUCjU2tr63HPPZWUl6kcikejBBx+0WCx+v/+NN97Izc0d1tMjw8eolgEwu1mOQ6vVB6DEoMzRyQGY+OntigzM+RMArHoUIe++jsOHHjr9ETbSe5PW5QxO/evKm5ZsHdaPQABUd7qe+6Zh0Fo/34HVaDnwREGOQ73FB2BsvjZfJwPQYu2/V023p884pq2vj6n+G4DNRddfY7v03982R2Mc35nVrwMawMmjjQBEAiZLLUWyQayqSD/wTIoMiuoH5j+6cPwBz5kQQggZOj4GGkBlnmZcrhZATfeABmeV8fWiv76a/2hQlq1ju37fdSc+vBGe/mu8nIHeKnBqGqHZwwKoKtQD8Idj3iNaKQ6GkhnQgSGtaiKEEEIIIeRgURsgGRZGtRRANM65g5FWexBAaZaK70g1pZaOTvstDGXw9eDrB/Z1nNT8d1Na+uGWNmckyu3qHDw8kRxBD39S88+V9avqLANfcgejAFodBw50tvpCXjbKAGWZyrIsJYAWe5+92EjswhfXLXxuTUOPD+EAvrwfn90OYI3xstCse4QCptvFflTdGeMAQN23AxrA/HE5RrX0pFFZAoYB8Kux2UqpaEFV/qF9ZEIIIeRgVRXpZWIBgKtOKB2XpwFQ0z3IjMENTfZHmsq+PvmzvUUXc2AUde/iqQn45Fa4O1PbuIJhJOc223yJirDVGwRQnqXSycUAuo7cHMI4xwWS3/F7QhTBQQghhBBChgUVoMmwkIgEWrkIgMXLtvIRHBnK3EQER7KULJTg7KcBYPOraPlh0OPY/YmNzWkF6OYeHwBvaH/h0eSI6HKzAJps/oEvufwRAN2u4AEDnRssXgBFGQqJSFCaoQTQauvTAd1q85+Wxz5Uttf/xSN4fjrWPwOO25B10c09C0blai6eVghg8do2AEIBoxD3L0AblJJ19857+Yrj+D+eNi5n94PzTxuXcygfmBBCCDl4EpHgwbMrr5hRvGBSXmW+FkBtWsQzx8HsYR3+8OZWB4DSfOPH+Xf8I/9ZR+ZxiEew7X94/jhsfJGfiuHyhwEUZSgA9PT9Gj5bK8vTyQB0uQ6cZDVEwbQYkCPbWE0IIYQQQkgKFaDJcMnWyAD0eEJtNh+AkkxFjlYGwBmIhKOJxZ4oPRHHXQsAH92C8CBVTps30fvT5e5t9uEDhf2haIxioIcTx8HmDQFotw/yV8OHVLKROJ/0nS4a5x76rObTnYllxXwBusKoAlCapQbQbE0eMB5D9VtFn5z/L/OVl3c9NKn5Rbjboc5zLFhycccCDlymSrqwqgDAzi43ALVUxDCDnKpIwKQ/P+g2hBBCyPC5eFrhwwsrxULB2DwtgNq0DuhnVzXMeOybyY+s9IdjaplwTK62Mk+7qMlwRfwBXPMlCmcgHMCKe/DKPLSucQbCAEZmqwG4ApFojGMjMX7VUY5Glq9XAOhyHbEY6NQEQgCe4MF1QH+0veuWpVuDEWoIIIQQQgghB0AFaDJc+BSOb+vMPb4wgJIMpU4uEQsZABZPonNnV5f7fd31nLYA7nZ8+9eBB7H5EwVoS3oHdLJ/Nv2uiRxxXjYx6bHdPshSX1cw8cPvGLAQeFWd5bU1rbe+tW3FbrMvFP1wRzeAimwVgNJMBYBmvqXaUoNX5+HDGxWmjRzHdKkmbM88+9uSOyI3b9ogmgqgLFPFMBiVrR6To+GPrJH1D4AmhBBCflZG56oZhuvxhfkvaGNxbsm61tSrCyYVCAUM3yW9x+xdHRpxq+yx7lmPQaxE93a8fualjXefVxIpy1Lx36Xa/SGLJwRAJhZoZOICnRxHNILDn7aezH2QBehnvm34fJd5XaP9SJ0MIYQQQgg5WvVfzE7IkWJUyQC8tq4NwNkTcrVyMYA8rbzNETC72UKDAsCDH+/e2u7yjrn9avcfsPE/mHEjdEXpB7Em5793J1ebxjmuJdk/6wlGtANG0pEjxZpsbW51DNJp5Q4mXm23Byb3nfi3pd0FgOOYW9/aNiJLXWf2qGXC86cUAijJUALIk4S4L//MbFgELgaZenfRlS+4jy8rq3hrc5u9M/LYLid/015uVPEHXFiVX7fCA0Atp3+yCCGE/KwpJaJig7LVHqgzeWZXZG1otvf4wlqZeP1988LRuE4hBlCoV6hlQi8b+82rGwGsaijfcOtW5fonsPX1TNN3fxes78i9jRszxsXC6/M7QgwAo1rKMMjXywB0Oo9YB7Q/nN4BfXDf69u9YQA93iOWB0IIIYQQQo5W1AFNhku2Tso/0MpFD/66kn+co5MDMCU7oJvtfgAP1eW1aqaCi2DV4/0O4kh2QJuSq00tHpZNJnhQWOGwsvVGTwajsT5pJ9E452UTPVPtA/qwtrU5AWSoxJEYV2f2aOWit66fUZ6lApCnFi0q3/CK+1pm/XPgYhh9Fm7Z/Efr/OVtzMQC7U1zygEsWd/a2OMFUJGt5g+4oCqPYTgAWipAE0II+dkbl6cFsLvbA+Cj7d0AzpyQq5AI+eozAIbB2Dwd/5ivRC/a7MGZT+LmTZaM6aJ4qHT7P+5rufofpqtLl0zXd/+AZLJZvl6Jvrlkh8nH9nY9e9iD6ICOxOJuNoK0r6sJIYQQQgjZFypAk+FiVMv4B/efPTZDJeEf83MIu11BAGwk5vRHAJw/peBN9TUAsPMt9NSmHyRt/E7iQZO1N4/YHQwP5yc41vUkbyljca7T1edeNz0mssPepw8rEovv6HAC+N/V02aNyCgyyN+5YWZlvg4ch4avhC/OOL3rGVnU69WMwGXv4eKlcVUOHwk9Ilt93pRCsYipNXlX7bEC4GvWAHI0suPLMgCoqeGdEELIz964PA2A3Z3uUDS+fFc3gIVV+f22uXFO2awRGW9cO/2JCyYB+O+aFoc/jMwRd0gfeif/3oi2JCzWRRmJMGCtWHnlu0XLflXIAOCHELZaA5FYvP+7HhJfOAqAT0hzH0wB2p5sEbB5qABNCCGEEEIOgArQZLhMKtQDOHlU1nlVhaknczQyABZ3EMkROkqp6K5TR/2nSbdHfxI4Dl/9BVyi2TYa51IlZpM7UeVstHhTR/OGaO7NMEp1QGNADHR6TGS7o89Ltd2eSIzTykXj8nRLrpvx/d0nj85Rw1KDNxZi6QWwN8XlGR/k33129HFb7hwAZjfLRuMiIQr1Cr1Ccub4PCR720ckC9AArp1VzgDHFffJ+iCEEEJ+hiYW6gB8UWO+853t/nAsRyubWtL/99fcUcYl182YXZE5f2zOuDxNIBJ78ftGAF0u9p6m8TvOWfWn8o9/rVraPeo3AKb1vP/brWfh/WvGCjr0SrErGHnpu6b9nAA35CHNgVAcQJ5WDsAbjA59R1syecNKERyEEEIIIeRAqABNhktVkW7tPSf/58rjGKb3yRyNFECniwXQ5QwCKNTLcrWyIoP8f/LfcIwQjSux5kl+Y6c/zHGJnV3BCD9mvSWtEuqlDujhlL6ots3uT3/JFUjrgHb2eWlLmwPAlCI9//fO+Mz45PdYdAKav4NAjONvFdy2443ISa2OyJub2gE0WX0AigxKkZABcNm0RAi4kEGRQZE67Lwxxt0Pzb92VvkR/pCEEELIkTazPPP8KQWxOPf5LjOAhZPyBekXQ30xDO6ePxrA4vVtwUjMFQwD0CkkWRpprTXyqurmL6te6FZVMvEodn8gfnn2t+XvnV4Uf3pVQ2vfX80pn+8yjfy/5ct3mfb1jrE498HWjve2tCOZAZ2rkwGIxrlQdKhf7dv9iSuBHi91QBNCCCGEkAOgAjQZRvl6uUjQ546rLEuFZM2x0xFEsunm+LKMt5rlNZP+DwC+eRi1nwDgJ9HplWKFRADA7GYBNPV4AfCJwB7KgB5OVk8YAP/319a3A5q/PTaqpQBMLjY9IZoPgJ5SrEcsjNX/wrNV2LYY4DB2AX6/BfMfgUxz5fGlAN7c0BaNc409PqSlbUwtMZRlKQEUZyZK0ilKqWjf9++EEELIzwXD4InzJ/75jDH85co5k/vnb/QzZ2SWUSVhI/GdHS4+iFmvEGeqpADMnuBj9XkzbffV/vozjF0AjtPXv/uc7br/5i1f+t3OVMNyIByLJ/+wfGd3JMb9bfmeWHyQfuYtbc6znl1913s7735/V4835GejAIwaKf8LdujTNXo7oCkDmhBCCCGEHAgVoMmPaoRRBaDN5o/GuA6XH0BhhhLAjPJMAPe1T8O03wLAB9fDupcvQGerpTkaBQCTmwXQaPMDGJGpAhWgh5ndxwIYnaMB0NY3Z8PpCwMYaVSJhQwHdLt7Y6C3troAnJXRjRdPxDcPIxxA/nG49itcuBj6En6bM8fn6hVisyf0ZY2ZD/UeYVTyLzEMrp5ZAmBSvm7YPyEhhBAyPBgG159YtuymWa9dfdyo5Ezd/Ww8sUgP4Lt6K7/2SyeXZKmlAL6osbTZAzq5OG/0DFy4GNd9jcIZwjg7u+eNP9YsDC25GFtfD9Z9/fzS9x7+YAt/tDqTD0C7M/BFjbnfG9V0ey56aX2dKZFmZnIHfaEoALVUrJKJcDBzCK2+ZAY0FaAJIYQQQsiBiH7qEyDHlhytTCYSsNF4uyPAd0AX6OQAZpQZANSYPIHrH1HY9qD5B3x4Q+D4JQAMKqmAQ7PNZ3IFghGd2cUCmFikb7D6vQczLYccLH5R7ZQSXZ3Z0+HoG8HBhgFoFZJCvbLZ5mt3BPi4DJM7WKEJv6B7t/jDjwEOcgNOfxzjL0Lf1mWJSHDFjJKnv214emW9XiVF37jny2eU5OkUVUVUgCaEEPLLNvTfZVWFupW1lu/2WAEoJUKRkMlUSwHwXcx/OWusTiEGgILjcM0X2PuF59P7NP5mcdMKNK2QA3cDMUbEeaZzBVMfVLpCKslW4aQl61rPqMxN/w38yY6uWJw7rkRv94ebrf4eN8tHcKikIq1c7GWjnuABvtrv8YYyVRIBw6QGRQTCcX84qpTQPQUhhBBCCNknulgkPyoBw5QbVTXdngaLp8MZBJCvlwPI1cqL9Ip2Z2BTm/ekhS/h+Wno3j6m4RXguEyVRCIUAjC52FabH4BWLioxKAC4A9QBPYz4nqapxYYlG9rbHQGO6y0ju/1RAHqlpChD1mzzdfD90V6T4If//Mf9qjzqBoCJF2P+Y1BkDHrwa2aX/nddc32PD3wEh7G3O4xhMG+McTg/GSGEEPLzUlWkB1Bn9gDQKyUA+AgOALNGZJwzuaB3U4bB6NOf3Fsg6dl5qb6uxF/NOs1xr1URc6J9LdO+9kQAwCmAS5rvWnGpfs4NUGbxu66sswC4YmbJR9u6mq1+qz/sD0UBKKVC9RA6oF9d0/zIZ3W3/2rk7b+qSG98tnnDyozB7ylicU4ooPwsQgghhJBjHUVwkB9bRbYaQGOPr9sZAFCgTwyam16WAWB9sx2aPJz5JIDCnc9cV+bOUsrytDIA3e5go9UHoDRTpVFIAPhYGkI4XDgONn8IwKQiHQMEwvH0W00XGwGgU4j5v75AIIBPb8e/x2VvfVIedfs0Fbh6Oc55aV/VZwBaufj62WWpP5ZlKofxwxBCCCE/bxMKtKkyrU4uBlCgl8tEAplI8Ni5EwaOQNAqpP9p0r0kuBBXfvrc2CVj/c//Iff15uMesI+7clPW+a3Zp8QEUl2oS7/pCfx7HD75PVztbfZAs9UvZDCnIsuokQLo8YR8LF+AFmlkEuy3AL2lzfnY8j0ANrXYANh9vVvuKwba4Q9P++vXd7+381B/KoQQQggh5ChBBWjyY+NHzNWavD2+MIACvZx/fnq5HsCGZjsAjL8Ao89iELvD+udZBleuTg7A7GYbzF4AI4wqjUwEwB2iDujh4g5GojEAyNXKc3Uy9I2BdgZCAHRyUbFBeVIBc87OG7H1NcRj3epJSwv+smfhchSfcMC3uGZWmVYuApChEmvk4mH6IIQQQsjPn1IqGpWTSKPSK6QAVFLRsptPWH7biXzIVT8FehmATicLoNMRAPB+i+Q539xX1Ddd2HHuyzkP9Ny05+2CP5tUoxENYdtiPDNZuvKekwuZ40oNGrnYqJIBsHrZRAe0RKyRiwB4A9HNrY573q/mozlSHP7w75Zs4/NAmu0B9I1+tnoHL0Dv7nLb/eFv9/aPoiaEEEIIIccaKkCTH1uFUQ1gbaMNgEwk0Csk/PMnlGcC2NnhsvvCYBgseN6lGamMOGatu7pK7QbQ2ONfvKENwNRig1omBuALUgb0AcTiXJs9wHEHvSN/Y6mWiaQiAX/r22r3pV51+SMAxqt8C9xLn3f93uDYDpm69fQ3Zlr/+KRpQlVJ1lDeQiUV3XBiOYCxuRT3TAgh5Fg3sSDx21CnSMRZjM3T8F/bD5SnUwDocgYBdLlY/sldne69Ji+AUTma3CxDnfHM+b6HXx/zH5SeiHgkZ8/il+xX/yNrBXrqqjLCOSpxjzfkj8QBKGWJCA53KPLo53XvbOn8cFtn+ts9trzO7GVzdDIAFncwHI3zk4r5hVD7KkA7/GEArkA0fggXIoQQQggh5ChCBWjyYyvPUgJwBSMACvXy1KrSXK18Qr6GA76sNQOAXPdkzhN2WanYbx75+QXXlnvanQFXIFKWqTp/SgHfp+M+0Kgc8vTX9XOeWPXZru6D3ZG/mcxQSQAUGxQAOuzB1KszNLbP8/47/eM5xq3/VEZtLlm+5YLP/9VUAODXE/OGnvb42znlj587/uEF4w729AghhJCjzKQiA/8g9d38fuTp5AC6XQGOQ5crsUSp0eqv7nQDGJWtAnDbvIpYnHtwu2pZ5aLIpR+ZlaPFcbao+mm8MOOkT0/4IX7Fn32PXa1cX2aQqKQirUwMwOwK7u50AWixBtLfbmenC8AjC8YppSKOY9ocAXsgAmB0jgqAzcsOepJ2fwhALM65AtQxQAghhBByTKMCNPmxlWYqUwXKfH2fVaWnT8gDsHxnolr6RUv0XvWjUcNIgc90b/etfxnRBOAvZ48VCRk+sWH/o3IIgB8abACqO1wHuyNfgM5SSQEUZygBtNn9iEdR/yXevuymmsvGOb4GOBSfsLrykcslT9/8lW9lrQXAwsn5Q38XkYC5ZFpRKQVAE0IIOeZVFSU6oIdegGajcbs/ZPGEAMjEAg6w+8NIztswKCW3zB0B4OHPa69drTjV//Cy8r8idyKkWoCRxIMlPd+c1vDgu9wfK0K1/JXV9w3WGAcArXZ/+ttZ3CEAxQZlkUEOoLrDxcdxjM7RYN8Z0M5k3Zk/K0IIIYQQcsyiAjT5sYmFgsJk7nNB31jD0ytzAKxvdjgDYY6D3Rf6qoNxX7YCZSeLuPDVnX95ZprzpFFZAPgMaG8ocsTXdJo9rPtoSfaIc1y9xQOgwxk44Mb92PwsAKNaCqDAoJhoFF8Y+wxPjcebF2LPZwy4vfo5tsu+wdXLy+Zd3+iMbm1zsdF4sUExIZ/yNAghhJCDVmFUKcRCADrlgeciSEWCDKUEwNZWRyzOiYSYWZYY/JuhEhuUiRL2NbNKSzIUrkDkhwabh43W6E7GDT/g3nbTbV2P5z//Q/aVrEibGWwuWLbgyo6/3Dqix+FLVIpbbL1XDqFo3M1GABjVspIMJYCtbQ4AWpk4Ty8H0OPZRwRHsjC9rxZpQgghhBByjKACNPkJ8DHQSJtAyCvJUI7JVcfi3MoaszsY4Xtw1FoDLn+vNf9sBtzZ9ffD0w1AIxMDiMYQ4iflHSEOf3jev74/5/l1R/CYP6F2RyAQjgPodAQPuHE/fAd0pkqKoGuO6bW3A9fNbPgnPN2QG7gZt/xf3svzTTcgdzyAfL381pMr+L0WTspnhhq/QQghhJBeQgEzpcQAgJ+9fED8t/ib25wA8jSKiUV6/vkx2ZrUNjKx8NPfz3720qrfnTzi0mmFN55Uzj9vUMtfatJf0Tb/et1L1ZlnAjC0r7iz8/Y10luX5736dNkWCcJ8jzOSlwRiEaOVi0syFQC2tjkBZKikWUoJ9p0BbQ8kytm2H7cD+pXVLb95dVMwcliXiG9uaJ/26Mo9Js+ROitCCCGEkGMZFaDJT6DcmJjznq/vf4t1ZmUugOW7TakheBKRAAJR0VUvc8ZxDOvAe1cjHlVIRHyd08MeyRjoDc12fyjaYvf+DIflvLG+9ft660Htssfk5R/0K0Cv2G1e8PzaNvv+2qKt3nCOSnxV7AM8OUa74R/yqNslzefOehp31blPfGhJsxKAVp5o0br+xLIxuWqZSHDulIKDOkNCCCGEpDx2TuXfzp3wq9HZQ9k4TysDsKnZDiBPLxufr+WfH5WjSd9MLROdPSHvD6eOeuzcCVlqKf+kVCTgpw6u7owv6LzMf/X3rjGXRRmJJmQe6/hmQfeTr+ARp83Mb9zjZQFkqaQMgyKDCkC9xQcgQyU2amQAevYRwZHqp7bto0I9TJ5b1bC6wbqj3Xk4B1mx29zjC69ptB+psyKEEEIIOZZRAZr8BCqMiczfwr4Z0ADOmJAHYE2jrc7sAZCRXEMqEMuZi5dAokTHBrx1KRO0803Q3iMaA72xxQGA45hA5Oc13rDNHrj/45o7391+UHvVdSfadtxsxJtWqX9rY1t1h2vFbtM+9+S4EWLnO4rHS3c+iUgAxrFLCx44C0+ZKy6CSOYKhgEoxEKxMPEPiFgo+OCmE9b86eTijP5/oYQQQggZokKD4uJphSLhkBYT5evkAGpMXgAFekVaAVo1lN1TxWgAgrzxdVMfuVCz9Jn8J7/Lvz4iUBT4qnVLT0XbWnAcnzFtVMsAlGT0tg4Y1VL+IDZvaNBv7l3Jxme778frgLb7wvzMQ1/4sK7l7H429V9CCCGEEHKYqABNfgLl+4jgAFCWpRybq47GcPe71QCy1LLe1wxlOO8ViKRo+BLPz/zdCCsAT/AId0DzD/yhI5nscfj48T4Of+962HSf7uz++xd18QE3fzUmd+pxV1oMNH+0bueAXA6Ow4438XQVHsm6cceCYs+2uFiOhS/gpnWL7FWd7kinMwjAHYgA0PRNqFRIhJkqaf8DEkIIIWR48MvI+AuDfJ08Sy0tNigATCgY0jAGY7IAzQAykVAjF2+zRJ5synldeOFbk15zS3JF7na8dgaenlTZsOiMYi5bKwVQktlb3c5Uy/hf/dE4N+hc6FTyhuNHjOCotySWfwVC8cM5jiMQQVoTNyGEEEIIORxUgCY/gZHZaq1MnKeTZSgHKVk+c8nkHLWMjcYBZKr6DoIfdQau+xYZ5fCbr26589pyzxHsgHYFIvzIPgD+0JHvgP7nl3sf+mT3oe3L13w5jhn0Bu/Bj2sWfde8vd3V7/k9Zi8Avo+qw9FbgObX0nb2m0zo6sAb5+Kjm+BsRjwCwKQc233hV5h0GRiGb7PqcgYBuIIRAHr5gUckEUIIIWSY8BEcvAK9DMBLV0x9+copo3M1+96pV1bya2OVTMgwifHOAKaVGtqFRXdon+wqPg9iBVythdVPPW++/DHP/fjyzzn1S88tS3xJn6EUS0QCrUwMwOoNRft+Rx7nOL4TGclvvvvxslHbPrI79q+hx/fK6qbrF295ZXXLwFf3mpPXcofXAe0KhAE4/Ad9nfndXmtNNyVHE0IIIYT0IfqpT4AcixQS4Td/mCMSCAYdWDfCqHr/5pmXvbyhzRHIHziHJ6cSN6zB2xeJmn+403LfXnYckHVEzmpzi53jEifkDx3JZA8AXjb63KpGADfPrUhf9DpEqbqzKxDRK/oU5UPRuN0fBlBnck8p1qe/I9+wPL3MsK7J0eFKlJtjcc7hiwDodqd1QNd/iWXXg3VDJMVJf+IqL/j1q3W7rJH1xsR0wXy9DC3ocgX4cwCgV1ABmhBCCPnJFBiUqcd5OgWA0Tnq0TnqIe6enaxfKyUiAGpZ4tf6caWGvWbvK6s5ZvRNr979HPZ8Yv/h1QzbpoyedehZxwBPArcZJ9crjiuPdaC1p9yo2Nbu3tTquPTlDVXFupcun8ofxxOMpgrSg04pXPD8GosntPG+eSrpQdyPfLun55rXN6ceXzmzOBUIxmu0+vkH/sMYExKMxNhIHPsone+H2cNe/frGbK18w5/mHfK7E0IIIYQcfagATX4a+49rKNDLl918wifVXWdPzBvkZYkCFy51vzBP66kf9/VVyH8PGeWHf0p8ADTviEdwtNgSt0N2f/gQCtCu5Bz5VDNRitmdSCfk+51T+LntORppZb52XZOjIxm44QpE+BvCDkeQ48DEWKx6HGufAoD8Kpz7CjJGOP3hXdadAFIt6gVpHdBOfwhAvzo4IYQQQn5MebreDuiBU50PKHUlppCIAWjkoiK9IhyNTyzQhaJxAC22ACQKTLj49s1lebmdtxS1FzE9MO3g2tYVe7YVe7bBDKzD68qyL8svXLcjHotLv6mzxDmO7y9Ij91w+PuXcT3BSLPVD6DNHhiXN6SWbd6mFgeAsixlhzMQiXLdLrbf/IlUB7TvMFazOZMn7zzI8BCTi+U4xuIOpn4OhBBCCCEEVIAmP1sZKsnVJ5Tu82WZ5qMxT5+3/QqVpwkvzcIZ/8LES3B4F/qbWnoHnftCMQD+UPSTatP8cdkG5eEWW1uTBeiDvZPheZJdPM5A/93NyUbmvX0L0HVmL4CxuRp+0mOnI7GZ1ZsoWPvDsXD919Iv7oKzFQCm/RanPgqRFECtyQOgQK+QiBJdRXxrVSIDmo0C0FIEByGEEPLT0cklCokgEI4DyNMedAHamIrgkAoBCBhmxR2zAUhEgpIMJYB2hz8W54QCpsfLrjZLz5h7WdHILAAffbNe2fhRdrhjlDoo69qo8Tdf4P/bBUBUIPWqs7hXnkJmGaP7cJIAACAASURBVEadyaqmAxAKmFicsw8IsuhMfi/e42XH4SAK0B0OP4BLpxW/uamt2ervcAbSC9AchwaLj398OHFqqYr5wYaE8IOaOY7xslG6UiKEEEIISaEMaPJL1RrR/FH/lMs4HeEAProJS86DvfGQj+YPRXd1eQCUZCiQzA18a1PHvct2vvj9oR+292ztidsh24AmoKHwJBufXQPq12ZP4oD1Zl/6GMI6kxvA6DxNgYGvHSciOPjFpPMKmc/z/it96zw4W6HMwYVv4Iwn+OozgOoOJ4Cqot4pRgUGOYBOVxCAyx8CoKUOaEIIIeSnwzDI0coBGFWS1BfGQ2dMRnCoZEL+gVIi4uM4crUykYCJxjmTmwXQ42EBZCfXb/kUub9tOXFB12U9v16Ku/bUVd5lk5fFGJEoHtKzncKuTah+G+/+ZsziCauyn369Yt1lpQF/KMpG+qwt4+vIACzuA18XdTgC3a5EwbrVHgBQbJAX6RXoO+ICgN0f4idVAAiED301Wyr62R+OhaMHMcwwtVJt4JI1QgghhJBjGXVAk18qtUz8WhtTMufff6xcju/+jqZv8PwMHH8zTvwjpKoD79/XljYnBxToFSOMqlZ7gF+2afYEAZg97OGfbaoDemAFeSjcyQxoZ7D/7qZkB7SbjfR42WxN4n6y1uQFMCZXU6DvU4Dmgs6XSlafZF0sjfnBMZhxA06+n5OovtvbU2/2XTurVCRk+HmGEwt6C9B8GLfZHeQ4OAMRADo5FaAJIYSQn1KBTt5s9ecZDrr9GUAqEEwh6X87IBQwRQZls83XYvPnaGT8731j8gKjJDORPZ2hkkCiaB3929O3TPnT/HLO2RF0dC6skJaF92D3h4y7vdS9sdS9cTZwh75M+MF7cOyBpxtnPonx53c4ExdXNu8BrrJ8oehZz66WCgVr750nFgraHQEARZnKIoMCAP9HdzDy8g/Nl0wrakurR/vCh14C7pMfEgjnaGT72TidM5Cop7uDVIAmhBBCCOlFBWjyS6WRiwB0ukM4/W6MOxcr7kHjSqx9GtXv4NRHMP6Cg0rk2N3lAjC5WCtgBEgOrnEHogD87EF00ERjnFDADHznZnsqA/pQbkhStzHuAQ01JlfvLMG9Zi9fgLZ6QzVdbgCVeVr+GS8bC9g7FOv/PWv7UkGMBWBRjGw74W/TTphX3eF6+LO1W9tcAOQS4W9mFG/vcAKYlNYBnaeTAwiE465gODmEkP71IIQQQn5K/HfM+QefvwHAqE5FcAzyC700U9Fs87XZ/SOMSgBCBrrk8OERRhUAnVzMt0ufXpmz84FTNXLxne+yyxrD0vKRt5xyKX710A9rvvfUfT0ttiOzZ31msBl7mhOHXvZbKAxdTiP/p57B5hOm29jscAejAJpt/my1zMtGARQZFIWG3nCw/65peW5V48YW+xnjc1M7HtT1Wz+OQO9ZOXwHUYB2+xO5H+4BHQOEEEIIIccyiuAgv1QamRiALxgFgIxyXP4+Ln0H+hL4zFh2PRb/+qASOfjxeiUGpVIiRHJwjY8NI5kHvR988EWc415b2zLhoS/+/OHOgdu0WhMtOQNDnIcilQHtGLB7t7u3dajOlIiB/u/almicm1KsK81UKiTCE0vkbxQvly+aii2vCmJsj3zE2/n3nRf761euXH8oevmrG/jqM4AvdnebPazdFxEKmPShQFKRIEMpAdDlDLjYMCgDmhBCCPmpTS3WA5haYjiEfbVysUgIAMpBC9BZSgAtVn+PJwQgSyNLjdTL1cpfuGzyf66YmtpYIxcDSMyc4MOdGeYHj/F3zce/UvyPP4/46O38+6zT/4RL38W488DF8M5lU2K7NDIRAIvvAB3Q65tt/IO9Zm+bww/AqJLIxUK+AN1u9wPY3eUGsLnV+eaGNgB8OscBr9/2w+Hr/b7ffjBr11zJJWsu6oAmhBBCCElDPYzkl0otl6DfCseRp6FsLtY9g++fQMsPeH4GKk5B5bnIq4I6DxLFPo8FdLuDAPJ0Cn7yO58B7ebL0KH93UL8/s1tK+sskwp1sTi3udUJ4Otay2Pn9tnGHYyk7kNsB+r0GVQqA5pvAkpncbMAKvM0u7s9ey0eAP5QdMmGVgA3zBkBAC2rX3Dfogp2A0DB9BXZ192zVatxiDvdwQ5nYEub08vGcjTS5y6bcv6idRtbnN/t7QEwKlslFwvT36jAoLD7w3vMvnqzF0Cefn8/T0IIIYQMt3OnFJw4KitDKT2EfQUMk6mUmj2hQTug+ZEYdRbPdG8GgOy+LcDpjcYpfEU4Fcrs8IYB6JXSeovkrabKJ6rGXzCyCOVzEbCj5buzqm+cKSvelHvGdsnp+z/P9U2JGdF7zB6+Bs6/UWFaBEed2cNv02D1A5hYqG13BoKHEcGR3i5gP5g5hI7kxu4hNxzEOS7OQSQ4rEnahBBCCCE/c9QBTX6p+MYZL9u3ICuS4sS7cctGlJ+MeAR7l+OD6/DsFDyWi0Uz0fhN+rbpI/u6HEEA+Xq5UipEcnK6LxhBsht6UOFofPluMxuJb2h2bG51ioUMgB5fuN/g9dZk/gYGC3EeqN0RsPatUzvZxF7OATMMze4ggJNGGQHsNXsBvLWpzcvGSjIVp2i78O4V+N9ZqmC3V2zcNftFXPvlG+ZCDxvl8527HMENzXYAsyqyphbrR+WoY3Hu6W8bAEwq1PV7ozytDMCz3zYEwvGRRlVlnvaAH4QQQgghwypTJT2YyLE+jGoZAP7Kp5+Z5VkANrXYm60+AFmqAw9+yNfJAHQ4E8lg/JqtDIXYoJQCsHrDX9SYZ/z9hz0nvYhJl0cFUgPbdppp0T21C/HWRdwX9za894BtzX/RshoBe+qY7mCk1uTmH+81efl+52KDEkChXg7AGYhYPGy3iwUgFiV+EFXFOgCefV+/HVB6BrT9YMZHu4KpCI6hlr+v+u+mWY9/2/+C9qgWi3OeH6VD3OHvf01OCCGEkJ8KFaDJL5VaJgbgYQe7fjWU4vJluGkdZv8BxrGJ3mdLDZacizcvgbMNQCzOLXx+zeUvb+A4cBy6XCyAAr2cX4jKL9vk24330wHdbPPH4pxSInx0YeVNJ5V9cfuJeqUYQIvNl75Zqy0AgL8rcvoOcMHtCUZOe+r7c15Ym/6kdx9D1aMxzuoPAThptBFAvcUbdrRPqXn8e+M/vxLcyrw8F7UfA+gqv+hq1fPL/OPBMFZPCEBVkR5Apyu4qcUOYHqpHsBp43IAmF0sBitA83MI2+wBAFfNLD3k211CCCGE/Bzwfc0q2aAZ0MpigyIaw7JtnRjQAT2oQoMSQLc7GOc4JGu4eoUkSyUFYPeFF61qNHtCr2zqcZ7674u1Sz7Iv9ukHCdAHHu/YDa8UFHzVObXd+B/Z+Gfo7DsenRuAbCxxcFxjFDAANhr8bbaggCKs5QANHKxWiYCsLLWDCBHK7tiegkABphYoAcQOJwIDn7eskKMg4zgSDU+D7EAzXFY22gze9kNTbaDP81fqhvf2Drl0ZVHZMr3fgTCsblPfHfmM6vTO076icTi65rs/PJHQgghhAwriuAgv1T8EELvvu4uGAbZ45A9rm7sbUV6uTLmxuonsfFF1C9H8yqceHfPuOuqO90AbL6QRCQIRGIAcrUypUQMwM9GkKxuB8OJt4jGOF8omhrCA4APo6jIVl8+o5h/ZkSWarPf2WwNVOb3FnBbbH4Ao3PVdSbvAfto9pq9gXA8EA4GwjGFRAggFuf8yXPoFynY42U5jhEJMalQd0Ypcx73tfC5q6riybdghJhwAWbeuqpFueWjGr2OBdDjCyE5YNAViOxodwGYXpYJ4LTKnKe/aeB3nVik73di+frEjCO1TLhgct7+PwUhhBBCfuaumFkSisbmjx0kT4NhcPJY42trWustPgDZmgOnfORoZAwQiXI2X9iolvI1XINKyndA11k8/HXX5lZHpzO4xRTZKzvOy1ZdUeb7yxhTd1en09atCfcUMBaxux0738XOd5E/xZBzSYG2eGJRxue7zJ3OYJ3JDaDIkAgBK9TLa03eL2t6AIzNUd80t/zLWsv4PLVBKUFyNduh4RecVRjVm1sdzoPKgE42Cjj9Q3p3LxuJcQCwpd11yricgz7RX6ZNrfZIjNvZ6c4ZO9Tpjoeg3RFwsxE3G7H5Qlnqwf8HvHh96yOf1f3hlJG/m1cxfGdCyLHM5A562ejIbPVPfSKEkJ8eFaDJLxU/hNAfisbinHAfwXkr68zX/2/ruVV5T15UhdMew5Qr8NmdaFuLbx/OXvPvj/Ln1Esr4ztdEVVmsU7sCUMmFiplQgD+SJzj4A1FAATCcf4tfrt48+om2w93z81Njpuvt3gBjMpWpd6xJEO1udXZbPOnnwYfwTGl2FBn8jr8YY7DftqHG62Jfe2+kMKgQN8u7967IC4OR7O4fssrJZvzOIto0SMvWOv4VzrVVaJpV+UUjkDWKCizAJR6bQD2mr3haJxv6y7PUqplQi8bi3HIUcv4wUGjczQFekWnM6CQCEZk9X4oXn4y9Pn8qYX84HtCCCGE/HLNrsicXZG5r1fnjc5+bU0r/zhLLT/g0URCJlsnM7vYTmfAqJbyMcoGpYSP71jfZOMXg7XZA9UdLgDlWaoGi3dxs+rKc657sn3v551mAKeMyX75YjE2vIhd76Fr69Sure+qKrsmvrK5RdLjC+/u9gAozkgWoDMUtSbv+mYrgNF5mkyVdPUf5zIMerwhAIFwbP9XXPth94UBVBiVm1sdNt9BFKBTSWuuIUSuIW249JZW+/63PGqwkRh/LdrtDAzrG9mSedzNVt++CtB8j0iNyTOsZ0LIseyiFzeYvMGN9/6K/2qQEHIsowgO8kulTq4YXby+9e9f1NV0D3LtuHhtO4Da1GVl1mhc9TnOeRHqXEHYO8n+2YXdf8teeXPmhxcuj930auEXCDjUUjEAHxsJRWPRZHd1IBwDUN3likQTkwZ5DVYvgJE5vd/olhmVAJpt3vTTaLH6AEwu1AGIxjl+wmG619e2nPH0DxYPC6CpJ7FvasmnJ23woD8ci/c04NPb8XgBnp2S9eUNvzK/MtbyKax1HBiLYuQ7RQ/bL/wwZ/ZVKJnFV58BjM/XAmh3Bhp6fABEQmjl4jxd4v5tWrmevz1jGJxWmQ1gfIF+YE2/MNkBfcWMkoE/akIIIYQcTaaXGhTJccRD6YAGUKiTA+h0BsPRON+AbFBKMtVSABzXe13x4bZOAIV6eZZGCqDHw6a+uf+6zmJSjMI5i3BnbeTEP4VEyjzf7qlfLLxtXG9cQ28HtE4BgL9aG5OrARLlZj7VmgOCkf7r5D7a3jX6/hWrG6z7+RQcl1hwVpGtRtpcwQOKxblUlLNnwNToQTn9iSaD6g73MRIEYfEkfp4m9/BGcKTmqTT17QtJx5fCu5LB5YSQIysa59qdgUiUa+rxHXhrQsjRjgrQ5JdKLBTIxAIAD31au+i75jOfWX3L0q0md+8VZJczuKapB4DVm9aEwjCYeAnurN00543NWec0a2Y4jdOj0gxlxDa57VX8Z24x1w3AF4p60qbB8HMI+XuJPebeSjc/9G9ktib1TFmGAkCrdZAO6DF5GplIgL6TbfhXH11eW2vyfr6rGwA/7QeA1cOC42Ddq9m9eGnhZ18XvLw242/btX8UvDAVW19D2M+JZP6MCdUZZ+we+Ttc+Ib5hppnKv5bdeY1Ewv7p2do5OKyTBWAlbUWAJlKqYBhCnSJgvKMst7up+tnl50yNvu2wdYhjspRXza96I/zR5VmKge+SgghhJCjiVgomDMycYUwlAxoJCvCHXY/39grFDBqmShD1Vu8nlSkBbC13QWgMEORrZED6PGGW6x+AHk6GQe8s7kDAFTGF7jz7896zq0oYnzmS3de9WrJN2UGiUIiyJAnyuJFGb0XJGNzey/G5GIhw3AAAgO+8n/x+0Y2Eucr4PviZSOxOAdghFENwDYggqPV7l/w/Nq3NnX0ez4993moHdDJg0fj3M5O11B2+aWzJKOfO4e57NuTrHQ3WfZZ+XL5IwA6hrkXm5BjVmrcaLtjn98DEUKOHbSOnvyCzSzLWLXXOrFIm6mUfrPH8vkuc4839N6NM/lX393SwbfbOPzhVExHnOMEDANG8Jm7bHHHBQBmj8iaNV0lbVp5ketluau1ZNnZ95Tf94lvlDct+MIfioaicT6lr8GcuIoNR+MdjiCAkWkRHGVGNYAmqz+16tMViPDtFcUZSoNK0u1iHf5wqnkHwOMr6vjmnd0dHgA5Is8rJd/mhlqL1i7Cl03wdOuBE/p8bsaaO3ep8OxO1SStUvbq2pbflpdWjh2bC/z1nPx9/awmFWibbb6vakwAjGopgIJkR/P0UkNqs2yN7OUrpg56BAHD/PWc8fs6PiGEEEKOMiePMa6osSB55XBAhQYFgC4XyyeG6eRiAcNkqBLLrvN0sstnFO9o35nYWK/gr6N2dbnYaFzI4K5TRt713s7/rWvJ10k7nezT3zQA0rnnv3d6/UNM/fJ55ldniD8USSLMI15kj8PYBSfJRt4xwmGJad9rVxSnFaMFDCMXiQKRmC8UzUwrf9dbvHvMPgDbOvZX6uWr5wqxMFcrw4C+AQBf1/ZUd7iqO1xysWBhVe+lV3oBeohDCB3+3i7gLW3O40oM+9n4R3bvsp0djsD/rpm+r6S7Q5OaPWj2DG8B2p782TZZ91mAdgdDAJyBSDASkyf7/Q/Zkg1tHMf95viSgS+xkZjJzVIPBznWuHsL0LTOgBBCBWjyS/bqVdPCsbhUJABQ3ela8NzaLW0OVyCiU4hjce6drYnOFA5wByMGpeTF75ueX9X43g3Hj87VdCd7pRusXo1c+HnTiLxz3zq1+vdM1/abuu65SqznVp12f/m4D72jd/eE/aFo6vtbvusZQLPNH4tzapnQqO5tCyo2KBiG84djdn+Iv+fh25+NaqlCIjQoEgVoRIJwNEOTv8kcX99ov7LMPw5NBexabtmiR5reFyIKAHzUh0jqzz5uVzg/pisyxQ1trGLhyTMfWOVY02gXMqappRkAcrQH7kuqKtYt29FVa/IC4E+sQK8AkKGU8M3RhBBCCCHp5o7OlolqlFLRELM7CwwyAB3OIB8jxpeeM5L7njIm+7jijNTGhQaF0eIDsKHJzv/x7In5z3zb2GYP3P3+Ln6bP5wy8vSpFZjypn3jW/Kv71NGHImdLTWw1BQBtwEA7sicIKplMeYsCBPvpZIKA5FYoO+o6s+qu/kHrbaAl42mwtz64SvOBpWE/9ReNhqNcSJhbxHWk+xuvuvdHTqF5KRRicQzfgIhA3Bp2+yf3R8BwDAcxzGbm+03zSkfyl4/gmAkxrd4dzgDJRlHsmxqSSZvDHfwRaoDutm27w7o5OV9tytYPmD8yUFxBSL3f7yL45hfjc1OTYtJueOdHSt2mz/53awJBVoA1Z0unVySSjMn5GiVuoPusNM6A0IIFaDJLxnDgK8+A5hYoKvIUjZY/eub7adX5qxrspldrFomisc5fzhm9YUMSsnKGrOXja6qt47O1aSC58xutsHiAxBXZOHK5dHl98Z2vSePOFH71rXAlQLp6uJLY5GpHjbxf5YOlz8QjikkwvpE/oY6fb6NRCTI1yk7nYEWqz9RgLb6Li0NjsmMwlR9Z+7ODGbtmM/vg68NHAdgtKJ4vdiv7LaljiAEulWVO9RzcnLzJ1dWonDaJ9ut9y7bNU9ptPnD1R2uCTM1zbYOADEOG5vtAHK1B75+nVTUm8vBT2KZUZ7BMNyvq/IObT4PIYQQQo5umSrpR7+bJREKhtgDW6BXAuhw+h2+MAC9UgpALBToFWJnIHLKuJwigyJDKeHL0wXJDGh+jEdZplIiEnx8y6y3N7cvXt9qcgf/fMaY62aXAwDDKKdcdMXGjJmKrtFlxadNHY2W71D3Gefpsru8+mB7lnsn3r8aUjXG/Bo54wDBA0X+bwMj2LQIDo7Dx8kCNICdna4TRgw+gNHuDwEwKMQ6hZivJjsC4fQecL6nTyEWBiKx29/evuX+U0QCBsnYjXy9otMZCITj/crWg3IGIgAmF+q3tru2tjsTC/V+BtodiWqRlx1SmPXQmZNX4BZPKBrnREe0vTpdaghhhyMYjsYlokGSJ92BxKfrdB5uAbrLFeRXXm5odpxT1X9J4tY2J4CNzfYJBVqzhz33+bXZWtm6P807nHck5Ocv1QHd4TpGO6A5Dm9v7qjM1/AzmQg5xlEBmhw9ZlVkNlj9q+t7Tq/MeXNjO4BzJuWvabI1W/02b2hUttriDQHgZyB0p6VF1/f4AOTr5ZAoomc+OX/Pmefmdlyi3iVrXqEJmedaXgst3+Qff8Wi0rYwI1sVm9TY45tQoK23JArQ/U6jNFOJeERkqYZlD1rXnNn4w8KoByZgF05O306sRMSvCbQBgEjeoax0iLI0WQXv+ca/0JgBG85W504um4zkb26tTByJxQFYvCGTO8iPkuflDqEDekyORixiIlEOQJZGBmB8vnb7/fNV+2j/IYQQQggZndP/Omc/8vVyAF3OYKqGyz//13PGN1p9J5RnMgwmF+tX1loYhsvXyY0qKQAOAFBmVAHQKcQ3zim/fnaZh43oFb1t1zKxsCcsecqU/ej4EdDmY9JlmHQZA8x/9KtJWdEHc9cXNr8Lnxk7lvLbnwmcCUTfz0XBFOROhDLTHQjfqPOYDdmCjPJXd/h3tDv3VYB2JTugBQyjU4qd/ojDF0ovQPMpbTefVL7o+yZXMNJg8fIjEJ2+MIAig6zTGQDgDkZS8SNb25w5Glm+vn9jrN0XAjB7pLHG5HEHo81W/wjjoZRBOQ6pRYFHRHtycJ9naFkiQ5dK3uCAHg+bp+v/MzlSUgVoDmi1+wdescfinCcU5q+ouw47H6AzGXG7ocnWrwDtD0d7vCEAdWYPgB0drhiHbhfrDka0cvFhvi8hP2f8uhAAHcdqBvSODte9y3aOylF/efuJP/W5EPLTo9oTOXrMrMh8bV3bmkZbjzf0VY0ZwCXTi/ZafM1Wv90f5rhEz0Vjjy8cjfNjx8uylM3JgYH5OjkAqUjY6Yn+25UTnzf7tbrT786vucD8pMxWI111z+kAgAVA8KOxGD1/fLDsxdLaEztX4XETskYicyQkagglT4W3aqJbxV8k+jvEQJSRQKEXCYVegbZaOllUPmfGzLlQGZva2r9auUIskV136cX3v7Hju722goC80xkUCRGNwR5ILN5MFKAVojgDANvanRzHKMTCcDzGh0cPJYJDJGTG5Wp3dLgAZCYXw+oUdNVLCCGEkCMjVytjgEiMe21NK4BUcMcZ43NT20wrMaystWSrZWKhICtttmFZRm/hVShg0qvPvHOnFLy2tmVWRZ+qcVWh/uu6nrvOuRsLH0THBtR+Ap8VgLWryeDeLfKZsOcz7PkMgA64hN+nAzcKlb5dFbAVQayCKguGchjHIH8yBCIkYzEMCgmALJXU6Y/0m0PIz/bIUEurCnVrmuxb2xx8AdrFhgHoFVK1TOhlY65gmC9Av7mp/b5lu0oyFavumtuvv5kPyzZqpBML9Btb7JtbHYdWgP7TB9UfV3c/fdGk+ZW5+9+y3RHY0e4qzVKWZ6kUkn2mHrclC7LD1wENoMsVHL4CNN93opAIAuF4s3WQArSXjfI9ywA6XIebD9Cd/Fwbmh39XmpJhlDzqyfruhLzzNsdAWqKJEc3T3KoksXL7mshwtGtsccDoM3WOyCKkGMZFaDJ0WNmWaZQwLQ7gk98sTfGYUqxbkyuJlMlBmD1ss5AOBrnALRY/fz8E7GQmV5q4AvQMrGAv9VhGCgkQi8b7XaxHjZ6f9OoHwpfekz/qSxkbfGJdRFLoXu73FaLNbXz09+7czM6N/MP+XTDiEglLjk+lD/9qcacFY7sT343VyMXL17V8MSX9RdkFs5QGQHs9Yj/3lgwqVB3nUhamaf7bq+NHwg+MV+3td1lS0bX8b0nGrkkzgHJRXwjc1VZKtnKWotQwGSphjQaqKpYxxegjUObZU8IIYQQMnRioaDQIG93BNudAQCTCgcprp06LuepbxpOHp0NwKjpvYApzTpAntitJ1f8fm5Fvxv4Zy+dbE7Ndis+AcWJsc33vLbJHnf9dVqkUtAM0y6E/c12nyDky+fMYm+XNOaXOnfAuSP9UJxMy4w4BZMuDYYLAegV0uR/ff3mEPIlFY1cPKlIv6bJvq3ddfkMAHD7owD0SrFWLvWyAb6B4Pt66/0f7QbQagu02v39xtDxaSQGpWRysW5ji31Hu/OSaUX7/zkMZPaw72/risW5W97c/trV4tkVg3d286773+Z6iw+ASMD854qpJ482pl5iI7H1zfbZFVkiAdNuT3VADynMeuj4urBMLGAjcVNaMfrIisY5VyAMMJOL9Gsa7U1WL5DTb5v0QZFdh12A7komDLQ5AmYPm5N2sd1sTRx8r8Ubi3O1pkQButXuPzYL0E1W3x1v77hlbvkBvy8hv3Tu5D8gHMd0uYLH4BzONnsQABuNe1ha8UAIFaDJUUQpFU0q0G5td723tQPAb2aUIDlwz+YLpRou3Gxkd5cbQJ5WXp6V6IbI0cpStzRKidDLRlPbr+xA1dg/aOTi//toN4CTCpirsurniOrcDau9oqzMWVfKi6fA3gRnC0J+RFmrKPfZZuPuaP6yy2d9s8u06MttY3LkGrkYyTBEV7K1udvFItl5XVnQewE6rcywtd1l9ScK0PzaJa1CxDAMgDZ7AEBZpmr+2OyVtZZcrXyIyYxVBfrX0IpkBjQhhBBCyJH19/MmfFdvq8hWTirQD9rMW5yhqP7LqfylS3quRdkQEngHto/JxcJBKxpKmfjbnshGjKmceSaAJqtv3r++F4uY6r/Mj8VCj7/xWQXTef44pSwWtJlavZ01OYG9ctaN3e9j9/vXakZNLZo22uHG0tD/qSq+HFERCoVMYrdb2wAAIABJREFUblbAIFsjA+DmL8zk4iklegDb2vmx0XAGwgB0colWLup0whWINPb4bl66LRbnhAImFufWNFj7nS2/S4ZCMrFQB2BHp/uAP4SB3trYHotzQgbROHf94s3v3HD8xALdoFtavaF6i49hOJVU5GVjq+ut6QXoRz6rXbqx/cGzx151Qmm7M1mAZnsHOXIcrnh1kzsYfv2aaUOcS9lPaj3i+Hzt5lZn17DFwjr9YY5jGOC40ow1jfYmyyDL/11ptfXDn4jY5egtYW9sdiyYlJf6Y0uymh+Jce2OwC5T4m85lXNyrPl8Z/fOLvc7mzuoAH1o3MGIxcMObOr/GUr/mqfTGRj4D+D2dteckVlDvJn9JepM/itncrMDC9D3LdtpdrMvX3ncL+In0Gz1CwQ4smNpybGGCtDkqDKrImtruwuATiHm13vy3cE2b4TveuatabACyNHKU7dGhbref0kVUhEQMrt7ryN94SjHcQBKMhXfdQb2eCqfueSKCzevV8tEO6fPBwPkTkxtHHYGF3/9rUjojsW5zS0OAMeVJAYA8hfr1mQmXZc7ACBfLwMwPq+3AD29NHPRd80uf4S/Y/GwUQBamZhJy30uz1SeMi7n/rPGjM7RDPGHU1WUuBuhAjQhhBBChsPx5ZnHl++vAxdAajSfTi7hY8cUEoFRfSSXZ6mkQgD+cKJ4+n19D4DpxQaFRAgoNgay/2dWGk+YyoZjt32+ncMpOSrxP2aHTgz/gO1L/p+9845vpLzz/2dUR73Zstzbenv3Nlh2gYVdWgiE0CEhcKRwXBKSXNqlkFwuJPmlkUIIFw7I0ZKjBlgW2F1ge6/2rsu6yJZkq7eRRiONpPn98UiybMtlCyFZ5v3HvrT2lGdGM+N5Ps/n+Xz10a410S6y4gK8vQBI+Mr3HLn+Tdm6n959lUxC5RzQtLzWrAJg97Nhljeq5TkBWq0wqeQAIgn+2f0D8WR6eYP5wmbLb7ae2n7K/6kLGorbSbzVJo2ixqwG0OONJfiMSj5hMsZ40hnh+f2DAP7fjQtfPTK8o8f35M7+h29dUnLhQ4MhALMqdB9fVP3/3u5ikiPxGhyfefWIC8C+vsBnVjfa/YUihCP6UZ8/tqPHB+Dupw48/9lVkyR4TERhPuLSOtMBe8gVOlvf8UT4mCQAs0bRYtUC6PXHxi9DBhJInUlX8Gy92K4wB6DerB4Isnv7/KME6CKheW9f0B3O7Wsw+EEd/j84g8EEgOKu2UeN5/YOPraj93/vWVlvmbqS/Bh8TPLa3+3wRJM7vrmuZlys/D8aEXbkAeIIJNAy6rc/3tjx4iHno3e2XjV/7ASF8wZ7/vZ3R7gxNRWygvD8gUFBoHp8sVn/8MMJHJ+59nc75FJJoe6uiMgZ8JFL4RE5v1kzs5x8uHV5HQmZsuiUAAIxbrQAHQBQbVQ2l+d05yrjiCaro+XIR7nRcgmAeDJDVODl9RYA7mjyGy8dA7B+bsV4M06lkVYrJOkMtpx0H7AHASxrMJNfWdQK5N0uANyhBIBKgwpAlVFlzA+KttabAAj5QeNCP8esGWlks1Unoah/uahpohI646kxqVvrjE3lmhrjab/riIiIiIiIiIicWygKZVoaQINFc27DMTVKGYB4MidAv9/pA7BmZs7tSwzC33+17Ut/OSIAOlrmjvFb40246ud44MS+pi8eKP+EZ+W3ceVPfXVXclKdKulbN/ynXzhuk/xhFd7+XquFRHDITGoF0Y9IxFk4kQZg1MgMajmAMJvqcjMAbmqtXjfHCmB3j5/Ir4R0RiAJy2aNwqanrVpFJiucGIqe1pFu6fB4maRJLb92UfXNK2qQV0JLcnggCGBpnUmfl8gLv9ra6SV6fdtQNJMVnHlHcHERwgP9Oa/3MUf43549VHws08QT5QCY1PJ6swbA8MRNPUuI26NMpyTO+j5/TBjX2HCCBzCjXAPAE0uQWt9nDEmRvqG1BsCe3kDxr/q8DADynv/qUVfh5wMTC9DxVHpTuzvBZyZa4J8aUqXzgwtg+cfnlaPOgQC7tdN9uium0tkvPHPQHU0KQK+vxLDKPxphjgcgl1EABsYNOPV4YygKST8vceRnkwxFxk6zSKQyJIbe/s9wBrxMMp7KhBO8j/no3rkiZ48oQIucVyyuMVq0crmMumNlLkGPFNzzx1Luoll+JJqwwqCqMqrkUgr5uu0ETZFrhiS4MRxPVOBaM23TKwHY/axRLf/uNXPHt0FCUZ++oBHAg3872eFmACxvzAnQJo0CQDiee5UnPYQqAw2AojC/Wg/AplfqaBl5SSX1uyNsCoBBrSiuGdhUftqTXygKL963evNXLi44j0REREREREREPkRIqEWz9RybvzRyIkDzAJLp7H57EMDFs3I2hUV1JgDuaJIC7r2o8Qtrm1Cw+qrN3/BcdpPjpsHZn8Oq+96a87NrlU88V/09l3ahAEri78Se3/7ac/fvm/YYlRSA1loTgCMDIQARNgnApFIaVAoAkUS6YzgKYFalfn6VwUDL46nMMUe40EgSAUFRgkElpygsqjUBOOYIndaRPrPHDuDWFbUKmaTKoMKkut4hewhAa31OgC52N79y2Ek+OEOJTjdTEJeLXdIHB4IA1raUyaXUu12+zSc9p9VU5E2vNr2qyqRCPozug8DPcACsWrqxTENRAsNlAvlou15frPgFu6lCK5dSgkCdjR7K8RlS3vz6xdUUJdgDrJfJ7U4Q0OuLA1g/1wZgX18AgEUrB2AvEqAFAU/t6i8o14++13vfM4ee2NF3xk36R4YMb4RYPpk+K9H/nxdyedh9p22Bf/C19kMDuWeIL/bh6IAvHBzc3z+20uZEEAf0nAo9AGdwbOZMMJ5EfiLIeUmCzwRiucese1ziUCz/dLUHPqgwonNIKP81fZSHjkTOHlGAFjmvkEmpV/71oje+uKbWnDP5kgLr3nhyOJIEYCsqd1NloKUSijgjqooFaMVINE2VkQYQT6WJAURHy1sqcpEX/3nd/Iny7758eUuNSeVmuExWqDGpKg25WaVk+QjHpzMCRiI4crueX20EMKNcC8CsVQAIxFLI+1P0KnlBgKZwhulLFIV/ioQpERERERERkY8CVq0SQNO5zpRUK2UA2GQawP7+IMdnrTplYY7zJTPLdbR0Ua3x9S+u/u7H5hrUCgDxVE4LIEYBYhpY2WRxs8IR44Y7hP/8tOV594Y/Zm2LFdnEx4Z+Z3xiNdpfvnCGGcDhwTCAMJsGYFTLDWoZgF4vE4rzFCW0WHVSCXXhDAuAHaf8hUYS2cVAK8i72YJaA4CjgyMK9ZT4Y8mdvQGKEm5fUQ+AvHC6I4nseLsvwGeyx4ciAJbWm3W0DADxXwMIs/z73V7kneNvHB8qrFXskiYT++6+qPH6xTUATnlOz6wN5AKgK/RK8oI9FGFT6exDb57c1H7aVtDJ8cZSAMq1CqVMUm3UAOj1xgD4Y8krHt5222N7AIQSPAAjLSev4s4JYqC/+2rbLY/tndwfTRQZtUJSZ1aTcLxtXTl1PhBPxlMZihI2zB+J275qfhUATySRyiuwne7oD14/+eXnD5P/HnNGABTKFf7jkM4Kx5zhkhfY9LdQELA841I4Ysn0FQ9v/+pfj5x5Ez8MkunsaYnp/lgKQL//9ATo3b2B5/c7KKDBogYQYPgpVznn9PvjX3+x7d+eOzzN5ckDhLisHOMs/34mBSAYO28F6OKnytA43bYwR2cg8E/ggA7kBWi3KECLnAWiAC1yvlFnVheHKFk0RMlNEs/FhUWBFTYjDeBfL5mxZkb5ZbMrCj/XKUci7Ww6FYA4lyZ/Pg20fFGNAcBls63XLhwJdxuDSi79r+sXkM/L6k2FnxtUcooSAIQTqVQ6S0ZEq/KBGDctq2kp19yysg5AuY4G4I8nBQFMMlfrxqjK6d21JjUJGBERERERERER+eflE0urZ1q1Vy08x7XIdEoZACaZAbCtywtg7czyQspHlVF15PtX/O3+1WTsX0vyOhJpAJmsEOF4ACa1AsDMCt2xBzf8/KaF5TrlDlf2gPZi101vvFT9dU5mQLAPL9593YFP39SYPOoMZgUhlEiRFYkDmgRW1JrUJCuZxMTt6PYWGhmIJQEYNTl7wZJaI4DjU9Uh3HHKd/+zh0meW7srCqDRoiPGC6uOpighnRWIG/dvR4c+/rudF/3svdYfbX79+NCJoSifFoxqeYNFQ+LmCg7oN9uH0xnMsukumVkOYGORAF1YJhBLkTrYS+tMNWYVigr3JfjM5OpbIJZ68G/t9kDcE00CqDTSVUYVgEgi/cftvf+9vf+7r7RNftSniz+aBFCuVwJoMBN9mQVwyhNLZ3DKF0+ms5E4D8CoUZJKMK5QiZKA6azw/H7Hvv5Ap5uZZHdEZqo2qCgK18yvBPCXAw7yq35fHEC1UbOoZqRHsGaGRa2QCAJVKMNoD7AAvLEUcWef8jIA+sZVKYwXGdI/FB7e0n3d73f93wHnGW9hOJzI5P3145WszSc9XW7mlaOuD/1Ip48g4JbH9qx6aEthRGdy2FSGHN1A4PSqUP52azeAT62qv3xuBfL24b8zZPDAyyQLI3aTkxOga4zIZ38XSPAZls8ACLLnrQA9GBjR3Mc7oEkfH4D9NK+ED4VQ/nobHpclIiIyfUQNS+Q8x6JVAuDTwikfA+CiosI4VQY1gOsWVz197wrSzSAQ10xuGbMKQCzvgDaoFV+4pPlXNy367e1LJg8rvGRW+fWLqwCsnzdSVEEqoUifJBBPEUFcLqUKu24u127+2iVE1y7TyAH4mWSCz6QzQC5qMNdFabKKIc4iIiIiIiIi//RcvaDyna9ePKY009mjVkoBJJJpANtP+VCUv0EorqGkUUiRz5oozInWq3JvgxKKQj7SLRTnQ4ns13qXfNH6Z1zyHcg1cs+Rh7z3/bbirdQLn9+q/o/t5T+v2/aV6/2P/alh29ete77f3PPvM/3oex/db11VHtLTsqPOSG4X3pNzDnxnU+Xj/234X+z4JXydC6qNAAaCbLHpeDyPvNezsW34pUMuAO3OMID5NbmzJ5NS5RolgOEIC+CX73Qed0WcITYQT333lbYtHR4ArXUmioKelgGIJnIHS/I3PrGkemGRTlRnUqMoA/rAQBDATKvWoJLXGGnkBehUOnvpL96/4uFtk7hin9zV/+c9A//xSpsnmgBQoVdplTIdLQXwu3dPAQjEU4Fz6oL0MhyAcp0C+bmGzjAHYCic04OGwgkyYGBUy2vMNABnqIStzxvliFo6ecFAcioqjSoAN6+ok1I4NBAmmnWPLw6gsUxTrlUWyr3MrzbWmdUABvL6VEH+7nQzsWSaKLMDgXjxSX1yV/+8B9/efGJqt/hLhxxX/Wb7RJ7uiRAE/HFb7+aOybb/+tEhALv7fJMss7PHv7UjN9CSzgqvHx8qBJIAcBS1anwdwi0n3QAEgTrdMHQAZ2HLPisO2oNHHeEQy7e7pjV9wZ8vR+8IsdNPHj84ENrbF5RJcd+lzaR7Wyhr//ekEGXjmt7VRSI45lXpAYQTfPG4gj9/VZzHERyDwTgAg0oGYCgy9vsqOKD7AmdYj5TPZM9mOsJp4c9niXxw2f0iHwVkUy8iIvLPjFohVSskbCpLSk7PrzHoaBkZoC4kY4xBqxyJWq7SqwCwyUySzwLQq2RapYwUGJmSX968+P51LSRSo4BZrQyzfDCWJP2ZKqOqpJBt0SgBBOIpkj0tpaCWywS5QEp1N47epoiIiIiIiIiISIGCpuyOct2eGAVcNHHRZi2xAyfTyKdSyKWUXDrKpkMSOYLxFFGHHawEl3wDS+/ES/fKB3Zd6nkSHuReK9uP2IAR94ELOAoAJmCP0mo3LeTf2AIhghMvGQXBCCAEuF7G1v80GuqOGzPSTAIvXYgN30VZC+w74ToKtRHqMlTMg6kBFFUmS328PtM5HAbQNhwBsKDKWNibzaDyxlLDYW6WLesIJgA8dfeKn2zq6HIzj7zbg3yl64IDWhBAUTjhigK4bE6Fv0gonFetHwyxMS4nkRzsJ4W1TQCIf9kRTgDoD8SJWhpm+Ymy6bo8DIDdPYGhMiJA0wAq9SqGi/HpnHrS6Y5Ov7D2lBCZjJS4rDKpAQyFWAAFx7ErnGBI0UiVPGtSAXCMq5CGIpVtcgGa6No1JhUAq065YW7FphOe5/YO/Of18+3+GICmMjVFYZZNv68/oKNlVUZVrVnT6Y7Z/THMKi/eUecwo81bYdhU1stw5HQBOGgPAni/21fsbinJXw44O4aZ7ad8t6+om3zJYg4OBH+6qdOolh/9funt2wNxUjixc2hCPzifyd775wN8Onv0wSt0tGzzSc8Xnzty7aKq3922hCxQ7AkdGu0J5TPZ97ty0vYxR3hFvojOdPjT9r6fbup46p4Va1rKp176nPLiobzbPcBe0Dz18r5CPjjgCCamWdfnt1u6AdzUWltpUFnUcnxIDuhwXix2hRMzK6YYOMxkBVJUqcaoNqhkkUTaEWRnV+bSLP35Macg+yFkifx9IHWnVjRYNnd43FGWPG8LFMY7PZFEMp1Vnub85miC3/Dw9lqT+oUvXHDumjwhobxR3cN8CBeeyHmDKECLnP+UaejBVO5dx6anm8o0x5yRYuvxGNRFERyVJhpAlEtzfAaAXiUvuUpJpBKqxTpWKbZoFX1+BFk+mcoAqDaWFsHLdLnkENLP0ankFAUKlEEtD7N8c9k5jkoUERERERERETlv0NByAGwy3eYKA5hp00301gdAS48ERpPECT099n3PrFECCMaSxBmgoxUAoK/CXa+73vpVouu9YXVLl7RFL03d3IKI3213ONWZiIYPl8niCgUNqQy+bk3SOy+5Bfkqg/66K/bwc2boM3Oy3eh9F5HBnDDT8wZ6N0KhRXK0zKcyQ07/PjoEIBa24rWrVmD5Hto6r9pQWKTCQMMVcUc5ZyghALRMcvHMco1SetMf9xChlwjQxAGdEcClMzIJRSbCl2uVNv3Ie+n8Kv2mdneEy4kOBweDAJbVmwHUEEk3ksgKQn8+JsIT5SYSoEmgBAC7n0XeAlJlVHV7YwA0Cmk8lTm3ArSPRHDolACqjSrkpeeCzjsUYkkRSINKrpJLAbhKOaALgrVjUouiM5wo7AjA7asaNp3wvHTY+a2r5/T6YgAayzQAZlfq9vUH5lYaKAr1xAGdV72deVNhpztqUI30RPp8sYIATRyIndMIhvZEOBS516fJnl4/gDDLRxK8oVSXZ3t3LsG81xdLpbMl8wCHIxzHZwG4o5yO1vb7YgDIvwRneORMekbP5d/XHyR6JYDjrimyaIoJxFK/3tKVEfCLt7v+zgJ0gs+80ZbzjJPBhikpdi73++PTEaCPOyPbT/mlEuq+S2YAsGhp5AOUz5JgPPWD19tvW15/QbNlOssH4rmLajoO6EImiUElrzWpI4noYChREKAL5yE0jQiOdFYIs6kyrXLKJf+hIM+NZQ3mzR0eNpWNJdMkf58Qy9+hgkANBtnxusHkvNPhdkc4d4RjuFGb/YAoTFJxixEcImeBKECLnP+YtQoy/EjLJDpa3mzVHnNGqgylrccAtMUCtJ4GEE+mSbdkfIfkdLEZaACnPDG5FCgKgB5DmYYG4GOSUTYXAJ1vjyrM8rMrDSXXEhERERERERER0SilABg+0+dlka/wPBG5DOhUGnnNTqca20Uya+UgU9NIaehCb18iLdvwtRUHFkY8aQA1JvXNd1/qGopet3cH+f2Wr148g8gKfKL/8JbOo7utklhrtRqLbn7kkPLJ3QP3XdI058o54CIYPnbAmdjeOXxr+rVqz1YkGajMaL4YfAIRF7ydSASRAIAsJNqkF4f//C/488fVM8wH5mFjO6JDkMp+L1H3VC5IRK5L+JZeX5/WGfQUheUN5huWVr982CWVUAtrjQDUChmZVBdN8BRFAaAAvUomoah6s3ogyG6oFW6kts5s6HPIaoXg7JS2ut0VAbC80Qyg0qCiAD4tBOOpIgE6OadUlDefyXmxC5CS4KQOYb1Zfc2iyj+819s5fC7LcHljSQBlRQI0yaMYChcCBDji5TSqFXIphSKtuRhXXi0lU+mLCcZTrx119fvjD6yfScTralPurX71DEudST0YYv/wfs8pbwxAs1UH4GMLKp/dO3DdkioA9RY1AGcg78jOK9Gdw1FjkfhbbKoNsUkA3V5mjI9yDIKAYSaB0QUkp8PevkD+YNkF1SX6Gu935iorZgT0+mJz8kpiMQVd0sckW6xa4vYtjuAgX4TNQLsj3NDoCI6tJ90AyKk77jiNapyPbuthU1kAx5yRI4PhJXXGKVc5V7xzwlOIlejzTSvJt3iegT0QA6yTLEx468QwgKsXVJLkljKtAoD/XCRXvHDQ+drR4WAsNU0BuiAWO6YhQJMrUK2QyKRUrVndPhR1FiWtF6JI4sn0ROMZBb7ylyNvHB9+56sXn65K++FCoudn2XTEAD4UScyiR2zjxTnadl/sdA/t7fbc/djniy2q/cCv+XD+qx/+6BUhzArCcJgjaU4iZ4koQIuc/5A/0gAqDDRF5TohNsOETxCtIndfyKUUmXFZPH57lo25sLns9WND73V6SBhW1QQxIGadAoA/lgpzpEJ6br8/u3Fh+1Cktc5Uci0RERERERERERGiKSe4TJ+PwfQE6BiXEYScAG1QjXXyWjQ0gBCbm5pmKFKolTLJTctqH9/RD8CslqHodVEmoRoseXujXFW++KrL/ybNZIUdn7y01qwO7DiMfLls0AY0rlXIwr/buOsJxeeO3/+QNBlGzTJI8jtKJ+Fp94VjX9qaYNLSa3S918j2VzneKGd70NmTXwZKMPMSHuzdgr14GIAH+IUVlYt+WrlsyeL6gGkBcftSFPS0PMLxDJcmEaIGlVySTaN/+2OVbxqo3ZW+k9iG9WSzv/2uVF/7fOWy/boNxPssk1IVeqU7mnSFEva8ubVYlcgKwpefP1JjVn3zyjn9/ngmK2iUMpNaTsRHq54GcENr7eHB0Pc+No+c0i73aTheJ4fPZCOJNIByLVG6cw5oQYAjnNO/HGE2SDKgVXJiHvTHOCLsCgKGwgmSkucKJdZUS2bTIZrm4e1A0I5AN5wHk317lBlhiXGlVjHP+Xr6GxJvW/PMJstKsnEJRd2xqv4nmzp+/27uq2kq0wBY3mjueehq8pN6iwbAQF7XLsjfXR7GpFYibwzv847o8sQxynCZ4UiiyjhhRybEpkiwyTRr4hFS6ezhwZzmaw/ExwvQyXR2d28AgEWjCMRTJ4YjJQXoQso2kReJ9ByIpzJZQSqhADiCcQDL602vHx92F6XiCgI2d/gAfOnyln9/4RgJQ59Oz8sd5f682w5gplXb7Y09vqP3kTtap3/gZ8mLB50AFtcZjg5GBsYVjSwJsecT+qe3ylCYQz5JGfkSR4F4cvKhiOlw3BkCMGaIaBIKec3OSUNpCJHEyIQScjMG4yODIn5m5IkRZFPF0y/Gc8AeFIBjztDfU4AOxlM/f7vzluV1i89I3hUEDAYSAOrMaptBFUkw7gg3qyi3JJb3+6PoUTBNEnxmx6lcXk2fP/53EKALjnV3NJEVBMnoKy/BZ9wRrvE8naX987c7H32/7093ta6fM0X8kciUiAK0yPmPVZf7e2bTqwBsmGd7br/j+iVVEy2vyau9JPG58HMpBfLWfjZcMqscwHFXmLwvVE7kgM79kS70c3IdoYU1hoU1ov1ZRERERERERGRC1AoZgDjP9/njAJom1Sw0ShkAAUjwGaLZ6ZRj3/fMGuKA5vMvZqN0sdtX1BMB2qBSAjDkq0a3WHUy6UgvXauULa0zHrCHdvT4b19RF4qlARiLYisW1BgsWnkgxu+OWta0zB7VApkS1a0nYr49Q/uBTLu39jey+iXWmx+wHV9ZqUDlApibkM109PSGDr+yiHlflQxkQcmyKcS8OLVZcWrzpwAoNIhcjjkfR8t6nUpGBGg+k7Vo5N9t6MIj30Swb2Sv1a0nEpaypL0i0S+LOpbDsdz/Cp54CsvuRvXyuZVadzTpDCf68gqat0hO6vfHXz8+DODza2f0eGMAZli1G+ZYf/5Ot1yWC8FbVm9664GLkfeNdntjBY2ygCAgK4z94ZSQbFmphDKq5QAqDTRFCXwGwXjKnVfJXSEuyqUBGNVyYjfh+Gw8mdJGe3oOvefvPy7UNdbUz/ic78XawGYp0gDQM7ILJaAEFvk3LsJGDAFAKyC88CgW3Y7mS1G1+LPzhMUCXrKr/q8zYdPRleMy9+osagCDQVYQwPJpopjLpOAzwl67H8C62dbXjw8XqhRmBaFQNLLLw0wiQBeOMTKNZIMCx5xhEp2BCfJGDtiDXDpr1SqunF/5v3sHOocYLC2xnYKS7o0mkXfpZrJCMJ4iiShk4yubLK8fHx4ucp13exlniJXLqKsXVP52a/dgMNHmioTY1DdfPPaLmxZfvaCUux4A8Pt3T/EZYXmD6T+vm3/Vb3a8dcJDxg+mf+zTJxhPfefl40MR7ql7VpjUiuEIt7PXC1D/vmH2nY/vs4fY8cLceIiQZzPS7jBnn54ATQzyBQMmybrh0wKbSmuUZ6XnHHGEAbgi7Pi7ryQjRQgj0xWgyW1oytVxHbkmiyNEgrHJBOhkOuthOIDyjqvj94Hyt6Ou5/c7wvHUo59adgarh9gUy2coSqg2qSr1dJebGRpdvq+4JGO///TqEO445S/csL3eczl9ZCIK5vd0BqE4b9GOGqb90vNHNp/0vPXlNbNLjUv9s9PuYgBsPO4WBeizRxSgRc5/CoF05OVvhlW785uXTrJ8QXTW0XKVYqQHQoKYz5JKAz3LputyM8ccYUycAU3sMIE4n5vpOW4qqIiIiIiIiIiISEnIu1w6g053FEBzeenxfoJKLiV5FLFkOh/xXDoDOhRLEoVaT4/qezeVa1Y1mff2BY0aOQDcoRGNAAAgAElEQVSNQiaVUJmsMMs2Vvhe01J2wB7a0eW9fUVdIM4hX3eaIKGoK+ZWPrd/8O0TnpJRtsRlLJMinQGXzu4Zwup5n1i5pqWwAMOYbx9M11tuqa9Wbz/lf+yWuVeU++E6goGd6N+FhB8n/4aTfwMlfVk/n7NKba/9mOIiewW/vJcDAJU50bjhtUhjsOLC+z6+9o4fvhNO8NsfWOE7vlnW9fqC0DsSxz449gF4TK49VnM5H1a2qph1M7y+rD5SVBLNm49WONAf6PEyAJrLNbetrP/rQceiGuOY1+l6i1oupTg+OxhkxxjoPv3E/oFA7O2vXEwsIH2+eJWRpkfbQcIsbxj9ik68txaNgkiBCpmkXKP0xlLtQ5GCZNPjixKbsEElVyU8jzftbI4f0vz680gyLUALAC9wEA0AgLjMLEGGlmQpYx0szWHD3CecNqOSuqe829t70JsxcBL13PA2NTOMnb/Ezl8CkAArgZXAQ9Wzs7aFkk3vQGtF7XJUL4NCDaDGqKYAjs96mZwUrqOl9WZN+1CuYRvm214/PtybT3WIJPhMtlCwkbl01oS5De78yWeSObfpMUdYJpUU/LMl2ZPP3wAwECihir7f6QWwdpZ1TpUeyN1Z4xmJ4IglUeT29TLJcp2S4zPeWAr5LBcfk0xnBZmEAvDm8WEAq5vK1ArpgmrjYDCxtzfw/IEBNpV9clf/RAJ0NMH/9aADwFfXz5xTqb+w2by7N/jn3fZvXz1nkoM9M9pd4c89fYhoiM/tHbh/Xcvz+wYEgVreYFrVZJFJwaenNU+fDNWsarS8esRlD0zLekxu/Kr8/F21QqpWSNhU1h9LnY0A7Y8lyeGkM/AyycoJJuYWE4rlLqqhaZimScw6eZwac4UTR0Tn4izs4KSDJa5QQhAo/N3L3w1HEgBCpxllU8ARZAFUaFVKmYQkDo1JT2YSPACrTullktO0zxd4q30YgEYpiyfT/dMLHz8DUunsQJCdUa6lqFHf3XCEHSNAtzkiANqHouelAE1eDLZ1eaczwiQyOaKqJXL+MxLBMenUngKFP+QGWi6hKLVcSmqzGM46AJpw6SxrlztXjGWi8XnigI4n00/tsgOos4iRQyIiIiIiIiIi00KdNxAwXAZA46QRHBQFLS1luEw8mY7l9OVxGdAaOYBgIlWoDj1mga+un3Xfswc3zKsgG9TRsjDLzxrXFV870/qrzad29gbSWSHI8ijySRDWz6t4bv/glhOeH103f3w/l+gXF80oe78rVw5ufs2omdek1ognygmCAMBo0KOmETXLsfJzELJwHUbXG+h6C94Oa+RY8YppKS276AFc+EWVUrvCHyfb0dPycIL3JWUvxuY/7zL8/tqvfyy5EX3b4G6X87Fl/lex9dUL8luIxGZi1x0onw1DrSyOxRXyvoiwrz/oiXIAWip0Zo1i29fXjT8oqYSaWaE7MRTtcjPFAnQ6I5A55t1uZlGt8agjfP0ju65dWPm723PO20MDoUfePfVul+9zaxv/4+q5ALZ3+57fN6BSypCvQEioNKq8sdQBexCAlEJGQCDGA/hCc1jz0h3ofvty5LRdKNQe7Ty7tMGCyAxF6FjK9obi6qfsRj4jPPfZVRc2WwC8sXfgt++3XzKz/J4rPxPzxa/79bZMVljdcM+zq73o2gT7DsS8kNJQm8EMyQKdCHSOHK1Eitkfw9pvyLTW387t0McHFXvaDFL1r5oiOpVCaqp9Rmp81yFYtPJltabV1dIWlTtr3yVJMUhJ1lRLdriyAAr9iJIUBOgwmwYQT6Vv/OPudDb7lfWz/u3SGROpJ/t7AwAW1RqPOcKOUAkz5vZuH4CLZ5XXmdQAOoZLt6GQsu1jOAC+WK4xXoabBz3xR6vl0harlnwRPiZZaaD5TPaZfXYANyytAbCwxrixbfixHb1Eiz9oDwXjqZIlLje2ufm0MLNCu6qpDMBtK+t39wa3d/u/ffUkZ+hM8DLJm/+4l+UzJBrl6X2D96xpenrfAIDPrG6USagak9ruZ/sD8SkFaJKLvaze+OoRlyvE8pmsXDpZ/HEmKxCreHG30ayh2RQbiCdJmPiZccwxknvjDLHTEqDzKqQ3lkqms8pJg5sZNo38fBHL+AiOYgF60jzrwXzchzs6SsDd2eN/du+AK5SIpdI/+cSClU3TirGePsNhDqcZZVMMmb5Qa1EDsBlVyEepFCAlN+dX6d/t8tmnEWlSIJ0VtnZ4ANyxsva/t/f3+U7PPT19fvBa+3P7HX++Z8Xq5jJyHmpMKmcoMRzm5lcXtScjeBgOEyTpnweQ/OsQy3cMM5OP5IlMiShAi5z/lOsLERzTqpyrzXdaiL1Fq8wL0GcdAE24dFb5H7f1ks/jZ+Tl2qCUyWUUnxYGgwmbjv782hnnZNciIiIiIiIiIuc9UglFyyXE7mrT0RrFFF0ejULGcJlYMh1NlnZAk9SIdCYXcWtQjc3oWNFoPvTdDYX/lmsUYZafYxvbU11QbdDRMoZLtzkjpE9rVo+S1S5sLlMrJG6Ga3NFxqeuEQF6aZ2pc5hxR5MoioUlELMFx2cHgwkA9cWGYkqCmmWoWYbLfoBg/46tb9jDfOusuih0L3XEbVVNX7t0MVmwoALrVDKEwHBpT4QDwMjLsPp7WPc9ZNNtu96UHP7z7Mj2tETOyCqMSach2o3ND5IVlwOvAkG6fj/z2WfirQBmlGkAUHEP7Ltg34mIE0od1GaYZ6Bi7k0zJe6IvNPNXDlDBe9J9GxB3w4KkterDA5lMxtuQa3xoD0EoM2Vk8ye2tEz2HHgCmrg7noHFahA/6WQ09yhPdckvFxCtahZYzUb0Q8odVBbrmyUzpYnK5gTtzdl1DpLmGFsktD6xNuLXG+SrXlNrfvoNU3LLp+35IKbfrF9MJiQSqhd31p33UNbAaxsNO/rDwwGWCJAd7oZAMTo11SuuXlZzfP7HWlKiQU3YcFNEASkYlBoQVGI+9C/E5EBJMII2zG4D9GhnAkduJbs2wMAN+S/pXUAr6YpAbJHhGfTSQB4CgBMwNMAo7dGFbZkwIpD12LRrZCV6Ee48xoQce15o0k+IwDUr97pbnNEHr2ztTgWhsBnsgcHQwBuaa095ggPjjO3cnzmlI8BqFWNFo1SRlFCIJ7yx5LEMVNMIWXbx6SS6WxBvPNEkshnDddZVBKKqjDQQ2HOHeEqDfSmdncgxlu1CuJ0XlxrAEDUZ7mU4jPCe52eT7bWjj/Ylw87AHxiaQ3R1edW6gEMhtizD0cew7sdXpbPtJRrnvvcBet/tc0d4b7616OhOG/T0VfMtQFosmjsftbuj180o6zkFk4MRestaq1SRpy/c6sMxOQ0GGSbJx0h88eSGQFSCWUtGlOxaOTOUC5t5ow55ggVPjtDieUNUywvCAgkRlTjoXBi8sxf4oDWq+TIP0IjRauT82BSy0MsH4hNZm0eEaBHC7jff/VEX978++Ih1zkXoMkzNnamAjSJO681qpB3r7tHl++LczyA+dWGd7t8rlBiykqMBQ70ByOJtFElv2V53X9v7+8PxM7Mmbu/P9hUrhl/FxfY2eMHcGQwTO4sihLm2PTOUGKMFd0T5cgI3lCpsasPGn8s+Y0XjtVaND/8+LwPaBeFgq7bT/lEAfosEQVokfOfsvyA+SSFB4spOKD1KikANS1DjPz5PDf3S2u9mQyeG2j5RD0iioJFo3RHOIoSfn3rIqP63GjfIiIiIiIiIiIfBVQKKRGgmyqmLoukVsqAZIxL5xI2xr3y0fLcnHcSWKyfalbct6+Zu7fPf1HLWClKKqEumlG2qd39y3c6SfPG+DqVMsnFLeWbTnjeOeEeL0CTmfg2Pd1ab9rY5rZqFcU+X7K6US0PszwAWi6x6iZQFsyNr2Qverl36FszZ4dY/oX+3n+pKmEvJdX5ohw/HOWQt1cDgEQWsF7wmWGpRfP5QIxXKySLyqi7tPuvVHUhOoCIS0hEKCFj5gau7PruBcpqe/XiFucR7N0B5z4IwvgdfQa4k1IIexXYOTKXXAosABYA2Vf/hPbLPxnw3qofiEoqsGU9ksytx1+hk/nUCA/Q+0sAG4o36gLach/vy52+Uqdi0a1Y87Ufvh3b2Db8/fnVcykZOcmZrPBepw+ARaNoqdDs6w8MhnLSKjEgz7Lliol948rZFHDd4rwhkKKgzNcZ05Rj/idG7c7djp2/wIlXIQisee5JyUyLEloqEYxxZhVlTAzKwv3y7IhKlZAZZFqLXGPgYyF5xK5LeXUpL2LA61uw5UdYdItfWXMkpFxdR6uzLGgddFWWbO6rjCV45L2ltEySgbC5w/PG8aHrl1RjNMecEY7PGtXyy+Za8SpcocQYW26fLy4IlEElK9MqKQp1Zs1AgO10MxfNGHWBCcKIxOZnksWqojfGoSDJmTQAKvX0UJgbjiSWwPjEzn4Ad1zQQMTxedUGihIEgZpl062fU/H793re6SghQDtDiQP2EEUJ1+dPPimSGU+mQ2xpx/QZs7vPB+CqBZXlOuVtK2sffb9vU7sbwO0X1JE2N5Zp0eXr95UOUtjV47/j8X3XL6n+9c2LifBq1dH1ZeqOYcbun0KAJrbZcr2yOKM5l9Y4qW47JUcGIwCI58lRqgjerh6/XiUvVKRkU2kyKlBlpIfCnGsqATrCpZHPxDepZQCCRYp5IJYCMMum29sXDE3hgM61rVj3FAQ4QnEA1y+pfvWIazg8tfTZ74+/cMjx2TVNJvW0rg0y8BZNnmEEx4GBIIAZFVrkH57u0cHZsWQWQINFQ4YiHKEproQChweDANbOKqu3aKQUOD7rjnDTyT0fCLBehlveYAZwzBm++bE9F82wPHPvqpILRxM8GYuy+2MkI8VAK6pMKgBDo7NEhvKDXoUJEH83+v3xu/5n/2CIBXz/cfWcyS35Z4YgjLjgt3V577u4+Zzv4iOFKECLnP+U5V++J6+uW6BIgJYD0BcSOc6RA1ompda2lG064bFNYH8m1JrU7gh3/6UtFzSXHkgXEREREREREREpiU4pC8V5AE2TSiSFhQHEuFztjfEOaABmjZJNJUIsKc4xxTvhutnWdbNLp/R+/uLmLZ2enT0BADIJpR7nRdgwv5II0P9+xawxvyLpsZVG1aomy8Y296I60/jtVxpoIkA3WNSTeOLIMcaS6XA850OcaJloIkVSHSp0Iy+uJGcgEOcBtNZbdpzy7aWWnvrx90ie73dfPt7nHLpHsWWN/y+GpGtR0oU9G/PtW4C61bDOQSqGuB++LnhPIuKQZVNIpwBAY0XDGrRc5mKyJ0+0zWe2VcY70fUmOVRtyoed7QBoICVRpSsWneArDengTPQjm3bAxshMM40SWToOPg6eRYJBMoR0MinVpCQaeTZBZ2IZSs4oyv10w66af7nrE58EYNWdAOCNpqIcz2dyEvm7HR4A1UZVvVmDvHtXEHLxx7PzArRJrXjohoUTneex2ObjxqdwpRcU1RWQ3/iHXUa1fO3Mstd6hr911ewbW2s+96dtTer4DUtrLmyx/eA971P73A9eOvfu1Y0v7B18dV/HLfUxLuiqSA2si70piQ1h7yNlwHoAx0f2cBewwTLvmH7tG1gLIMgmAcys0K1oND++s39/f2C8AE3ynVc2ma06mkwdcIUTDZaRG6fbwwCYWaHPGY1tuoEA2zEUHeP2DbGpQsq2N5bw5eVCm1ZuyEbBRZ2hBIAaE42cMSg8HEm0uSJHHWGZFLevqCPLa5WyBVXG467It66aXa5V/P69nh3dvvGBDy8fcQK4oMlSyI5QyiQ2He1mOEeQPYcCtCBgV48fwAXNFgB3rmz44/t9AiCTUHesqCfLNJZrAEyUxruzxwdgW5eX4Xii4ZZpFU1lmo5hpn+q8F9nmEXeSFvAoqUBBM4iE1kQcNQZAnDJTOvmkx5HkBuzQJeHufN/9hpoxaHvrSfaNxnMkEupmRXaoTDnmCoGOppIATCqFMjH6AdZnpjTU3l3/Cybfm9fkOQRTUShFKcvyhWsviE2RW7VG5ZUv3rE5ZxG+MMf3+/560GnnpZ/YRoaoiBgmEkAiCXPxAEdYlM7uv0ArpxfibwDemi0A5pJpQBoVfKSQxEDAXZbt+/W5bXjbdHkPmq0aGUSqtaitvvZPn98OgL0XU/uG/CzO765rsakanNGAPRMfPmdGMpNN7EHWDJyYNYoc0p6aNSBFI5rOqUpzyEnh6J3PL43lL94PFGuznzmiTQTwabShfz9gwNBNpVRK8ZOgRpPvz9ebVRN09L+kUIUoEXOfwrVXWyGaUVwjAjQtBw5Uwwwjc7G9LlqYdWmE555lbpJlnnohgVHBoI3lJpuJiIiIiIiIiIiMgkahRxIAJiOpywnQKcyUS6DUhnQAMxquTNfYM2gOnNta3Gt8Q93LP3C04czWaFMoxwvEa+bbZVKqG5vbDjCjUllJebcCj19QVNZOiusn2sbv/1KPU3yeWvNkynvOXGZ5Yn0Yyyl1hHvRTCeIlK+ragxVUUuitZ60+4eX0agfPk6ZoNBbs9Q5qB03SLrhqvUXQukAyv0QdS0Ys71MIxVPwEEouyPn3tHJeEfvPNKhTr3erx9v+PbdrOevuybC5g7rM6/9aMrZa4Xhj5usNNK2WPe+c8Hmv5y69qbf7JVAPZ/53IKWPPjLRRw6v6rUZwyIQjbujx3PXWI/O+hT8xtczLPH3AggnXG8rsA5AOjvQxXCFAGsKPHB6DapCIpriQHwB3lGC4tlVDT9CqWRmsFMJ/OyqVUmOWJuFltUpVplQMx6rBHccsVzTCaaToOgJhq/Wxy/3C6vqrlFFdxdLD5iU99dZ2wL9W/Z6D3pJYPpuXaWpsVySgiLgR7K+MnKuMnNlCPCc9dWVtzo0WjM6rlyxtMj+/sPziQS13g+IyEohQySToj/N+BQQDXLKiiKNSZ1d2e2GCAHSVAexk9LVtdr0U6iXTy9trgWu5ES982n92v1Or1F9yNykUID1Jtb/+iyctI9amsTIVkxcm2tyu31TBt6nSI2ilgJ74uVX/WaJN567Gx+V/V1rkzTNVJ5fHjAx+vz6xq0JSzPfAHEPOCkj53mTZIVdS1WARKatMr3dHkrh5/8aCOIODlQ04An1xaU3xqay1qN8MNBNhFtSPx6Af6gzNtupJeorfa3TpatnqC3AxCry8WiPFyKbW03ky+qcvnVmw+6fn4ospCKbaGMg2AvlL1GwG0uxgAIZY/5owA0CiktFxaZ9EAsE+wSgGSOzHGR1WmkwMIxM9cgLYH4gyXlsuo9XOsm096XOGxzfjLvkFBoMIJvlAdlNhgLVpltVENwDVV3gIZCSOPUyNJMcoKbCqtUcpIy6UU6i0qAKFJD6QQwZEREIynSGQESUOyaBTkzLvCiSlzV8iIyHBkrNRekhCbIkMFfFqYfjhGgbfaPRkBc2z6pnINgAqDEkA8lYkl09q8tsAmMwC0SlmDhQxFMMDIFf7D19rf7fIZVPLrFleN2bgzxCE/kNNSrrP72T7fSPbLyaGoSSOvHDfzO50RBgJxAVT7UKTGpOr1xwAEmORE563dlSs0OhCM5796ObkO3cwoub9wJbgjU38L54qO4ehtf9oTSaTnVel9TNLLJD2RD0SAJvkbMimsOnoozO3rD0xSA5bwZtvwvz572Kaj713bcNvK+ilDwD5SiOdC5PzHoJKvn1OR4NPTLEKokEpIWQzSG9Epcy8r+rPobIzh2oVVRpV8fvXYmZXFtFi1LdazeLUVEREREREREfmooqVzHqUZ03ib0qhkAOLJNJNMASgIBMUYi2Ztn+WsuPVzbL+6efEDfzkyt6qEF8Ggks+q0J4cZo4MhioXVBZ+zvGZSCINwKanZVLq7tWNJTdemffBNU2qkOYEaI4nIpGhpANaJQPQ44sBkElRnAinUcgMKhlpT1OZplxPuyOcN5pTzEnewuWzrZtOeA6i6ZoFF664sXWSxph16nc96nCCvz0szMsLCKR+XZRL/6bDcNN1NzywcZMAABbTp++eW6n/6c/elUnSFXpluVbhjaXcEY6oHuVaxdiMY4oq14+oEmatyqTNqV2FI7LqaQA+JuUpEqeImbfapKo3qwEMBuLIe4HrLeqzt7bJpZLFtaYD9iCpiFhjVAP46Y0L2h3R1noTgKYyNYB+PwsgFCMCkEIm1R8djBx2xdZtuOEvTOv3d7WTrf3txtWLaowAHnj8zYuzB5dHt9TEjqH7zdndb25R1sSEpVVH2O3lgYi0Iv3Oe1nasLUnnqArrr3iyveGZd5YyqJRXDXfhiRzf4Nbqmlrbt8LbgFM9UiEEHHdMrj1fvk+zT4/9gHAmjFHcvxJaGyIu03AjcU/d2HMCIksw5Zl+uDsg/O9ecA8AE4AuAOAB2TjBC2gBUDrqOoVzzY0HI2beXsWzZdDnru8d/X67QGWlkuIw7RArVnV5ZbpYv1o2wXvCcSDg/rFD7dV6U3lj9459iLc1O6+75lDUgpbvnbJJGkSu3sDAJY3mgsW7B9dP7+lQnvvRU2FZRotGgDOEJvOCjLJqCtQENDuCpPP73a4kR/waLSoAQz4S8i40QR//SO7G8vU//OZ5URprTaNUtYsGhqAP36G6RAAjjnCAOZVGhrLtACcox3QyXSWGMwBdOargxIHtFktrzGrkZeAJyHC8cg/OVVyKYnzDrG8RinzMTktu0xLA/DHxh5Ijzf2kzc7PrO68aIZZSQehKSyuCMJIkCTCoHVRrrSQFOUwGcQjKcK4wElIYNtYyoZTkRxXnMsmTbLSm85lky7wolZFWOf5BuPuQB8bGHuDtAoZCQcaVu375r8Uz2aTAPQKKVkNKu4lqAg4IgjDOCUp0S1T1coAaDapAHQVK5BB3q9ucXaXeHrHtndYtW89cDFY9byxZKCQAHo9TCYZ+v3xgHwmdyQwPi9tA3lLtpQnCdjAEa1gpTUGmPlLvyXTWWjHF/y72OITX3x2cMrmi1fWtcCoMcbe2Jn//2XzpiyaGdJujzMbf+9N5JIL6o1PvMvK+95ar+XSU5zaOF0ieTnRV0y0/rc/sHtXd4pBehuTwyAm+H+a2Pn797t2fTltdPxp39EEAVokfMfisKf7lp2WstrlfIIx+vVCgAaZb4moXLq2RbT38XameXnamsiIiIiIiIiIiLFFN7fmsqmIUArZABiyXQ0QTKgS/Sfy4qkjbOfFXfd4qqVTWbzBFGkS+pMJ4eZo47Q1UUCNDHnqhWSkgkhBSrzfosGy2ReMJJzzXC5CI6SLdEr5QBOeWIArDp6TKBHtVEVSTAAGss1FTqlO8K5IwliOyVRIVcvqtp0wgNgRvlkc/4AUBTqyzRhR9gRYgslnvzRnEzsjaW6PEwhOnooxBpoGYBqk0pCUTYD7Y2lPJGEQFEYbdMeaWqRxlFtVAWZXOBsQSghYdl+JknKPFq1Cm8+rLbaqKo1qwGEWD6eTHcMRwHMsU1xRNNkWYPxgD1Y3Mj1c2zr5+REK6IM9gdiAAJsEoBFo6jQKwGcdEUAvNM+jHyG75tt7kU1RjaVebVHeBWtMmnrTfWJ71cekLc9Y0o6TU4ngFzCxe63AFxDPnf/+6Vy47vW2QrbDPmTP8PQ4euyGQAYGhXrUT+m3VprRNMYpmv6+DJronduZBsVdwNUzNrqScrNkjjPp5KgpVpLG2YOGRfvDOjDlOavd7c++PRb1VTwM/Ol6tggM9TBuztpPioTOJmQkSiUoJTQWKAtRzYLLoyQHRyD3q3NQDMAF7CXQvls1CzPVCxIdQ79T0PUZjFruiJg3Oh+B5526Kq+J7f+UNGh2+ItNLYOf34GVDqsxI8lUGpZmdkjLVfVLdU1rdy2DxaNPBDn/9+mjkc/NWFvcVevD8Dq5pEadzY9/Y0rZhcvU2lQfraFmZM5xR7P6KtnwdwIae6e8jBcISVgc4cPeQG6yqTGBKkFz+0f7PPH+vwxfyzpDHMAxghY5HEUiE2ouE1pRD0yGAKwpNZI1GRXmM1khULM9NvtbjK8BKBzOHrVfBvyhmuzRlFtUAFwhKbQ+yJkcEslR66+kcIdTQbjqRqTyh9LkqMgSSljHNA+JnnnE/vcYS7AJudWrmBTWYoSWqy6bk/ME03NrwaA4WgSQIVBJZdKyrW0l0m6wonJBWhSFJHUw5yS4skQDJeeKNHlvqcP7+jxrWyyPHDZjEJsZiCW2tUbAHDt4pEJH3etavjNu6d+tPHkutlWlVwKIM6lAWiVMjJKeso7ojV789dMIXq+gCBgKMIiPw2FPCX68sMYj77fl8kKXe7Y+IEQT/6Ien0xAIXsF38sVVKAbneOtOfwQAhAuVZJBji9Ua74AiuuPTgcTpQUoB/a2LmzN3DYEfq3S2dIKOoP7/e8fNhVrlV+ZcPM8QvnNhVJJNPZ4qkYhKwgfPn5w+EEv7Ba//Q9K3S0jPiyPdEPRIAm5YINKvmqZstz+wePOCJTrsIkeACtdUZ/PGVUlXCjf5QRBWgRkRKoaGmE40npFW3+Ld8wvXoFIiIiIiIiIiIiHy5EU6blkspJS24QCoHIpG5byUlvJnUuyY2iBM25MCVMUptkSZ3p2X2DpERYgeFwAoBVR0+uKxWOd3y/vRiioUc5PphIAShZlYuclh5vToAe89tqk/rkMAOgsUxjM9LHnBEPkwKQzgphNgVQqxotJo08FOebp2FCrzHSxxxwFqXK+pgRNWF714ieOBxNalUjqbhWPQ1X1MMkBUEAUFGqq6+n5aTMF4gAna94Zsh/p0QQdDMJN5MEcOGMstePDZEs6GqTWquUGVXycIJ3BNnuYQbArEr9lEc0HZbW51K8ZRKqbJx2RmKFXWE2lc6SDFaTVj6rQg/gvW7v1g7vnr4AgAfWtfz8ne5NbUPfunI2kWDUcqleI3++D7dc9e1d8tvKBze1lvPN9Y17BuNRt32eJpxkmTTHWBIOc9Ku5MNN/F5E95KdptQ2u6JFptKit+gAACAASURBVCtvotyIDoI2Cfrq7dGKI9LFd9/wMYOGhkQGhdoAGIBvP75393Dg2dt/tFrjRtWSh98dfnxH/70XNe7o8Xe5mfqseiDI3rC4eqvDJZPEe8LZZ/tUGkXdffdeCQqnBkM3/GE3gJlW7etfWlOielg2DXc7XAd5d5fz1LGKxCk1H4SvA74OKbCOLOMGThStwkVM6ACQhUxS04qKuWmFLnTszXK2R57hkAF4Vg1vIzoR2IEj+CnwY4kiZKzxB2rj/1et4ZwIOZFOQMgAEshkkCghU/6Qpb5p1dk81dhkhdYGcwOaLoEqH/Hh78bxv0raXvxOyA4ArwIAJFIY61G1FItu7RHmFxroDLHID3hUG1UA3GFujFiczgpP7baTz4cHw+TGrzSOSpK0aJXIW5LHMxzhPvbbHVfMs/34EwtKPi68TPLFQ04AK5osVp1SJkU6A090pJDdXw4OIj8Sc3I4F8UQJg5orYIMyTimckCvNkVnKXirOve0NKmV7mgyxKYA+BkOQJlWSYa+AkUHwvGZe//3IAkeOeYIH3WEAVTo6FqTutsTK8xRIIXvqgw0gCoT7WWSQ+HE+MKtxRArq5eZlkxJGkCYJAa6yxMFsK8vcFtf4OtXzLz/0hYAm9qHBWBhtb44EeILlza/cNgxFOYefa/nqxtmCQLYVC6CgzwhyZOWUDjnhfiRAoWkdZIr3VwUPu4MJd5sGwYgAIVApJEjyuuzPd54OiMUUrOD8VT9uNHKeCrdH2AAqsakdoZY4pc3anIRHGwqy3B8YSDWVWQ9doW52eMejwfswRcOOciKg0G2waI5MRQFEGAnLD6ZzgjX/W5nNJne9OW1Y2YnvHF8uNMd09HSp+5ZSdpA/uq5PyAHNJcGYFTLyZ/UoamSZ5D3/l82p+LzFzcH4qm/TybJPwuiAC0iUgK9UubOT97UfAAZ0CIiIiIiIiIiIh8caoUcQKNFO0khvgJEUI5zfJRLA9CVzIDW5N4DtUr5dLZ5NiyuNQJoc4WLXWyeaBKjw5dLYssrsA2TVl8kwaxRLk1EGWOpCA6DSgqAVPqqHOcsrjGqAJg0cq1SZtOrkJ/bHoynBIGiALNG8Y0r5mw56b5s7hQTlgHUmDUAXEV2P29sxKj4frev8HkonNAoJMhbhnNFsaJcVhBQZAAvhqJQbaRP+eK0XGJSK6rzKptBlfuiiQAdZlOuIAugzqxuqdB2umPIq4R1ZnXYFRkIxDs9UQCzzlFK3rJ6M/lQZRxrMAdg0Sg1Slk8mR4IskShK9PQC6oNN7bWvHjI+fmnD2YEzKzQfuaixoe3nhoMJjqGo+TbtBqUKpnMDS6a4I9605v7Fv7XwvnNS+sdmcFv7G2rM6sGgwmKEq5dVNXt9F9s8F6mH1qhD6BiPpov3TmsuOepA3Og//SF9T97q/Pn6xfWmNV3/WaHgZZ/2WzF6DaSMYCDPvnqhesAuEJ9AKpNqnKtogsYCLIA5lYbXj7qSmcFIpfPtunIgdabNVIJRQG/uW1JCfUZgESGqsWoWiwTcM2Dm9hUdt8X51ZET8T79g11H0lJlNW2CqM0ibgfChpNl6FuJeK+oPPUc6dkh4SZT957MYBXDg5+PbjqslrKIE2tm22dZ8bb+4/VZN31ya6qeKcx6ZBmU2VcXxnXh/CEX1POkR4tbpsUlUshkSDuR7CX/CwrUQxoFqmzEXNiUJ7lEOxDsA/tL65Umt+raInoWnxpTYqSpyhlg8aAE46a8nnEfx3leAMtRe97GNyNVIKJhJ/QuFV0LCY1Sbs7rjBUNiu0zcZRdygZrvAxpfW797u8gXjquf2DF8ywXLtwbIIwgB+9cTKeyiysNmyYWyGVUFUG1WAw4QwliABtD8R39wQoSvjqhtnfevl4tzvnhCVFRy1qBbn1fNFkOivIBL7g9c6RZHD8/3Doyf9wtwHAU1Loa2FqeFhvbdfUWyJapFeROOYyndKsVQAIJ/iCCv+TTZ3HHGGDSqajFc4Q+/QeO4D6Mi250wsuV+ICJobcaoPqKCKFjP6SCAKiLA/AG50w9biY4qSOGFc66kQQEIglAVyzwLaxzf2rzacumlE+06Z7bt8AgGsWjsq7V8ml37923heePvTo9t5PttZW6JWktJ1WKdPSMgAhlg+xKTIWeDJfANARGHtQ5DCtWgVJASJRS64wy/GZ/9nRW5gp4h5XQsCdV5x7/fHBIFsorOcvpcifHIoKAmXT0UvrDc4Q62VyMzBouZSEL7mjXEEbIYMB9Wb1QJAdjoxtcDojfOeVtuItVxlUPR4GQGiCERQAHe4omYby07c6HrtzZHZCOiv88p0uAJ9d21ywpZOc1WmGqxTo9cX++H7fvWsbxyeoFBNlSS1NeY1JBcAbS3F8hpZPNggdyY1ky6QSiow2iRQQBWgRkRLcuqL2taPDqxrLUDSF8yzz/kRERERERERERP4+aJVSAE3l0ypJpFXk+v9cOouJBGhtrht5NhUIp0lTuUZHSxku0+VmCpEUxL82iW+aQMyJarmUZDVMBHE3eyJcOgOMTrguWmbkh7ZxWyOhtE0WDQCrVgH8f/buO7Ct+twf//to7y1reI94J86eZJCQlL2hjBbKuHRDb2/7a+m3vaWXlktpC6ULLr0tLVBKCxfKKoVACCSEbLLtOLHjbcm29rQk6/z++Eiy4hXHiWObPK8/Wvsgy8fSR4r9fJ7zftDj70d60pdBJRYKuJsX59+8eFzztPP1cqSHazG9/hgAq1rmCETZBeBFRkWLK9zlCSvEgwVoVmRx+FIF6NF+6lyD/FhvyKqVcdxgmkGm71uvkHAAz3MsYSNHI620arIL0IUm5YFO3+8+aD7WGwRQaRur0XL89ApJiUnV3BfMGykIleNQZFQc7vKf6At5gnEArODyn5dXb23scwSiADZUW5US0ZqKnI1HnP881M3CZO06+UASAHzpjG+9UgJgYZERQJs7AmBZifFn18+96jdbnmrWXfTFS1GUKoUXxoIAGp3+771ygOe5x987ds/qUgDlVtXwml0u64RNN2myKFi7VpZdc8nVy1nF6oOjvQCq7KmHzqiS/OmORSqpuOpU7eRsNGKDI1gfVFmqLv9JfcHzzqXrqy2//+wIoRkDlpU//9e7HILxgaRYKHhtvwNAZ1z5Xjvf0J+YV6D/y/GCzy5cbp6f9x8fHL9zeeEqcyTsaNy8bZs84ausmm0rrIBEBaEYPI+BGBLRT0707DneUaFJrMzlEHYh4ETXJ+g7is5d6fMTonw9Zn92t2Tht15pUstFgWSsSh25qSh8IbcLB18Sh93F/Tvgy4q47gL2QQx8LFK6jIXSf7wAxz742lKrAtBnbun+VzX74H8ApRXmMhhKYSwtVBX8W2mkOaZLJpMCgQDJBDp2o/co+v2IR6o80u+WSby8+pM9O1YWrNHpBu8PwJZjva/v7/pyqftrlg+Ef/oJnIdfkRfuLVqib/UiJHd7+jobGv9e4Ama5i+oWPVdoM0TCscGFBKhO9jP1pJJKf5sSXw1v9P/+EMG30FeZuDM5TCXQ18KXwsO/A2xMIABTsRzAlEyBm8LvC0VQAWAzp/hLfFt2rJFBTVh4zUG+WwAhToxyw7meby2vxPAz6+v29vufWJz0wfHegAuXy9nL+1MkZFlQLMuYPZWkB1m4g3HX9zdftPigsybeTiWYNc0JJK8NxIb8ZqPbN1ZSR3+yMgFaH+Ubc/h0c/OEwj2v76/694XPslRS490BxRi4VXzhpb+P1NtXV5q2NbkfuNA502LUsE2comQRQk5fNHm3tCCQlaATm13uEIx9uBn7qSTtX4bUu8YBqVELRMFookH3zjyyicdABQSQTiWdAzLo3AGUj9RqD+x/YQrc3zEJPFDnT4ANbmaoqxhtgalFIBVK/dFAt2+aLlFze4tEE0AWFCkb3WHO4f1xf99V3ujM6hTiBcVGTYecR7p8hcY5Oxx80VGLUDvSWcTvX3IueuEe1Fx6g3q5T3tra6wTiG+K2sKAtt2Pd0O6Kc/OvHinvZ36x0vfXn5GENlfelgLr1Cwq6k6fJG2WzJ0QSibPwmXT0/AipAEzKCO1eU3LkiNVZCnemAHjNxjxBCCCGETBM1eRoAK2aNa+QGK1Jk/mLPDKDOZkj3CGtkZ20oyGgEHFeXp9t63PVJmztTgGZX4o8YMZGtwKD44RXVdu0IHbXZ2K+13kgcgFjEyUfq58q++G/4911fbXlxT/vNSwuQaUP2RZAuQFuGRXaMLU+vANCWvrqZ51NXyi8o0r95sJtVK1aUmVpcbZ3+qFQiBGBnHdCa1LdOAgBGS9tkhSrWta2QCFmkRmb0olDAmVNpAwEAFq2s0qbBvi6FRMAaUP5tZcnmoz3sOnSZSJBvOMWzMH6LinTNfUG7buSdkhKz6nCXv7k32BdKdSAC0MjFD18/5wtP7wTwmVorgMvn2Dcecb60t+NziwoAWFUyf38cQCCcyvhm5bZik5JNQgNwzbxcqUjw0pdXdPui2WPP8/QKjuMHeA7gABzq8r+8tx3AiKPR8/UKpGMlAHR4QgDyDEpz1rNvVkstapkvEtye6oAevJ+V43t5Asg3KBscwZa+ICrMRx0BACM29gIwqaQysSAaT3Z6I1q5eFtTH4AfXzPn+ie2HekOtHsiAC6bY19SYlxSksp0VhiKdxzP+/O2lqt19l+unjfkDl/bf+jp4+IvrylZuaJq8KinBR27IJJBqoalFkoTgMXAh98pAPBxk+vm329/u0353N3fuWDDT558/kVz9MR6s8/hdMb7Q8Jk3K4SapJeOA9LEiFb4giOHgEAqdpTeIkLmlY/HxUqF5UXHTpyqChyxBxpVsTdQiQQciDkQMtWAArg/wEA+J+qYSqH6ziig4k9c4G56Y+Tj4tQeiGqrkBOJTR5fMAZ+Pi9rabX8zr3ozN1G2P/gfU4AAcAGIAV7GjPSzj249fz170uueSYM1CXr7NJIj8qPXap8zXB49t+mi6XA+CibrRvR/v2rKdhVnzeF+7cW3rEK9xxX43I3wL3iaYjewXOA/mRo6K4X+2pX4x69LyEPYbj8qAoHBt4qgy1V/i0Nd+0tku4xLpIz3xZNFxi/HOzEkCBUWFVSwE40+26rEDM3gTYq7vLO9gA+1+vH3r5k65IPHHvulTEsDc8WGZ1+vtPWYA+aQhhbGDE27iCMQBKiVAqEjx4Ve2uZnerK9zqCislwmfvXjJ8s5DjsLDQsK3J3e3rD/THASjE7DIAlJmVDl+0qSewoFAPnncHBsu47Z5wdosuu0wkV6vI3OfX6kTxvjZnb6jWqPXxyhKT8q1Dju5h2eLOrFCRdw87Mh+7R0oSP9jpA1Cbq803Dr7XsfefMrPqqCOwq8W9utyM9LaTWiZk9ejuYRHbu1tdAL6wvFgnF2084jzS5StIv39mPykA9rR6nvyg6YEranL18r3tHvbYhmIDD75x5B9fWyHguIEk/8v3jgH42oWl2bnVqQzowLjSvTNY4pMnHL/1qR0vfWX5iLuAyMzSlEk4Dnl6eWNPsN0THrsA7U91QFPtaARUgCbkFFSZIYRyer0QQgghhMwA18/PX1thGW1y1BAsMJq11MlEApFwhNJtpgP63PxVOTdfv/W4a1+773NLU0dYx+t4xhndkdUaNprsLm+9XDJisTr7NpZhxZRCo+Ltb6xK/VetHAC7TLs3EAGQM2b/9XDsj/8Od5hdHR+OJVg3+sIi/ZsHu9ltVpSZ/rKjrdffL+IEAPJ1isy3dvqiAzwHwKob+fEps6gAlOak6jjLSo3vH+2ptA723prU0p5gLJFM5XiwpvhiU6rtd06e9p/3rvzis7uPdAdq7JqzmMFy96rSVnf480uHzvljio0KAIe7/OzEDOmc6DUV5oeune2PxGvtWgAX11p1CrHDG31hdwcAi04mCHAAfP3xvnAM6e0TjgNrQhSLuItr7QBUUtGQyrJUJLBp5V3e6GdqLSKOe/OgY/PRPgCzRrpKPS+rbz2WSLqCcQB2ncykGnz2TSpJjkba2BNkT2jVhJrHCw0KAK2eMM+jsScIoNwycscia5dudAbb3eGPPZGBJF9lUy8s1Ffb1Ee6A4FoQisTL08Pi8u4ss7+520t7xx2RuIDQzZjWEytccg7ib4I+qLRznZZqfG2pYXPbG/91ov7n71rycOHdcC8Q7d95rm3Gp7Z3grgj19YtLYyBwPx5998N9pzfJ0lWFhY+mBT6R92pMqC1y/Iu2TVnPvefycQvQjAHLv2tbur4W6G+zhczeg7Ds+JkKtDEe3l+gPo3AMAMi3yF0Ouh0jWfKJJFXXqheFk1CdNhHB8I45vTD0+wKXsI4EYtdehdDXMVUf3fMg1bTTwvggvinFSTm0rtJmFx96Ct2127+uz8Xr8BSti/m/Es2qaArE/Z0G77TNPdZfmyfq/NZ/jXMfjPY1xTqJY9DkUXeDwRLa8/r5MDJE+F/pcFK54tXfRrw4ev/uC4u9foP7XO2/ZnZtqfZsFYTd7lxF6jmPLYzrg8+z+O2AEfgR8XVdyRHNBnigQU1bnacXByABcTfyJLXebAn/hKljkDrtMoTOdIB+ODfzrsAPA8d7BVGVfVhdzjz9aeao5os5ABAC7EoV1+A7nSo1SlALQKcQ/u7Hutj/s0MhF/7zFkuvdiLgJYgW6D6BjN9yN8LQiEf2K3HalxeoPL5K6rpxvEYslErib0b79B+r6d8oKY6ECbH+C3/LocyG301jZq6mIJEQ5W94F74O/E+ChMF4ewgZzt8kZwO/1UBnR0/hFT3PmlKIFq3fk3P6RTDVYQOd5+DvRU18p4QFwHM/z3JbjfZmP+0YKYmYZILV5mszwA6QvpNhQY33zYPc7hx3f2lCBdN0/Vydn2wCdwyKSj/eEAFRY1SalBMARRyA/HY3tj5z0wD78Vv2uFo9ZJXno2jl7W30AfnzN7P/38sEDnb73jjjX11gbnYEub1QhFn5uaVH2F6a3IYfGqY+NddMrpSJHIPr//d/+5+9eOuLN2BBC9u9+vkHR2BNsd4eAoZtnjc6ARCRgOdH+6ACodjQKelAIOQWlNNPwQrtYhBBCCCEzwzirz0jnrXX5Ihi9vmxUpv4OV5+TXwjnFegB7G3zZI44fP1I9xqfuezicibeeojsX33Hjv5g5Wmnrx/pIA6T6vTOk11EH4oNsCvxWS1bKRVl14kWFxuEHAaSPGu5ZRkgqfTPQDTJCtCjnOdNiwrVUtG6qlSc729vnR+JDWT30OVopKz9GYBFI6+xS//72jlz8werpfkGxctfWfHSno5M5+xZMStH9cI9y0b7r8VmFYBdLW4AMpEguzZ6y+KCzMdSkeDmxQVPbG5ij4xdK2PRKr5wnJV4dOnXwspZ5o1HnBdXW0fMmWEeumbOJ62er6wt29vqefNgqiRaPnIBWgGg2xtOJHn28pGJBDq5xJwVwWFWS3OyFkPFqQp/I2KB5m194d5gfyCa4NKPzIjYtLpWV5jN2bt8tg3AqvIc9vyur7EM32GaX6C362Rd3uj7DT2XzrZl/ydPMIFRpnSO4TuXVn7Q2NvqDt/45DYAhQaFSiqak6/D9lakM8chFB9DwdPHk87c0vvnVL786jsArl+Qt3KWeUONRcBx8/J1Hx7rA6BVSKAwQGFA3mDqyGU/f18sjD91mbaY74LWjtwFEIgAdHkja7dtEnJo+PElG37xwYqcvm/nHdU7t8HXCn93UmboEOZ1aecu/ex3oE79pA09lvs+KmMfLy81PHfXUgHHgf8p2j7ufveJnPZ/ikOpZdAnK5FUrNXUfgaFKzQSZcUAv+nBtwNR0UVrV9TWXLfyZ+87vNGrk6of2wf6gjGc/B7Cypfdvgh01Y92VjQ6c/9xz2NzZc5fbu053Bv/4Wx3nmOjy9EeTECrlOvUWgxEk00fmqLNq6LN2PQMgA85Qcytxq99HPAF4CaRWvruegglFyT45wsEEYkBPUbkVL9b7wzHkgDasgKUvZHsDuj0cZ5HIopEP8QyCKXZxctuX0QjE91aLfJ7AmWxo/Agrs7zRRPZmyt9LJldnXlxmbbdN8+8+xHRX/4EZNKYTyKLNZWhCb6P0PjLl9mhXwFAKp+kAwA4QAjYQ4fsoUMA0HvSPVgzH2VCyTkhDCUI9qDfJ2v7YHXbB9sk5mBrNV7JhbsJPQ3o9wG4B9iQs/CQ9do/9c7a3R0HsKpUbx7oWZHcg8Z2WOdAZUFvAxz7E7oSFnxca9dlhhAgvQ1zYYVZyKHRGTzRFyo2KdPTIOWsG73bF4XrOI69jUAPBuLguPtkCXepbjFkCnX5F0s9tXyj2dVfWGo/kixoiw/uF7pDsd0tHgD/POS496LyDk+Y4/j11ZYD7Z6nt7VubuxdX2Pd0+oBML9QNySCme13JpK8JxzjeTzyr/pKm+ba+XljB6h2eqMAHryy5psv7j/c6RvtZr4wG5MgQnrLrd0ztGc8FEtc+eutcqlwz/fXCzguwDqgqXY0EipAE3IKKhpCSAghhBDy6aWWS5CetqcapTCnT1dpdZOfAQ1gXoEOwIm+YJs73NQbFAm4DncY48iAHiepSCgSggVAaxUjdyuP3QGdzaKWAvBF49H4QF+wH5kS27jJxUK9UuwJxTs8Ea1cnJpRppJkRimqZUKjUmrWyhzeKAAu/VCw/w1EU9fIW7Qjf1+FRHjDwsGKrYDjsqvPyKqYCzkYVRKOw/D0aplY+LlRWpUnSbFJiXQaQKb9eUS3LSt86sNmNljMopWzeXGd3gg7kqmf3rKkQK8UrykfayzkmgrzmgozgKUlRjZYDKN0QOeopWwV9fijXSyTV6fgOJjSz75CIlBKRDnpXZM8vVwlnUj9odCoANDmCh1zBtinI88tBAAUGBQAXt3Xua/dKxJwNywqALCq3PzkB00ALptjG/4lHIcr63Kf/KDp1f2dQwvQYRZ8fHrrWSkR/enOxdf87iNPOA6gNlcDYHZeaj8j8+pgceRd3ogrGPOE4hzHP3h1bWabYX6hgRWg7boRvrtZJdvVEj40kF88Z0n28fruAIBZFpVYKMg1yJ8/rli44AvXXvp9AOD5Nw503/vXTxYp9S+qB3/MTPiAWib8xY1zUw3+HIfC5R/NLXg1fMvl9sBn18y/7W9tH7ZF3lm+SpNeDCIht2qW+c2DjvfqnR3eMHtt/mNf1/tHe4L9Azh5c4slCHvCMaSvlpApVLDa9gV3bm7vXb949fU3fG7tf73jiyRe/sry+QV6AB8dON69/cVZscN1whaBq1GQ6JclfBCIY/ZFMWejKt6Hwy8DkAPL2fd48il85qF3js1nn3VlunEH4tH+wT7fSH8MB1/Ctl/BeQjJdLwGJ4S1FiVroMoZcLe9qtlvC9fLj/gAoBt4H7zUEJSWKnNy5EothGIIRPODA88X9KtVWhxoh0yPI6/ZjryCWAgA7PMx0I+IB5Ya5C2CuQrGUoikzvamXTu3zI7uKfDv5RJRABCIYZ8fklnR+pEy3geNvan660+2Wi83dOYPdHS6Q3adrLS4COpcCIQI92050trar11RV1msSiDcB2UOStZAqgIATwu2/Tr5yXOqWK/K+QGcGPzRDEV8X3ORf3eRf/elEPQYZ8kTfk1HD4cBdAN7kTqTZByACHhPpO2zlNn+/hj4gbftWpfIelg82yjjAWjk4mWlxq3HXW8fdnxpdWmnJwLAppMXy/ufLN6yxPsmfj0YzwJgHfu/lwDg/vTBwWbjH8uhsUNfFFeW31C8+O8npN5w/HebjgOYZVarpKLlpaant7V+3OQGsLvVA2BBenZrhlgoYP98OHzR1w90/W13B4CH3qr/6ppZ37hoFkYSiqWiq5eVmQD4IolQLMGuhRqC9c5rUx3QSgAd7tCQ23R6ItFEMppIBqIJtUzkj1IEx6gmtwB97733PvHEEwAEAkF//2Amy8DAwH//93//7ne/C4VC11133cMPP5yTkzPGcUKmEPs7RCzkxvhFhxBCCCGEzFCZidMY/bJZrVzMATygVZyLDh6DUpKnV3R4wqseeT/7+NnqgOY4qKViT1Zv13DZDVynHGkoEwmiiaTT389KSzmnWYAGUGBQekLedk+4xq5hSa85aplFIxOLuHiCLzYqOQ65mlQB2qKTsT5WlVTEhm4BUMuEI1YQxiOTGWLWnCI++1xiF3QzhjGbcG1a+YaqnLcOOwHYtDIWx9zaFwKgkAgyf8WIBNxo6cnDcRxuXlLw8FsNWpnYrBrhCRUKOLtW3uaOdHgiDQ4fgCKjHFkFVtYumqNJnXmV9RTzBkdTYFACaHGHjzr9GKUaPnhjowLArhYPgKvn5bKluLBQX2hUcBxWDMvfYK6ssz/5QdOmhh5WQsocd7MMk3FfTpFRbFL+6Y7FNz31cTSerM3TASgzq8otqkSSzzyYrGm0yxNucPgBFOiV2U3uCwp16ZuNEBFuUooBuIbl3rIngs3JHBqOzHHtrhDS8TUZBelIhB9dUTsk5KfCqt7SmTzo1l1/TemW9gaAG/JQrK3MefOgY1ODkz3gl822ftLuZbsRhUbFV9YMlv/0CjEAVygejQ/4IjGAY08NW9iucLyhO+CLJBRi4Zzc1A9eU1rwtZcX6JVL3//WhTyf/Prv/2kX+O6+9pK9jtgDrxz4jyrHDXlugEOS336o0RapL/TvxVvf/qZm6VVFdUGhqixyGI/ei2AvkvE1Yvk7loWt8kprrK18yyeI9gx9QPkBdO9H934AQoANg+IhjIpUnFgu63dJ+t1F/e7BvmPAAlgA9ABNWfdjqcElj6DoguFPGYCkKO9rLySE3LLf3jLvV+8cWlqg/s9rF0AoCQX6L/rF5tWW2KN3rX/qtaMvnuiwFG9o10i/v+/wWrn5j8sWZ+7ha2++7Ysk/nXFSgy/mEBfhMt+0VD7rX9ufHuuqOOiYgmMZTCWwlwRTorv/+Mb1/Mbl0a3iH0t1tBRSIWIdwAAIABJREFU9hUJgTQgz9crxHA1IhmHRAlL7YDjsDzuy/ftgQ9grdnAcvwVv/gxzBWIR/8QiwZ1EOwSo3f2RcmyuiLvAtcxw/98dPFAPwAIxChagZwaCMW+cKSlrd3Au/N5BzytMYm2TV4TFmqs/U2GSIsoGUMiAncT3E0WvPcInvimqUqU6Fcedt1jKvLkfwbe4sUlNo7jm/uCvYF+1iK9sGhoARqATSPzhOIOf/STNg8AFnb/283H7l1XNuL7OUvcUkqENq2MBa10e6NlIyXd+7LamfMMcgDt7siQ2/SmX4buUEwo4Fj3u2b0q0zOZ5P7oDz22GOPPvrom2++ef3112cff+SRR5588snXXnvNbrf/27/920033bRp06YxjhMyhaxZ2VKEEEIIIeRTJrsrUy0dudIk4DidQuwJx8/ZX5Wry01/2dEGoMSkkojgDsYWFBlGrANOjEaWKkCPVtkUCTlWVlZKRcoxG1c5DhaNrNUd7vFHWQHadPoF6DydfH+7lw2G6ktVsSUCjsvXK5p7Q4UmFQC7Tr6nzYusChrHIUcta3GFAVhPc/JhtswDazn9M588OoWYzUvEOGqgX1hRzArQVo1MKxMDaHWFAehOMz4i282LC95v6F1ZZhytJp9nULS5I22e0J4W1pyoR9aDySrRmZmEE8vfAJCrkwsFXHyA39rIAqlHzd9AulrN3LMqNVVeIhK8+83VPA/JKB1FVTZNiUnV3Bd853D3dQsGm99ZAuzpRnAwc/N1f75j8Ut7Oj+7MB+AUMC9dd8qnocwHWuQCi/2RVlhvfzkx2duvp6l9I74d6hRLUM6BSLbkS4/AJZdk77/wXoZix3IhPAyZrX0u5dUArhmft6Qe5uVo+IAbyR+rCfI8xyGXQKypsLCcTyLNxEKuO9fXqOWifa0ekpMyiHfhUVw+ELxRmeQ5zmdQsweVdba7wn1b2tyAVhcos9kpBiUkre/uUrCBvVxgn1e5Rse7jNBrtsbcQTjm2LVN6xIZZL8YOdmZ6B/0/JDxo9/UuLfXuLfjpMJ4pFy35Zy35bU53LDe9prX+VXb1hYefn8IsSjA2GPoHMn1/wh+n0+We4mp9yprDKVzP/WPxqunpf7y+sqH3vu/2zxDjXXf3G5WsjHkUwc6/Y4fOEyVcwW70DAgeILUHczCpaNkUNsVknZkM/jPaEjvXG7SQShhB0fSPKvtwq+7onXd/sBVNs0bCOk3T2YqhyKJXyRBLKa1ofTaHS/OW4Wi3Iab780cyLOvtCrLaKNksu2ffexB595c46wJSgyXHHhsmuePSHs53Z+ez3iEQSd0OZDIHzy3fp4y8crLIlFZXZw/K79B9HXWO3bqoz1ousTAFIg9Qo/1Dg361v3KWdt1l5Td8mds/JT/fVvbm/73scH15Sb/3TnYiQTf/ig5advHwUwJ1fj7O/P1yafvCbfNNA70NfU8tGLJd5t1mA9+8K8+P68w/tx+BGtuerVknnuhCT6zvavGVRHDYUL8oYNAEwmVhbIVIiEw8ED7T4Az9615MrfbIkn4A7FTCP9o9ntiyAd/ZSrkzc4gl3eyBgFaPYuWqBXAGgflnPdky5Ae8IxttsnEnBS0aTPK56JJvf3J6FQmPnfbM8888y3v/3thQsXAvjZz35WU1PT2dmZm5s72nH2VTzPBwKBzJ2wj3l+5HgdQs4Wu07+7F2LreMY+UIIIYQQQmac7AK0RjbqH40mpcQTjp+zYMfvXVZ1+Rx7uUVtHDN7YcIybZ46xag/kUYujgb6LeMo7ObqZa3u8KEuH+sFG8+XDMHKVZ2eEICeVAe0FECRQdHcG2Lj+DKtoLm6wfu3atMFaO0IjaLjlJPOGLHqzk6P+dlSZFbsa/MBMJ1qGSwuNt61ohiAWS1lqTK+aBwTLZ4yWrn4b18ceTYXk69j0yOju0642TkA0CnEQgE3kOTZPkQmN6bKPsEOaJGQy9XK2zxhNjytPOfUHdAAVs0yZUdXi4VjXczKcbh6vv3Rdxp/9vbRCytT80uj8QHWXK8f/TUytiUlxuzQcKHgpNIki+Bw+qKHOv0Aqk4uQKtlomqb9nCXv8Q8rOIGlJqVAPa3D82ure8OAqi2aQDk6WVIT4lk2twhAPnGoa+UL60uHfH8ZWJhsUnV3Bd8ZW8HAK1MPCRB26iSzMnT72/3AlhbmWPTygCsLh86og3pdeiK9B/u8gOotWlYeZQ91MedQVY6X1pyUot6duiQRS3p8IQd/iirHlqzirA2nfxYb2ij7sZgVVmJ+4M5Cne/p/uEZFbhwssKyudAonjv413JxneKBlrahAUefV3VkovvenI3gDfbjun0hvcanM9sa71nVe13rroBwMa97d/aduCCUuNlAgmAQCQeg+TxBh2gA/DbJfMvm20D8Oizu99qdT5wRfUXxjH3lREJOZ1c4gnHm/uCyPqnh+NQZlHvb/e+ub+bVfNr7FoePIB2b4TnwYPnebC8C7VMNEaUDbtaJZ7gPeFYZteqx5+6pkSnEG/qVfxfaFZdnvZafb4r1CjkkOR5gViemau5vSWw5bglZ87sRVUFADY2lz71yYkLSu557nI5/A5IFBCKX9jR4vd7Lzb2DLTv7ee5nJrVhuoL73uz/6Mm1++8mJXewWnqDQIoZYntAlFmJVfZND2hvt3d8U7OZiqu2hytvMuRc1vV1x+YG3h6X6CzXzGPb7hYtFPcuQO99XNQDwBO3MS++Ff3Y+mXUXstWj9G0/voPYK+4/cn4wCSr4sqDUv2atfVmC60qOSOQLTTExm5AO2NIL267Fp5gyPY6R3a18xkR3Cwur8nHA/HBhSSwV8V2OQDAK5Qv0IiAqCWi6bNhTTTyxS0hXs8noaGhiVLUllF1dXVCoVi27ZtF1100YjHb7jhBnYkEAhotUPH5gaDweEHCTm7Vs4a4R9RQgghhBDyKZD9x7x29Ihns0Z6rDdkOHs9yGNTSkTLSs/mvLshNOma2hg/skom6gn0W7WnrmCuq7Jsa3L/Y18XK0CfbgY0Ti6W9QZiSAc43Ly4wBnov6zODsCWDsrIy2quzJSoRguAHo+c9NN6Jm3Uk6HEoGIF6FMuPI7DD66oZh9rs4dMjpLxfVbkGhQAPm5y9QRjImEq5ljAcUalpCfQz1qhc9IPaeVEO6ABFBjlbZ4wC2ofcSJiRr5eztJy7hmlqDqau1YUv7yno8UV/ubfP/njFxYLOI5dIiAUcJM0etSkkrAQ7a2NvQBmDXt8fnPL/Ppu/7x8/fCvXVpiBLCnxZ1I8plJcdH4wIm+IIBKmwaAXacA0OkdbNhs90Rw8v7NKd24KO/htxr+d+sJALqRBpZeWJHDCtC3Ly8a435YjH48we9pdQOozk3tRrC9n01HU7P2VpSNnJGCdACR0x/p9vUDyM3KI2KVwT9uaTrWKxILL9r6nbU/fPngew09D82ruUWbC+Adt+VvLReurTBvOtpr9crusIYAcMAAj8/97w52J89tb/uP9ZUiIef0RgHkaGUqmRCAPxp3hQajTl7Z28EK0H2hOADjab7XWTVyTzje1BsCoMpaV6VG5f527+ObjgFYVKQvMCgSySQHROPJE32hO57eKZMI7103C+l9i9FkByJnCtAOfz8Ai0YOoNyi2dHsKjUr2VDBAR7+SCJ7G/IoS3FJr8ZikxqARCyCfR7S+T3eFsvDexseOl4ILAKw9ba1Br1cp9gL4A9bmx/+Z8PiEsPPb6hr6gsgU4AGajLhKrm6A50+hzfKLu9453A3AGjzBXW1J04cfG57m1a24rIfPoCoF8ffdTduP+7wiviYKdZhDzeKIm68/xO8/5PhP7uAT5T5PirzfYRHH/8f29Wf5JSaGk7AZUDNNRDLMRDDkdfQvgvOg5f5ehdZ9GJY8Y9nfsRFP1+o1vc54Fh8LKL9xRbnf15RY1dxEMl4cH5WgFaIAWjkYrVMFIgmOjzh7Heh3kBqj8cbiulkEgBamkA4iikoQPt8PgDZVWOtVuvz+UY7nvlUrVZnfxoIBPLy8lSqsS7AIYQQQgghhJAxyCVCdqk7Tp68N8Q3LqooMXeuq/yUjKjJ/KSGMTqgZWJkFRDHcNXc3If+2cDqUJhQAZrNd2rzhJHp19NIAayvsa6vsbLbZHVAD5ZgMtcpnsmERnO6tG2dZrF7RTmpnsGxM6CHyJ5/NVrG91mRr1cA2NnSB3C1uVpZOsLYrJb2BPpZD7tdJzOqxGKRsNA4QifvOBUalVuPuwBwHD9iR3CGTCz8ybWzPcH+0eKeR6OUip783IIrfrN189G+//mw+curS1n+hk4unqRmRgHH2TWKNk+4JxjDSBnZxSZlsWnkH7bcoma1sCNd/jnp8YbHeoI8oFOkMrtTQw49EZ4HxyHJ86yFNjul5JTuXFH8/PY29sIcsZv+0tnWX7/XWGZRLx9zw0whFrE8963H+wBU2VLnvKHacv2CvL2t3hN9wUqrhvVuj4hNs+zyRtl0QVtWkjXLUjjWGwLw7xeVWzQyVpJuS6cleKNxABU29aajvX2B6L52D4AvX1j6r4PO5r6gVSeLRAd80fiOE64VZaZuP5uoKWdvgMH+BNsSEwm4RJLf3NjjDcd1CnFvMArAdJr54Ga1pN6B5r4QTt77LE2/0mvsmj/cvojjIBYKLDqZwxu9/5WDbBbog68fBpB3qvcoFojc7YtWp685YINMbToZgGq7ekezq8qmlYgELP7YHYplCtCecIytxop0gfXKOltTb+DKutzsb3HniuI2V/ivO9v4rJGwuXoZgD2tXgBte8L3rZvV3BPO/tFydXKtXOSLJGbnav+lEAPwhuMAPjjaB2B9jQXArUsK/7ar/bI5VgHHQa7H7BsEpVd/9sG32T/QT91atwEfY+tjcB5G7jyUbUDeIpgr32lJPPzO8aU67/qBj5YF35GFOuva/lwHoBMA8O4PMftGHHoZgS52JkqgGIAPaEc+kA/ACezELOB3nEDweBIAJApoC1+z5jbLao1+OzR14AR5enl9d6DDE8kuQPcEUwVoVyiuU8Zw8gQFkm0KCtAajQbpMjTj8/k0Gs1oxzOfchyX/Wnm4OSeLiGEEEIIIeTTS8BxCok41J8AoB790ubFxYbFxSOMP5qh1NLUX8g65ajFYhZ4PZ4kOpNKunKWcfPRPgAysWACwwBZwajDHeZ59AZZG/XQ75upO2dHoGYGJNrPIDEvUzG3nKsO93HK1B8Noz9Nw2WXPyYwQG/82BPBakOLs4aD2bSyw11+FsggFgo2/ceFQgEnEkz8L/dMzTRfr5CJTxGuesvigol9l0qb5r+uqr3/5YNPvt/05dWl7lAMY+7QnDmbTs6KpCIBV3Q6BXqhgFtUqN90tHfnib5MAbq+yweg2qZmNRJWgI4mkt5ITK+Q9AT6E0leKOAspzPLVCIS3H9Z1Zef2wPAONJaKreo3/731QalZOzpnRwHvVzSE+hnxdBMbVQjF//8hjoAsURSLBzrPspzNACe394mFHI4+fVuTxejq6yae1aVAshPzYtLFaB94TiA0hwVgMQAWBF8RanpjuXFHzb2XFxre+C1Iy/uaX/nsGNFmam1L5XPwHbpQtGBvmA/gHKLiue5eof/nwe6b1la4AnGkRVxPk6s4zsQTQBQZcU4sPiaSqvqubuXZDaQCvVKhze6o9nFPmWNzHmGU2QN2bTyI90Bp28wesURiCAdcP+NdeVz8/QbaiwADAppIBp2Bft1CvHW432XzrY1dPsB5Onlmdx/pVT0/cuqh3wLiUjw0LWzb1te9Ov3jpWalSyY5bLZ9n980lVtVzt80QZH8JVPOlhcckm6A5rj8OiN8471BObm61iPsC8Sj8QHHIEogLo8HYAqm2bfDzfIsgKUdQpxpVVT3x0AUJ1nhP4G1F6PZJzFZzMyRW+zO9bsVjyP9U/f/t0LuU9cHzwZDbjFmpycUCN8bfj4NwCgzMHsG2Ctfb1pIOzuvMCWzNVIHd5Qd1tjfrzVFOtCpE/AJ1N3GgtzvfU1qK/Bu/jDL6HKQdn6b+QveShia3OFsh+NvsEM6HggnFhoE9+a244jr4FNZZx9w9jP13llCgrQBoOhvLx89+7dS5cuBVBfXx8Oh5cuXTra8XN/hoQQQgghhJDzh1IiZAVo1XkzuT5zjfAY+basr7DENK5s5Wvn57MCtEklm0CPECsuh2ID/micRWrmDGujtqULZ7lZzY+Z+vhpldWGUEpECokgHEtOtw7oElOqdmMcKf1gNNkd0PrTqVyfrjz94BOxoGAwKeJbGyoqrZpL56Su2NfKz7SGW5hehBWWCQZJj9NVc3Pvf/mgLxoPRBNu1gE9mRX8XF3q2ZmVox4Sr3xKi0uMm472bm92370yFTbCinRV1lQ9WioSGJUSVyjW5Y3qFZIOTwSATSs/3Z2Ai2usi4r0u1o8owWRjzi9bTi9UsLGtYlFXKlp6JeMNh8y44YFea/v79jW5EYcSCdyMCxBngMevn42exjzDEoAHZ5MAToBIEcl0yvEnnCc1X/n5OnUMhGbObm+xvLinva36523LC3c2tQDcIuKDexh8kfjfYEoAJNKuqTYUO/wbznWc8OiPJaxfroZ/dmnrcz652ZRseHtf19VZFRKsx6HAoNixwkXgOVlRqtK9vK+Toxjp83GOt+zhk/2+KJIhxRp5eKr5qZemCa1pNUd7gvF/vrmkZf3dp7oC7FNx+HN+COqtKp/e+v8zKd1+bqd/+8iAM9tb/n+Pw7/cWsLDyglwuwU5nVVOeuqcpB+WXnDqQ0JhUSQCboZvn+5tNRY3x3IUUtTe5Acl119xslv/pV2HbSXvOmp/s9XD63Psfz+rjrsex5N76JwJeZ/HmI5gMfe29zca3juwiW5Zab2FvcN2z4u0Cve/uaqa371brE8ppDLf3HzYgR73G31e3duLoseLgrtR7AH+/7yGfxllUgbOViL+hj4JIyzYKm6WqEyF5lzRb6r3B/kNe242ntA4EniAABAoqQCdLap+QXr1ltvfeSRR9asWWOz2e6///4LLrigoKBgjOOEEEIIIYQQMklUUjGrjJw/V86q0zVB3ejZDv+xoWJRoeHyOvtoN8i2vtqilIpC/QmLZiIFO5lYyIplra4w6zwdnuOhV0jq8nWBSKJgpAxo6xkUoAEsKzHtbnWPkQAwJYrS8+JOK2pWKR1MlZnUDugctZSlGANYVDyYwFBp01Se1UeyKP2Ml1kmnuMxHgqJUCsT+6LxLl/EE4oDMEzOFFAmkypTYTvtgGwWA72rxZ3kedY5XO/wA6i0DdZ2c3VyVyjW4Q7V2DWsHZiFrZ8WjsOjN859/L1jd1xQcrpfmy2z11Vx+tV2ACIh97tbF171m62t7rBQwGVvUM3L192+rLA2V8O6aJEOh8lEcHgiMQBahZhFMAMoMamyA5dWzjLJxAKHN/qNv+7jee6SWmuFRc2mHQZjcRZtb1JL6wr0AOodAVcoBkAo4E53cyU70UglPamXv2JYuHmhQQ6A4/gfXFZt08o/ONbrCsVOuSNoVUsBOPxZHdCsAK0ZWrlm11W4gv0fNPYAePqjE2sqcjCh1Zjtklr7D/5xmOU7l1nUI+5HstkDnkicnZtVoxhj2/KKOfZntrVeVmcb7TaZfwVy1FK2T2nTSQF0eSMQirHgdiy43ReJX/X41oWFhp9dX+fwRpEu5bOidpc/3OgINPQmGiAA+n/EKVSmsmN+/d0tgiLT5Zu/uwKtH+PoG4l9/yfvd8kdH6W+ceceADcCN558PhFlrlyfB7EUEkoMPsnkFqD/8Ic/fOlLX0omk8lkUiwWA+ju7jaZTN/73veSyeS6deuCweC11177xBNPsNuPdpwQQgghhBBCJkmmEKCezMDcaUUtS/3IY3RAm1TSaxfkjfMO5WLhJbXWl/Z0mE4/AJrJ08tdodiBDi/LFR1eOeU4vPKV5Uke2S2c1vTsQduZFaB/f/vC+AAvPVUb5jmmlIoqrarjPaHTymcQcJxKKmZtnroz7j4eg1DA2bXyNnekyKiY1Ep3froQP8t8RqWx8bDqZD5HvNsb9YRjAIyTOcUxM1Cu4vQnNNbatTKRwBdJHOsJVljUPI8G1gGdVfrP1ckOdPq6fFEALA8hu2l9/PINChaUcSYyCR419gluTugU4qfvWHzLU9ur7Wph1puAUMD96Kra7FuycBhPKB6JD8jFQn+ExXlLLFpJvQMA5uZps28vFwtXlpk31jvrHX6O47+xvhwA68lNDKDTGwFgVstYjbjVFWZp2jqFaOzgkeFyNIPLSSU7xUvmgnLzLzY2fmFFMXtOn79n6ZbGvrVVlrG/imU9O7I6oJ2BGADLsJR81tK+s8XlCsYBeMPxVz/pxIRWYzajSrKs1LCtyQ2gdJRyOUud9gXjnb4wAPuYI2TnF+j3fH/9GNcnaWRimVgQjSfr8tM7EKkJnIMPwuajvS194VZX6KsXloXjA0g/UDkaGceCWY71Zm58zBmcV6BLpcArxBBKULIaJat3lH5r34evzpIFNiwoB8+jt4HvOeJq2q/vb4sL5d3GZb68Nf/bUZBbWHb/pVXjfLjOK5P7C9Zdd9111113jfBdRaIHHnjggQceGOdxQgghhBBCCJkkqnQ1VnuqisCnhib9x7xOftZ+5K+vneXwRW5bWjSxL8/TK/Z3+H76r3oABqVEOFJQgIDjhhy2aGRLio0SoWDECWnjJ+A4qWg6jhd64Z7lwf7E6ZZ3tfJUAXpSG3gB5BkUbe7IoqKxBtCdOaVEZNXJHN5oda721Lc+M7la2VFHoMsXcQf7AWgnMwM6E2s+vPv1lERCbmGhfmuTa2ezq8Ki7glEvZE4B8zKSinJNSgAsGpppzsMoMAwZSEzmYstqs6gO77ErNx6/1rhqcq+WrmYTdjr9EQKjYpwLInUeMbUjz8nf+hCWl+ds7HeCeDyObns6VCkM5pbXCEAZpXYpJLqFGJvOL69ORU3dLrnbxm9A3q4ufm6Iw9enAlErrCox7NOLFoWwZHqgOZ5OAOpVOshtzSqpADeq+8FIOQwwIMHAFSOL4JjDJfOtrECdMmwrBWGdY77onGWVX3K7CPdmC9DjoNFLWt1h+cXpoKA2NaON5zagQDAorR5nvvL9lYAWrmIHRcJOItW5vBFNzX0ZO6wwRGYV6DzR+M4eQ/PpFX87HiuVibe8LkNAIAru72R5Xs2WVXiOA9VULw4anyjtf3blefLTvbpml4bvIQQQgghhBByjinTE/nU500GtFouAaCUCCdwLfxoCo2K5+5euqLMNLEvv3i2VcghEB0AUGIeb8OvgOP+9sWlz969+NM6nF6nEGcPXRynzEo+w7r8Ka0oMQK4os42qd8FwG9vnv+LG+ZUnllv5nikInQ9ERYFc1rp26cr0wE9sZ9rcYkBwPZmN4AGRwBAsfmkEGG7ToZ0H2iqA1o3kQ7osyKzFGvObBdBJODG82LP07EY6IgvEgfAcbxaJsrMLJ2XFVnOrKuyioTggPvWzWJHBBzHZvE194aQTrdnz9RHTS4A5tPv+s9ODlGOPvM2Qy4+ZbF9KHYtSGYIoTcSiyd4jJSqz3rS2fyDOy4oZpfFiARc8elcbzGiS2rt7KxLR6mYs90IbzjWlUrDOKPrVwDMK9BxwIXlZvapWiZmD29XugmavUwAvLinHYBdO/hCyNXJAOxt8wLQykUAGh1+AGzlZEfqs2gXXzTO3hwAsPAuRzDuCsW9obi/P4bzKcvrdJ0vv2ARQgghhBBCyIjUmQiO8+bvRq1MBMA4mRPqTtcVc+xrK3IOd/mPO4PLyia3o/ZTT5Pu5TdMZv0UwJfWlN2ytHCyy9wAFhTqFxQOLRpOBla07fJFPJM/hLDQoLBqpBq52HaqyXIjWlJsBI5ta+5L8nx9tx/DxsfZdQqkm2E73FFkhZmcewZVaimeSQf0+OXqZfUOf7s7xPZvNFKJgONYUrxIOMI5GFWSZ+9cAnDZMxXVUmGoP+HwpzKgAVRY1Nub3btOuAGYhvUUn1J2tL1qHAXoCWCdzqHYQKg/oZSKWCVapxAPH/OY/f6/ttIiEgie/KBpAvMwhzOqJLcuLfywsWdpiWHEG7C2Yk8k3u2NYBwd0Kf08xvnfv/y6szAQ45Drk7W6Ax2eSOlZlVfsL+5L8j+ky+SAGDLCv2w6xR7Wr2s+/uy2fbnd7Yd7QkA8IYTAHRZ10UpJMISs7K5N7Snzb2+yop0ATpPr+jwhH3RuDsYA6A5e9cVfcpQAZoQQgghhBByXlOdfx3QCwoNl9RYVlbkTPWJnEQpFS0uNiwuHrlmQcZPI09HrExyaVgo4M5B9flcsmnkABz+qC8cxyRv0khEgve/feE4W3qHm1+oV0gEnlC8vjvAOqCr7Sc1nObpZAA6PKGBJN/pnXgG9FmhV0gBFBjkk1R4HYKV2js8ETYNT6sQAWDzS2vtuuHVWADLSodevaGWihzoZx+z4iabrhkf4AEYT3/lS0QCnVzMTmmSHgelVKSUCEOxgW5ftCxH1dgTBFA4UlOzMZ3PIxJiXoGuxq7pCUQvnzOuqbOn9OOra8f4r6kM6HC8W9iPM07wByAScJnqM2PXyhudwQ5PFMDOE24A5RZVb7CfDRe1Z70Q7Fnl78vr7M/vbDvaHQDgH9YBDWBRob65N7SnxZsqQPsjAMpzlJ3eEM9zbNTn+fOLxOmiCA5CCCGEEELIeU2ZzoA+N5WR6UAiEjzx+YW3LC6Y6hMhk4JFrMrEApZzSsaPjSbr8kRc4RgmP8NELhaKhRMsy4iFghWlZgCbG5xHOn0AKq0npVuwDmhXMN7mDg/wEAlh0UzZRQ9LSwwFesXNSwrPzbfL18sBdHjCbCOBhd2vKDM9dO3s8Q9UVMoH/0UwswJ0Vo+5cUIB65kojPFEcExMoVEB4KgzAOCTdg+AuenpfNmM6YptXa5OLhZq5eJHb5y7tvJc7EqmCtCReJfSZHYpAAAgAElEQVQvDGBiVwCMLVcvB9DtDQPYccINYFmpaV1laoSjLeuFkIliz9PL2QPlCsXcoZg3yoYQnvQ0LSo2AtjTmgr06A3EAFi1Mha7wZrlNZM5+nVGowI0IYQQQggh5LzG6s5KqWjEwXeEzDhamRgnj88i48SKtg5/1Bs8FwXoM7Sq3ARgY4OzqTcIoMp2Uge0XiGRiQUANh/tAZCrVQimLivdppV/+J0Lv7y69Nx8uzy9EsCJvpAnwoZJSgAIBdwtiwuyQzbGppamnn0uXTMttwx+rWlCBWiLJlXunLwCNCuS7j7hAnCg3QugbqTc7cz5Lyk915FHrESbSPLpQIwz7YAejuVKd7gjAHY09wFYXGxYV5UqQGd3QNt0qWJ0hUWtkAgL9AoARx1+1gGtPfldlAUB7evwxgeSAHoDUQBmtSz7jUJDHdCjoAI0IYQQQggh5LymlIiQlQRNyEynUYgB6Cczv/jTitXCovFkNJEEYJjej+HqihwA+9p8AzzUMtGQTlKOSw1b+683DgOoPbPpfzPL7FwtgHqHv6UvjHT5+HRp0hfHGJQStj2plIoyQ0GNqomUTc0aCQCZWCCatP3OhUV6ADtOuBMD/IEOH4B5I+WnZ/J5lpVMcHLshCnEIlH631uZSDAZU/ty9QoAnb6oNxxvcAQBLCk2rJxlYt83e+xhZjJnuVUNoNyqAnDUEWBJKUPOrcio1CnE8QR/qNOPdAe0RS0zZr1RUAf0aKgATQghhBBCCDmvscRG+qORfGqwFjwqQE+ARCTQpyc3CrnpHstTYFAUGlLls0qrenh/M4sX4HluaYnhgStrzvHpTSGbVlZhVfM899q+TgBa+USex8yzb8oaHlhhSbWZT7QDWgpALpnE/c5FRQYA9d2BXS2u+ACvlokKRxo+KRJw66stVVbNoqJzMd4zG8dBmx7uZ9XJJqMvPx3BEdnZ4gZQYlKZVFKVVPTNiyrWV1vmZ1XkMxnQLF+FxXwfdQa8LLzl5GsgOA6LCg0Adre4AfQE+wGYNNLsN9vJqKd/OlABmhBCCCGEEHJeM6tlAHJUU5aOSsjZtaDQIBMLLhg2VI2MR266j1inkExdZMV4rUmH9lbbR2hwXltllokF37io/C93LzWrz6+3uLWVZgBt7gjSGdCnS53elTRn1ZpZnyyyMpRPS45aBkA9mRsbVo0sT6/ggT9+1AKgLk87WvTKU59f+M/7VsqmIilem+5Jz54BeBaxrZcuf/ihN48AWFaamm37lQvLfn/bwuzgdY1MzDKLqu0aAOU5agB/3dne2hfGsAgOAAuK9AB2t7kBOANRADlqaaYDWsiBkvdHM6138wghhBBCCCFksi0vMz14Vc1SqtaRT4s5edpDD1wsEk776um0ZNPJD3X5MdEpc+fY6nLzn7e1AKi0qof/1ztWFN+2rOj8TLdfW2l5YnMz+1g3oSxvlTRVfDRl1ZqrbKk5hBNbHlatHJM/8HZxka7DE3633gFwc/NHbXCewv0VfboAbdWc/QBoADkaGQckBtDiClt1sq+tLRvtlhyHx26a2+GJzMpRAVhXlXNRVc57DU6e5zDSdSQLiwwAdp/w8Dz6/P0ActRSvTK1QtRy8fTftZoqVIAmhBBCCCGEnNdEAu7zy4qm+iwIOZuo+jxhmXzYTFFpOltaYhQJuESSzxRGhzg/q88A5hXotTKxL8qCFCaSiqBOZ0BnF6CrbRoAWpl4Yo2uF5SZVpaZr5xrncDXjt+iYuPLn3SxEmpdwXTM/tamcyrs2knpgBYJOItW5vBFrVrZ3+9ZZhvzu6xNX0YAQCkV/e/ti1pd4Rd2tcrEIsuw+vjsXK1IwLlCsQOd3kSSB2BSSTNDCLWUvzE6KkATQgghhBBCCCGEAIBNl4ngmAEFE4VE+NPrZjf1herydFN9LtOLSMCtqjC/vr8LgFY2kadSPVIGdFmO6odXVLMZdxO5T5no2bsXT+xrx4/FQDPzRu+AnkKZUJRJKkADuPuCorcPO392Q12B4bSfrEKj4jsXV434n6QiQV2+dk+r979eOwxAKxdJRIJMO7x6QivtPEEPDSGEEEIIIYQQQgiQVREzKmZABzSA6xbkT/UpTFMXlqcK0LoJDeRUpbtZTeqTvvyOFcVnfm6TqtSs0snF3kjcrpOZpuV4A60q9dja9JMSwQHg7pWld68snYx7vndd+Z1P79zT5kV6ekSmA1ozoV778wQNISSEEEIIIYQQQggBALs+3QGtpFrSzLamMofjeEw0A1qdLkDnqCarSDpJOA4Li/QA5uVP0754fXq4n21yMqAn1epy869umc+ibcwaKQBDeodDO8np3jMaFaAJIYQQQgghhBBCgKwMaMMM6YAmozEoJd9aX3HL4oIys2oCX56JU5ieTcRju21ZkVEp+eyigqk+kZFp0sV966RFcEyqy2bbHr95nlIiXFtpRVYBWiOnXatRUW2eEEIIIYQQQgghBAByNDIO4AGdkgomM95X186a8NeqRsqAnilWlZv3/GD9VJ/FqNiET5lIoJ2xFdsr6+yXz7EJOA5ZBWg1DSEcHXVAE0IIIYQQQgghhACASMBZ1DIARuXMKzuSs4gF+4qEg+VFcrawh9SuU3DcVJ/KGRCkz14lFQk5gDKgx0QbeoQQQgghhBBCCCEpV8/Pfetg99zpmp9Lzg2jSvKDy6t0crFIMJOrpNPS0hLDrUsKVs0yTfWJnB0cB51S7ArGNZQBPTp6aAghhBBCCCGEEEJSvntJ5XcvqZzqsyBT764LSqb6FD6dxELBT66ZPdVncTYZFVJXMK6d0LjL8wRFcBBCCCGEEEIIIYQQQshE1OZqAFRY1FN9ItMXx/P8VJ/DBPn9fq1W6/P5NBrNVJ8LIYQQQgghhBBCCCHkvJMY4HuD/TatbKpPZOqNVq2lDmhCCCGEEEIIIYQQQgiZCJGQo+rz2KgATQghhBBCCCGEEEIIIWRSUAGaEEIIIYQQQgghhBBCyKSgAjQhhBBCCCGEEEIIIYSQSUEFaEIIIYQQQgghhBBCCCGTggrQhBBCCCGEEEIIIYQQQiYFFaAJIYQQQgghhBBCCCGETAoqQBNCCCGEEEIIIYQQQgiZFFSAJoQQQgghhBBCCCGEEDIpqABNCCGEEEIIIYQQQgghZFJQAZoQQgghhBBCCCGEEELIpKACNCGEEEIIIYQQQgghhJBJQQVoQgghhBBCCCGEEEIIIZOCCtCEEEIIIYQQQgghhBBCJgUVoAkhhBBCCCGEEEIIIYRMCipAE0IIIYQQQgghhBBCCJkUVIAmhBBCCCGEEEIIIYQQMimoAE0IIYQQQgghhBBCCCFkUlABmhBCCCGEEEIIIYQQQsikEE31CUwcz/MAAoHAVJ/IOcXzfDAYVKlUHMdN9bkQMi60aMlMROuWzES0bsmMQ4uWzES0bslMROuWzDi0aGcoVqdlNdtsM7gAHQwGAeTl5U31iRBCCCGEEEIIIYQQQghBMBjUarXZR7jhNemZIplMdnd3n2+bIYFAIC8vr6OjQ61WT/W5EDIutGjJTETrlsxEtG7JjEOLlsxEtG7JTETrlsw4tGhnKNa6brPZBIKTYp9ncAe0QCDIzc2d6rOYGmq1WqPRTPVZEHIaaNGSmYjWLZmJaN2SGYcWLZmJaN2SmYjWLZlxaNHOREN6nxkaQkgIIYQQQgghhBBCCCFkUlABmhBCCCGEEEIIIYQQQsikoAI0IYQQQgghhBBCCCGEkEkxg4cQnp94ng8EAmq1+rwavUhmNFq0ZCaidUtmIlq3ZMahRUtmIlq3ZCaidUtmHFq0nzJUgCaEEEIIIYQQQgghhBAyKSiCgxBCCCGEEEIIIYQQQsikoAI0IYQQQgghhBBCCCGEkElBBWhCCCGEEEIIIYQQQgghk4IK0IQQQgghhBBCCCGEEEImBRWgZ4yBgYEf//jHdrtdq9XeeeedPT09U31GhAy69957xWKxWCyWSqXZx0dbt7SeyXTw3nvvbdiwQa1WFxQU3HvvvYFAgB2ndUumrcbGxhtvvFGr1Vqt1ltuuaWzs5Mdp0VLpr9kMrl27VqxWLx//352hNYtmc6++tWvirM8/vjj7DitWzKdbd++/corr1Sr1VVVVRs3bmQHadGS6cxoNIpP1t7eDlq3n0ZUgJ4xHnnkkSeffPK1116rr693Op033XTTVJ8RIYMee+yxSCTy0ksvJZPJ7OOjrVtaz2Q6eOSRR77zne90dXW9/vrrGzdu/PrXv545TuuWTE+//e1vb7zxxvb29m3btrlcrltuuYUdp0VLpr9f//rXIpEokUhkjtC6JdPZwMDAPffcE0mjXxLI9Ld9+/b169dv2LChqanplVdeeeONN9hxWrRkOnM6nZl32nvuuWfp0qX5+fmgdfupxJMZorKy8pe//CX7+PDhwwA6Ojqm9pQIGeL1118XiUTZR0Zbt7SeyXSQTCYzH//qV7/Kz89nH9O6JdNW9qJ9+eWXZTIZO0KLlkxzR48eLS4uZotw37597CCtWzKdffGLX/zqV786/DitWzJtXXXVVV/5ylcyn2Z+Z6BFS2aEYDCo0Wiee+459imt208f6oCeGTweT0NDw5IlS9in1dXVCoVi27ZtU3tWhIxttHVL65lMExzHZT7esmXL7NmzQeuWTG9s0fI873A4nnnmmcsvv5zjOFq0ZJpLJBK33377z3/+c4PBkDlI65ZMf88++6xSqSwqKrrvvvu8Xi9o3ZJpLBaLvf322yqVqq6uTq1WL1u2bOvWraBFS2aOF154QSKRXHfddaB1+/+zd6dxkpV1mvev2PeM3DOrMmujikLAYl8KgUds3B20celxAccF2wEV2+mFmWmb1seWaRsdBXGQRexGGbC7ZUZ5bG1LEAUUWQuqqGKpNSv3LSIy9ogTcZ4Xd0Rk5FJZWWtWZv2+L/xEnDhxzsnIQ6pX/LnuJYoAenFIJBKSotFobUs0GjUbgePW/u5b7mccb26//fZNmzZ985vfFPctjnv33nuv2+1etmzZrl27vvWtb4mbFse9r3/9693d3e9973vrN3Lf4jj3ne98Z2xsbHR09Ec/+tGjjz760Y9+VNy3OI4lEolcLveDH/zgjjvu6Onpedvb3vbOd76zt7eXmxaLxe233/6xj33M7/eLP7ZLFAH04tDQ0KDqP4RGIpEwG4Hj1v7uW+5nHFduv/32L37xi5s2bVq/fr24b3Hcu+qqq3K53N69ey+66KJLL700k8lw0+J4tm3btltvvfW2226btp37Fsc5l8vldrsDgcCFF154yy23PPTQQ6Ojo9y3OG6Fw2Gn03nNNdds3Lixqanpxhtv9Hq9jzzyCDctFoVnnnnm2Wef/dM//VPzlPt2SSKAXhyam5vXr1//zDPPmKfbt2/PZDIbN25c2KsC5ra/+5b7GcePm2+++Utf+tKvf/3r8847z2zhvsVxzul0ejyelStX/vVf//Xu3bu3b9/OTYvj2XPPPTcwMNDd3e3xeLq6uiSdc845N9xwA/ctFhGXyyWpXC5z3+K4FQgEzj77bKezkvA4HA6n01koFLhpsSjccccdb3nLW04++WTzlPt2aVroEmrM15e//OUVK1Zs2bJldHT0Pe95zyWXXLLQVwRMN3MRwv3dt9zPWHDlcvlv/uZvurq6XnnllWkvcd/i+FQsFq+55prXXnvNsqyenp5PfepT7e3tqVTK5qbFcaxUKhWr9u3bJ+npp5+2LMvmvsXx7eqrr37llVcKhcLmzZvPPffct771rWY79y2OW9/61reWLVu2efPmdDp90003+f3+oaEhm5sWx71YLBYMBn/84x/Xb+S+XXoIoBeNYrH4t3/7t+3t7cFg8Kqrrurv71/oKwIm3X333W6323zl7na73W73yMiIvf/7lvsZCy6ZTJovYt1VwWDQvMR9i+NTuVy+//77zzjjDK/Xu2zZsve///2bN282L3HTYlEYGBiQxH2LRaH293bVqlWf+cxnhoeHzXbuWxy3SqXSzTffvGLFimAwuHHjxscff9xs56bFce7b3/52R0dHoVCo38h9u/Q4bNtewPlrAAAAAAAAAMBSRQc0AAAAAAAAAOCoIIAGAAAAAAAAABwVBNAAAAAAAAAAgKOCABoAAAAAAAAAcFQQQAMAAAAAAAAAjgoCaAAAAAAAAADAUUEADQAAAAAAAAA4KgigAQAAAAAAAABHBQE0AAAAAAAAAOCoIIAGAAAAAAAAABwVBNAAAAAAAAAAgKOCABoAAAAAAAAAcFQQQAMAAAAH4eKLL/7e9763WA4LAAAALCyHbdsLfQ0AAADA8Wvjxo3XXXfdRz/6UfPUsiyn0+l0HuFJjqN0WAAAAGBhuRf6AgAAAIDjmmVZ9UMbbvdR+Z/QR+mwAAAAwMJiwgIAAADYrw9/+MPPPvvsJz7xCY/Hc/HFF2tqV8Y555zzF3/xFxs3bgyFQhs2bHjqqae++c1vrly5sqmp6dprry2VSma3iYmJL3zhC8uXLw+FQldeeeXOnTtnnmjaYW+44YaLL744FAqdeuqpDz/88Mz953nq2267bd26daFQaOPGjU8++eQR/3wAAACAuRFAAwAAAPv1gx/84Oyzz77zzjuz2exvfvMbSaVSqTYQbdv2P//zP99yyy29vb1nn332W97yli1btjz99NNPPPHEgw8++OCDD5rdPvzhD7/00kuPPvpoT0/PypUr3/3ud8/swZt22Pvuu+/rX/96f3//Bz/4wY985CPlcnna/vM59auvvvqFL3zh7rvvHhkZue222376058evQ8KAAAAmBUBNAAAALBfLpfL6XS6q2bu8PnPf/7CCy9samr6xCc+MTExccstt3R0dJx22mlvfvObn3/+eUk9PT0/+9nP7rnnnvXr17e0tHzjG9/o6ekxL83hz/7szy666KJoNPq5z31uaGhoYGDgEE7tcrm8Xm97e3swGDzvvPO++tWvHomPBAAAADgIBNAAAADAoevo6DAP/H5/OByORCLmaTAYTKfTknbs2CFpzZo1Ho/H4/EEAoFUKrVv3765D9vZ2Vk7jqRsNnsIp167du0Pf/jD66+//rzzzvvUpz61devWw/tZAQAAgIPGUicAAADAXJxO58wGjPlbuXKl0+ns7e1taWmpP+aRuLQDu/LKK6+88krLsn7wgx9ccsklAwMDJtEGAAAAjg0moAEAAIC5tLe3v/TSS7Vl/Q7WunXr3vzmN3/605/es2ePpFdfffUTn/hEoVA4kpe4Hw8//PBXv/rVwcFB27Y9Hk8mk7Es6xicFwAAAKghgAYAAADmcsMNNzz00EPBYPDiiy8+tCM88MADq1atuuyyy0Kh0Ic+9KG3vvWtPp/vyF7krN7whjfk8/lzzjmnoaHh5ptvvv/++xsaGo7BeQEAAIAax8wFuAEAAAAAAAAAOHxMQAMAAAAAAAAAjgoCaAAAAAAAAADAUUEADQAAAAAAAAA4KgigAQAAAAAAAABHBQE0AAAAAAAAAOCoIIAGAAAAAAAAABwVBNAAAAAAAAAAgKOCABoAAAAAAAAAcFQQQAMAAAAAAAAAjgoCaAAAAAAAAADAUUEADQAAAAAAAAA4KgigAQAAAAAAAABHBQE0AAAAAAAAAOCoIIAGAAAAAAAAABwV7oW+gP0ql8sDAwPhcNjhcCz0tQAAAAAAAAAA9su27VQqtWzZMqdzytDz8RtADwwMdHd3L/RVAAAAAAAAAADmpbe3t6urq37L8RtAh8NhSb29vZFIZKGvBQAAAAAAAACwX8lksru724S69Y7fANo0b0QikYaGhoW+FgAAAAAAAADAAcysU2YRQgAAAAAAAADAUUEADQAAAAAAAAA4KgigAQAAAAAAAABHxfHbAQ0AAAAAAAAAB5RMJtPpdKFQKJfLC30tS5PD4fD5fMFgMBwOO50HN9NMAA0AAAAAAABgUcrn8wMDA5lMxufzeb1ej8ez0Fe0NNm2nUqlxsfHvV5vd3e33++f/3sJoAEAAAAAAAAsPpZl7d271+VyrVy5MhwOL/TlLH35fL6/v3/37t0rV64MhULzfBcd0AAAAAAAAAAWn/7+fkmkz8eMz+dbtWpVIBAYHBy0bXue7yKABgAAAAAAALDI5PP5dDrd2dlJ7cax5HQ6Ozo68vl8IpGY71uO6gUBAAAAAAAAwBGXzWYlzb8IAkdKIBDw+/3m858PAmgAAAAAAAAAi0wul/N4PC6Xa6Ev5ETk9XoLhcI8dyaABgAAAAAAALDI2LbtdJJtLgyHw0EHNAAAAAAAAAAcC+985zvdbrfb7Q6FQqeddtr111//3HPPzXy15uGHH67fHg6HzzrrrPvuu6/+LV/4whck/fEf//HHP/7xaae7/PLLP/vZz9aefvWrX3W73ffee68ky7Lcs/H5fPM/7P4u+NAQQAMAAAAAAADAoSuVStdee20ulxseHr7nnnts277wwgt/8pOfTHu15rLLLqvf3tvbe/XVV1999dVbt26tvaVcLkv65Cc/ef/998disdq5Xn311UceeeSaa64xTy3LuvPOOz/ykY9897vfleR0OmtnueKKK66++mrzOJ1Oz/+w+7vgQ+M+5HcCAAAAAAAAwPGgP559dSh5NI58UmtoZcuBlzp0Op1mWHjjxo0bN27MZrM33njjFVdcYXpCzKv7e1djY+PnP//5v/zLv3zhhRde//rX1+/wjne8o7W19b777quNPN99990XXHDBWWedZZ5u2rSpqanpjjvuWL169ZYtWzZs2FBrJnE6nQ6HY9bzHvCw+7vgQ0AADQAAAAAAAGBxe3zHyF/965ajceT/9o7XffqNaw/2XVddddX3vve9HTt2rF+//oA753K5u+++2+l0nnPOOdNecrvd11xzzV133XXdddc5nc58Pv/973//a1/7Wm2HO+644wtf+ILf77/uuuvuvPPOb3/72/O5vAMe9ggigAYAAAAAAACwuDUGvKcvbzgaR24L+w/hXStXrpQ0PDxsAuhbb731O9/5Tu3VgYGBtra22vZSqeTxeH784x+feuqpMw91zTXXfOUrX3n66adNrUehUPiTP/kT81J/f/8zzzzzwAMPSPrP//k/n3XWWX//938fCh14Xnvuw85xwYeAABoAAAAAAADA4vbW0zvfenrnQl/FpH379klqb283Tz/72c9+85vfrL1aa8n47Gc/+41vfGN0dPTaa6+96aab3vWud80svuju7n7Xu951xx13XHjhhXfeeedVV10VDofNS3fffXdfX1/taalU+pd/+ZePfexj87nCOQ47xwUfAhYhBIClY2giV7DKC30VAAAAAACc6B544IENGzasW7fOPK01RBv1Nc1er3f58uX33HPPq6+++v3vf3/Wo33605/+0Y9+9Nxzzz388MOf/vSnzUbLsu66667nn3++tlTgz3/+8zvuuGP+FznrYee+4ENAAA0AS8S+8czGmx6+9ofPLvSFAAAAAABwgrIsa/PmzX/1V39111133XjjjfPPbVtaWv78z//8K1/5Sj6fn/nq2972tpaWlg984AMXXXTRGWecYTb+4he/kHTGGWfUYuLLLrvsxRdf3Lx58zxPOuthjzgCaABYInaOpG1px3BqoS8EAAAAAIATzq233up2u8Ph8Ac+8IF0Ov3444+///3vn/ZqzT/90z/NPML111+fSqXuueeemS+53e5PfepTu3btqp9TvvPOO9/+9rfXZ9x+v//yyy+/66675nnNsx52/hc8Tw7btg/5zUfVxMRENBpNJBINDUelPhwAlpifbRn4zH3PdTb4nvzvb17oawEAAAAA4OgaGBjIZrMnnXTSQl/Iiaivr69YLK5evbp+4/7iXCagAWAxsW0NTuRmfSlbKEnKFemABgAAAAAAxwsCaABYTP7xd7s33vTwg8/2znwpUyhJKpRKx/yiAAAAAAAAZkcADQCLyZZ9CUnbBiZmvpQuWJLy1nFarAQAAAAAwBHkdDrLZf4l4IVRLpcdDsc8dyaABoDFZDxTUDVrniabtySVyrZVIoMGAAAAACxxXq/Xsiwy6AWRzWb9fv88dyaABoDFJJYtSkrlZ+nZSFc35i1aOAAAAAAAS1wwGLRtOxaLLfSFnHAymUyxWAwGg/PcnwAaABaTWKogKZ0rznwpW6zkzqxDCAAAAABY8nw+X1NT0+joaD6fX+hrOYGUSqW+vr5gMBgOh+f5FgJoAFhMxjIFScnZJqAzRSagAQAAAAAnkNbWVpfLtXv37lgsVirx/4WPuomJiV27dpXL5e7u7vl3QLuP6jUBAI6gglVO5y1JqfwsE9Cp6lg0E9AAAAAAgBOB2+0+6aSTBqq8Xq/L5Vroi1qabNsuFAq2bYdCoc7OTo/HM//3EkADwKIRyxTMg3Rulu91c4UpE9DxTPFXLw++4/XLQl7+1AMAAAAAlian09nV1dXa2prL5bLZLGsSHiUOhyMajQYCgflXP9eQSgDAohFLVwLo5KwT0EXLPMhbZUm3/2bnHb/ZGU9b11y65phdIQAAAAAAx57P5/P5fNFodKEvBLOgAxoAFo2xagCdylszX61NQGcLlqSRRE5SXyx9rK4OAAAAAABgOgJoAFg0xqsVHMWSbZXsaa+m8pV/z6hQsiVlrZKkWHaWqBoAAAAAAODYIIAGgEUjlp5s3pg5BJ0uVF7NFkuSskVL0ngqf6yuDgAAAAAAYDoCaABYNMarFRyS0jMC6HyxUsFRsMqSskVbUjwzS1v0MfDKUPLvfrattmoiAAAAAAA4MRFAA8CiUT/OnJwaQJdtO1OoVHDkCpakbN7SwgXQdzy64+7Hdv/z070LcnYAAAAAAHCcIIAGgEVjbP8T0LliufY4b5Ul5Sod0AtTwTGaKkjqGWcJRAAAAAAATmgE0ACwaMSy+w2gM4XJp3mrJMkMRCdzJas8fbnCY2AiX5TUM5499qcGAAAAAADHDwJoAFg0YqnJPmm+p2IAACAASURBVI3k9AC6VHucK5QlZauRdOKQWjjyVvmFfXH7ULPriUxJ0r4YE9AAAAAAAJzQCKABYNEYS+cltYQ9ktK5KbFypi6PzlUqOCqlHIe2EuB3HnntPd954sfPHWKJcyKXl9QXz5YPOcMGAAAAAACLHwE0ACwOtq3xdEHSiqaQpFRh6gR0sW4CuliybeWqWw4tgH6+JyHp4e1Dh3a16XxJUtGyTRl0umAlsguzHCIAAAAAAFhABNAAsDhkCpZpc17dGpKUyu23gqNgla1yuVStfo4dUgXHvnha0rN7Y4cwwVywyrVFEfeNZ2xb77rlsTf+w6+zdSk5AAAAAAA4ERBAA8DiYMaf/R5na9ir6ohxTX0jR7ZYrs+j4+n8wZ7LttUXy0oaTuYHEge9kGCyLhzfN57pGc/sGcvEs8WBeM5stEr0cgAAAAAAcEIggAaAxcEE0I1Bb9jnkZSc2gGdrU4cS8qXrPpZ4/GDn4AeS+eL1Yz42Z7Ywb59ou7aesczW/sT5rEpA9k9mj7jS//+P/5t+8EeFgAAAAAALDoE0ACwOIxnCpJaQt6wz6mZHdB1A9F5q5ytn4A++ADajD8bz+0ZP9i3T9TVPe+LZbb2xeuv5Lm945li6bevjRzsYQEAAAAAwKLjXugLAADMy1g6L6k56Av5PJLSuSkVHJniZOabL5ZydRPQsYOv4OiNTwbQz+6NH+zb6yeg98Wz/fHKBcQzeUnj6aKkWIo1CQEAAAAAWPqYgAaAxSGeLkhqCrvDfrekVGFqAF0oSQp5XZJyxfJhVnD0jmclnbuqUdJL/YncQS4eOJGzJLldktQ7lt1SnYA2FRzjmbyk0XT+EJY3BAAAAAAAiwsBNAAsDmPpgqSWoDfsc0tKTe2AThfKklpCPkk5qzS1gqNwsOfqT2QlXbCmuT3sLdna0lspcf7ltqG3f+s32/on5n67qeBY3x6R1BPLxKuNHCYKH08VJFllOz21RQQAAAAAACw9BNAAsDiY3LYp7At73ZJS+SnpbTZvSWoKeyXli+VMcfLVRPYQJqAzkroaA+euapL0THUdwn95et/Lg6mHXuyf++3mjOs7G8wQdI0Z4jZJuqSx1EEn4wAAAAAAYHEhgAaAxcGMDzcHPZUKjtyUANqsSdgU8EjKFku5YllSxO9StTz6oJgO6O6m0LmrmyQ9t6cSQO8cSUvaNZqa++2mAzrqdy+PBswWl9MhKZYpSopVA+jxNAE0AAAAAABLHAE0ACwOpkmjOeQL+dyS0tMmoAslSc1Br6SCVc4VLEnLGgKSEtlirW35hX3xT/7j0/f+fm8yN1f9RX88I6mrKXDmiiZJWwYSkqyy3RNLSdo9kp77Uk0FRzTgWdkUNFvOWhFVtQN6rFoJMprOzfunBwAAAAAAi9IxDaAffvjht771rZFIZOXKlddff30ymTyWZweARW0klZfUFPSYDuicVS6VJ1fxM3l0c6RSwZHOlyQtb/JLskrKVNuWf/hkz8MvD9/4k63n/92mHz65d9YTJXNWMleS1NUYWN8RkTQYz6XyVm8sY5UkafdYuv7UM6XyJUkNAXdXU2UC+tKT2yUlMpakeLpSCRKjggMAAAAAgKXumAbQ//AP/3DDDTf09/c/9NBDmzZt+tznPncszw4Ai1osVZTUEvaZAFpTh6CzxbKqFRy5YilnlSU1B3we92T3hapj1CGfO2eV73li96wn6otlJDUGPUGvKxrwtEd8kl4bSu0erQw+Fy27L56d41InMgVJDX7PypagJIf0hrUtkmKZfKlsJ3LVDujMQZdTAwAAAACAxeWYBtC/+MUvLr/88kgkcuaZZ1533XWPPPJI/au2bU/UMfPRtj3XkB0AnCAyhVIiV5S0LBrwup1mcb90warbwSxC6JOUt8qmkSPodzcFvKp2X0iKZ4uSPnnxatV1MU+zL56R1N1YGV5e3xGW9MpgctfIZPXzrjlbOMwihA0B74qmkKSTO8LLon5z9kS2aNsOs9tY8qDLqQEAAAAAwOLiPpYnczgctcePPfbYhg0b6l9NJpPRaHTaW1Kp1MyNAHCiGUhkJYV87ojfLSnkdSeylmm6MCoVHEGvJKtsm2za73Y2hzzDyXy8GkAnsgVJa9rCkuKZYtm2nXV/mY3e8aykruZKAH1KR8PjO8ZeGZ4oWpPfCO4cSV52Stv+rjaZtyRF/O6zVja+95yud21Y3hTySsoVy6Zd2hinggMAAAAAgKXumAbQNbfffvumTZv+8Ic/1G+MRCKJRKL2NJlMdnd3h8PhY351AHDc6Y/nJC1v8JmnEb8nkbVSdQsJ5gplSc0hr3kazxQlBb2uaMAnpSYrONIFSatbQpJsaSJrNQY9087VF8tK6o5W1g88uSMi6bXBZFmS1BnxDyZzu0cz2r+JjCWpIeAJed3/80/OkmTbcjlUsrWr7o3jWSagAQAAAABY4o5pBYdx++23f/GLX9y0adP69evrtzscjoY6kUhEU4emAeCENZjISOpsrITCYZ9LUqquAzpdLEpqqgbQiUxRkt/jag66JY2nKlFvLFuU1Bbxhbwu1VVz1DP9zl3NfvP0lM6IpFeHUqZ2449ObZO0a2SuVWQn8pUO6NoWh0MNQY+kncOTPR4HOwGdylsPbx+ee/1DAAAAAABwXDnWAfTNN9/8pS996de//vV55513jE8NAItXfyIvaXm0MgEd8rpVF0DbtjL5kqSwz23qoePZgqSA19UU8kmKZy1JuWKpWLIlNQY9LSGfpPHZaqDNBHRXtFLBcXJHWNJwMj+YyEl682mdknYNZ2xbn7r3mffd/kTBKte/3SrbmUJZUkNgyr9k0xT0Sto1mpbUFPJIGt1PCfWsbFsf//5Tn/ynp3+5bWja9mTdJDgAAAAAADiuHLsA2rbtG2+88ZZbbnnsscfOOOOMY3ZeAFgC+mMZScuqE9Ahn1vV3mdJxVK5ZEtS0Ovyud2qVm34Pe5o0CMpls6rugKhy+kIed2meaM2GV1Ttu2e8Yyk7uaQ2RL2uTsbK9PQUb/n3FVNkgaTuV9tG9y0bejZvfGX+ifqj5DMVeo+Iv4p5R4tIa8ks5Lh+o4G7WcC+tm9scd3jM7c/ouXBp/eE5O0a3jK8PU3Nr1yxpf+/Zm9sVk+NQAAAAAAsNCOXQCdTqe/8pWv9PX1nX766R6Px+PxhEKhY3Z2AFhEUnnLjCHXTJuANksR1qLeTKGyGmHQ6/K6HZLGqx3QZlnCWLYgKZEtmvc6HGoOe1QdlK73+51j8Wwx4neta5+s4H9dR+Xx6tZgNOBpCnok/d3PtpuN26cG0BNZS1LQ63Q7p3QoRQMeSbtHU5LWtYUk5axytliq36dUtj96z1Mf+/4fpg01F6zy/6ieLlH9qasXPGpLW3rjAgAAAAAAx59jtwhhOBy2bYo7AeDArvrek1v7Er/7r29uj1QS56GJrOomoMNmArqa0maLliS3Sx6X0+dxScV4piDJ73aYVuhY2lK1GLox4JFkgumx9JQwV9IDT/VIes9Z3T735DeUp3Q0PPrKqKS1bSFJ69rDT++J7R2vLCe4bXBqAJ0rSmrweacduSnok2TaObqbgx63o2jZ46lCV1Ogts9YumDGukdT+YjfHcsUrv3hs0GPK+B198Qqpxufes198ZykZJ4WDgAAAAAAjkcLsAghACw6+8YzE9npWe3R83J/0ipp98jken1mIHp5tQoj6HdLSlUHn9P5kqSQxyPJ73JKqjRy+NzRoFtSIpNXtYijMeRRNQ6OZYqSXuxNfOa+Z18ZSiayxV9sG5T0J+etqL+e9bUJ6LawpJNaK//+it/tlLR9IFG/s/mgGoLTv+BsDk02crQEPS2VBHzKCPZIslIJEs8UJT388tCTu8YfeWXkZ1sGJJ21olHVGN0olW3zlvQRrYEeTuZ/vnWQ1Q4BAAAAADh8BNAAcABDE7k3ff3RD9315LE5Xbpg5ayyqumwpFTeShdKkjqjlQA6UlmEcEoFR8DrlBTwTCa/Aa+7PeyXNJwuqDqbXJmADpsO6IKkex7f9bMtg1ff9eT/enRn0bJP6Yxs6IrWX9LJHQ3mwZrWkKQ1bZU8+vNvWS9pe3+yXPcvuEzkLEkR3/QA2lRwGE1hb3PIqxmrIA4nc+aB6QaJpy1J6zvCf3RK24cvWPHJS9dIGk/n6/bPm5j4yK5D+OWfbr32h88++srIETwmAAAAAAAnJgJoACeEsVShVpR8sF7cF7fK9raBRMEqH9mrmtVYdWm+WKbyoD+elRTxu0PeSqob8nkkpaqpazpflOT3uiSZDmgj4HG1N/gljSZzZduOZyxJjUGfpKaQT5Jp6jAtFsOpwh2/2SnpP57f7ZjS3qx17WGHw5Z0UmtY0unLo5JWNQevuWSNx+3IFEv7xicbq5PZgmasQCjJlIEYLSFfS8gvaTSdq99nZKIaQGeKqsbQF61tvefjF9z03jNaQmZqezJrHkhUzntkKzh6Y1lJ+8bTR/CYAAAAAACcmAigASx98Uzx0n94+APf/d0B97Rt3fRv23787L76jTtH05Js27GvWkN8VE0G0NXp4MFETlJXtX9D1fniVL7WAV2WFPa6JfnrJ6A9rrawz+GwrZLimaJZijDqd0tqCpoB5LykvnhGksflkOR2Oq48u3vaJQW9rk+84aS3nNpxSmdE0iXrWr/xgTP+8RMXeFzO9e0RSdsHJmugKx3QMyo4zBlrj1siXkmx1JRik5FUrYKjUPsEGquj02bxw1h2cgK6L14NoI9oQYqJsydyx650BQAAAACApYoAGsDSt30gkSmUt/VPlA+0FOq2gYk7f7v77362vX7jzuHKJOye0WMRQI9OraFQdUK5s2Fysb6Q3y0pU6hOQBcsSQGvS5KvfgLa63S7HI1Br6ShidxE1kxAeyU1Bz2SxjKFUtkemshLuvOj561uDf7pG0+qT4pr/uaK0+76T+e5nQ5JDofed+4KU8dx6rIGSdv7JyS91D+RyBbNWRpmTkAHJ7c0h7xNIY9mdEAPJytPKxPQmYKkxuobzZVPZIq1X2N/LFf/CRwpZrQ8dgxbvwEAAAAAWKqmT6gBwNLTG8tIsqV4ptgcmiVdrdk7lpYUzxZKZdvlrCS5u0aS5sHu0cPqZPjOI689uSt213861+9xzbHbaLqSe45XHwzGzQqEkwF02ExAVys4snlLkino8NUd3Jyos8EfSxeHJvJmoNgsS2gKMeLpoqlRdjkd/8/JbY/+xZsO9oc6bXlEz+qlgcTPtgx85r7nLlnbsrY9LKkhMD2Abqx+8i6nI+J3t4a8qhv3NoarFRwT2YKqEXAtEDcRdslWKm9F/G5Jg4nKVwLJIzqtbMq161c7BAAAAAAAh4YJaABLX62heNq87f72tG1H/aJ2O0eqE9BjqcO5jLuf2P3YjpE/7B6fe7fxai1yrYKjL5GV1FlXwdHgd0tKZGsT0CVJIZ9Lkt89+Yc94HFJ6oj4JQ0mcolsQVKj3yvJBPGJXMGk8x0NvlrgflBO7WyQtLV34iv/3zZJj+8c29qX0OwT0JUcuTHgcToczSGfpq4oqLoA2izAaD6BWnm03+Pye5yqa8fujVcD6yO3CGGpbGcKZUnJ7JGcqgYAAAAA4MREAA1g6esZr8zJjqfyc+/ZV215rkWc4+lCvFrFsHc0O/vb5qFUtk2hxLa6uuRZjdZqKKoVHGYCuis6GUB3RP2S+hNZU0aRyZsKjukT0D63S1JHg0/ScDI7kS2qOoncGPBKsm3H9oGkpK7G4KH9XKctj0oaTOZMUbWkZ3vimnUCurqlJexVNVYenfobqeuALqo6Ad1Y191h0vPab2eoughhOjfXCpMv9MZf6I3P8yeqNWvXPn8AAAAAAHDICKABLH37qgH06IEmoHurAXSiGjrvqqvdMAUd01hlO50/8KhsLFOwbYek7QOJufesZbK1ee3+RF7SsrqMuLPB73DYxZJtotisVZYU8plFCCt/2P1up8Nhdg5IGprIxzOWpGjAI8ntckT8Lkkv9cUlLWv0HfBHmFU04OmsJuNvOa2jtt1UZNTzup1Br1NSU8gnqSXklRRLT9Zc2LaGJ6oBdK4gacJ0QAcmW1OiIY/qyjH6qhPQqYK1v37vvFX+0J2//493/D41j1+T6opNEnRAAwAAAABw2AigASx9+2LVCo7UASs4pk9A7xpOSlrfHpa0L5Yplsr1++et8vu/+8S5X9nUFzvAcPRoshKtvtyfnHvPsfSUKWDb1uBERtKyuglor9vZFvJJ6otnJaVzlqqFG7WCab+38qCjwS9peCIfy05Z0890Ymztn5DUVVcwfbBO64xIuvCklm998CwTMatu3rleg1n/MOCW1BLySRrLTP5GMgUrZ1U+3ni6WLDKpgqjfvVC89gUdBSsci2jL5XtnDX7EHR/PJsplHPF8vM9sfn8OLU66fiBvq4AAAAAAAAHRAANYInLW+Xhavg7lpyrgsO2J6PqeHXG1hRAbzypxe922lLv1KD5xv+7ZXNPImeVN20bnPsyasPXO0dSBas8157VCo5Epli27Ylc0eSwnXUBtKRljQFVA+jhZE7VmeKZAXRb1CupL54xa+vVBopNAP3KkAmgD7GCQ9K1b1r3ltM6vva+DSGv++2nd5qNMzugJTUHPKqWb5gS6nTeqn0aw3W/nUS2aL4DcDkdEX99AO1VtTl6cCInyeMyc95K7qcGuj9e+ZU9s2eeAXTlODEmoAEAAAAAOGwE0ACWuPrZ5Pp525limUJtAjeWqYShu0bSktZ1RFa1hiTtqWvh+Jdnen70TK95/PiO0bkvozYBXbK1Y3j6YoZ9sexN/7ZtIJGTNFKdgLalZM4aiGclNQY8gbpyZ0nLGwOSzKt7xjKSVrcEJXmrixAGq/ubCo5do2nTARKtdTGHvJLM3PCy6KFPQJ+/uvmuj563uiUk6cpzVpiNMzugJTWbCeiwT1JDwO12SXWVIyPJvCQzQz2Rs8yYc8TvdtQtjmgmoM3XA+ZnX94YCPtdqqvOmGagVk695wDLPxrJalNHsWTninNVSwMAAAAAgAMigAawxO2r1jpLGkvm5rlnvNpN/NpwUtJJbaGTWoKS9oymR5L5P3vg+Tf8/cN/+a9bJL3j9Z2Sfr9zzCrvp4RYkjSamjz1tsHpNdDf/93uO3+7+3uP7SqV7XhdLXIsUzA1x8sa/dPe0tUUkNQXy9q29oymJa1uC0sKuCu5cy2ANhUcuWLZbHS7KoGuWY2wcrQZxz80b1jbcvryhs4G3/LZOj06GwOSljcEJDkdDpOMm0FmSUPJnKR1bWFJpbK9L5bW1BUIJUWDXklmOUfz1UJXoz/k90hK5mcfWO6rTkA/1xMvzfk7MuonqamBBgAAAADgMBFAA1jiTK2zyVxH03PliT3jdQF0pijJKtnm7Wvbwqtaw5L2jKb/+//Z8n839/fHcw6H/f5zu7/94XOifk+6UNrSO9fqgqOpyVPPrIE2w7yvDKUS2aKJSDsjfnMZJj/tbppekbG80S9pIJGNZQrpQsnhsFc2ByX5qrlzwFtZBrAl5K3NEDeEJvPc5roAeta8+BC4nI4Hr7v48Rsu97ln+e+XP3vz+i++63XvOWe5eWparWsB8UgyJ2lFc9DjckjaO5pWdUx78pqDXkmmzHpgIiupMxpo8Lq1/wno/ur3Cpli6ZXBAxRwS0rmJsfk4wTQAAAAAAAcHgJoAAujbB94FvWgPLs3tvGmXz30Yv+07SZBfl1ng6SR1FwT0PVlHab/d+94umQr6HV2NvhXtYQkPfrKyKZtQw6HfcdV52z50tu//oEz3U7HG9Y2S3ritZE5Dm6KJlY2BSW9PDAx7VVTf/zacNLs1hjwtES8MhPQsYyk7hkB8fLGoKTeWHb3aFpSR0PAZL5eV+UPe60M2uV0tEV85nFTXTNG7XHI547MVtl8aHxuZ23IeprupsA1l64NVZPxzmhA0lCiFkDnJbVHfObC9oyZ7pEpAbTpj46lLUn98Zyk5dFAJOBWXXXGNP2JyWrpZ/ceuIUjmZ+s3ZjIEEADAAAAAHBYCKABLIBn9sY2fOmX9/5+7xE85s+3DgxO5H/50tC07Wau+ayVUUmx9Fwd0GaBQbPWn+nBMCsQrmkNOxxa3RKQtHc8I+ntp3W+7fXLwr5KkHrxyW2SHtsxNsfBTQXHJSe3SHppcHoAPZLKSxpM5MzYb3PYa8qOx9L5XhNAN08PoLuqHdC7x1KSTmqtjEgHqmsP+j2Tf+E7GyoBdLQugDZdzJKWN/gcsyfGR9eyqE/SQLwSEA9N5CW1hn2mG2TPaEpSdHoFh1tSIpNXrQO6KRCacwJ6MJ6RdP7qJklPzyOAnqibemYdQgAAAAAADhMBNIAF8MSO0XTeevC53iN4zN0jaVVrHOqZCegzu5skJbKWVdrv5HVvLC1pQ1dU1UUId46YbDckaU1buLbnZy9fX//Gi9e1Snp273imsN8160aSBUkXrWt1OOxYulhbec8Yqz79w55xSW0Rf1PIJymetnrjOUldMyo4TAA9ks7vGEpLWt1Subxa90Womo9L6mio5NdTJqCr7RbLjlD/xsEyKx/2T05AFyR1RAPRgFfVlRWbp1dw+CSNZyxJfYnqBLTpgM7NEhbbtkyJ9hVndkl6bm/8gFeVrguyJw4jgB5I5D517zO/33mA1SkBAAAAAFjaCKABLAATE780kJgjDj5Yu0czksZnzDibpQXP6I6aGd/xzH6HoHvGcpI2dEclxbOWpN7xjCRTvtEe8ZmZ4stOaT19eUP9G1e3hDob/VbZfmbPfgdsTcS8sjm4qjkkafvAZBlx3ionc5Xk+vc7xyS1hjwmKY5nC+YaVswIoJuCXo/LYdsOE3GubKnsUGveCNRNQLdXJ6DrFx5sCVYezyyYPjZMAG2qnCWNJvOS2iK+aMCtaiNK09QJaLMmYSKblzRoKjga/Q11FRxf/+Ur/+PnL9f2T+aKmWJJ0js3dDqk3lh2aGKuGhZJE3VBdvwwKjh+9mLfpm1D9zyx55CPAAAAAADAEkAADWABjKUKkoqW/fLgXAv3zV+pbPeMp1UtU65J5a1E1pK0qiXYGPKobtZ4GtvWvlha0hldjZJi6bykvnhG1eljp8NxzspGl0PXTx1/luRw6JK1rZJ+v2v2cVfb1miqIKkt7Dt1WYOkX2wdqJVg11/StoGEpJaQrynoldQfz46lC6rOO087qVk5cGv/hKQ11QC6NgHtd7tqO3dUA+iGukrl2gR0Z6N/1ss+2swihCZHljSYzEpqj/gag15J5uOp7wyRZD6WZK40nMwnckVJXY2VCo50zprIFm97ZMcdv9lZGzDvT+QkRQPu1rDP9IA/13OAIeh0viTJ43ZIiu//64oDGkkVdXgRNgAAAAAASwABNIAFYNJYSZv3HbgSYT7641mrbEtKZAvmgWH6NxoDnpDP3RbySRrbTw30WDpfLNkOh33a8gZJ6ULJKtlmmbvupko+e/tV5/3qzy87Z2XTzLef2R2V9OpgataDT+SK5qpawr7LT2uXdN8fej5179PJnKXq4nuGbTsktUa8Ji5/qX9CUsjnnpbDGl1NAUmlsi1pdbUhpDYB7fdOBtDtkUp+3Vg3UNxUnYBevkABtKnbHkkVrLJtlW2T9rZFfI1TekJ89W9pqL70q+1DktZ3hEM+dyRQqeAYqE4391bXk+w3PdGNAUknd4Yk9Yxl5r6qibwlqSsa0OFVcJjvFeLp2b/wAAAAAADgBEEADWAB1JqaN+87MhPQe6qpom076ls4esbSklY2ByS1RryqDl/PZCLLjoi/JeR1OEyWXewdz0rqaqwMF0cDnjWtoVnfvq49ImnH8OwBtDlpyOvyuZ3vO3vFTe/d4HY6frV9+PP3PydpOJWTVL8KYGvIb9Jhc8CuqH/WRQKXRyfHolc2T5+ADtQF0CbqlVSf7dbW9+uKLkwHdGvY53KoVLZHkvmxVN62HS6noynonRJAB6d0QLudjojfLemXWwclnbeqSVLY55KUzJcGE5X7yvSuSOqPZ1T9oJY1BCQNViunjZf6J77+769ki5Pl3RPZgqQVTSFJscOYgDaNIuNMQAMAAAAATmwE0AAWwFh1LPTF3iMzAb1ndDL5rW+02BfLSVrRHJTUFPRJGk3NXgFsIssVzSGX09Hg80raO5429cHL5jEgvLY9LKlnPFOwyrWNuWLppy/054ol0wjRGvFJcjj04QtW3vvJCyX9bteYbWs0WZC0oWuyV7o54jX9GGa6ubtp9oC41svRGfEHqoPPvmr1c9BTvwhhtQO6Ls91Ox0rm4Iuh9a2Rw74Ax4NLqejzbRwJHLmO4mWoMfldNQXVU/rgK5teWLXqKTz17RIavC7JSWzxYFqm0dfbQI6kVP1N2hS+MGpHdA3//v2236942cvDtS2pHMlSSuaA5IShzEBPZ7OS4pnCvYR6zkHAAAAAGDxIYAGcKzVr7n32nAynbcO/5i7xtK1x6N1AfRIKi+pPeqX1Br2av8VHGYCuqvRLykadEt6qS8hqTHoqWW7c2gL+yJ+ly3trruSO3676/r7n7/l4dfMZbTW5aoXrG52OR25Ynk4mTOvntIZjforYWtr2FfflbG/RQK7qsn4qrq57Fr1c9BT3wFd2XNalccPrrnwwesubo9Mqbk4lrqifkkDiexwsqBqRh+t+9kbZwbQIZ+komVLOn91s6Sw3yspXbAGJys4KhPQg6aCIxqQ1GnWPExMCaBNy8rOkck1Ic0ihCb0T+QO/eYcThcklWyljsQdDgAAAADAIkUADeBYMxPKbpc6o37bdhyRIei9I5Ox78jEZAA9Vpf8tkR8ksaSs3fymj1NUGsizq19CUndM1b/m5XDoZNaw5J21rVwPLM7JumJ10ZNBUdrw2TO63Y5lkUDknrGMubVtgbvuo5KjtwS8jbXjSp37SeAXl7dvrpl8iJrE9B+z+Rf+MagFrZRxwAAIABJREFUx+TSjVMD6FUtwTNXNM7nBzxKOhsCkvrjua19cUmm4aSxbqXExqkVHJKi/spkd3vEZ2bAwz63pImcNRCv5M6mO0VSXyKv6gfY2eCXNJicEkAPJfKqK4a2baUKRUndzUEdxiKEtj15px1OjwcAAAAAAIsdATSAY60yDhz0n72iUdILvUegBnrXaFpSe9graaSu5TmWLqgaKLcGfZLG07OXKsQzRUmm/MFEnGYBwGXzC6AlndxhaqArs7S2ra39cUkvDUz0jKcltYWnVHmsbg5I2jueGZ7ISWoL+9ZVFxJsi/ia6salu5sPUMFRW4FQdYsQBnyTFRxOh+PdG7pe1xk2VSHHj2WVWozsk7vHJW08qUV1U88el2Pm+HlzuJLjn7+6yVRjm1bodN4aStYqOCqB8kDMTEBPVnCMJHLlailG3ionckXVdYjnrZJVkmoT0Ifa4JwpWMVS5SwE0AAAAACAExkBNIBjzVQet0S8Zvb2hZ7YYR7QKtv7xjOSzl/TLGksPTniago3mkNeSc0Rr6SR9Owd0CZqNAPCJuJ8ZTipeU9Aq1oDvWOkMgE9ksrHMkVJpbL9y5cGJbWEpgzzrmwJStozmh5NVdonTu5okORxO0Jed8jrdlUXHtzfNSyrLi24umWygmNyEcKp0e3//OBZP//8G2uvHidMO/Pescxze2OSLjQBdHVMu2nG+LOkpkAlWD9vdbN5EKl0QFu1RQj7ElnbVtm2+xNZVb9FaIv4HFLJnlyIcqQ6pNwznjahdDJnSXI47OWNlQ7o8iFVOI/WfQsSZx1CAAAAAMAJ7PhKIgCcCMZSOUltEe+Z3VFJzx/2BHRfLFuy5XE5Tl8elTQ6MX0CuiXoldQa9kkaT80+jhrPFlQtfDAT0KZleH/1FzOtaw1J2jFUCaC39U/UXuoZz0pqm1q1vLIlJGnvWNqsv9cR8a/vCEtqCfscDjkck+0T++uA9ntcnQ0+SeaNhtvpNMF1wDP9L7zDoeON6SF57NWRXLHcGPSc3B5RXVF1c2h6AbSkxlDlY7xgTYt5YCo4UgVrIF4JlDOFcixTGE8XrLLtcNimfMPtdLSFvapbh3C4OjGdzJXMDWD6moMetwnBbSmdLx3Cz1VbZlPVmxAAAAAAgBOT+8C7AMARZcZOW8P+05ZHJQ0mctliaT4L/e3PnrG0pDWtofYGv6SRurxvPGMqOLyqDiCP7aeCw8xKm9ixKTSZFHc1zXcCel1HRNKukXTZtp0Ox7b+hCS302GVKyO0reEpAfTqSgCdqX4gvhXNgXefteyik1rNDs1Bz1i64Pc4m0OzDAIb3/nIufvGM2vrKjgcDvnczpxV9nsP/SM9Zsygcc4qS7poTbOJyMN+t0OypWhgltURzVh00OM6pTNitoT9bkmlsm36NIIeV6ZY6otnzfByW9hfGybvjAaGU4WBRG5DV1TScF1deM9YpinoNSsQRgIev8flcTmKJTuRLUb8B/3flfUT0FRwAAAAAABOZExAAziAfeOZ9/2vJ37x0uCROmClcSLsa/B7Qj63pP549nAOuGskJWlVS8gkvKOpylirVbJNo0JzXQCdzlu54iwzrZUKjqBHUjQwGTgub/TP3HlWK5qDbpdyVnkgnlO1QvrdZy6r7dASnpIjr2oJStoxnEoXSpJaw16Py3nrB8/50AUrzQ5m1Hd5NDjH5PK5q5r++OyuaRsbAuanmGV8+HjTGZ38eC84qTLR7HQ4zMU3B2dJflc2ByVdvK7VXRn1VtDjrn1CQa/z5I6wpN5Ytj+eU11RiaSOqF/SUKJyvw3XrUi5dzwjKZWzJDX43Kom3YnsoRRomDUtjfh+vvMAAAAAAOBEQAAN4AA2bR98tif+v5/ce6QOOJquBNAOh7qifh12AL1nNC3ppNZQa9gjaayaKprJU4fDNmlmxO9xuyRpfEYlgm0rkTMVHB5JzXUT0N2N863gcDsda5pDknaOpCS9NJCQ9J6zu6P+ShA8bQLadEBniiVJHrcj4p+eF5uLmf8Ids3fv++Mv/kPp9YXQx+32sI+VzVHvmhta217NOhRdU3Iaf6f9a3f//j5f/++M2pbHI7KELSk9ojfNJb0xdLP7h2XtL6jobbnsga/pIEZFRyqztGbbywiAbeqn3/8kOaXx+qi7WkT0IfUKQ0AAAAAwGJFAA3gAMbTRVUbKo4IU3ncGvaq2sDQGzusAHr3aFrS6tZQa8QvaSxdMN0Lpn8jGvCaiNPhUGuwssO0I2SKllWS2VnV5FGSx+WYo/5ipnXtYUmvDSczhdLesbSk05c3nLuq0bw6rQM65HXXliU0vc/TNAc9klY0zXcEu+aPXtf+yUtOOth3LQhXtZc5GnDXN1mbLpTaL6Ke0+F40ynt08bJQ9UAenmjf0VzUNK+8ewjLw9Luux1bbXdzMD1YKySOw8l8pKCXqeknrGMpGSuoOqqhuZmmDYBXSyV739q3wHvWNMB7fc4JcXqjvDCvvhZ/++/3/9Uz9xvBwAAAABgySCABnAA46m8plYKHCYzHNoa8UnqbjbDqlPivAef7f3p5v7yvCdFe2M5SSubgybPLdmV0NCsN9gcnIx9WyJeTW3+NUz/htvpMFXUtdyzqzFwUAv3re2ISNo5nHp1KGnbjpawpzXsM80SHrcj5J1eKLG6tTJe3RGZJWXeuLbV7dKl69sP4goWoc5oQNIFa1qcdZ91U8gjqXG2DuhZNVQ/285IoLspIOmp3bFdI2mX03HpusnBarMa4WC1pGUklZV0zoomSXtNAJ23JIW85uweSfGpAfQPn9z73x588V23/vap3eNzXM9ouihpTWtIUqzun51HXx1JZC2TjAMAAAAAcCIggAaWPtvWQy/2jyQPMUEeyxTMfx6p6oCRage0pOWVCo5M7dWe8cx/+ZcXrn/g+T++7Ynne+LzO2BWUkeD3+Nymr4LUzNtJqBbwpNTtKYOeCAxfXw1nilKigbdJgJtDFSma7sbD67+Yl1bWNK2geTWvrik05dFJV20tkXSisbQzCx7VXMlgG6dbc76yrO7tn35He94fedBXcOic0pHWNIb17fWb7xkXavf47xgTfM8DxKp1nZ3NFYqOLYPTkg6qzvaUNeF3dkYkDQYr/yzMDSRl3TemhZJeysVHCVV67NNDci0CeifvNAnKZG1Pnz373+6uX9/1zOWyql6P4zXVXD0xzKSsnlrnj8XAAAAAACLHQE0sPT9ZHPf5/7383/5r5sP7e3jqaKkomWnC0cgNbNKthkpbQtPTkDvq5uA3ryvEjq/2Jd4/3d/d8AMOlcsmdCwPeKT1GLWIUzmVZ3dbgxOZrtdph04npFk2/raL17+1+f2qTrl2lzNnZuqE9DL5l0AbZzeFTU/wtd+8bKk07saJJ3Z3XjLB8++5UNnzdx/ZUuldKK9YfZRX6976f+V/qu3n3rrB8/+0AWr6jdec+narV9++9krG+d5kEitgiPqr2/NftMpU+bHzTcQg9VvIAYncpLOX90kaTiZzxVLyWyxdjTzZYb5csLoj2c39yQcDvuPTmmzSvqvD75QLJVnvZ7RZEGSWQ5xvC7C7k/kJSULsyyDuT+3/2bn/3m+b/77AwAAAABwXFn60QaA374yIumxV0fNAmtG3ir/8Mm9+8Yz+39fhWmzlTR6JFo4zNEc1ZoL0wE9kJhcC+6FnrikK85Ydum6tlLZ/u5vd8x9QDPZXVvEr63BJ2k0nZc0nimqWjZtVCeg85JeHpy4/dGdX/7pS6ouNNdYXXsw7HebYeXu5oObgD65Pfy3V5zmdlUGaU/tjJrt7zlr+Yau6Mz9V7VUAu6W0Hy7JpaelrD33Wctry1FWOOesWUOpjRDUmeDv6tubr2+AFpSR4NfUqZYSuUtq2yb3/spnZGQ1yWpZzyTzBVVbZSOBt2SJrKT88v/tqVf0gVrWu/+2PkelyNTKNffuvVG0nlJJ3c0SJqom4AejJum6eKs75ppIJH72s9f/qsfv2CVWbsQAAAAALAoEUADS99Te8cllWw9+upk8+wvtw1+8f9u/bt/23bAt49Xl+wbSx2BdQjNQZpDlYUBTVY4EM+Wqvnai31xSW98XdvfXHGqpF9uHZp7wbeRVF5SR8RvCi5aQx5NnYBuqmu3WB4NSOqLZVRdujCZK6XylpmAjlZrHJwOh6lf6DrICg5JH794zU8+c+lJbaGQz71xbcvcO9cC6PaGg15pEPUaqr+7ZY3+oNdlvt5oCXlPWz4l9w96XRG/S9JgIjeaytu2w+V0NIe85hexdzSdyluSIj63pKagV9LvdozVUuaHXhiQ9B82dDodjq79r59ZKtvxdFHVRSkzhXLBqgxK90/kJWXmXcGRyBQkFS3b9KQPJHL/5Z83b+lLzP+TAQAAAABgYRFAA0tcfzxby8h+vX2otn0okZf0ymBy7reXynaiOgE6mpx92POgmDFqswKhpPaIz+VQydZwMi/JKttbehOSzupuWt8RuWRtiy3d+/vdcxzQrCjYGqmkzK0Rv6qptJmArl+EcHnT5MB1T3X6eyCRi6cLmlrWYUZlawHxQTl9ecOv/ssbn/7rN7dHDjDXvKo5VLns8Cwd0Ji/2gKPZklDU979xpPbnDOKt5dFK/eAuXNaQl6nw7GqJSRp73h2IleS1OB3S3rr6Z1NIc/e8cx7bnv8uZ5YXyz7Qm/C4bDf/vplklY0hST1xdIzLyaRLZqvU1a3BM3pY5mCpGTOSuctSfNvs0lWo+o9Y2lJDzzV8+Bzfd97fK5/IgAAAAAAOK4QQANL3FO7xyUFPS5Jj7w8Uhs0NpOeveOTo8ezSmSLtl2J8MYy8+0NmMNwKieprZq3upyOZY0BSX3xrKQdw6mcVQ753Ce1hSR9/JKTJN3/1L7M/jtzTXLdFq5MELeEvZLGknlJsVReUnNwcg06s+bh4ES2bNs9Y5UAejCRi2cLkhrrVqu76coNX3zXaeetmu8ieNM4HY6g13XA3ZpDXvOrMY3YOGRmAtrtUnPIK+nCNS0Oh33lud0z9+yIBCQNTeSGkllVq8NNAN0zlk7mC5LCPrekjgb/Q5+99OS20HAy/97/9bt33vpbSResbm2LmPpyv6Te2CzfyphvWaIBt8flNKP0sUxRUn+1ezqVK81zSc90vnLn7xpJSXp1KKm6DmsAAAAAAI5/BNDAEmcC6P94/oqo3xPPFp/riZntqXxRklW2hybmmmuu9W/oCHVAm8XZWuvyVtPL3B/PSnpxX0zS65dHzeDqm17Xtqo5mMxZn3/g+V9uG8oVZ4mhhydykjqqi/iZJHc0VZA0lilIaqkbQ25v8Dskq6TRVGHPeGV2dTCRiaUtSU2hyQD63FVN11y6Zsb47BHmcOgTl6w5f3XTGSvmu9oeZhX2uyV1NgTMnfNf3/m6J264/NKTW2fu2RH1SRqMZ0eSBVUDaNOV8egrI+OpgqSG6nKU3U2BBz9zyRVnLne7lMhakq44s9O81BWd/OJkmrGUma32q9p1HkvnJQ3EK/+s2VJ2tpt5pmS+8q3PntG0pB1DSUnDE0egDAcAAAAAgGODABpY3Gxbn/zHp6+6+8n9rVH25O4xSW9Y2/LG17VK+tX2Sg10MlsNtsbmWocwVhdAm7Hiw2TamesD6BVNAUm94xlJL5j+jRWV3l6nw/GZN62VtGnb0J/e+8yV3/ndzLnRkWRO1RhRUosJoNMFSbFUUdUmX8PtdJiouj+e7RmrRIcD1QnoaN0E9DHzF/8/e+8ZJ8lZnntf1TnHyTs7M5uT4korCQkJCRCCF7BlTDIIB4JfDjYHDsE+2ASD5RcTjDFRAhEkGwSWLCSEENIqr1arXW0Os2F2cuzpnKu7qrveD3dVTU2n6ZnpmZ3VPP8P++tfb011dXWFp67nuq/7ti0PfPR6s4FdjReFy2IC0KocBka9rqNKfje54CcTcgRHq9sC4C2XtLU4TCPRzEgkC0XOJpwWw3f/7MojX7jtP9575effuv2913TT+50+G4DRSAUBmg4/v0POoQYQy4rQOKABpOuLgU7zigM6lBEL0kAoDSCYakAYDoPBYDAYDAaDwWAwGMsDkzwYjIub8Vj26TPTL54Pn6zUlyycyg8E0wB2rfO/cWsbgN29U/RfKUX/Gg5XCLGdWcMsB/TMa7EoPX16OlYzlGMsmn3o0FiJZFySAQ2gw2MDMBHnARwbjQHQ2oHfvavrlx+57i+u7zHocXoqMRBKlXxKkCI4nLLaSA7oYJKXJISzcsivdnnKCB6JZCYVNXAqnotl8gDcNhbEfLFy46amXT3ev7hh3ZxLUuTLyfH4dIIiOCwA7GbD5966XV3GqRGg1Xf++IqOD9+4zqCTXfFrvNUd0JpZFo/VBCCaygOY0HQsTNUpQOflU2w4lB4KpwsSACR5sWI1AIPBYDAYDAaDwWAwGCuQ0mdsBoNxcXF6QtadXzwXvEKj2/7Xy0ODwYzLZgSwtc3hsRlft6UZwEAwnc6JdrMhkZUFrOGaDuiIRnQOp2UHdFGSPvPfRx8+OvGGrS0/+ctdFf9QkvDhew+cmUp57KbXb21R31cE6Bmpd43igM6LxTOBBIDL1ri1q7p+g//6Df7+6eSL58MvnAtuaHZo/zeQzEETwdHusQAIJHLhdE4QJQDe2QL0Go/16GjswGBYDb+eiGXjmVKvNOPiotVleeCj19ez5C1bW4wG7thYfCyWAdDqlNPDb79izb0vDR0djQFwWeb2wndSQ8tYplCU9LpZWS0R2QFtgnL4RbM5zHZA1ylAp5QM6NFopncyob4fSuVpAxgMBoPBYDAYDAaDwVjhMAc0g3FxczqQpBd7+sPqm5F0/vMPn/rJ3sF/330OwDU9fgBuq9Fo4ACQbTmZl5Xl2g7oSDoHoMNjgSKrSRL++bHeh49OAHj6zPQ5ZQNKODAYPjOVAnB6cpY1myzVTXaL+g7paBPx7OnJhFiAx2rs9NrKV/jaTc0A9pwLlrwfTPAAmhVLdavT0uYyF4rSU73TAIx6zmqc1QxwjdcCYL9mdwUSuVhWAOCxsjm5Vz9tLssd13QDCKcEAM3KXAjH4St/fAnHSTajvtwBXU6L06LnUJAwnSwNxJBnWRwWKJ0tqQmhtnlgiq+rpWdayYCWgGfOTKvvl38og8FgMBgMBoPBYDAYKxMmQDMYFzdnFVPkoeFwJi+bJU9NJADYTDqLUQfgtkvktmkusxFAghcApLPziODY3OqAEnbxny8P/+zFIQDdfhuAH78wWPEP79s3RC8GQ7Mc1qTEadv9UVbvWCT70OExAJd1uiu2/nvd5mYAL/WH82JRfbNQlMIZAZoMaI7Drh4fgCdPTQLwO8wla2t3WwH0BdMASOmejGejmTwAr80MxirgY7dstCih2y3umbmQyzrdv/zwdfd+6Bqjfu6bo17HtXtsAMaipSkcwRR12jQB8NqMUCZvxmMzqnEqX58Dmp9Z7OnTAfU1BVgzGAwGg8FgMBgMBoOx8mECNINxMfGDZ89/84mz2ndOKQK0WMArQxH5zYk4gFu2tBz6/K0v/N0tN2xsovfdVhMAyjtO8jMRHOWd/VTCmRyAza1OALFsvlCUfrF/GMBnb9v87++5AsBvjoxNK80JJQnj0axQKAYS/B9OTinrnyVwx9Ik9c6EXZAAnREK9+4bBnDHa3oqbsmWNqffbuLF4qHhiPpmNJMvFCWOk/yarobXrPMB2NMfAuCzlWYpdGgEx+vW+wDEsoJQkAB4yhZmvCppdprVtOgWp0X7X6/Z0EQTGPWwxmMFMF4mQI9FsgCaSYB2mAHE0nlJwkQsC8Xyr3YXrI1Wp07yIgCbSQel9yaDwWAwGIz6iWhamzAYDEajeOLk5IfvfYVdYRiM2jABmsG4aEjnxK8/cfZ7z55X721ZoTAcygB4/ZZmAHv65HiK3sk4gO3tLrvZ0OWbibNwWQ0A4rwIIKkIW+l8gfy/FYmmRAAbmx0AJIkLJPjzgSSAd+zs3NnlvarLIxalf3vizIvnQ/fsGbzlm8/e8LVn3vDN5z//8MmCJHs/qQsiwQsFXiwC8Glyma1Gvar8/u0tG9+0vbXilug47sZNTQBe6Aupb5Ip22MzGTQhvLvW+QFQALTfbilZT4cm32NHh0t1wuo52EwsgmO18P/etN5rN7Z5LM3Ohdve1/qoD+Esj38iK5wJxAFc2e0D4LOZAEQyQjSTp3mOjS12AKlcfREcfAGKjZq4utsHIMAc0AwGg8FgzIef7h3Y+c+7Hzk6caE3hMFgvNr4zjPnnzo9/UJZViSDwdDCBGgG46JhIi57HsOKAN0XSEmA12a8fWcngD2KMntyPAFgxxpPyRo8NgOAZDZfKErpnAiAMjpq9CEMp3kAzS4LRdm+1B8uSPBYjW0uK4C/vmk9gF8fHLvjnv13PtY7FM4AGIlmdvcGAHz6TZtpa9V+a5S/oedgny319jTZANy6vfVTb9pcYw/cVBYDTebrNuesbmybWx1qhq/XUaopk2tV+Vx7m2KIdtmMFaM/GK9KfHbT05+6+YlP3GTQLfxXp2NpLJpN58RvPnH2/HQKwMHhqCRx3X4bxcKQdhzL5CfjPACv3UiStNpdsDapfAHApUpbTotBt7PbB+aAZjAYDAZjnlCf4afPTF3oDWEwGK8qCkWJuiIl62vxwmCsWpgAzWBcNEzG5Er/qCJAn5mMA9jW4bphQxOAs1PJUCqXFQqDwTSA7R2ukjW4rEYA8aygpkVvaXWiZgx0JCMA8NlNPocJwPPnggAu6XCRVnvrjrZ37FyzucWxtc2xq8d35+07DvzjG//2lo1GPbe+2f6eXV2kvg2FUtot99hMJVLvF9+24xNv2PTt916hq6kBv3ZzM4BTk3HVAz6dyAJomm1i1XHcrm4vvfZrsj4Ir81k1Muf0u2zU39FAF4rC4BeXfjsJrd1UaErnV4LgLEI/+9Pnfves+c/99BxAAcGIwCuWyfneHjslHsjTEQzANa4rQ6zEUAmV5oBLUn4/MMnvvNMn/ZN6lV4SacsQG9scbS6LFC8/wwGg8G4KPje03337Ru+0FsxgyThzt/13n9g9EJvyLJCVX3HRuNzLslgMBj1MxLJUJljkq+rxQuDsWph9eYMxkXDuCJAq/Lr6ckkgG2tLr/DtK3deXoy+dy56U3NTgnw2o3NjlJF1WMhLUyk8n+DjtvU6jw2Fh+OVHZASxLCqRwAn83U7LQMBNPkPt6h+DF1HPetd19R8lefuW3Lx27ZyHEw6nXrm+2HhmOD4cwlazwAKOvD7ygVhXd2eXd2eefcAy1O89Y2x5mp1N7+0Nsv64DSiq3VVfpNr+7xPXM2CCWBVwvHocNtHY5kOE7q9FpV97TXzq6HjPnR6bUD6JtOHB6NAnhlKDoRy748EIYSRA6lPWYsKzx4ZAxAu8dqt+hRaYR6ejLxXy+PcMDf3LxRr/iyqXrgUqWaYXOrg1YYYAI0g8FgXCSEUrlv7j6n5/D+a7v0iyi7aSD9wdQ9Lw7aTLr37lq7esq/opkcgOFwJpEVXIubgWYwGAyVs4Ekvaizx3g5gQR/fDz2xq1tq+eCzFidMAc0g3HRoDqgI0pk8+mpBIBtHS4Ab76kHcCDB8eoLeEl7Z7yG5jLZgSQzIkJXgTgsBh6fDYAw8FSB/TjJ6d2n5rKCCJN5/ocpia7EUAsK0AjQFfDZtJbjXoA3X67dv205YuxnV67zg/glQG5DyFFcJTH+F6z3k8vypsQAljjtQBodVlNBl2r4oB2W9ijCGN+rPFaAUwlcmnFzvzrV0ZPjMUAXLNOPgK9NtP7rukC8MTJAIAOt8VhNqBSBMfRsRgACYhnZ8r3aK6ox2+zmw0ANrY4W1xmMAc0g8FgXDxQ/lhBQqqs9uVCQTeRTL4YTq+iu4k6fj4xzkzQDAajYZybStCLdH0Je+X8w0MnPnLvoQOD4cZtFIOxEmECNINx0TCmRnCkcgAkCWcmkwC2tjkAvPvqTo6TXh6IPH58CsD2NaX5G1A01nhWSPEiAJfF0N1sBzAcmSVAj0YyH/vFwY/+4nBfIAXAaOBsRoPfPiPy7igL96jGer8dwIAS8RFTIjjq/9YlXLehCcCBIfn2TAJ0S5kAfdkat9HAAfA7SpsQAmhzWwF0++wAOpQMaI914VvFWJ20uy0cJ9HrXT1eAHc/31+Q0OYyd2p6XX7x7ds3tzjkP/FYqddlJl8aEndkOEYvwpoO2tl8AYDdbNjU4gCwY42bplvC6XyhKC3N12IwGAxGI1FTQRPZlRIPqkqxo5Hshd2S5SSmfOtjo7ELuyUMBuPVxNkp2QGdzCzwIj8RzwIYj66iC/KyUZSku58fODgcvdAbwgCYAM1gXERMxRUBOisAmE7ysazAAZtaXQDa3dYbNzYD2HM+iCoasdtqABBL56n832E2kAh7fDx+09eevfKfn6QCoidOTUoSVyhKDxwcBeC3mTgOfkXktRh0PX57ndssC9yKAE0RHE1lERz1c02PD8CZqRStKpTKAWhxlarMJoPujVtaDHpsa3dW2Cq/HcCGZhuANuVv3Q7mgGbMD6Ne1+q0APDajd9//1UGPXixCGBXj09bf2Ax6n9wx1UWgw7AWp/NZTGgUgTHsVF5YBRSGgwWilImXwTgMBu+9s7L7rx9x42bmprsZo6TCkUpttAxLoPBYDCWE/WCv3LiQSMp2fg8Gq3ahvpVBi8U6JYKgGqVGAzGauPURGIpCiDOqQL0QiM4qD9TRliggZpRg2Oj8a8+fvofHjp+oTeEATABmsFYZiLp/FSCr71MLCMUpQrexvGo/IeRZB7AmakkgHXNdrNBPpH/7NpudeHt7RUEaJfVBCCZE5I5AYDTalrXZDfoIRSkkWgmmhbufrYfwBOnArT8w0fGAfjsJgB+u6zPbm131Z9guL7JAWBAieCIpgUAnkqxGHXid5hona8MRQEEEjwqOaABfPf9V73yj7dW1Mof3D1gAAAgAElEQVTff23X/7p5w0dv3gigXW1CuAhfNmPV0u13APir63tanOZbNrfSm9eu95UstrHF8bO/uuZDN6x747ZWu9kIID17hJrOiX1BefAaUZRltVmo3WzY0uq847oeHccZ9By59aeTc1xJGAwGg7ESSCgO6Hg2X3vJZUO90YxWb0P9KiOqmbU9wiI4GKuPSDr/um88+7U/nL7QG3LByInFd9+97z13v8Q3VOfNi8WBkHwhTecW6A7J5kRgBcU0vZqIZfMABkPpSvoKY7lhAjSDsXxIEt723T1v+OZzqq5UzqmJxJVfefKLj5wq/9uJ+KwM6JFwGsCGZoe6zBu3tXhtRgAWo25dUwXhlcKXoxklgsNscFoMd9+x6/++Zeudt+8A8OjJifPTqYPDcsJyOl+AIkA3KVkWl80VAK2lx2+jTyTXD3m3PdYKenH9XLfeC4BCssgBXZ4BDcCg46ppyk0O89+/eWuXzwag3S1HJXhZOxrG/PnHt277xBs2/fVNGwC8/fIOevPa9U3lS75mg/8Lb99uNugozTk9e4h5fCwmSfK8jmpMo2GoQQ+TftbNmiz/LAaawWAwLgpU4/MKiuBQsp7UeLdXPZS/YTcbOE6aivHh1EqZDGAwlocDg5HhcOa/D45e6A25YAyF0+mcmMkXGzuEHgilC4qymVpomUtaKC7mzxk1oDxDoSBF0uyyf+FhAjSDsXzEs8JEjE/nCzUKHo+MRCTgpfOlLQiimbyg3NxIxp1M8ADaNekTRr3uT3d2Atjc4qxoUiYBOp7NJ7IiALtZD+AN21o++roN77+2Z1u7UxClj99/WJK4y9a4OxRrsM9hAuBXcjO2d8xDgLabDX67CcBgKA1FWfMvIoIDirr3cn+YxhAAWpwVgp7rxGs3GvQA4GYZ0Iz5c1mn+//cutli1AO4dUdrT5Pt8rWeDc21MmqclgpNCI+NzbixwmlZoSCR2m4ylDQUpQN+mgnQDAaDcTGg6s7Jhfanajjqc/hoeLVEcNBXXuOxrGtyADg+zlI4GKuLsWgWQDglpFerzXZQ8SmHGypEngskAdDjZGJB+1aS5N4wF+lPs68/dNfz/RULuFcCvOL8G4utlvvdSoYJ0AzG8hFQSuZrzLtOJ3IARiLpkg5j4xqLSjSdAzAV5wG0umaZfz9684a37Gj95K2bK66cBOhEVqT6IIfFoP4Xx+ED1/YAOD2ZBHDbjtZbt8l5An4bOaDlD7pkTYVU5Rqsb7YDGAqnodhP3DbDHH9Tk2vW+QCcmkh85dFTALx2o82kX/DadBzX5rLSehazVQyG1ah/5tM3P/I3N+i4Whk15IBWe1IRx0aiAGxGPTQOaFmANpeeL81OE4BAfLXY1hgMBuOiRo3gSPArxX4VTss3mpFVkwFN5YNeu/mKTjeAY6OVUzju/F3vB35yQGRtfhlLj1Ao7usP5cXi8nzcuHKyDy/BtNPfP3jsj7+/d/fpqZUqQgLAkCJAB+fKw5wXZ6YSAHa0uwFkFmRh5sUC1UFmFhohfWH57IMn/vXxM0+dnr7QG1IZXpBPMdbjcSXABGgGY/mYVu520/Gqtz0KNRaL0uTsZSaiGSjeSeq/R2tr9cwy/zY5zD/8wNWv39pSceUuqxGAUJBCqTwAp2WW5PrHV3aQ/gXgLZd2vGlHG732OswAWl0Wi1HntOg3t1ZIl64BdfwbCqUARDIiAJ9tUREc7W5Ll9cmAb8+OAbgy2+/ZDFrA/Cx1218/Zbmq3tKc3sZjPlSW3omHGY9yjKgj4zGANywqQkaXSCZEwE4TKUCNE07hVLMAc1gMBgXAamsGsGxUhzQ0ZSsiU/Es4XVIbZSGxKf1XBppwfAcaXxbwn3vjy0py94fjq1rBvHWJX8fO/Qn/14/0/3Di7Px6l5O4ONTn6XJDx4ePzYaOwj9x56749fXrEleoNB+bwOpRuZhtQ3lQJwdbcPQGpBCnJGKY65GDOgYxlhLJoB8OSpqQu9LZXJivJenWAO6BUAE6AZjOUjkJDvx9PVlSPVJT00e3AwEecB7OhwAUjyBbEgBeI8AHLv1ondrCd5bDSaBeCc7ay0mw23X9kBYH2zfX2z/dp1fqdFD6DJZgZgM+kf+Oj1D3z0BpNhfteNdX4blD6E5N2mUOnFcI3S5O3zb93+R1d0LHJt77uu66d/dY3VuHAbNYNRP3aTAYBYgOp5CST4qUSOA27Z2gJNYSANQ20VHNBmsAgOBoPBuEiYaUK48hzQYmG1tLSlCA6v3Xz5Wg+AI6OxcqsmLxQEUYImooTBWDooEeLcZHJ5Pk51QJMrqIGk8yLNYxkN3P6B8G8Ojzd2/Y1iKCJL8OGGXvTOTiUB7OzxAsjkiwuY0lONz+mL0AF9ejJBL54+HViZ05lqz0nmgF4JMAGawajK4yenfrp3oIErDCTkq16g+m0vEJeHvCWDg8l4FsC2NhcpyNFMfipJAvQ84o91HOeyGgCMxzJQDNFaPv6GTTdtavrcm7cCMOi5O67rNui4XYrae+ka99a2+eVvANjQ4gQwGM4IhSJ1NfTYFht28Y6dnRaD7n+/fuOHb1y3yFUxGMuMGqmh2hwoAHpTi4MaY0ZmBGgBZZUKAJrlDGj2eMxgMBgXAWoTwmR2RYgLkiTfaIx6DsBoZFU8k1P5oMdu3NHhNugRzQjlHVniSlq3KtAzGBX55YGRj9x3cJF6VjybB5ZvBkiNcxwMNdgHGs8IAIwG7s+v7YESd7MCGZyWtf4GnuBZoUBBRju7vPTOAnKc00pIcTq3THksDaR3Uo4zimaEwyOVK0suLNm8vFdHmQC9AmACNINRlb978OhXHj090bj+4IG44oCOV73tTSki9dDsfC4a4nT6rG6bEcB4LJvkCwDa3PPrv+e2mABMRLMAHGXOyna39b4PXXurEr7xd7dtO3vnWza1OOb1ESVQBvT5QDKaEQBwnOQqE9Tmy/Ub/L3//OZPvWnLItfDYCw/eh1nMeigEaD7phIALlnjoo6dQaVCIpMrQons0NJKAnRDA+wYDAaDsUTMOKCzjaz7XjDpvEgZx5d1ugGMRhpcj78UJHlxNLIo1Yz6K/hsZrNBt6PDA+DISGkfwhkBmtUYMWrynaf7dvcG/uj7e46PVQ4TrwfqKl+jLraBpHNiXJkAG250BAedOC6z0W2nbkMrUYBO58XplLxhDfRwRFLyZF6722I0cFhQjIbqgCbrycUFtY/iOAnAU72BC705FeBFWd9voKrDWDBMgGYwKiMWJFJ4g40bFkyqGdBV5rqFQpFUWgDDs2enx2M8gA6PjQKUqdrFZtLZy/Jha0MOaF4sArBb5gid4DjodXNn2tamx2/ngHS+QD2C3RbT4teJ+sJ2GYyVCZmgVYsEhfO0eayUTpPIitRIOsULqNyE0AwgkOBXcqcXBoPBYBApXn76LWk/qyWdF3+2d3B5Ho/J/mwx6DY2OwCMLI0Deiic/ptfHKax3+L5wE9fvuWbzy3GcEoOaJ/NCGDnWjeAoyORkmVUATra0IhYxqsMNQgxnBLefddLx8ZKZzLqhIzDgeq2pAYyprm2DCwigkOS8MlfH33fj/dpG3XSieO2mjxWE4DYikyw0T5ZN9ABHcsKALw2E5SuLckFOKBzqgN6RVTJzIveiTiAt13aAeCJFRkDPdOEkAnQKwAmQDMYlZmxq2QaNgadaUJYxVgR1LxfEsExFc8C6HBbvDYDgDNTSQAtTst8ZViPJnaD3NBLjcmgW+uzAjg0HEUj8jcYjIsdh8UAjUWCpqbaXRYSoAtFiYby1MnEWeaA7vBYOU7ixWJ06YscHz4yTmcug8FgMBaGGv2cqO6AfuToxJcf7f3W7nPLsD0kQHscpi6/DcBoNDMRy/7DQ8cb23nv/gOjj52Y/MpvTzVkbX1TKbEo7ekLLXgN9K19DjOAK7t9AA6PlnpXY4pzM7xSMwQYK4FAgpcAgx67ery8WHzg4NjC1kODvTgv5MQlD16QS2m9VgDhlLBgofPho+MPHxl/qT8yEJy5XMR5AYDLaqCnvOjKKPUogVov0nNzA0PeY5TtYzUCcFpm+UvqR41+XoB4fWERC9K5QArAx27ZaNBjKJzpD664Dq6qwTyeFS/GlO1XGUyAZjAqowrQscbdRAOKvhxMVBagyQhp0HEAhqKZouJvFIsS/VeHx+q1mwD0TiQw//wNAE6NAF0ewbFErG9yADg4SAL0cqjeDMZKxiE7oGW/A01NtTjNRr2OOn/SyJgWsJdF1pgNOkrhGFlcPfKcDATTn/z10U/86siSfgqDwWC8ulEzoFUrdDmhVA7ARGxpr+oE3WKabKa1PjuA0UjmMw8e++WB0Z++2MjGJ+FUDsCL/WHqtLYYCkWJMlIPDpd6lusnkhEAeO1GAFeu9QA4NRErEf5mIjiWJRXhYufxk1N/+bP9q7BhI/koO9zWt17ajkUcLXFlwmMZQtWoA+HWNidpxMPhhVxq0nnxq78/Ta9jGodWQhFhSYeNZ1aixkfWru0dLjS0jzcJBW6bCUrNYoqffwSH8ifZXNV7xMrkfDAlFiW7Sb+lzfmadc0Adi99Ckc6Jz56fCIr1LuvcpolJ2IswPACwwRoBqMy6tNCbHEOaKFQPDkekyQUJSmoDC8yQoHm3/aeD4VTM+O2QIIHsL3dZdBDEKWpuOKYVmba/Q4TpcSemYpjnh0ICa0BmWyYy8DGVgeAw6NRALT9DMZqxmExAkgqQW904re5rQAoY4cS5ahYu+JE0VqfDUsvQPcFElBkEQaDwWAsAEma0SNUK3Q5mVwBQGhZusuSYui1m8kOeXg4+tL5MIBgqpGfroq5v3h5uPaSfdOpj//ycA3/tVow9MrgwgXomBzBYQLQ6bV5bUaxgFMTs0zQqkU90rjyR5WX+sMf+MmBpb5xLyc/3zv03NnQ06cvTNH9f7089K679i3yMW1hyAK0x+qzmwFEFhTYUijKYY/QWJTmxZ6+4M3fePZAfSfFWIwHsNZr7fHbodiB58v3njmvSrfaToOULu2xm9yyA7rx1zFJwr7+8GIq//qDaQBXd3sBxLN5bYTIYoinKX7EAGXEvgAXc0ZRSHmxWKhvwybj2U/++uiC418aBYWCbu9w6TjuNRt8UKq0l5QfvTDw8V8e+eGz5+tcPpufEaAX2Ti0GodHoh+57+D+gfBSrPxVBhOgGYzKaAToescE+wfCf/nT0pHl1x4/87bv7v3diYloWihI4DjJYtQBmE7kXjwfev89+z/930fVhSlnY43H0umxQdOHUB7ouGw6jvPazQBoyNLqts73e7msM/qvc7kE6PXNDigVSV4mQDNWPXajDooVrihJ9Mzf6rYAaHKaAITIAZ0XUUWA7vbbAQw1uo1MCaPRDABeKDZqmM5gMBirjUxeVC+gqVyhWnY/mbka2HekBmR98NuNa702AAVlkxqr5cUUqeiBQ6N8Tava3c/3P3p88v79I9UWUHXh4UgmuCCpLisUKAaURqEch51dXgCHh2fJN6pzM1KlWcti+MXLw3v6go8eHW/4mhfMgcHIZx84Xs3CHE7NIdIl+TyWK8K4nPv2Db8yFHmpX05l+Z9Do8+dDS7PR49HMiAB2mECEF1QoHBCkwi/MAf0745NDIUzDx+pKwBkLJIBsMZrXd9kQ1nSY21OTyY+9PNX3vzt53/0wgCUuAltTrocwWE2UAb0UjQh3DcQ/rMfv/z535yYc8m8WLxnz2D5hBa1XtzZ7eMASeKiDXLuRzM5KAW+ThKgswvPgAaQyddl7P3N4fGHj4z/pKFlKwvg9GQcwLY2F4C1lOm09F1tSTDZ3Ttd5/JqE0IAE0sjQN+3b3h3b+C9P973zSfOigX20FQLJkAzGJVRhwXlOVY0MylJ+P2Jybd8e4966b9nz+Bz54LffnJWft/5YBLAvvPhqQQPwGczU+18MJkjH8fegVBeKQCkCfAWl6Vntro0GEwBaPdYoXQ5INpc5vl+L7dGdF62CI4NTXb1tc/OMqAZqx2HdSYkLpLOF4oSx0lNDjOUEzyc4gGkeRGVmhAC6PJZAYwsqIKyfkajStHGxZZJx2AwGCuEhKYcu1CUMkLlyyndEWLZfJ32t8VALkKvw9TkMJMrgmhgYy4oPVQ4Topnxd8fn6yx5IGBCIDp6uJ7XKNnvTK0EBM0qeEGPdTe3Tu7PQCOzO5DqApnoSWIlUjnBWgakq8EvvdM3wOHRv/tybPl/7V/IHz1vzz5jScq/JcKOdNL0gwKRan+0vjFQMJ3WM6uyX76geMfvu/A8uSBTMR5AGs9NjLUh+v2KmmJax4wAws6Ksin31dfdPtYlARoe0+THcBgaB4DyO883ff0mekzU6lCUXrrpe2v39ICTWA6lPPLZTW6rUYAmXxRKDQ41ZoE5dE6CgieOh2487HeL/+2t+T9gWAawMYWh8duRONidkh8J1GehvepBTigNcHEdYYUU530dJVUz2WjdzwBYFuHC0A3ZTot8bMJgIxQBHB6KlHniZPJF6HIJqNLk3MVSvAAJIn73rPnv/Tbk0vxEa8amADNYFRmpl4yNUuA/sA9B7Z8/vH33P3y+3/y8sd+cfj0VOI/ldJCmln9/alJ7Y0nmhEBnByP0SWy1WVucVkABJJ872QCgCBKavmMsoxlXZMdwLCSmvf8uSCA69b5APgdGgF6IQ5oeeRt1HNG/TJdATa0ONTXHitzQDNWO9Qmmy4UNI3vs5so/J0yaugJipoQVhGg7QBGl2YaX0W9BLGWHQwGg6GS5MV/ffzMmclEfQvL8oRBDwCJKua4bF4E+fKWvv0dOaCb7CaOAw0433XVWijCdKOgb/qmHW0A7n+lqrs5kOBHohkAweqm44QmO3thKRwUkuCzmtTe3Vd2+QAcGonFMoIq+quaYCwjFDVm9cFQ+vhYacfC+ZLOFXHh/MIVoYitX78yOlWm4zx2fFKSuBf7anmKKWogkJr1t3f+vvfSLz1BvWqWjpxYJOEvlMpDKRUVC3jo8HIYzEnMbVca88SzQrXKhhpou9wHFiQjRlI51C9AxzIA1nisPX4HlIfWOjkyEgXwpbdv3/2p133vfTvpW8c0Wj/Ztjw2g9Ni4DgJs+X1hhBK8gDidcQrU8bCyclZxQ1JXoxmBAA9fluz3YzGTTJF01TgawTgNBsxHwFazaDX9i2ss4chnXcNDLNeAJKEU0oEB4C1PiuA6VS+dsnL4kkrNsE629LmhCKAjc0OAONLI0CH0wIACoVfhhTsixomQDMYlUkoOX3aCd50XtxzPigWpf2D4ZfOh/U6DsBYNFMoSpIk57HyQvG3xybUP6GyrN7J5Fg0C6DNZWlxmgBMJ/hzSkbS/n45MEjuReY2d/ttAAZCaQBiUXqhLwTg5q0tANy2GTVqARnQbsVA7SrrbLZ0+O1maq0GFsHBYCjx6yleABBI5AG0ueTJJJ/DDEUdSGerRnB0+W2Y5/PDAiBRALNrAxkMBmOV84eTE3c93/9vu8/NvagS6eayGEmb0Nbda1FDKkMNDWKuCNkVKdLtX//0sq/88SWffOMmAImsuAAdreqn8HkA77umG8CJsXi1NR9QHM3h6kpKQiNmLcwBTdO6Po2H4/JON8dJU3H+iq88eemXnqDsTjWERNK8zuQLf/KDve/4wd5FumvTOQHARHxpZ47nBVloxaJ09wv9Jf/1ylAUwFAoXeOQoIO2RFJ/4uSUWJSeOLm0wdBqEks4nYfmrPn1geEGHsPVGItlAXT6rF6bEYBYWMg8vVainY4vxAFN3z2WEeY8MnNiMZwSAHR6reSAHqg7giOQ4KcSOQ549661m1ocHAf61trkazpD3VajXse5zCY0Os8Hyk9cT38/mlaJpmftFmqF6ncY7WaDHHbXIOmWhAKyflOLFxreP3h49NHjEzX+cP9AePsXHr/r+X7MdkDXqV/LFQANahuwpy/41cfPzDdwL5jKRTMCB2xpdQLwWE1kmhkr88dIEr7z9LndDcqLTwuycP/smbqk3qwgAtjQ6gQwuTRNCKl+6H3XdgGYTuaS829EuXpgAjSDUZlEVn4SiGseFUYjWQBOi+HO2y/5Xzev/8MnbzLoOLGAyTgfTud4ZRrz1wdmjB5RZWy3py8IoM1tbXFaAAyHMiNRWTzaPxilFzSN2eayrmt2QLEfHhmJJnnRYzVe1ukG4LfPxG60zj+Cg0qEsIwdCAFwHNY3ySZoJkAzGKQpU8pbIMlDM5lEJzg9EybzBVQToH02AIFEVg3waTiSNFPqWKcdg8FgMFYDpBxNxOpSEklxdlj0NPGfqGIMTOfli/ky9H2lpGmf3QTg8k7Pn7+mu8lphtwVrTGyEa9kLu/ocAHgxWI1e/UrA7KgXCOCg5IxKGb01ERiAbck+nSPJsXObjZ84Noem0kHICMUnjkbxGxNUFWvHj46HssIYlGaWJx1jqZy6zxslgc1p/v+/SPapuiJrHAmEAeQzheq/XBiUaKfeFpjXU9khYkYD+DQyMLbRdaD+qHhJA/FHgugL5g+Mhpd0o+WJLVnj9Vi1FsMOmiOlvrRSrTTC8ocV3+a/rlM0HTUWYw6r81ERQ/hlFDneXRkNAZgS5tDja+hCIuoJngklhUAOK0mKE6pWKMd0LSLqk3gaVFrKfoCM93whkJpQH4apZF2tam+yTj/wZ8dqF8qpZAlMnjZzXoA6bwYTuU/+8Cxj//yyGCoqlPkuXPBgoQDA2EomRJEpj7Px7RsCRca8iDwL4/13v18f50NLVWUUgCLxagHwHGgxraj0dJL5amJ2Ld2933hN43JplAd0C/2hesRzcmRvaHZgaUpHpUkRDI5AD1+e5vTAiUxhlERJkAzGJVJKjfOqGZ8QB7ndX7bHdd1//2bt21qcVAh/FA4Tf/lthj1HI6Nxc8FkgDEoqTOgO09HwTQ4rK0uC0AXjgflCSOPNSHRuSrJ01mtros5IAeDKeLkvTMmWkAN25qooXVDGiOk0jLnheq8dm5XAHQxAZFgPbZmADNWO2QQYCe8wMxOZyH/qvJYYIykU7PBhUFaL/dbDHoJIkbX7JH2WAqJyhtNBaQZ8dgMFYz9+zpv/Ox3mWwIl4QSCyYqs+0KDugrUa31QBNj+sSsooDLjyXA3o8mv2bXxw6MhKrvVgNSLfya8ZjZoOOdLRog3yLpOTqdZzfbm5xmKCEJJRzYCis/IlYrXcTqU5b2p0dHoukKGLzgsIK/LM9EF+5/ZLer7zl/75lK4BAPIvZ0wMkKUoS7n1piN6Jzb+3mJZUXgAQzQi5JZs5nhdqY8bNrQ5eKP5k70w3s8MjMUmSw0qqtTtW5cvpRE49088qxZ1HRuNLmmauRt+G0gKAkMYHev/+0aX7XADxrECRsu1uCwCP3Idw3gI0JZvbTXosKANaLEpx5YDsC86hdsnd7N02joPTYqBr0Vh9A8ijIzEAl3d61Hd8djNmf2US06nPEGUtRheUi10D0ouFgjRnunQwKZ/F5zQCNI2rW5xmANRzpdpU33eePvfM2eB3nzpf54bFMzkoj+f0cJ3IiqPRDJ1BNZoEDgVTUBwnKY2wnqpDZJckzSlQ5YtIEr7021Ov+/qz9cyOTMZpImd+vxqVrTRpvHFrSYCOlB5alIsSSOQacllQn0rivHB8bO7bAV3oNjTbAQTifMM7q6fzIrU59DlMG1vtAPoCS5tBdFHDBGgGozJq0xhtRBe1/Frrs6nv9PitAIZCKfqvre2u129rBfDrA6Mlf0uDlVaXudlpAjAUygC4dr3PaTFk8sVTE3FeKJDbutVp7vTYbEa9UJB+uX/4ubPTAGi1UBwrAHw2s0HPYZ64FAe0Gga9PGxokfsQemysCSFjtWM3GaE8vE0lsgBalTx3CnmPpHKSJFukyU9RAsfJJuiROvqxLAztmusZDTMYDAZRlKSv/v7MPXsGy4NlXx2QnSqSydXT7J7cu06LsbYDWhWggxoJICcWHzo0ViJJP3p84rETU3e9UK8+Uk55HgVUHa1BMdAkQDvNBo5Dh8+KSkXZtNjZQBIA5caGqnRBpDhpl9lwzTo/gMPD83bXkrDuqeSBoAok2U6YFQCQFk/5BgeHI6qousidk80pLcdXxnlBAqJBx/31TRswO1x7/2BYfT0UnEOAFouS6hw/NRFX/7fObOKFoUbfkt01mOIBvHaDH8Cjx8aXdNacxFyv3UiuT5rIicz/2KCHxE2tTgDT8w9SiGk+sW8qWWNJAGORLIBOr+xbKg9xrsHR0SiAK7p86jsktlKXIyKZFaGcX26rnItdz8rrJ6JcBuf8cVVB9qxGgI5prgByBEcl3TaayT94aAwAPZjXs2GxtAjAYzUAcFqMANJ5QZ1ve/DgWLU0koFwBsrvmNF8Vjo/9+fGs4KqogarqMY/eLbv3peGhiOZVzSnc0XEgjyZoW33Wg8UfNykuZVQH8KRslmrYCqP2dFGi4Gej7p9NgDPn6mVU0/wYgHAWp/NoOMkILCgxJsa0D3aYtBZjfpNLU4A5wLMAV0VJkAzGJVJKRnQcT6vTuxTRQmlrxLdzXYAQ6HMSCQNoMtnu/3KNQBeHgyj0lC11WVpdc50Dtze7rqmxwfgwECExlIWo85pMRr03Kdv2wzgzsdOn55Mcpz0us3N9CdOi4Gs0G3uedufoWRUAbCbl1UI3tDipBc+FsHBWPXYLXqo3XsSOQCtSjUD+UqCqVxOLJBNoKIDGkC3v/Igrx5GI5k5DREjmrJBlgHNYDDqJ8XLwuxSdyK6UGSFAgBJ4oKpuZ9jk7kCAKfF4LQYoPE3lC6m7Ktwemad/3N47FMPHPv3p2aFTdMD/Nm5JKdqiAW5OM87W431WamsvkECNDkibUYAa9w2AOPRCnerg0NRSeLUtmBaJSWayf/nviGSsehfl824volWNe/SHxJbvZUEaOoNPpXIAYhmBQDrmu0Aoqk8gPv2DWu+1MJ3TlGSVI2pTu/8UhNJy0ks3agAUkYAACAASURBVHKo18xWHRyKQqnWGg5nADzZG/jIvQdPaxpvanVANUFCu8DhkSWMwqDJeyjzBPQM9eZL27t8Vl4sLiwovE5IW1zrUVp32MxQDLbzIka+/lYHgDgvzPdqqR3FnZ+eYyhIUQkUjwClFKCecodCUTo+GgdwZdeMA5oyoFWPsyTJZyg9Y1JAR7zhGdDKhXHOdN3plHxs9Gl2C0WCkPLut1tQxe17//4RKv4rSDhVXyNNCrv32MxQRuzJrDihXKN4sVixBWtRkqiPC20YZUDTA34qN/eu02a2TFea0Np9euqbu8/S64qSvSRhLJoliUM9eqPznDYIp3go3WuITp8VwGhZWpF60Qs2ImOKZr/+n8vaATxXs1EqAEmSHdA2k36N1wqARJsGop3T3dTmBHA+uMAb9GqACdAMRmXU25tYQEaQX1MoM8VuEOuolXAkMxLJAuj2Wdd6bVDG0DSON+hmfMqtLkuLJrh5W5uT3BwHBiM08mtxmqlD91/dsO76jX66Yl7a4VF1Wx3HkXm51TnvAGhoIzhMy+qAXt+sOKCtTIBmrHboNExrBGh1Pskn21IE9RJkNVVwQAPo9FuhPBkSE7FsPZaTaCZ/yzefe+ddL9Wujh/V1GZmXqUqEoPBWArUC9EKiRpoOLm8amWd+1labs9lMVAJWqKKiMkr83xBjRdyKJRC2UQjWapHIwvsAUBDU07jSCDo7hNtUAtEEjKo70inr6pqTB0Ir13noxBqrSfxJ3sGv/DIqZ+/NAQlscppNjY7rdDs9nRenKxPzA3LAkEF7wVFYAWTfE4skva0vskOIJTJhVK5x09OQEmyXoypM6u5jda5zUsN6Y9eu6nVbQEwGedpVJAXi0fHogDedmkbgMFICsC/P3lu9+nAn3x/r9pXTTszrfqRzwRSAHqabAAODy+hAK3mDyR5USgUyTvf5DB3+x1QElfqgRcK9x8YqVaXUJHxaAbAGkWA9joMqNtNrIVmkrr8NqOeg2Yf1klY8x375lK7xmZvs5KSMfc2nw+mMkLBZtRvanGob3rsJgAJXu5ZyosFcuPSJY7yPRorQGfyhYxy1a3dh7AoSTHFmn12akZBpkOCvrjfSU0US3e4WJDu2zcEZeqlngNYDbunAl9qsJTOixS63eGxALj3xaHyWplAgqc/jGeEoiRl+AKUiYF0bu4Lu/bWEyw79tI58ZP3H5UkjiqlS2Y9JQkvng/d/v0XX/u1Z3743Hlo4rDj6fn9atSIUhtt1CU7oEsFaDWYe/FNDtQK0TfvaANwcjxeuwVoTpSvVFajvstrh3I6NBCaHaGUUTpTmAO6BkyAZjAqo71YqzfRkWh5BIcNwHAoTdOYXU120pfD6XxRkmhst73dZTPKElKry9yiEY63truvW+8DcGAwMhrOAGh1yYMDHcf927uuIL/MLVtatNtGDo6FOaANeo42xrm8ERwbWxxvuaTtz6/rXkBsCIPxKoOGtvTwJkdwKPNSNIwrSPIDqt1s0HGVT5kurw3AcCQjSdh9eup9P953/b8+8/bvvDiniWYsmhWL0kAwrRqIKjKskTxYBjSDwagftf3U0nVJbSwHBiN//+Cx+kWojPK4W4+VVRZPLUaqzk5WuZyqj9Ba7YxUtthsnYgs1YWiNFC9vVUNKCvAbTPqdbNuLl5NC9waJLLCffuG5wyqlnNR7UaoqaCVBOj9A2EA16zzyamsGlsf5bdQL1wqD3dZjW1uMzTuv/f96OWbvv5MPYkW0Wweilm1hFaXBUCSL9CvySmVjtFUbk9fSCxgR4frtRubAETnqc5o0TYWm4yviD6EinhkpD0gFOQkjePjcUGUvHbjzVtbAQyHs6mceGYqAYAXix//5ZH/OTSK2QMDGk4UihJJfndc2wPg4PyTUupH6/oMp/OhpACg2WmWc8zq/qX+6+Whzz104iu/663/o2kqpcMjPwx6rdS6Y97HhuoabndZMX8Bmp4xN7c6AEzF+dodBWXXtuKgIiNwPbnVR4ZjAC7t9GgvF/QcqvYsVQPfqUshibwNSVpQ0aqWtRulxjIClQ9ynBTLCOqVilRpj90AoMVhATBd9vUfPzU5lch57caP3Lge9Vn4S767nAHNi5Sv/cEbevx201SSf6HMpTugJNtIQIoXyefR7DQDyNQx5A4kZ64h5REc54OpdL7gtRn/ZGcnygTof/l97x337D82FoeSp69OZkTnHcFBVRSaDGg5cKlU4Q0oF+1qgSFEPQnRSoUVNrY62tyWQlE6Nhqvsbw6+Wc26rtk706Dr8A0/0STuBtbHAAmYnxtWXw1wwRoBqMycc3tjW6iRUmicXCXRoCWq+CjGfIhdvlslMRfKEqxjBBTqtt2rHEB0HPw2U0eq8mgBwC9jtvY4tjR4fbYjHFeoNGPVp5ud1t+9IGrbr+i4y9u6NFuG3XvXZgADcBlMwJwWpc1gkPHcT+846qv3H7Jcn4og7EycZj0ABI5QSgU6RGCHv8AmAw6ueg1kobSnaYidPEZi2R/8FzfR+499FJ/BMBINPNzpV1SNdRA58M1e1jR5Y6cLLX9JgwGg6FF44BeVPHEEycnb//Bi8NlXqqG871n+n59cOwPJyfrXD6rfK96lMSEIkDT6CtRST0pFCW16atWaqEi8dBsoSSpZMT1TS+kyJeiVMvz0OT6m7kEiP/cN/TFR07+aE/VzlqEHJphNQKgqufxaKlMLEk4N5UEcPlaLzmgte5vWkMoxUPZaW6rgZpvk/uvUJROTiSEgnSwDqNiNCWgSgqc3WSwmXQAzk0lALisBrlCP5U/PhoFcE2Pl9ziNLMSywi3/+DFn+0d1K4kmMzd/I1nv/9MX7UN0IoRk9Wbv/3+xOT9B0aWp3snOUC9NpPZoCOvOon+B5RZgXV+G4ChUOrISFQCOjyW91zdCeDho5OYLUDTDzcczvBC0WLUvWPnGgBDoUyjEl3K0R4q4VSepi6aHGav1Yj5JDKfmUoB2N07VX9fMjrr1/iUwjWHGQsy/MbkqSATNQeabzI4Vf13++1kXDhfsw/haDgLTYYk2XVLTvZ9/aFHjk6U/OGxsShm52+grGepNvAdSs5yY3967VUxUTOhghIePDbjWo8dmj6EFBhCU1B+hxlAOJUrOdEeOTIO4APXdr9mvQ/AkToEaLomOC3yd1f8JSKd491N9hs2+TE7jZoY1EwfRjMCnU1U3Kw9s/YPhL/6+Jnyvova479c0iULS5fPRsdGiWS/+1QAwGVrXFCmPaaVLKn5HsbhFGVAz0gKnV4bgCRfKKkXUS3bNfoc/uHk1I4v/uEPJ6dqf6g6mWc16nd1ewHUjtwhp7lBD4OOIxPhSKU8qMWgzcL22ky02/vnCsZZtTABmsGoDA12qSkK3V2CyZxQkPQ6rsM9E+K8xmvVc+CFIl3Bu3w2g56j+/p0MkdGEp/deEmHC0Czy6LjOI5Dk8MCoNtvMxt0Bj33/fftNOjlT2lzzZKVX7Oh6dvvvbJkxNzjtwPY1Opa2FejPgnVgmUZDMZS47AYAaRyIvmtDPpZwZR+uxFKBLOtUgdCgmbC+qaT33ryHIC/uL7n79+yFcAPn+3X+vhiGaHEF6OqybXH1iRAb2t3QdNriMFgMOZElR4W6YB+4NDY0ZH47t56deEFQz6DyTryNIis8gCsDeKsRiorAnBYjLI5rpLPWlu5ovXlTady0HTfUrZWviDP2XmsIqTN+e2lXmCSIOfMLphM8AAm43PMCsSyFDNthlL4P1aWChpO5zJCgeOkLp+NlGWtkkKNB8kDTrKIy2qkaqFIJicWpWAqR3a5k+O1JlMJOQO6kgDNcWh2WABQ0zy31eijiNt0/vh4HMBla72UOUCK4b6B8NGR+P37Z+W67usPD4UzDx8Zr7YB2sCKiSrG+elk7uP3H/ncQycePVaqAy6M8Wi2Rp9M7T6hFA7SQI+MxADs6vZ3+e0A4lnxqd4AgGvW+d+wvQ3KI5J2YDAd5wGcnkoA2NLm8tlNlMJxpOY8t0oqJ85Xc59KZgFQUeVIJMOLRQBNTpPXMfNL1cNoJAsgnhXrDwwZi/HQOKDpaAln5h0sQLKgx2oiR1HFJN8aUKpMk8O0scWJmtNRebEYSGUBUEoklBBnrU88ks7/+U8PfOJXR0qahZJT4YrZAjSUnqW0nxOaAGgo6nY9eTX1ZzQFNTsnzdea16RrSIvTvKnVAeWkhvIsT9tGNnlBlEo8quQTv7Lbe2mnhwOmErk503Lo0uRRvjtFcKQUB3Snx0ZZnUNl0wODQW0+dZ7OJtkBrSR/ShI+/cCxu5/vf/zkFABeKNz27Rf+8mf7oZxxToselaYuSP7ucFvophPPzPqaNKP5oRs3AAjEeAChpOoTn68DujQD2mbSk/w6OjtnWe1IXCOC48XzQV4s7pkr05l+NZtJp+O4Xev8AGp3WaTbq9Woh/LoNNJoB7Scp6/sBzolz03XlSG+CmECNINRGXkq0mWFcjkeiWQAtLut2hAJg47rVG7nNqOeVKQWhxwnR480brtpR6cbGnGZ3I7b2uS+fDdsbPrWu66k182uuZOdv/C2bfd98Jo3bW9d2FejIlDX8jYhZDAYKq0us9tiFESJem23OC3amI0OjxXAfx8aA+CqPlFEzWTEolSQ8NZL2/7p7Tv++sb1m1sdcV6464V+WiaWEW78+jNv/96L2lF+SumvXUOAzotFKpfb1uYCkGJNCBkMRt2ovdryZb6teUFJF6FUg5tZlUNFb/ULQGpJb6CeCI4cxUcY3BYjgES2wuU0k595M5yc8eWR/MqLRW2CcFqxs/WVuerqgb5meRqyR24sNsfephiKaHqOWUkaAHssMw7oJC+WpDmRt73VbTUZdHIEh0Z8T/B5KOGkpHi6LEaf3aTXcZLEhVK5CcVHfHK8wn4QC9LB4WhRkgDEs8JUkoemCVsJlJ5HZkmP1eh3UtBHjrqQXdbpJoGJkkBI4SJ9XEU2Eiaryjfasvpqh81vj06QpP6FR07ULlSvh4PD0Ru+9swXHzlZbQFyyfhtZgDtbjOAyRgPJVB4W7vTZtK3OEwAHjk2AeDqbi/5i6neXGurpJkY6kC4vd0J4OpuH+oLMfjt0YnLv/zkd5+tah4vRyxK9Gi2sdUJ4MxEAoDFoLObDBTDGqo7ynxU8UI+eWoO36XKWDQNbZ6y3YSyWaJ6iKVFAG6rUevrrx+aK/LaTaS09k9XdUCPx7KSxFkMOtXP5LWWurbv2zdMRRjaqg5JwkAwBWB7e6nnSelZKkBxUqsCtNtiABCfq3Lunj3927/w+L7+WtKhSlhzF6gdwUEG2yaHaXMbRfGqDmgBSniI1ainOMqSs4wO4xanxWbSb213Ajg6OscMSjSdg9J3EUoER0GSL4AdHmtPkx3AUJniORia+b3CqTzt/GanBZoh98mJOM0HHB+NATg+Fj87lXzubCiYzNGmbu/wlH8LKC1V29xWl80EIMXPHJy8UCCxm3Ltg+mcWJQiC21CSDb8kunMtX7KXJq5yokFSc0vClY/zukCO+ckKF1LrUYDgF09XgCHh2PlFQz/8NCJ2779Ai8USIA2GXQAuqhHYqTRGdBUV6R4iTa12gGcDzAHdGWYAM1gAMCevhApQUReLAqiBCW3jmZNqSKewoO0dCsFTWv9NlKRKEYjkOSjSnXbWy/tuOO6rs/etoWWpAVI2SH+6IqOr77jsss73W++pG3OrXVZjTdtbi4J76uf121qthn1O7tLZ7MZDMbyYNTr3rGzA8BP9w4AaJ8dp/OJN2zilCdzW3UB2mLU05WkxWn+lz+5jOOg13GffdMWAD99cZAsBicn4kleHAim/3PfsPqHagTH8fF4eVkfQY8rNpOOCjYz+SUXgBgMxqsGVddYZBPCdL4IYM644cVDDr76M1hzgvy9purQrJOKeOq0GTC7fjyQ4MktTgI02RuEguzLEwpFNU1bm9aaVAyAZ6tLThUpStLP9w7+f78/DaDH7yj5XypLn7NwPp7NQzPHUA3aYLfdAMBuMlCaU4m5cjCcArDeb4Ni/QtqHOXkoKSWKgk5A9qg47hmuxnAdCI3PiNAx8r9s999uu+dP3zpvpeGABwbjQHo8lm1xUZa2txWKFqVy2okna4vmOSFot1sWNdkp1QB+u6U9lASX0BbHueFam0Y0pqfeKpKcstvjowBMOq5eFb83EPHa5uCv/TIyc88cKxYfaHTE3EAL56vaifUametpIEm+UJRovxWqrbsbnJAmU64utvr0phbaX6IMgdIee8djwPY0uoEsHOtF8DRuQTocCr/hUdOFIrS7+owfefF4n+9PBRO5UOpnCRxeh23ucUBoHcqAYBkXK99HgHEYkEizR3A7t5APS7svFgkMVQVoEl9W0gTwmwegMdmbHFbAIxGMl9/4szH7z9Sw7SuRZ4/sJs2NtsB9FVveiYHSCpPqVB+dFV25IXCvS/JkTJa+Y8XCySM+ssTe2wmdWElb8egrJyaac+xQ146Hy5IchvSOaEmb0SyprRNoT1+u3lzqwtKH0KxIJHqStNsAGjGK6zZyEJRiqTkJHEAO7u8AI6MzLF59N09Fnn/WE16Kp4GYDPqXRbjuiY7gOGyvP7+UBqA0cABUOfSqMJDnWL8/Qm5+qd3Mg7g+Jh8Np2aSNDdanuHE5WmWyaiGQBtbiu1ktLuMbqfGnTcuia7XscVilIolVNjMeYVwSFJ8keXHB5rPTbMbiQT1BxUweo39FhaABCaK06dbDRUyb251Wk36TNC4WxZPdAjxybOTiXPBVI0fWs3GqHEoIfTee2k73xJ58Xnzga15ynNP3kVIZ6OvYXNEK8GmADNYADA//7V4c88cEwdGatXalmATueh5Gd1awKgCRqiQZMNTU6KUDIvR3DYTFaj/s7bL71hYxMt8Nc3rn/rpW3v2rVWu54/u2btI3/7WnVtS8ffvmHT8S/ftrVsNpvBYCwb79nVBUVHoKcmlddsaPo/t26i17Wjcq7f2GQ0cN96zxXqkPqN29u2tDl5ofhSfxiaJifffeacWvetXt8EUeqdrFwgpubdU8EE66TBYDDqR+2iscgIDpJuw6n5VabPF0lCMjc/BzSvZEBPxSs8S5fIWDFeBOCyGNwWEzTSbTovvvFbz739u3uhaHkum5F8eTSDqC1V1goliZz8ejiUrjaJWJGvPX7mnx7tFQrSjRubP/q69SX/S1X5c5ZgxzSexxookrF8b6JiwdHZyZsjoQyUfgbNiulY/V/69QtFKZzKU4cul8UIoMVlAhCIZycUh100IwTKslCe7A0AePJ0AEqjrfIYARXSfdQIDtJTJIkDcEmHW8dxHo3zlzQXXixq51fUKvhqzmW6ja7120CuwzKRsW86dWoioedw7wevNejx1Onp585NV9vg6WTu3n3DDx4a66s+CUFmxtFopprUQgcVTTyQBB+I85NxXizAoOMoF0I12dhN+k2tTsUJLhQlifzslBMdSGQB9AaSAHZ0uAHs6HQBODWRqK3q/tNvT5Lt8VwgFZlLsvzVK6Off/jUPz/WS5UBfruJhk+UJO5zmKAIo+F0XZNJk/GsBBh0nEHHDUcyA6G5Z3Qm4lkAFqNOncygCI7QPLML8mKRYkPcVmOrwwzgsROTP3i2/9FjE4fqa96o9n/b3OYCcG6q6saPRNIAOj0zDiqvHNMsD+0eOjKulj5ENHENdDUw6GEzlY5F3bSGbMUIjrrS5MMZyres66ob0tQWVOvjSgQpldhl3tzqBNAXSEmSvDEcJ9E1BMrRUnKNlQBOkVOv7PYAODQ0xwwK7UN1EK7jOJtR3ldrPBaOk8+gqSSvrWIRCxJpDpetcQMYj2UA6HUcaff0BSUJjysC9InxhCRBbbV3cixGFxxyMYeSfMlZRg7oDq/FYdFjduOBUDoHoMlp1uu4ZgddS/mgYjCP83laVSonzjkRks6L5DumnalCVzntdKP23lojgiOezaGOKWdyQFNEoV7H7ez2oSyFQ51ySPACZUBbTDoAbquRRPnyNon18x9PnfvLnx341Sszzh662PqV/bCpheJfmABdmWUVoAuFwp133tnR0eF2uz/4wQ9OT1e9rTIYy0lRkiu51BlIulLbTXpKr6MyotFwBrPv30R3kzw4U0dpVEETTOTkCA5baZ3jrnW+77//qlbXArsILh7DQt3TDAajIWxtd9G4E0BbWfDO39yy6bUb/FCeyavxb++6/MA/vPG1yswWAI7DVV1eKE6ufiV1Lp4Vf/i8nMuhHbtXCz2kxKG1XrvSUIVFcDAYjHpR8xkWKUCTcBaef3evecGLBdKTA3NV/qpk8vL3Ktc9c2Lxzf/xwnvufllVBNJqE0K5Ml3+OqORbJIvjEUzvFCgb2o3GeUkilQes9VYVZsTixJ9ul7HFaRZnazm5LETkwA+e9vm+z50TbkXuDwWtiIU7jxnUgdJCVTpDyVaajwyy/k7FElDEaCpfVNY+QlUfROQQwCgCNAUjhdM5qc0OdQnZsdAx7PCmUAcwCuDkZxYPDIcBXDlWm+1raUMaDJ7uhUHNHH5WhfUfBJekKSZ4G9tyq36ZjUfPR0GXV6bQQ9J4srTw8n+fPOWlus3+P/kirUADlVPJe6dkCePDw9XjQiIpwUAksRVM+LRsw8dCSQ3T8WzQ+E0gC6fneos1ynPODu7fXodRyKjBKRzBZrMJoPndCIXSuWmYjwAMrhsaXVyQDQjBKufVs+cmX70+CQHeO1GAPsH5xBeyc36/LnpQDwLoMVpJsWHWorReIkc0NH6/Mij0SyATq/1+g1+KJMWtaH4lDaXReMmNgFIZMUabvRy6ODhOMlpMbTMLoMbjdYVUEt9Nf12E/UZGolmqil3FIawVuOg8sp5OzkARUn60Qv9AIx6DrOFY/kx1mrkyp4a6SejXAWKFZoRoK1yt9XaO4S2Vnt4hFK5Hzx7/jMPHCs3sNNiip+3ZhPCJA+g2W7e0GwHEMsKsWyerlcui1GtHqaC5v2aABCaOvI55GWu6vIBOD4er92dMs7TSTTzpE8bCaDdYwXgtZkofEnbTXc0mikUJYtBt6XVBSV72mbSkemEbgfnppND4YxBxxn0SPLieCxLkfQAjo3HaQ7mknY3AF4sZmbbRCi6ut1tJWu2Ng6FpPwmSn53WQBMJviQMssrFpARxERWeM1Xn37nXS9p15kXi3/6w72f+tVR9WelX9Bm0lG8ssparx3AiMYBHUjmoBxg06mqhze1Nwin55iTSGsc0AB2raM+hLOuluphnMgK2XwBgMUgbyT5BYcjlW+d8azwnh+9fM+e/hobQN0FjyrzAVB2heoEp1Sc0Whm8UlKr0qWVYD++te/ftddd/32t789ffp0IBB473vfu5yfzmBUIysUyOagPkjILcutRredLA85AKOxDICuplKHslrG2OWT/4vaGU8nefpDX5WKPwaDsZp577Vd9KLFXTqtpddx37/jqr+7bcvHbt5YYw16HVcuItC458xkAkB/IAng1u2tAH62V87lSPMilIHgsbE4KkGj4Q6PxW7SA0jVbPnCYDAYWtRnv7ywuAiOnIilj+BQi0JCiVydClJWedpP58SSHq17z4fOTiX3D4ZJYFKFVKfFQHZgVVdVH00TvEiKg82o0/rypjVJwaoArXaRpT4iZzXaYqGmUCJJoLa3t1/RWS4nQWkYGEnna+8EUpaTvFj742KzjYGdPisU96jKcDgLpY6QlPd4ViRPd4oXaWQO5WnfZtJRCxYaYwcSPPWCI7Wod2KWxnpgIEx/LhSkw8MRCnK9squqAN2mUQDdNqPFqLeZ5GfkSzs9UKwkgijxYiGkuGu1AvSUEmxaVYDOFwA4LYY2lxWKQqRSlCRqYHj7zjUAtrTZAQyWNS5TOaUI7jVa56ki7OnJygI0lY2T2k57YDLBD4VSAHqUvMEupS5zV48HgMWop8FDPCuQD3FDixMALxZ/c3gcwGVrXCTAWYz6dc12aLTyEnihQPnUH3rturdf2gHg5f5Qte9CUOuwaFrYPxQB0OI007wF/dZk5/QpERz1yMEj4QyAtT77m3a0AfjdsYnaRzWUH5pmQQgahhWKUu1oiBLk2AqzScdxl61xd3qt12/037qtFbOVuxqQA9prN7msxvXNdgCHRysr+GORNJTwAUIWzXlRknBkJDYUythN+nde1QklmIUg3dZnrfAY65NtzgKUqg7VbiXPUkhc7R0SSfMAQsqJc+fveq/9l6e+/sTZBw+NaVMxCZqTW9/sgHINLEpSxaAVSpNodposRj2p5JMxnmoXPJoB8zuuXAvgocPjah0DzQm1KiWJ3X6bxagTClJtq2xctpppuvApwqjaI4oMakOan5UmDtc1OSgLhWbm7Eajw2SAco94/MQUgJs2NW1ucQLY1x9UJexXBiNkn+9uslPRjPayU5QkCvlpd1noZNQ6oINyRrYZQJvHAmAqltXeZOMZ4WwgmeTFo6MxrVu5dzJxaDj20NHxu56TxVnVg1+yT+j7agV3ckBv73ADiGWqTtVEs5ToItYW/dNyBrQsKO/q9gI4NBTVrlU9NuJZkSqWzEb5kt7ltQIYi1TWwX9/YnL/QPh7z/bXuH7QbjkfnLmuUhaNOnPpt5vXNzkkiXvnD19qeN70q4BlFaDvu+++z372s1dffXVHR8c3vvGNZ599dnx8plmwJEkJDclkkt5czi1krE5Uc59aIUK3TJfZIHfb4AUoV9Ku8ggOxR2g/lez0wpgWo3gqNR0m8FgrHL+6PIOi0EHTXtSLW6r8WO3bFxbdsGZky1UjBlIAjgfSgP46Os2rG9y8EKRyvdSOQHAdeuaAByuUulJQ2qfw6w4oFkEB4OxEnnubHBk5T3eJBTdIVf4/9n77jhJrvLaU93V3dU5zkz35JnNebWr1a5yzkImPIONyMEmJ2MMApMeOIBtDDhbpAcSEkE2SQkhIa1Y7WqlzXk2Tc6d5sPTLAAAIABJREFUc6r3x1f39u04s6tgC9X5Q7/VTE91xVv3nu9855x/7UpVtU7bcEs91Hd+d+bfnqgSK6kqPnbvvvff/dwiBYncnqhYVhdsGydkq7wXqgjHXx/RosyoqS6V0yQOnIAuFFWiPKYTrOsuU0jnCgBsipEINXIZnhVUnJwgICpBMRlWhdwATjLj1x2n5td89qF7nhlpts/RTJ5W9c0aa0g6Wiyr6ULTAb9YVrkDdaxlXJVmjcoJaFJAV0s7yReV2AqPTRMeEtMkbpxaeVwWbS7d4bYCmElmJ6MZAFsHvAAOjlUJgXcJxrL3PTsWzRRkg1QfpMbR7qxM1N1W4jG1s7Sh2wPAZpJJPxdNF7gbgGhXwssJ0038nUmi6LDIlPpQw8XvHYlORLN2s5EoyL6AHcDp5vJ2bp+1r7lHLb+ZSThcA1VFOEMEtAlsHjIVy54lX5Q2jawcYM2dF/b76R/ayiidS+RKANrZPIGiJm5cU0myWRNyQeDKa/DvT54ei2SCLsvHblixdYkfwM6FFNAjzMLll/smAXS4Fb+jMn0iGTtpUVW2lPuvvePbh5ry2mMkLfJZr1/dYZKlwxPxz/7sUOthgzL6Qp7K91pkA5GAC1qIiIgKthUuq2n7J665513bNvV7wVrQWkNVef6bGUyu20wOP6r1tFX2WSDNC1RyuKDH0+O1oboHghzhPXUMI5iLNLHVNGN0MZ7aLBtocttiiMgWStTJQc97rli+66kzJZVbitc+RKRrJrk9XdmvPzp0wRcfefJErcU5kYMBpwKgy60Ve8jt2mOt6JQvXxYIepRYtsBtLqZjOTAXTQAGSer12gDQE9EMNAi4rRWLEicjoDtZWau/jbZTeZzJH2+wzea1msE0H4rFQIdPs/SHDk0AuGV955pOD4B7d4+CCc/p5nEqRqvJSOP5nEBAR1KFYlmVJLXDpdBLJyEkppKlVcBpARB0UtkpR60nknZEBZ5t8JwwkE6xmtnf//rE3pEogPlEY5ndyqDTSJ42zAaQ/pbiSUvlxpUD8eXSuoMhqTUVaed5Y6/XKGEqkRXzM3l8QjxTyOarCGsqqlHxafvQbA1BvOPkHJ2E0eaFBzIvOjWTpLEiVyyTSRRXQEsSvvW2C7u91uFw+nX/8rtjdf7Ur3C8dAR0JBI5duzY1q1b6X9Xr15ts9l27Kho+xOJhFtAd3c3gGTy3OI1dOiowWKWH6mKGkUb7+jd5lRkmoZGU8VsoUTVxXoCusdroyFbIKAphDBDryWProDWoUNHHRwW+c9uWLEq6LpiWdsLuFnK/xmNpMOpPM35lrQ5Oj2UeJ4H44YuXeYHMBLONFwy8QBVmg0n9BBCHTpeTNz/3Nhn//vQOXVwAzgyEX/bd575wN17XqS9Om/E0tpi+PmEEBZKZbKgTOfLzUxs0/nSF395+G8ePCbqvyaimfv3jf/q4NSRicYdHjUQ1WGLzCGkoDlqEBFzCMuq+ggjoMcjabBucdkIi2y0sXwqorw5jxnLFDKFMgCbWaYJ5HyKPKlFf1Lt31whQSLZE0wBvX1oJlss//JA0yQ3sg7w2ExmufHqz2oyUiJWtLkLR1xglFqwS6WySkbVvCufCOixaOVcxTIF4ggo6tYgSbR6J/4oLmgnT80lALhsGt2gBX3HssTaXL86COBQtcz26VPzAC5Z4gPwi/0TANZ0upodOJgDMoH2mVgVt1UmVk6SQIkI0XSeqwI5w5stlLjYc7rJLUSqRptZpu86M5t87w+ee8d3nqGqAAmZr1gWUExGAEsCTgDD86lmQwI/3qHZVLzJheBmL8enGxDQ6XyRnGdokULN+JF0ge6oAdbcORBw2C2y3Wzc0OMWz08sUyRXa7sit2k+GGkAt6zv5F+xpssNgSsXMR7J/NNjQwA+fdtqm9m4dcAH4MR0vEV4YKmsklUugKlEFkC7QwkI5rNtLgsAk1Fj8cKp/Gg4/dH79r3je8802yzZ1Pb4bB0u5R/fcIEkqXfvGvnqI8cyTZIkwZpla0wUqXGhdYBnsazOJCo9FkTaethdTU0J3V4rgBbMFwe336W60aY+L5oT0CPhDAQxOwAL44gj6QI9R0GPlSLUxBBCcnER2dXKIdssYNa3dKe5BXrXoxnKN72afOY5l8qDWaibjNIHr1kKlmkpggZA6pagDLpdZ+ZV4K7tp2s+SYy2pvAlXX8sQ07NYsug0SC9cUsPgLt3aU6+VPZrc1SGAqoDnRGcwVUVDxyc/PMfH7j1G9tv+NoTY5EMXUdxy5wY7WSmnQM+B6pD+WibA20OunxUxXSYZfI1zuTKU/Hssamk0SBdt6pjXbcbwHPDUQCXDPp7mbCadpUY8xnhqlFxq81ukY0SjVrFssrfxVXnx2MFcHwyTq/aHp8VQDRTmGID9Z6Ryh3Fo1NLZfWDP9yTzpfoPRVw1LIcPrv5ymUBAPfv1ZTsVD8IeaxUA2j4nhXHMTHz4KHDU8s+88Cvj07xn9B8wMp8ya0mY0+d5jrCTkgsm6fH2cIIaDrMkXD6yROzb/7WM++/+zn+V6qKXac1Vxbqm2kIovsT2RKp5qm8YWTvCMJAwP7T916yvN0xk8x//+mzzTb1ysRLR0DHYjEAbreb/8TtdtMPCU6nMyZgbGwMgMNRm9GsQ8fi8f67n7vqq48vmHOaYonkvNsxkckDcComVmnM0xzFbjZ66hqRzLLhL25e+fZL+gaYOwdNjsciaRrQvXUe0Dp06NAB4N1XDD74kcv9dbO35wO/w+y1mVRVevjwFACv3eSxmbQVY7YAtgzudFupZ/O5RhHktKjwWE1kspZ5HmnROnToWBBfeeT4/9s5fLhJr3ozHJmKATh1Li7ALw0475Avnv/QkRQaL4it+LuHj3/h54fEz0zFsqQvFs0KOO/81MmqVKJmiAvqsJn4wgR0saRSnz7N+qaiFdXVwbHYPEtzmoxXiFSHxSRJMEiSw2ICI5Fn2XfFswXST9lNst9uAVuu03+Z8JY7WuYBOBTzsg4XgJOMgCZ++UjzzDciRkOuWscnDkkCyfHCzXk0kXRuQbclmIFGhYD22cHC0AhEFvjtZjvjEQKC/YhIRpyeSUPQFRL3dzacJn+A61Z1AJiKZeeT+e1DsxPRTCJbJNuHj163AsyZZFPzBEKweTtBI6DtZgDru7zcroT8rMei6Swzlomz+1w0+mxm+kl6T7sih9wWAF9/dOjBQ1OPHZ89NhkDcHgiBmAVS4bo8VklIJ0vNzRQTuWKdCaJ5ts/1pgo4STOkclE/V1Bz5Qia/6tXpuZ4mHIeLqfZw9a5Pv+ZOtP3nsJv0zk3hDNFKh/1GYxcD+K5R2OAcGokBLSDjcioP/qgSOFkrp10H/buk4AAYfWsf5MowkJYSaRrRlO2lxmSlAkBNi/WcJenkwPCkX1v/bWWjoQRsMpAF1eK4Bb14X+7x+sA/Avj59a9/mH3vAfOw808iijpWKHq2raRjmEkSaVm91nwu/9/rMXfPGRi7786L27tR4FEgS4rFUrRFIyjc4vTEBTSwS/fJv7PAD2j0bqvQtSuSJVemo66rTrmM6TG0yXx+qzyYCmiyeQJYLX1kABLXptx+sIaIoojDVvKJljLR2pXDFTKJFaotNtpae7xiE9VyyTNlZTQGfyAGbieQDbh+amq0uAdNvTzdDp1px/ooLYn+P1W3olYPfZCAl1iRXtcFcOlhw/zrLLkcoVP/TDPe+7e8+Pnxs9PBE/MZ386Z4xbbYsEtBspKL7CkB/GxHZdQS03+ZWZAB0zaxmo+YBXSgdm0wA6PPbPDYTPUeEdd2eNV3a/1IcKx2pmPJHF5QKXXZLVdUTXCFOBLRLAXtjOhWZTn40nZ+Iay+1PSMVhx96g7x2Y1e70zIWyfxuaJbE1D5Hg9vjNZu7Ady/Z4zK6lS2CTotbXXZjxziy2Ve+MAjhyYLRfX+ZyuPcFooABNIbC4Wg7ntdTxT0ArG7LqQY+poOP39ncMADozH+VefmUvNsDtz72hjd6NUvshboE7OJMGaBjz2Wqv0Dpfy4/de8t6rBr9w+9qGm3rF4qUjoF0uFxgNTYjFYvRDgiRJLgFOp5N++JLtoY7fM5TK6kOHp0fCmWbhGxzcgmO20uGoObWRAjqWztMQ0+u3Nbwl33Plks/dvpb/igQsNE9STAal2ptfhw4dOl5ULO9wAXjgwBSApW1OCJIlMPs8p1UmzdHuRi4ctLD32k12ixFAtlBu7cimQ4eO5wNyqGztaVCP0Tkyeai1If4fR4WALp3/uCGqB+ZTuVSu+E+Pn/zOjmFRPMVbbk8LXdJHWLvr74aqCOhfHJj4+b4GAmFRAT1d1/pdD66OpPQ8Mbrw4SMVlRbpCkkB7WbCKDeL54KgWYulC+lcCYBiMvi1LL5KCOGSNicEvoZ8D5yKcWmbA8CZcIoI1olYFkA0XajPRdQOLZYB0OFuVe/0Mk6q2QdESWONvHE8kuESfqJ7bCajyaitNLs8VgCRlMYFgGVAcaITjBMhHWJMuCij0RQEeotYEmJwFNnQ7bX1+qwAbvjaE2/+1jO3fGP7PbtGVKDPZ7uw38fNnTf2+locuN0i29hcnb6ow2UBsKG3Ipzy2mUwQ2p2mEy/ItyT001qGPSQ2kxG2iX+ZBwYjQM4NhUHsCrkpB+ajAZSXje0gT46lVBVKehUrlrRjmqVoogYu0DRdGEumfvBzuErv/o4Z8GozOBh9W9J0uSi5FXdJ6hl13Z5VgnuJRQFGcsUqK/fYZa5gcnNa0LiDtBfDc+napRAI+H0rw5OScAXXrWaL522DXpRHQpXA2qZD7osPEe93WUV6/cBVkUgOng+leNpfvfuHm1YmBmtNld807a+z79qddCtFEvYdXr+Ld/eVe/fOqWFEFYVcjy2pgpoVcUH79n74OFpKjv9+rA2RESz1CJQ9TzSnswk89nmEmwCfZePHf7SdofdbMwWyyfqmv3pJLitMg9tI7AcwsJYhAhohZjESFIsMpGTZAMdlRbLSW+udC0BTWqtZow8qu1K5hI5zpnWG0qAKUxlo0bpUirJbDILQAX+a2/F0DWaLtB4SNWskNcKYCqa0dIUqy0xgy6Fylf37BoGME3eFMJnSHBN9HQ4lb/1m9t/cWDSaJDefln/HVt7Aew4NV/jNQTAzkZ7roCm7VRZcMylAfQHHF6BvbWbZU6SUlVpRbsDwMqQk0hkAOu7PWs7OQFtAdDuUlCd5Ui3aIdbAajqScmN2iSBtOR0foKaejoPwO8w01WLZgpckLdvLEqm/GAq9WUh52VL/QCOTsWJePU3Mhq9flWH3WyciGZ3nwmDjYrtLiu1Kcw1qtKJLxTRk5oiNPcKemQKdLUJ97PmICQQ0NG0WN8tA7AYtXGDKjFnwqnHjmqho3vZELrj1CxYrsDeJv0E4r4RxUT3Z1sjIt5tNf3FTatko85nVuGlI6B9Pt/y5cufffZZ+t+jR4+m0+lt27a9ZDug45WG2WSOXkLNuuE4UnlOQGszFW3BYDPzHqInT8wAuGjAv5ivdikmPj3yWHX5sw4dOl5SrAw5wSZSS9vt4GqUdA5AIqc5UW7p8wHYdboBAU19lx5bRZuW/l/GcOnQ8XuDYkklQU3yHJ8yHuMurrsabP+lrR7li2WuD3qhFNDzyTznkkSFKW8KFvOdDo1rYpfdw/N5tieTscyHfrjnQ/fuHa5TF4pi29m61u96EAEtAb1+jd2YjGX/e+94NF149PA0mPBzQiOgNUs3+lunxcS/caaigC6S7bLNbCQSjehmErURi8f74kn957KaO9yK0SAVSxr1wA06m2W+TZG+z9kgcoCDOKlwc9pI9MgOpysX4t+fOH3p3z72g51M3UkBawJv5baaiOEdZ4Lx4dkUWJM7gZgUOi1xgcsjMTXXipJamX4Y9CiShHVdbjDBbzRd+OsHjwLYNuiTJFyyRJu3b+xppYCG4P1KhgPvvmLJWy/ue+vF/ZVDUExgkjftMNMNCGgSb05EM//y+EmRRiQC2qGY+nwOAIpsuHxpG4D9Y5F8sTw0nQSwtrPCd1PAzOlG/rN0iVd3Ojf1UvpWg5e4qmrqe9IJPnM2/NcPHhueT//o2VH6AJGDPmGR0sEIXKNUEW/Wg7Lmoql8mqVrdjCW/6Z1QfGTAYfF7zCpqnS8mhV99OgUgK2DvpUCr71tSQDAzjPNCehwCsDSdgcPk+xwWqwmI68ccCsAn0PbQx4fd3wqcXC8Vs6cK5aJeuvxVqogb7t04OlPXvvbP79qbacrmi6883u7a4ZlWlTWWnDYK3WjGhyfTkwlsorJ8FevXgdg/1iMqPBYdUonwWPVfM/GIgtUwui7OFtqkKQLej0A9oxEfvjMyAVffOSpk5rz9eh8CkIgHocmYU7np6JpACGPjY5CbICI1jHLlT8XQgipiUT8mMsqo6UCmsSzhLlkXnPWdls0g53qNxoNywEbi9TLFUTTm/v3jPHqAklr3VaZSl8hF/mtZ7mtXM1u3H5BJ4Cdp+fBWNEOwY1nMGADs6r/0bOjZ+fS7U7LfX968eduW/OuywcBPHc2zL6xcuxOixGAJKm8+kXP8lQ8RwNClim+BwJ2kSWwW4wKoyr3joTB1CR2szzg10pTaztdFIsKxrq22c0AZuOVUz0ZS0NwoCZCPMFKepoFB3lACwfb5lD4oz3OLDgKRZW/UDTtv8NC8QNHJ+LNQggBKCbjLes66eqATVE6XBZq8ZlLNpixiC+XeSEJk9oUpuI5Ps9J5soAHIICut1lBTAjeECH2eAcTxfptNvY57u9VklSC0WVVwGfZUKcp0+FAbxqfQjA4ckYJ99FiPLtk7NJsIdRT/xaPF7SEMI77rjjK1/5yqFDh+bn5z/1qU9ddtllvb29L+UO6HhFYZKNnjPxBd7iPFKcZ1jHmbs/vVGyxfKjR6YBXLViUVatkoSAizeCNQ570aFDh44XCSvanWACqyVtdlQU0AVwBbRFvmjQD+DQeKzep2g+rU3WzbKBGsDJ7VGHDh0vOBLMByyVbUr8cdx5/4Gbv/4kkVncKnQy1pSA/sme0VWfffA3R2ee507OJXP1RPZutvwWIeq4c4UG67eHD03e/s3t1OnfAum8SEBnRxnFLH4jn+mdFoSixyc1titbKD/HFpa/PjJDlOUvD1TkctoOC4TLTPMzyUGWRFaTkcjcUzPJN/zb0x+5b9+WL//6xEzSaJDu2NYHYCKaBptPupiJqtdhAjCTzEJQW0czeVJA28wyMUok7iNmeUXQCcFOgVhFl2KUDRKpdMcjGVUVCOg6oo0w3Ui5WQPSsoVTTXUbokiN06/hVP7rj54AsI/1LGu+qEplQS5JWB50gkU8ATgbTqOhAjpZaeoX6Tk3I498drORiTzIWvptlw6s73J/5LrlT37i6mUsPY8IzUuW+mk79QkuNeA+EiRKXdru+MIfrBUDG0keOCQS0Nz3OZYBS1OkssHfPHT0Kw8f//ZTZ/iHkzlqGzdcuaLtM7eu/sl7L77j4l4AB8ZjQzPJkgq3YhKvDrkNiJUVDor1W93pJs5x/2is3j4+mSuSCmdLvw/Al391hAaNp5nEmEoaImnC+bJun43LaOpBLFUsW6SBy24xUfpfr8+6Mlgb87gm5AZweKJKS/jo0RkA162qYqsvGvABODIRb9bPMUpGxj4bNW+B1Qy48wZXINKVmk8VJqIVE5t7nxmu2SBFYtpMxhpeUpLQ77ff9bYt7Q7zienkG/796Z/vmyAqij9oNdnR3uYK6CeOzwLYNuh77eYuo4T5VH4qngHrM6ix4JAkkMPvgjbQFM0qOj9QDuE9u4Y/818HI+nCQ4e0bL1RClqsqyhQmGQknSO2sctjpaNIZItFxsyRwNnbiFmjD2cL5WyhRNShSzDAJRF6rLkH9Jygs55N5ihQNORR6ImLZYp5IT+Axny/0+xStIw+KkPKBskkSyemk/wGm9PEvNqdQBrkyWiW6Mj6uDwq+ZycTZZVdTqeR7UbT3/ADmA0ki6UymTI8M7LBi/s8wLo99uDbqVYVsmQx13FI5sAtDkU3v/hsZqJOh8Op8E06Xaz0Wszi/eezWySJI0n3TcSA7A0qFnRrul0Aujz21xW01pm1EO7SnGLs0LjC70WQ0x/TZUz3uhDp45eNPyRBxBwmD1spUAe6/Q64OQsVQU63ArVjY5MJshvKuBorLR77aZOAL88MJnKFelub3cqRI/MJvJT8eyXfnlE7DBoqIAulMq8p2cf0ymn87UKaHoVTgmvb37vJXIF5gGtfd5krLgGre9yA3j2bBiAqmqliD++qNetmApFtWF44JxQZ6J65HyqqVONjoZ4SQnoO++88x3veMe1117b29vrdDp/9KMfvZTfruOVBh4wLVYFG4ITK9F0gV66pBB0WkxORaa2l5lk3iRL2wYXpYCGoDGhlj0dOnToeMmwLFiJT1jS7gRbj9H0jkY8h2Lq8liDLktJxd6RKiYoUygVSiqYGo5E0MncopSM//bEqTfetbNFgI8OHTpqwJVciewCZZ5CqXzf7tGjk4ndZyMQyKnpWNNC+46huUJR/Q1rNT0/nJpNbvnSox+9b5/4w5/vm/jDf3v6o/ftr/lwVCCg840ERPftHj0wHn/X93aPt1T5pXKiBUdhjCln58SVNpNEDbPu5kS2SGFoV60IAPgdo9seYXTMz/bWunCQqQWxVIsJIdRWs2YDyceeOjU/EkkbJdCwuaXfuybkAqO3iJMiSgJAj8cKYHQ+A8HmMp7WVshWi7HNqdCvVFXTAq8MOiFwWyRkI96KfC3GI5lEtsBV5w0td8GUxTXKzRoQn9UiOkx05+D99d98fIhMOcNsZU73gNtWNQG+eW0IwK8OaheCpOj9gcrbSiOgyVU2UwSwRNBHc2dVo0HiTd8htw3Aln7fzz942UeuW9brs/3g3dv6fDa7Rb58WYC+9LpV7R+/YcWCno7cnKSh3hOA21GrgI4wDTi5qRCZFUkXiiV1/0gMwDNnKtrkdI5IE5NskN51+cDaLs+Gbg+AE9NJegWvDLnEnSTyiyoriWxRHBzILH5Nl3tV0KWYDLFs4WydUJqulCIbNvR4AEywUs3BsSjNAcJ14Wmc/h4ItCLribiMpnJUunZY5JvXBZd3OD52fYOTTH61oio/mSuSz8a1q9rFTwZdStBlUYUOhhqMUGCg376NqdrphvE5TXSkNjMv82i3MQWBvuHCXgA/2zdRU2snkrfba214bwRdyl1vu8hmNhyeiH/o3r2Xf+Xx+WQ+ks5THY7r5cVvjDSq3GwfmgFwxfI2xWSkGsz+sRhYoa4+WKjbZwUwPJcqlMqfuv/APc+MNDwb9flvF/R5ARyZTBB7PDyvDZg02vT46xXQFgCj82l6eEMexW010ZqXa1HpH/XCYQAOiybWnUnkaPCpDiE0A4g2L6mKOuu5eI4chEJum8dqpqFY1MBq8YBOM3noF0uaQjzoVm5Y1QHgp89pZUWiqqkiAkawTsQy9Di46zKZen02kyxlC+WRcHo6ngFz0SS0OxWb2aACo+HM3rMRAJv6NPWxJOGypQH+SbGQ4FBkAJ3eykgrSRggF47ZJJgZ9EDALklVu+SwGMC6ZGgIXd6hCZ+3DPjBikk+u5mOi2S/dCuKFhwUP8ANQFwaAV0EUCyrdE1JAW01GXl3jt9hpuCr+VR+NpYFcPO6EFg+KngPjUtZHXIBGImkRiIpNPGABrB10N/pUVL50jceO6mqklGC125qJ7o8nvvKA8fueurMO7+7m7eJiC8X7tAyHs1Q5RiCCwfNDRyWigI65LYCmBTmBpXUhHQhp4UWVj5PFkOKyfC529cA2DcSLZbUU7PJ+VTeZJQu6PWu7/EA2DfSoEyulUMcJgBDMwmw8nDAqRPQi8VLSkDLsvz5z39+eno6lUp9//vfD4VCC/+NDh0tkcoX33jXzm//rjYDF8Aky0qeadToUbURYZFDI7jWPGg1GSSJV3S3DQSsi3Zzbq+OwtChQ4eOlwx8zgpgMOAA05HFsoViSdNrOCyyJGnTWXGRDMY+yEbQco4aQhdpwfGfT57ecXJ+z0LaRh06dHBwamnBPoMzcykiF45OxTOFEs+7a2HBQev841PnFm9Yg70jUVXwSQSQL5b/5qGjAA6MRmvEl+IyMpdvQECPx7IAIunCu773bIuYaFEIOZfIjYWZqkDQH00yVvrMfIpEoMcm4wCCbuW29V0Anjo5CyCWKTx9eh6A0SCdmEker44GoVg/CiaaaWKgLEJLNDLLXD5mNEg/es8lP37Pxe+9asmXX7OOVv7T8VyxrBJfuaRNo1n72xwAhsPpbKFEsVoAEtkCHazdZOz0WGUjEtnS/rEoUV1EQMcyRfpfpoAWCOhYZlK4AY40IaA1eqW1B7StEizWEFUe0Jk8gPFI5vs7NG0pZw3oY95qJvfW9SEAu06HSd02PJcEUw0TiEkhopzm4UvbK/S0SG8FGf1X7xTR4VIe+diVOz55DbGTdrN811u3vGlbX4uj1r7doQCQJNWhNBaO0OHQlVJMBgBRRsHTPq8IOYmSOzOfIqnj3tEI1yZTCKFImgRdit9uLpXVHz87CmB1V+XFDXbPDM+ncsXyrd948tq//22uWAZQLKnHZxIAVodcslFa1+UBa9gXQe69HpuJ2zd3epROj1JS8ezZCJiDSkMFdJ/Pjuage28ylqUDs1vkXp/tkY9e+eoLuuo/vLrTDWDfaJQ3RjxxYrakoj9gE+MKCRf0eFBt9iqCOvF7fbaL+n2XLPH94eYeUpi22RUAAafCeWS/ZkCcI33l6zZ393ptqXzp0eo6HP22p7k0fn23+7GPX/3ha5c5FXkqlt1xWsu789pMXNxKYK7TtQ9OtlDadTYM4Ipl7WByy/2jUbDeiPpqBymgx6KZXx+Z/uEzo3fef3D70Cz/7WQs+5Zv7frnx4boIRW5vwtYzCbN2UZYeZK42p7RlNBrAAAgAElEQVQ6Cw6Sux6aiNO/rSaj0SC5FeqB0A4kkiJvjQZPhCTBZTOBVZIgGA3x42pRyhJT5mZTOa0/w61IEgKOihWP9gES7ToUO3t8Ts0mAAQclhvWhAAcYsGzJATmvDwJ1Qsl9fRcEo2W5EaDRGb6zw6HqYIoKqAlCWSYs+PU3Ewyb5TA1ccALmGiNKdiFDsGqNliVXU3AA10Z+bTYOVS4kBlg8TD9BSzDEHYazRIA8yK/Y1be//hDzfcecsq+t+3bOsbbLOTKo4Yc9GZigiQEKs1kmyc7rdoOq+qkiSp/FSE2FPf5lToqp2cTZRUSMBNa4NgqaQZ5nnS4VL8DjNZ69Clb2Y9YZCkD1y1DMBd20/TfhokidoURqPphw5PATgxk/zrB4/R5+luoe4WzqeLXjR7mBabrFNtFuGNQCGEscpJiLABJ5bVLDgUuTL29vusAG5ZE7qg1+NUjNli+ehU/OlTcwC29HvNsmFT87GICOhtAwEA88lCLFOgF4FO+CweLykBrUPHC47tQ3M7Ts5/96naviqwFQ5Y12ELiEs+GsFTObLgMEGoTl+9MtDorxujjSVyeBtZI+nQoUPHiwe31RR0KgBkg9TttYItBiLpAnczpFiSrYM+ALvPVrkualIRxUzLOYemgF6YgM4Xy7QAm12EilCHDh2EOJObLfiUceb0+FRC7F1tYcERThYAnJxJNczgWiQoqms6nuEb+d6Os6SpjGULNY3nopNjrpECmsyRFZPh6FT8rx440uxLk/kKeRFO5UZYT3qVBQcjXgslldpviYlYE3JdutQPYP9ILJEtPn5spqRieYfjmhXtAH6xv0oETemsyzocWKQCOl8EYJUNXE380WuXbe7zbun3/cVNK5e0OfwOs2yQVGAmniU5J+lAAfT5bADOzifFQTKaLdA2bRbZZjZS3Mh9u0cAOBW53alossR0HkCCPOIsMoBunw3AeCRDE12iTkbCqYYmBnR+Qi0V0KSAizQPw6R9sJkNYArorz16olhWSQ7GVY10D3iqiYlur3V9l0sFHjw0kc6XyH5X5DqJMib7EeIr+9scnNdxCg3+bazLsNPdYI5tkQ3NVMwtEHRbALgsZkMTsbRH6LAeDNghuM2Q7UbIZSEyiFwXAMQyRR76l6K2cXOFpJMkbOh2g0liya2CgxTQZ+ZSDx+eGglnZhIanXpqLlkoqnazscdnBbC20wng6GRtqzjZ77ptZrJwAfAnlw9euqQNzIWDSBORweT3c38dNSyC1jXUkSABraU5dFBHJhMbvvDIFX/7+HPDkd8cmQJw3cqO+g9v6PUC2N9IdQjW8NHjtZllwz3vvvirf7iefk4ReQGn4P9gJx/hHEWf9Xhtt20MAXjwQNWDT04IlGDZDEGX8tHrl9+2PgTg+FSCNigaF4jfWF+52X02XCiqQZeFygl0gAfHomAKdE9dvh9d1uH5NKfLP3LvPqrZxDKFt35715NDc1995MSvj06jusbjtpquWBbw2kz/escmAGORNHmwjEZSAHrqigr0sJM4PeTRjoj2hx8IafybrWQDNjOA4fkkAKdiNAokLD37U7HMbKKBdxOYAwyNG7OJ7JTmAa2ASbhmhKIaN9YwSBLR66fmUgDanBa6+klWzKO3A0/FNMsGTdWbbEoRruhwAtgxNEdHoVTfz2Tf/JM9owBWhVzi3X7JMo0WcFurzs+Na4Lff+fWT928SvwhaUGG51NgAaq8AMNPL1WnSAcNoM9nN8vav2WD9NrN3Zzqfd/VSx/7s6towKcxZz6Vp8utqtprkVtwaMbZmSKYz7XHWnEx6nBqH2uzW8jm6MRkkja7qddrNEhT8dxkLEOlF0U20NphdahiqR9oTnS8fktPn99GO0bm2jTI7z4bSRdKTsUI4Hs7zj52bAbs5dLjtULIPKBBjxYyB8didC8RS+Oos+CYjWcrQbgV06pCplBGtQL6PVctfdO23r+4ZaVBki7o8QJ48vjMfz55BsClSwMANvSSArpBNwY9jH0BG9VBT84kiS73N8rq1NEQOgGt4+WNk1MJAJFMgwXDFCuaLRhCKCr7yJKPhmkasvkE+uoVDWZLzcAnx3oIoQ4dOl56LOtwAhgM2GmW6WF+fEmm3qLmSWI69gxHueUfeO45awy0KUYAyUW403IZ5nRcJ6B16FgsEjmuhF2IgGY007HJGDedADAda/rEEc0RyxbqzZpb43M/O/Smu3bSyECLwEJJJf+HaLrwjceG+CdPz1XZ1MYF1Vu9BUcqr5kJfPH2NQB2nWqaOZbOVf52NlkYqxDQYtpSFoAmO51LgSmg13S6Qm5rv9+mAndtP/3woUkAN6wJvmpDJ4Cf750Q6XjSFC9rdwKYXcTYRf3mFpMx6FLetK3vTdt633v1UvEDBknqdFsBjIbTVDPg3CKp3obn0mLHdCJTYL7SMoBrVnQA+Pn+SQBtTkuNLJH2llS6pIAeC6epGLAy6Aw6FVWV6p0ri2WVlOMdLT2gvSQdbX6rkOsxHQVRnI8fmwHw8RtWQrDgoBhbV529wC3rOwE8cHDywYMTAJyKLLo8k1xxKppVVU2v57GaOeci9qp3MAV0Z52u87zR7qwUaxtC3NWlHQ4IbjMUktbuslKD+W+PV5S2XLVH5n52cxW9tb7Hy/+9KlQlmSQtfKGkfvPRE/QTesPSILAy6CSifFnQBeDEdO0Vj2iiPFOvz7am07Wszf6Gi3ovHvQBoG4ASnrwCQcVci+KgKZTNBHJAHAoxtbeJgMB+x9f1KOVRiLpO/5z58NHZgBcv7rBkkpTQI9ppE80XeDPKW/4qPfybnMpqGbBiEU9MhlXAZMs+R3mW9d1Anj8xCy1XJydT20fmjs4FgGr4rQGdZUdnYjTgFOf5El+ZaORzEi4ygvliROzAK5c3kZnaX2XC8DBsbiqak7r7jq5fa/fDmA0nKIny22V51P59/zguXueGXnX9549Ma05wJyeJfeDqj353ju27rrzukuXBmSDVFIxGcuWyirZs/TVW3BYzWBi0m6P9lu/jXIICxByLD11zhUEj90CVvwQ60Ngi9+nTs5v+fKjl/3tY/Xu2PPpAphMeDqWm03lwO5AKoTMCmw+Sf5JPOs0ywDOzCYBdLgsZMqRYAt5La5QUDF3CTl73kYHsiLkAvDU0BwE82gOehaIiNzU6xV/FXQpRE97qhXiRoN0+bJAjbs3uTkfGIuB2d9zoxv+57ZqBfSyYKvHkCPgsEhAqayS/iOSzheKKoRB0iWEENJboE04TF5N8Tk1Q2qyZAm6FJvZuLzDAWD/aExzcHJrfQarOyuDlc/RVPkrG6W/uGkl/bvNYUa1w8mbtvW//bJ+AF/61RGwlwu9iHkzAfnkXLm8zW42ZovloekEuAJaGEvbHIokqSVV6MJhg3O2UKaqrdVUGaoGAvYvvXod3WkXDvgAfO03J0Yi6aBHeeslA2ChtafnkvUq/jmmsqcGnaHpJFHnzaxIdNRDJ6B1vLxxci4FIJEtiewJYYKtImZbpsOjWnNEry5aHdHLgyYHvT5rv39RbwKCoIDWCWgdOnS81FgRcoAlEEIIIaQ5qJ2JsJa2O9xWOVss8wZGMLNRDxdlmGVUWxU1Aw8AmV1EG7sOHToI8ay2ZFrQ6IYroIemkyQBIy3qZHMPaL7yF8PTFkShVP5/Tw8/dXL+8GQMwGi0qqL/nafOJLLF5e2ObYM+AGdmq8ivSLpyFLk6O3jKR3IqRjK1HI9lmkmzqTuNKINwKsdbcefYpC5XLNPicF23B0xWRva4qzrdAO7Y2gfg678ZevDwNIAbVgevW92hyIaRSPrAWKW1lhTo1IidLpQWNELRyGKzLEn40qvXfunV64x1iW2kPts+NJctlG1mA2d/6B+RdIH4I0I0XUjly2AravLGJRUzMXekr6SmdVpLE6dAurCJaIZimkJuZXWnE8CRiVrd1nwypwJGg9SsXZpAS+hwoyw1AgnTaD4cSRdSuSIxBVcsawOQLpTIJiJCCug6uueWdSEAT58Kf/zHBwC8YUuP+NtOj0IbiWcLxCi5rTLnklwCVdfOaPROdys+/ZywrtstSeqKkLPZB0RBCd0tXAE9lcgAaHdaiNHYeToMwCRLAPYw45oM5Uxaqriq9d1aZcIoYZngNwJANki9XgeAIXarUHjduBB4CMaNnqh7uol/8VpNRoP0yw9e/uBHr7SajBcv1ZKHk7kiVQtElXoHJ6BbrnfoslIZxm5ubFfCIUn469euf+bT1+3/3A2XL2vLFsupXNGpyJv7ffUfXtvtloCpWHYmkXv40OTGLz7y5z/ZT+PDGMttq68QbOhxAxA3SIMGdTN0uq0GSVodcvV6bdlC+bfHZ45Nxq/7+yfe/K1dO06FwXIsW4NscI5PJ8iih+uFOZiBT+7Krz72/ruf4wF6Tx6fBXDZci3BfkXQJRukWLbw3R1nRsIZ2SAt66i934hhPzaVjKQLTsV4z7svNhml3WfDd95/cPfZsN1svO9PtvEny1/N/UkSzLLByFrfhudTI+F0tlhWTIZ64t4r/G0ns7KhvMFIMg8hx7KZtwDtxt27RlCX77d1wL8y6LCZDZKkTsWyX33oeM3f0mhGcXYHJ2OqKslGzcyBOEpuwfHkidkdJ+eNEq5e2QaAZLOnZ9IA2p0WKsVxhQSL1mxAsKI6s5GDFNDUkMHlwByDgh86uWyLIBvoZgS9iAv7KhmbVLLl9vc8vI6qU07mLEFx4gtCNkjE7dIMnP7rt5u5Sww5pdCISqc94KychxBrImlzWEQmnUaDNZ1uAEcn4lr2JhtvV7NqmSIbWvdA3Lw2RM4zdCFE1/JXX9D1p1csATA8ny6W1Gg6B2Cw3QGRgJ5PA+j12bXq1HAUQDJXtZABIBu1V9sUmwtxfyQwj36L3HiwoktTLAHA3/+fDSSs9tnNy9sdAH5Z3TYBYI7s1+0KjdgnZxJUTvYt4jbQQdAJaB0vb5xgtob1xdVJJpaZTWptKc2QEiwIqSmSsmJJAU0j2tUrOxYMMBHBq4veOgGIDh06dLzYeN2m7g09njcy40vSjhXLKg1x3OPSIEkX9fsBLfqZQEE6fEptV2Qswp0WrLMei3De16FDB0cioz1c8YUU0CeYsrWk4vHjs2CarMl4YwI6XyxzN4ZzsoEeDWdo2nRqOgnmvgrWFn1wPArgLZf0L293ol4BTb3/VhmNFNA0SoRcVhK7pfNl0bJDBO058SZn51JcHj7Hwqm0pmCT4YI+D4Cz8+liuWKPC+Bdlw9+9lWraO4WdCrrutw2s/Hqle0AfnuiYqsayxYAhNwKsfkzC4mg0wXqI2m16u5yKwCoTX55h4sz1A6LTOzY7jPzANodZgDxbEmz9bAYAAwE7H2MLaLJJDO4KIDdJE4bKaBtAMZjWgN70G1d2elCIxtoEs+2Ocz1XLkIje5v7txKIrV+ZkBBek+P1URyXUDTddItXd8CSGpcFVCBN1zYzS1NCYrJSKKN8UgmltYcctuZxlNUFHJxXz0VeN4YCNh3fPK6f37jpmYfECXYS9udABLZoqqiWFZJAdfuVEh9Qn3ir1rbCeagWiqrxNg6mhDQyzocvN1e2KUq0nA6mgUwSfFrjDYllmQqlq3pn4gK5gmSBPKoDbmtvT5rqaw+cyZMLep+gaoLuRWPzeS1m7rrnLWrzoNwIWr49NZ/9a23Xnjzmg4AN64Jyo3uQ7tZJk5n73D4m4+dBPCT58b+8dcnAIwQD+W31a/Frl8V3PvZ699zxRL+E1GKSB39koSb1wUB/OrAxCfvP1gsq+1Oy8qg46oVgcuXt9dusQ7Ek45FMienE2jURtDltd7z7m2XL2tTVelXB6doQjUdz56YSUqSytPqTEbDmi43gC8/cATAOy7rD9SpJsWTf8Wy9jWdrvv+9OI7tvZes6JtS7/3u2+/aOug/9O3aKrSZvUkUuYOh9NHJ+MAlrc76x98kVbm4neK96SnOMJyLC11dyZhddAFQJLU1SHnh69dJv7K7zA/9JErj3zx5h/96SUAfrh7eH+1nS59xYoOB4CpaBZA0GUlUT8NeqRjKJTKn/35IQBvu2SAbEzsVhlMGNvmtNIDlcxrYnlqJxLHCl6jMslSQ6pUDE1pd9aeTzEllbtsc7z6gm6jQdo24G94fkSE3EqnR1GBnafDFBrMyzzchsVqkcHeAmCDzGKgOSDHswDGY2kIFxRszElk8gDmkkRPCwQ9u5n9DrPoMtTpVgBQRfPwZGyGamyMPl7FCnULJu9JEv7u9RtuXRd888X94levDDpWdDjbnRaTUSqV1fFohpo2lgRsABLZYqFUBvPJ6fFZN/Z5AewZjQDI5MoAbJaqqxlyWcFcuQqlMum46aanFjGrqfFtvKHHTU/HW7b1XSoES77hoh4Ad+8cqamRaz7jTsuydheAu546Q00G9fJ5Hc2gE9A6XsYoqypf9tQQ0IVSeZYtUVQhTqEhqHBK8/uZeFZVkciRwEQG8PZLB25e0/GeKwfPad+4OsPbvDNFhw4dOl4krAq5fvb+Sy9fpulubCYtr5x8G53ConFjrxvACcFBklRdvJhPKoNU86wwDk5Az+ke0Dp0LBoJpt5KtyzzZAolCp0ncuGZ0/MALhr0Awin8vV9YKieGp08FwX0WRZgdXo+VSiVp1lPA4kKxzTvVNtAmx3AyZkqAppUyR1a+lMtAT0ezQLo9CqcbST7iHqkshUCWhx/uK/aFGuHXxJwADgzmzo9mywUVbtFJh9VScI7Lh38ztsvGgw43nfNUqKuaIW56/Qc3yCxpS6rSfMgXmj4yuZLYDF0zUCKwuNTCQBru6rTqAI2ALvPRsGcHGKZPBHQdrM26l6zUhu6SYZGwj0S95FCgkw5iH5N5YrUBR90W0mwdqTOEXhaa6BeQOzZ47ORYrHGVfz4dIIuPbGWA0zHfXZe6+6XJPisZjCFXVQrQjRQhN1xUR+AO7b2/vXr1te7Lfd4tAS2OLsobczb1yX0+JPTBSWntT6ic0LIrdSzwBweQVBCzdelsprKF+eSOVWVjBK8dlO7QE2++ZJ+AEMziXimkGGtALZqC46Aw0Lk0epq/w3CAOth6vbawC4iXZpOd4WXp8iHoZnqRgTKuLPVEsQXD/oB3L1zeCaRR7Vqz2Q0PPSRKx768BU1CXs1EC+rc9EENACzbPinOzb/8N1bv3D7mmafIY7vOzvOHpqIEyv09ceG7n1mdCScAjsP9fDazOKtJKpxuxhTT+r7Xx2c2jcatZmMP/vAZQ995Mrvvn1rzRVptn2i3rafnINQ/xBxyRL/9995ETHs9OAfGI0CWN7hEqnedV0uAMUS3Irp/Vcvq9+OYjLSghTMqGRTr/fLr1n37bdf9OP3XLJlwAfgdZt7rl/d0eezrWoi2O/zk+NwmiyJGn7M3YilpYrFfCYPNpK3kPe+75ql97/vkj1/ecMDH77i+jXBhp/Z0u977cYuVZX+8r8PHhqPHp6IF0tqplCiTM4VwYrveSUNz2UGe9d893dnz86lvXbTR65fTr91ms0A6G3X7rSQVqxY0oqdiWwe1d0SIS7uVkwNlWSdHsXGhpH2OnOVQUZAe6ym+nDOC/u8R7540weubXAd60GWd/fvGVVVyW428uIBN/KmybaDCXuXBxdLQLe7KLYxC0a2hgRdP+uALAKYSxYABIQbmPc9tDksVYZIHiuYR8qxqcQUvUGYTfxgm4M6PHyLSN5b3uH85zs2k9JcNkpUmLx9QxcAgyRRCuhIOE1NG/0BzfefqBvmYG6jRocDY9GyqmaKRdQV8zTnlpjmlg5AklR6VKnGrDRp17Cb5Q9du+zmtcFPVhdEX7epxyRLR6fiB8araieaitxh3rrEx+s6q4Ku+lRVHc2gE9A6XsYYj2SyBW1tU5P8MBXLqqpkkiVa3rROlaEl32DASZ/MFUvUiEGGVht6PP/65gtD59jlx1N09VBUHTp0/I9DkjRJCPmoOoTZeafHBtZBTIhoqw5t7KKRMLmQNhPABOt9m9I9oHXoWDTiTAHNk5Qa4uRMUlUlr810xdI2sBX4BT0e2QhVlWYa+d6IU6N6l1gAT5+am25kU0Z2FgBOTSfGoxlV1VZZ9OHxaAZAp8dKkrTh+SoCmlhvCpLKFWoJ6Cn6W7cVnG0Mp9AINDfrExZ1QY8CIJoqUFvbJGsKJkHuqbnkQ4cmAawOOUVm86oVbY99/Mq3XKy1g2wd9APYMxLl5DhRui7FRCvY6YUchLKFEgB7S+qtU5AxEinM0e+zAzg9lwSwtM0JIJnTHCc4F3bNKs0hlzjxNs0ZQ7PzBmvRs5qMpFmmqMOQW1nX5QZwYDRaozckbqJ9IbWaz27e1OMFQK7ZhKl49pZ/fPKO/3gajFkeCDgApHJFIj0H2hwAvLSTqQIYT92w4f2Pt/bu+cvrv/yadQ2z/ro8CoDxSDqeIyLJxCNVXEJ7+IYet1ORr1q5sHb1BYTIznR5rSajBCCaLpBkvs2hGCSJU5N2s3FDj7vXa1NVad9olOT8EmCRa+nOzb1eMBuZGgz6HbSpN2/rAxP3jUfTYC9uAtk4HJ+qqjDFUlQDqL0EV63sAPCbYzN0I3mrJbRBl9LRMqYS1fLScyKgARgN0sVLAi2eHYrpIw+T11zQ9YFrlgL45P0H/v3J02AZngtCXHl1sT9Z3+3hbgwfu2FFqC5IsDWIKiVOtj6EsPKxkBvMK+mo5v9eRSNuYJr3D167rJnhOGljJeDKFW0NP2CQpP9484W//fOrm1mgULLiyHyKSlMrG5U3xLNUseCwVSw4SNfvtTUdNCyyYVOvd8F17p23rbKbjQfG47d983e3fmP7h+/dS/YvskESOTtu79DGQgiLJZXCBu68eaWTzVpd1soT1O6y8DGT5qhRahARilU8drXhcATAIEmUQAugra604LObyRljU6+nIX/dTB5ejwv7PAAePjwNoD9g51vjJ5C+iObnRoM0uGhCU1RAk2S4U1RAUwhhtgAW0hioE78rJoPNLNvNMmdU6byt7nQDGItkqPsqyPw6ZINE/U+tPZ0a4vrVwaBTed3mbvrffp8NwPB8krpevHYzScLDqXyWOb93e63L210AzsylMoUSTUhs1Tc/OwkZsFWMSzGJd6+1eanpw9cu+9c3ba6pRXlsplvXhgDcs3OY/7BYUonKDzgsS9ocz9x53fZPXH34Czc+8OHLW9ftdIjQz5SOlzFOzlYmWzUNg5Ms7JsiTRouzDhoyUfv+5m41sUmSepiquLNwHtSFuMMpUOHDh0vNqh9WCOgheUf5TiLIkTSHXBrSGpLTy3kTgvm7gpgPtGq6USHDh0iuAI6nmsV9UmeYyuCzpXBCpvQ57eTaGuqEY9MUyPqfqj3gN4/Fv3j/9z14Xv31v/h8JxmYnZqLsXNlwFMJ7KJbJH0yJ0eK9EHZ+ZTotEZiY9oFsS9UDnIwZYIaGIbJ2KNZ2iUz+G3m2kIArCh2y1Jqso4bnK+DrktAxTbNZ+mtv03betvuEHC0jaH12bKFsr7x2IAcsVyoaQCcFlN7Zr36AIEdLpQRvN+XkKXpykB3ScY7A622QGoqkS+InzauXXAT0dNbCBfkPPTwuXA5DBAng9Bl6XXZ7t9Y0gFPnrf/qxgwD3FZsWtDw3ATWtDAB46PMV/cnQyXlIxNJsKp/LEYvT4bZKkAjg4GgOjBcmOlrw7pxJZVOdNcUhSK86C6MKR+RQJJN1Mlo5qUingsDz3meu/9vqNCx7OCwinItNR28wGu1n2smQFSi9vd5khKChXd7oNkrSpzwPgueEIZd81jOz7zG2rP/+q1W9iflkirl/TsSrk/PiNK/r9VjAxDT0vIn9KkQ8nqj12otVhwhw3rQl+840XXLLUD6DbaxWb8RcJ2SDxKEXrORLQC4KcXglvv3Tgz65f8SdXDIDdwL2LC+ORjZU97Ga0piSB6KRVQdfbLu0/1x1b1VmxYqgPIeRYEXSCXYvjkzRiVz3+2wYDskHqD9h4SawePT47gAv7W3G7koQWzpC9fiL1Uken4miir3dZZb6BLmZlQ09xWIuzayyiP1cEHJYvv2Zd0KOQsvvxYzOzTEPqsMgmthfcjJjaCGaTucOTsUS26FZMr9tcMYsXp69tTotBkqieQb3LKaE+R+j08I7kprf68g7t/NRXXyQJ9JrbWGcAfa64sN8PNlaLNutuOwshtMgA7BYTgB6ftUU3Rg1oNKBnZGQ+BdZno21fE5GUwCw4xJF5RdB5+8bQB69ZSncUF49TLc1tNVHdl5JLxR4aCk1d0IKjHl/9w/VP33ktP9VkZ392Lh3TgmdNbXYLgLlknkrddovssZo7PYoEFEoqufFIklrThERS7slYDqx24rGaXcIAqMjNH5gmoBiJn+2b4Glh86kcAInRO36Hucdns1vkc7Jp1aET0DpexjghVPtrLDgmmDyHBtAWAfEAkvkimNXadDJHBLTDYmqozlgkLLLh9o2hrYP+nhcuoVuHDh06zhs0WxoPZ1Ddn6gpoGNZbnOmideYckqz2FtECCFPQotlC7k64kmHDh0Nwdc26ZZPGanqVnQ4V3ZqkjqjQer0WMXFZw1osbSm0y1JajRdmE9WzZSeGw4DGIs0VEBrBPTp2dTZucpcayaWG49otr82s7HTYzXJUqGocvsdMJtgWl7WjwPUJxH0KmBs43i0sYE1BZ86LEafnWejOWhcIpOfSbKT9ighj2KSpZKKQkm9ZInv9g2dDTdIkCRsG/CBuXAQ+y9Jqt1i1AjohepnROwqLdkBznoYDdKK6k5qUcXZ47OTkJYa77ikyywb3nhRn1sxbR3wgRmzziVy+WK5UFQhMCwi000Swi/evs7vMJ2eS/7dI5XgL6pPdLgXJgtuXBsEsPtshJvXnWVmd8+cCZP0zGczuyxmAHtGw/yIKPIknMolssVElkoU52zQTIdzhE3vHYpMXInNZKxxDWZVf/0AACAASURBVDbLz2eSfj4wSBLx/gE7VQXMAKLpPKWXk1K7nSko13Y6AWwm39LhaIpSs0wNJCkht/K2SwcaqufanJYHP3zF2y8doHb46Wg2WygRsyz2ZZIN9FB1i0OYmWjXbFOS8Kr1nfe8a9vuT1/3wIcu18y5zhHcDtu5UAjhuWJZh5OerC393jWdLknCnbes/vbbttAEpsbNpgU4sd4jPG4fum7Z+65e8u9v2dzQgbo1RD+EVgpolglZVlUKRF3dWfX49/hsv/mzq/77fZe1oBevWBoA8Mdbes91Jzn6/Q4Ap1n5sKEC2iBJdHtI7O4FU+MSf0dxIC9II++rL+ja+clrn7nzervZmC6UfndyFoDPbpakSmYSP6s0Ds8mc8+eDQPY3OcRH3Unu6UlSQ3YLWA3YTJbKKtqTX1O3KynOZPOh+iGNbM3bOnp89n+YEPX+Ry5gOUdDkpQhOCug6oQQhnshK8KLvZWB0BiO0oCIF9+8banloVYNg9gLpEH4HdUbmCjQfrGH23ibjD80eYmHutCbgBUpg0KpZfb1nfazcZmIv3WEIduqiodmYrTEsRtNflYFYTu3m6vVZJgMhqIYiZ/G6tc+wIIuSxgb7ook9E4BZ9o67kPVhf2+wbb7Nli+d5nRuknNIny2c0v9evn9ws6Aa3jZQzR7yySqqKYNQLaZW1zWLFQIhblzg+2OQDMxXPxuvLp+eEbf7Tpvj/Z1jrvRYcOHTpeGngUM4DxSBaAw1I7O88Wy3EeI671wWmfIU4knW+lzSSISsYWPqpDM8lo85ArHTpeaYhnNN65tdHNsckEgBUh1woWmtTltsoGiRafvPwjgpZhXR6lx2MHcGK6SiN5ZCIBFoNRA+6qUSyrT58Kg1WwZhJZMnHu8loBGA0SqY/PzKWKJfXwRFxVtS8lRiNXH0IYydCeg7GN4+F0w+MlnbXNYvLbK2pfLZ8qmUdFCmozSFK/1wZANkhfevX6BReGZJy981QEzP+ENAe0z7NNFNkc5OertGyS4x3QSwL2mh5t0VSkzWnxipFuwjY/fevq/Z+/gYhsYtMimTwPmuMmBtyKwWTU6CSPzfSV120E8K2nTu9jRhyaB3RdeFo9en22VSFnqaz+5qgmguYENIngbGaDWTaQLpL6o/vb7GBSuPmUJltzW+Vm/gAt0OW1ATgyEaNjlA0SbVb03/gfBNU/iB+hsx3NFKbJi9ylQDA5Wd3pAmtgH5pNUDVFsZznupue8dlUjs6tIhtEZnl50IU6jx3NP6G5wLnNaXE1sYBYEDxe0vlCd3nKBmnboB/AOy+vRO9cs7L98Y9f9bP3X0qZq4sBD+Dp8laZ4X7ixpW9i/PxqMEqJmSWja042V6/zSRL2UL5xHRyOJwCE4qK6PPbWnfHvmZT9+Ev3Pha5lFwHqDGCLKpDLqVZl4ftBsdboUz8tSdQJPAaKYIFkz6gsBokDb1+QA8fGgKgN+uQOC+Q27tutAjXyiqvzk2A1bF4eDTV4/VTOUTm2IEkMgW03nNnEFcwgeZ0raFWzEnoBuaFL354v4nPnE1CXWfDwySxI9lQNgavxkoVe9VG0J/euWSj92wYvFbJmEyDUREQFMFgkBng94dmgVHXdZiZWeY9ISfN9FAvF1QiF+1ou3gF2581fpW5d7FoNdnB3BwLAr2cqH33XwqOxpOA+hlSj6S9B2fjgNwWGrfv/R2m01kwKrgXpssDnFKnf3RgpAkvOvyQQDf/M0QKR3ZCdTzBp8XdAJax8sYJ2cTYHnB4WTVCookNp0+K8k9WjdUpvJFAP1+G4BiWaVBkAJedOjQoeP3AyTXmk5mANiF2blFNtD0l6dOkcunr9oDOtUyHg0AV2aRxKMZAX16NnXTPz75tu/uel4Ho0PH7xHiWU1qmi6UymqDLEHCCaaAtltkWpKR0Sel2De0cmbFJDN5XNbkEFI+VSJbqPnOQqk8GkmDVaGeGpoDc6qdiecmNAtajdYhQ4lTs8lP/9eBW7+x/Ye7RqiRllbyuWKVpltVuX+0DYylHW8WQpgrAHBYZD9zbOjx2Sg9iRaB05oHtAJgTZcbwHuuXDLYtnCTPuWwPTcyXyypWqaf1QTGfp4Oa2fp2FTi678Zqs9RzOXJgqPVatZukWnZT0SkCLH5us1pcQgrZNGksipUzU75fpoDht1s5OKGLp/GCHS6rfxPrl3V/uqNnaoqff4Xh+ji0rJ8QXtfgubCcWia/neYmXQ/fWoOgMtqRnUiHx0R7WQklScJiCjNXjy6PVYwroRO4KZe7+Y+zxu3nr8a9AUEvUZJJklnIJYpzAh+I36HhS4C0Y7UvD8Vy86l8gBc52tYEXBYJKBUVg+OxQAEPYp4eyxrdwCYSebFyi4ler1INoAVyux5eBU2wz+8YeNP3nvJTdWhdl6beUNPA5vsZqC6jtEgtS/unl8QS9sd9NC1O5UWJS7ZIC1tcwD45YEJVZW89oqHzOIhSQtYzC8IxWSs1EKaZ9mRLXKXIOimMZ88mkna5X5Bo4y2DHgBHBiPAyBHjoC9lvG0yAZ69nedDgPYMuAXt8AtOPiVJSPyZLZI7Syyscpp3Swb6KBaPAsCAf3C3C3NsKXfR//oC1QIYl7PoCxEr838qZtX0kO9SGgK6EQ2mi7Q4Nkt1F1ID57MFcqqOpfMAxXVeT3ItMdtlRX2glslWEi1V3tkvyAqYLKLoaYZerkQvTuXzI8yBTR9sserADg+mUAj8x9mwZEFS7/w2CxupfHrdfF4/YU9y9sdsWzhHx8dAuu+ajt352sdInQCWsfLFaqKoakkgIv6fKgLISQr0k6XtcNpAZN+NNsOOc157GYap77y8DEAV60MvIh7r0OHDh0vLYhh0eQh1VO3mhb+qGb8x4K5LTJYO3wL0LRPkQ1L2h1oHuT1yJGpUlk9M9s4dkyHjlcgEkL2IHnF1iOeKVC25/IOJ4AVISfYyo0Y2MlGNC65KPgcFoopG5quENDFskqeHiUV2WqaeCySUQGb2bBtwA+WekfSrdlkdiyaBSMKASxttwN46ND0j54bBfAvT5wiApoM0IrV7G0knadOXhpzun12AKPRlgpos5H3C3d7rQFHxYJjSvOAVgD85W1r/u1Nmz96/fKGm6rB8qDTbZXT+fLB8Vg8UwDgtJgAbOzxADg0Fifr6k/+9MDXfn3iVwcma/6c0hGtpgUYIuLo600DfHazja3t2xwWLjCUJLWZRMtnNwGIJFmLnsBZdzErhmA14fupW1bZzIZ9I7FfHJgAG5876iK2GuKmtUEAT56cJet/7sdyYjoJZrXB2Ry72UgEiuYTksyTSUvneRHQNXpVADaz8afvvfRD1y7qyr7YcCsyWHHFaZUBRFP5w+MxABTIKRukD16z9LWbukj77LWZiUo7OhkHYDWfJx1sNEhEcO8diUDwNSbYLTK5nXAXjrKqxqrDhF9YcFrH8SIQ0D67+cLn7bdLFfSQoO19nrDIhj6fHdXu2w1BHSr/vXcCwJpzMVJ4YcG95lfW1cA4iG3sFLwi6bylC6VcsUwy0hbC4fPAFuHKktA1wLTqorEJ3e2lsiobsb67ykTbxVwsOFlMj1gyX4ozC80aXpQGyfpATo52p+UD1yx939VLXuzcpgv7NAJ6QPSAtvJyznlWHaiymMiWjk/FAbQ7zGJ9lM6PqkrT8Sw5UPubE9B0BsSbnBuIOxW5ddn1/NAjjPn0cqGep0gqTwHF3T7tA91eG4Bj0wmwwEYRxMLHMsVsoRTJ5AG4lSoFtKVlbEMzyAbpc7evAfCDncMnphPUfRV4gcpar1joBLSOlytmEtlUviQBm/o9AMI1HtC0LPEqbdS2JlhwFErl49OJIxPx4fk0gFyxROE5Dovc7jQDSGRL7Q7zB5gdkg4dOnT8HsAjCAFqLIZCQgs/X7jWBHMns4sioIMepc2hgDFE9fjt8RkA8UyxudBTh45XFpLZygQm2STtkyIEgy4LPbw3remQjbhieTsAygiaalRoJwLaazMt7bADOC4Q0MPzKeKCUWf9cZZSjHwOUYR1Yb8PQDpfHpqKA+jyaguwwYAdwK4z81TcGoukaaPUWJ2t9oCmUcJvN5P/KYlkI6mCGJcnnApS+8oBpzZ2dXmsbXYFwFwyVyyps6kc2FLZ7zDftDa4SNMzgySREm3nmXmi1ymqqNdn89pMxbJ6aCKWyhUPjscAjIRrq2WZYgmLkFPdvDbktsrXrgrW/FySNG7IYzPJRsnJOsqtpgYJdQSWypWnEygKaYnERx0v1uFS3nflUgB/9cDRvSPRWKZizL0glrc7e33WQlHdeTpcLKvj1RUCMt/wMF+UPr+Ndltr3k/mSNIu0gqLh0sxce2n63lb4b3goKMmTStxJVOx7OHJBJi0E8DHbljxD6/fSNpASdL8/Q6NRwHYzee/7iZ6Ze9IFHXFBgDL251gNvEAktkiPYae8zXZaA2eUfw8hbovHrx2M1hPwwuFVSEHFiGSXRFygQU+tyB/X2xwy4h6DxAOn8MCwS8IgFMx0SgaSefDyRzYmXyhsLHXy13Hqa5Gbwqp2n+Zy7fXdrmVatLTwaaybcxHgimgNfFv/bixvMOB6taTenz8hhWfuHHleR3TOWBjr3d5h2NLv08MYu32Wnu9to297vMzZAfgsMgUWrv7TBjVBtAALLKRKpsHRqMAnIpsae4/TjS9WAzo8VmpYhp8cXwnRLU+vVzo5IyFs0enEmCZnGBSaIpMt1tqRzaXYqJYwplETlvF2C2id9N5WHAQLl0auH51R6ms/t9fHg2ncgD8L05h75UDnYDW8XIFLcb6/DYKI45kqiw4SAoUclvptzPCwuyP/uPpG7/25C3f2H7lVx//1cFJLuuzmoxtTBvy6dvW/K+dVOnQoUPHecAlBLA4lKqpG4WNUKJXgi1cvbUK6AUsOCZiaQDdbitxHA2Nj1L54rPDYQAqUxHq0KEjLvC/zWygz8ylAFBzN4DXbe458oWbSalKzNR0I+fiSDIHwGe3LAk4AQxHKlzqkcmKH3Si+kvPzCUB9PutS9orvdvLO5y0Ct0zGoVgPTzYpn1GAm5eq5GtiknroS4UVbHUNK6ZM2iLW7fVRMvmyUY7n8mVAdiZBYffblZMRrLgmI3nZhJZVZVkI3znxY9sGwwA2HVqXnN7sBgBSBJPjQs/OxwhdUL9vmVyJQDWheRUH7lu2b7P3jgQaMB69PvJO8UCYWS2NBeXtTstvV6bCjx6ZBpCewoEp4t6cvldVwwGPcpULPuaf/kdAJvZ4FIWRUdKklZv2D8amYxmiiWYZImrtqk26WVyQn6AdJm4B3TXeRHQklQxBPA0Vyz+T+F1m3rWd7noPnfbTQCeGJotldWgyxJyNz5eOj8Hx+IA7Is7/w1BDeZHpmIQZO8cRHqemNIIaPLfIEPV8/7GFnDxjOL/Hd7c9Qh5LAD6fedzEzYDPRQNA/1EcI9+ACtDTe0vXmz0MgJ6dfMdfs0FXRt6PLdvrMTrSZJWtIikNEcX9wtaB7KajGu7NSsVam0hBXSHs0qrzj0iLuz11WzByR4i3s9Bj1WCWXA4656yz9y25ltv3XLd6o4X8EDODxbZ8PBHrvzxey4Wa40mo+Gxj1/10/dcet6blSStLrLrbARC7YH/lsqcvzo0CeCi/tpTKoLGmV5v5bVlkCSyge5YSPt/3uA7TM45AYcCYPvJ2dOzKdlYuYE5E41GCmhJ0uoW07EsOeC7rTKvwJlk6fmEcn3m1tWyEduHZh86NAUgsLheIh3NoBPQOl6uoEazpe0Oqt+KIYSZQonmXp1uRcs0j+doCaSq2DcSBUBVsr3DETI2VWSDkSX5bOlfIEJdhw4dOl52EJVQNW2zpICmRC/K2bCZjCajNkMgAjqRWyA2cCpCCmgrtZLMJhvoMXeeCvNe/3ij6DMdOl5pKJZUkgkTwdes0nNqNgmW9kbg1JIWQpjI1HcVzKe1xPaQR4vXI1IVLEqeUPN0D89nAPQFHNxP2W42uq0mKtITK8HpRc4//p/NPZ+/fQ1pjDyKme9esVwRQU9E0mCJSdDYRisACrsXUVbVdKEEwG4xtjmtYKouLYQwpWmBgy7r+dlQkl5170iUIhN5o+7mfh+A585Gdpyap5/UpzvmSioA8yKakZvtWm/AASak9bDEEWdLf4ZLl/kB/PrIFKo9lDiJH6xbEism45f/YJ3JKHltpg3d7jtvWbX4U0Vpb3tHY2fn0wB6vLblzCaVCGju7dDLdIWklIyk85QcxUsU5wru3eH830duXrm87ecfvJwoSOLHqZlyc3PLCHpA5lN5NArOWjzoNU0v0HoF9MqgE4wNB3uPu140Bp87Ffx/9t4zvo3zzPo+A8wAg17ZO0VSvXdLslxiJ07sxOv12ulO73Gyae+TZzfrZJ1fkmez69Qt2fTujZPNxk7WsR0XuduyLcmyGiWLFEWxovcywLwfbsxgSIIkSIISRF3/T8PhYDgAAczMuc99jnWKD7FK+JstrZ99bU9lk1vesaP9ng/t/PDeZTNvphWgV9U7ZthyUWGGX0HPtU3v/N3V5f3DR3etnmjT9lgNAALxDKsDcc09w3pmtihNkixpgQWAtHgmvKVVrXNLx1QBuvC1oDqmbYVrVIk1ytqmKOZui+HqlbWVCmNZICW/hHn9guRRKJ7llwaCAFo9k/Oj2dDjX46MAbhiec0M+3nz1tbPvXb5h6/s0q5c2WgHUGtdLAFatWyzqRVqxV+9Q/ze27eqGdDaYGtLqe/SusJszhRzJbrMBpvyHThv+zOjzWN+x/Y2AGcCCQBeS5V+710skABNXKywm7HuOiu7FA5qIjhYkqlZ0NtEgZ2fpLzMzqOJrMSmnH5obxeAsViK3ewxheW9e5bdtKHprlvWVyJVnyAIooqwa0xz1kkRHGwKfzgJoBAcqbm6YpUvyVJz5LWw4KMmh4lNqCzpx3z85Li6zKaEE8Qljir+1jtMAKLTCND9vjg0aq8WdtOVlQrXOVqChQgOQ43VqNdxObkghAE4NjStA/r0eBxAu8eiCtDNbrNqL2Koxlu3xbCi3uoQhb+9prvOLl6/thGA08KrAnRGk8IxHElDkx8NoMltAnBuigCtfuFYjPzVK2tv2tT0qWt6oIi2vliq3xdDGXms07G6wSEKunAqe+As651WBOhWF4AXB0LPnPKxNUPBqQ5oCYB5tgzoGdjS7gSwttkBzTez2TjTTdllXV4oX5ta2ynHFZIxSzpwr15Z2/vl1x/4h2v/8LHdb9/RXv4RssK3l8+G2Ovc4bGoKlUhgkM57Da36oA2siNkAvT8HNAAmhUxwrEAv/B5QBsXu7l9FgGasZD3jDa/W51DoHLNqjqHiT/jT9x3aAjKedy1aIG2amqttVpnizpMwkev7J73m7AkvJ7b2u6e1VTe6CxEFuh1XNdcquQqy4YWp17H7eryzFV4dVmMAAKJTJBdDVY6xWWroil7bSKAK5fXfOLq7r97wyrtNmpz49Q0cPUtVzMxAzqRyU3ngL4UYOPQTNNonfK2d5h4AGxMlyV3TYfTLHzkyq5JJ9ZbtrSua7LfvLWlssesoo6RsACQDc3OmzY1fezKroc/vffqlcWjbXCY1LeyudR4bWE2WCTFxpVdFoPq3194evXHr+5RJ8d7F7mscslTpacNgpgVlq7V6raycttoKiflZBafxGb/sZJoA69zmPhwUhqLpl1mAxsd1XNo95gBjEXSrOWGnc9WN9rvevOGC/ecCIIgFgvtdObJGdBOM4oO6Mm3HMxokMrmpbw8w50My2Wrd5pqCwXWJRzQLACaEU2SA5q4aDg5FvNFU9mcvKbJMb/Mh+lg4q/ZoHNZePimzYA+7YsDhTzZSRh4nccq+GPZlwfDe3uK5iZZkZvdFoNex9VYDSOR9HA4yT6hx0YiAHg9pFzhGNJS/tDZ0KZW1xl/DECH12wx8PV240gkzfJ86x0mIAhA4DmmNjJ+95Fd6WyevSwfvar7sd7xvcvrDMoUirSUV7cdCiUxsZ6u0cFSHSf3ECbSOQAcIPJ6jsNdtxSuzbxWAYA/mmbdgNs7PbO+wiXh9dzaJsf+/uBTJ33QOKDXNjv0HMai6TElxX44MlkcT5WXAT0D16ysf+JzVzJ1TJVZxRl3uGtZsRnbLk54B3786u4Hj4xe3lPa1zY/R8WKepvAc+FU9vFeH4B2j6WjRtGFTQZoSgI6vIp5zSxwnCzLHHvXNc2rhBAa5dq+OPnFlcKhObzNbdPOatcK0CVde2WiTWVtmPLaWo38By7v/PoDvd98uPeG9Y2h5OIK0M6qF6AvIByHngbrwYHwshrLIkWglEOr2/zM56+eh3zsNvEAfNE0Oy+4Kh13u0UZrWGnDEGvm1oey0ZV29xm7xT/tXr5WqeIgCwOOJrIFhplqy87/jxQrxmAbJ0yUG01qeOF5kkBHeWwrtlx78f3LOTwZqbNXTyJAOD1nHrG18LruTqnOBJKAbCWGq/trrMCePj4aCBZuJFRP4DivBoItbgthg9f3vnPD/VCGW0l5g05oImLlQF/CkCr22QXBXZ1rXp/BnwJAO3K15kSSJoGwMrZbSahtrAyw0YLzQu4KCQIgqh+nJq7iMkZ0A7mGkhDmU2i7T23KMXciRljoEcihXTXmkLw0WQz5kAgccaf0HNo95oBhBKTNyCI6uS3L5295q59b/n+c+/80fNv/8Gzld05u8m3GgXm6ImXiqbJy/IZX8GVXHInb1zXCOCnT/VpVyazOVYzyMbpWVchS66IpiQ2YrSmyQGlBfFbD/fe8r1nbv3Pp1mJXLvXAqCz1gqgxWUGUKtoAY0Ok1bWtBh4VZTvrrW+9IVrPn/dCr2OY41KaSk/Fk1f980nPnn3gRPDEfVIGEymHAxNFnmZEG82TO7lY86j8VhmX+84gL/a2IT5wnQQZgpTq4pMgl61+tZaC8XUk3JREpk8FuyoanGbWXiI6tczG2bSTdwWw8r6woFNUlhuWNf4nbdsNC9AEJ+KoNetbnAAeLR3FEC717yyoRAmwMYy1RNKmyJ26HWcQ1HGJw1RzAk14NhefREcWlRpTxQKr1VJJjigFyDX1jm0wzYl/He3XdbhMPH9vsQfXx5m9XGORYvgUMV36sspyfJaGy5oADSj1machwLe4jED+P4Tp9mPjkoPY3itxnfuaLtmVV3L9Ande3tqLuvyfPw1XVN/ZZ0awWHiAUQzEptOVNnQ6osF7QyJVvdkiVk9ZVyxYib784VCzSufNfe/RRl7K5mnf/PmFr2Oe/Z0YDSUAuAwC/bi6bUC58f3Xt7Z6jJbDPr2uYv4hBYSoImLElnG2WAcQLPLrNdx7EoooEwsPROIQzOhg90yjUaTUDx3DpPAHEDjsSS7yanaFDOCIIiKoLVr2SZ+49Upc/diaSmYSANwaARoA69j4WnxGWsDmWhV7xBrWUtYLJWfGEn7eO8YgE1t7hanBUB4tlBpgqgSWLUXc6qeGI2pMcoVgZm2rCJvF/WYkobBGI2kU1JezxWE4Km887IOAI/2jrFEWgbL3xB4jk38b7AXu0aPj0QA1DvEFpcFSgti31gMwItnQrm8LPI6Vmq0o9MDYFO7C4Ba1Nwyo7lVDWU2CjoAGSm/vz9wbCTyPweHesdiAJo16cDNbguAc1NiLhIZFgA9WUpgTXcykJOxptG+rJQlvEw2aSZ32zWaxUYlovTKFbU2UY8pPYTJjIQySgjLRE1ysMyWz7Crq2D3Pj/W4I0tTiihw+1eywolA5oFNDF3rSjotMEsbkvpIYo50azIUhWf+19Ziq75Jgebf1kSq9KiiYX5hevtauCAvqTsazXy79/dCeCuh06w74FFdECbK/CMljBv29G+qsH2jrmE3lQPH7h8Wb1NZCOUFoN+MaKT//HGNd9/55YZ4vvdFsOv3rfj5k0lMh/MAt/mMXusgjrHwmpgRdnZaCqHKRNELhHUCCZR0NVMsY3bjYXXZO80E2UuLK3FDOhZvrJalIsHc6kB4Ean6dpVdQCUKnWD+i1tXED8kYpJ0N93++7HPntllc/OqX5IgCYuSnyxdDYnc0CjU4TyhRVUBGg2U1UdTyuoIdEMgFAqA8AhFgToaCrHbAJT21QJgiCWEo4pqRoqZoOeiWvD4VQonoVimSxub+ABxNLTxkDHMxITzhqdJq/FyHFyTi6UlakcH4kC2NLuspv0AKKUAU1cJMRSEoB3Xdau13G5vFwyXmbeRJKsLowvOKAzEoCxaFrrumUB0M1u83Q6V4fXcnm3V5a5nz3dr64MJDIAPCYju81nvuORSBrA8eEIgFX1tkJ9UyoHIJAoVmJ01VrZoz5+ZffT/+eqG9Y1QhmpghLaMyusyDSTyzNbNytZ4ib6s9hV3LkpDujpZqcJep2aWXHjxuZyDmM6NrcWYxNsGuOVGqewY5mX3dVP6iFkpZEzJ2aUj11jpJ15y93dBe3Adl4m7W3UCPStbovFyHd6rVCU0JUN9q3trtt2tmtVJFZfhtmGKGamqVhCWNVCkjpysGX6AGiGmqVeUjQpEzWCo2TYN+NduztcFuGMP/Hjp/sxcSC5slR/BvSFZV2z438/cfnW9mmDWaoZr9X4vds2CzwHJQ+6quA43P+Jy/d99irV3M0c0LGUFEllANhMl+IdvXp2bnWbpwr7bISV13E75htatah4LEZWpeuaTdhtUbSd6RzN797VwRY4TraJvMWo5zgZCy4hVHGYhBpb1X0oLjpIgCYuSlhhep1DZLc3nkL1dkHsGAgkoMweheLICMaLERx2E28TBUHPATjtj2NhuWwEQRDVj5HXMYFDz8E45VKswWkEMBJOMtXYPfHGlWlS8ekjOFj1q8Wgtxp5Xs+xaXRjkQm2wfFYGkCDw8TmBUdKOT0JogqJZSQANpO+xmIEMBIpUbA5/52nJQA2o8Fq0rMfh8PJXV97+P0/269u0zceB7CsVAOhvF1DngAAIABJREFUyrt3dwD4zYsD6kyFoNLDw35stJsADAUTAI4NRwAsb7CxmbmxdBZAOJkG8I1bN/zDDSu/9tdr2aM4rhjZrN7iNk8/dVqLUV9wQLMX8HWr63/0rq3/+Y7NqkwJpdd+OJR46pRP23TKnoW1VCqFx2oEwAFv3NBYzmFMh9tiUCfSavvuNivC645ONxNbhyfq46mMBEBccKkRgznfUcYc4a0dLjYAcX4sfuubnWxBzxVymb/55g1fvnE1W2/gdfd86LLPv36l9iGqJruQ8rcam5GZLqt8Kr06uXvTlJ60SbR7Cj598wKekcXAM41GtUJPxWrkf/3+naonfdb57PPGazVYDHqXWahs8AtRJaxvdn71prUAltddsBLFGTAb9NqRD7YcSUkx1tFqrOqBq0Wi3qHMTyo1TYo1x27rdFfnB5bj8LrV9R6rsKLBPvOWLcrotXWaqsmt7W6WVWUXBR3H6TiOzXE3GSpv5CfmDQnQxEXJ2WACQItyges2Fxp7wdI5WASHWxWgDQAC8SwUz53DJHAc6uwmAH1jcdAYPkEQlwDshtkq8lP9EcxddS6YCrKcoolTd5kl7ehwZLo9nx6LAWgrzjthOa0TjKKj4TSAGpvRZhIARBIUwUFcHCTTeQAWo1CniVGuFGwkxi7qbQZmRpYODYazOfnpVwNqD95pXwxAW81MAvTenpo2tzmayv3+pUG2huWSuayFz7LWAX1iJApgRb2j4IBOZgEEYhkAjQ7je3Z1rmlyTv0TqrBVZr+cQeABpKUcmzxhNeqvWlF7zer6ifsUzQZdTsbbfvDc5jsfPHQ2xNYzXb5kziNLAtndVVO7YCPSFsWiqJ1R2+Qy/f0bVt1xw6oGh4kJqUPh4leZlJNzMrDgDGgVNah3VnXSYuD3dNcA6JjxnVApWt1mFoLR7DIzRXhds+PtO9pnyNZQp343TpMVUw46jlvT5NDruLYZR1wuOHodt7LebhP5be2zmArVnsaF3GtwHFgqzszi/op6239/ZBcbWemsXaygUlHQ//H2Pfd+bLd+EfIZiGrg5k0tD39677ffsvFCH8jsFM5i6Ww0LaHqs+MXiRqryKy+UwOgAbx+beOOTvdHryiRqV0l3HXrxuf/7zWO2RzQTU61ebL0f5nj8O5dbdBUVrAzrKlCDmiiIpAATVyUnPXHoUkCYmFkzOPsj6cTmTzHyc3KJRqbQMSiNsIFAdoAoM5uANDni2O27heCIIglAFMTbKU0HTardySSYl+kronOqT09NQAePT423Z5PjsUAdClmmVora3mdoNP5YhkAtTYj87WFS5WtEUQVwqqNLAaemYxGpuRFLGjnKTYxS7AYBQCJtDQYKOz/yd5xtsAuVJZ5ZzKj6TjuHTvbAfzyuQGWvh5ITPgsK2kSKVkGy2LuqbNaCg5oSZYRSGQBuMzTqrpzFqD1OgDpbC5eEKBLfPPoddx/vnPrjRsaHSY+kck/dcrH1sdTOQCWUqkUG1qcAN5xWVs5xzAzqtnZPlH8fd+eDjaTt95RMGirv1Jt2pUSoFXt21LGheh33rrpz5+8fG3TtJV3FYTjsKHVAc3I4qy4FW97s3Nal245/Py92x/59BUzWH2rhN995LInPnfVrKJJp5JUXs6/eAbYOHFDqQZCLc0u059u33PPh3ZevaJuIX9uZjq8lpZSUhexZFhWY70oSiYLU/RSOXYyLXmJu+Th9Rzz27WW+rruqrXe/YGdu7q85/245kA5o1ktirlwhujUmza3fOranjvetIb9yOYYGSt0viYqAgnQxEUJK0xXk4DcLAM6kQXQ708AqHOY1HAot5kHCndW4RQLWxSgDI6xXV0Up1iCIIiFwBIhS37dMZ2l3xdjEUYu6wQB+srltQCeOunL5vIl93xqNAagq7bQUlVjN0DJ5WDIMnyxFIAam5H5U1ggEkFUJ0OhpNoHmGBlxSJfbxMBjEbn6YDOy7I8pb8wkpQA2ETepswjPheMs189eUoVoCcEi03HzZubBZ47Nhx9eTAEIBDLQskoA9DoEAGMhJMjkVQ0Jel1XGeNlaVnRpK5RFaS8jJmbAGyiQKL7ChTkTTyOgDZnBxPZzG9/XN3l/ebb9741u2tAMaV1zaRzWIaB/Rnru15/HNXsq6hBaIK0NNpFo0OIyY6oJkAzSkJ1wvHJvLMuWbiZ9+hTeTVMsDzwM7OGgDrWkrY4UviVt48jeWlhE+HTeTLV70vIGaD3llG0Z/qWJ+aaT4ndnR6OaCcZGGLkd/a7p6h5I0glgxWkQeQkvJsrrO9uqN7Fg+W0d9dd/5OEOefeofIdGrz9LoNr+Nuv6p7t6K2M82HjIZVBf0ziIuSs4EENElALOIwEM0A6PfHAHRqrlwLGdCJDIBwonhyqnWYALA6e+uleroiCOLSgTmgS16dM53lfw4OATAbdJMcdqsb7R6LwR/P7O8PXrasxHTjU+MxAN2KAM2Usv94/PSWdvf2Tg+AeEZKZfMAvFYjCzCNkgOaqFbGoum9X390eZ3tj7fvARBhcRAGfb2T+WHnI0D7Yulr7tq3rdP9vbdv0a5nHwSrKFhNPIBERhoMFvb/5EmfLCMnywPBGIDO2QRop1l4w5qG/zk49ItnB9a3ONllj5oBXWsTOU6W8nj2tB9Am9ti5HUs9yOSygTjWQACz5mnL4vnOPzb2zaPR1KN5UZwFBzQTME3zai+sWIfNXVETe2YuqWg15WcZTwPumqtV/TUYGJHqxZWtziidUBncgBMgr5S4p6O46xGPprKzXBHfaF4756OjhrL7rJ9cx5LwZy7kAzopUeb28xxsixztoX9iz/5mu737emgzECC0KJ+IsZjKYC7NB3QAL5y07oXprlEXzLwOm5Fve3oUKTMaVhQRpeNZYzvEucN+mcQFyVnA0lMyIAWoGRAn/UlAbR5ivdp7O4rFM8CiCSzUHo5am1Fi98MUzkIgiCWBizZueQs4HpHQdARBd0Pb9vqtU6Yhq/juL3LawA8cmxUXXnPCwNf+uMRKS/LMl71xQF01xYmGt+2s31DizOakt72g+f+/MoIgPFoGoDFyJsNenYY5IAmqpbn+vzZnMyGVQAk0jkAFqO+wc5ilOcjQO87MRZMZB98ZTQ2scxTKSHk2QczlpIGggW5cyyW6R2LngsmpRwEPVc/29R7AG/b0QbgvkPnoimpkAGtODR5PcdKFPf1jgNYXmcBYDcZAETTUkGtNhlm1lX3dHtv2txc5lM26DkAqVw+Or2arFJjE6ERoNlrPoMaXhF0HPeT92z7yXu2TfesWdzBkGYyB3NAGw2VvIEqhFQu8pOdB7yOu3ZVXfm9VWwOOMfJs8ZEXFKIgv7Tr1n+9h1tLAZnIZD6TBCTEPQ6Qc8BkGUOgO1StZR111rfsq1lyc97+Ol7tt3/ycvLP8Ww0WWRdJ5qggRo4uIjL8vnwgkAzUrJiVPjcT4TTABo1QjQ7II4ks5IeZlJHjYzD02aIRacy0YQBFH9OEQBgK2U16/Ta+E4WeC5779z685lJfxuV66oBbDvxBiAXF6+4w+vfPa3h3/8ZP+jx0ZHIql4WtJzaFe+eB0m4e4P7LhuTb2Ul7/4xyNQ8qBrrAYoXYhqvgFBVBusCi+VzUs5GUCcOaCNQp3diPmWED7fFwAgAwcGgtr1kWQOgM3Es9vmSEoaDCQANDpFAE/0+vr9cQAdHks5N5Zb2tzdNZaUlP/9gXNsPjKbBMZgSTvsU9xTbwdgE/UAYikpNNEuXREKERzZfDwjYZoMaJW6iQJ0bMbUjvMGE/3jmVwsLR0fiZ4ci6WyOVT6opH968vXeasWVr7S4jJXKp9kyfCxq7u/fOOapS4NEcSFQTuP+ZIVoC8RvFbjnHKoLu+pMQv6HZ1L2Rh+0UEfUeLiYzSSlnLQc6hThr+YxMwEaBbB0aaZnsnSf2SZiySzrG6ezUOvtRedCJaF5bIRBEFUPw1OEzTd0FqaXKafvnt7rc24osFe8rGXd9dwwMnx+L0Hh+55YfAJJZ326Vf9ooHFwlp5ffH2WhT0X71p3f2vjIyEUslsbiyWhjLLvvwM6AMDoSaXSTtYSBDnASZAA4iksi6zIZFhBl6efYJGwylZxly1pOf6Amzhhb7gnu4aWcaZQLzNbYmwagrRwMLZR8KplJQH8OatLXc9dPLx3rFoMgugbbb8DQbH4S07Wv/xvmNfuu+ITgdoeuEA1DlEnAuzwozl9TYAVlEAEEtJwUIDYSUnLxdKCHNyPFXIMJlhY/blwKpKASRSOcyW2nEesBh4m8hHU9Izp30f+eVLZp7/9ls3AjBUdD7vZZ3evvH42ubzUS24qHR4Lf/+9s2VCkghCIIoB7tRYClSvB5Gnu7oiSJvXN94/bqGJW8Mv7igAWri4mMwmADQ4DTzSl+q26wRoH0JTIzg4HUc8/0F4hkmeTD/3QQH9KWaGEUQxKXDm7e1fPnGNR++clnJ317eUzOd+gzAYRI2tToB3H73gSdOjQt67ubNzQCeOuU7ORYBsKx2skDmMAnMX3k2kGDdYuxbl30Dx9LZ/NRGNg2nxmJ/9W9PfeDn++fyFAlioUh5+fC5MFuOpqRkNsfepmajvt4uAkhJ+bkmmPtiadaQDGD/QADAD5/su+Lrj/3wyb5oKgfAZtQzty9Tn10W4dpV9QAeP+n71iMnoejF5XDr1tbLu725vJyVZGhKCKH0EDJ66mxQPoyJbI59Ql3mRXBA5/JKi+NMF1rsyyGelpjcH5eYafrCSwlNThHAl+49lpXkcCp7aDAEwCxU8sC+cMOqQ198bUd5YwxVznVr6lc3TnseIQiCqDiqA9pqFEhpJCZB6nO1QQ5o4uLjrD8BoNVdvI9iJdTRVC6UyIYSWUypaHdahHAqG4xn2KRv5omutRX3cMGneRIEQSw2ViP/9h1t8374jRubXhwIWQz669c1vHt3Z63N+NsXB3vHYs+8GgDQXWedtD3HodVtOTIUOeOLswzoggCtzEqJp3MzTJZkImDfWGK6DQhiMTg1GmWFmQCiqQwLRuA42SzwHAeHKIRT2eFIyj5NbV1J9vcHAVgM+ngmd3AgmM3lf/J0H4AfPXU6nc0DsJsM2uuQVrdleb293imOhFJmg+5NG5res6ujzL9lMfA/e+/248ORXz03kM3nmdDMaFB6e3gdxwJz1D86GEhCmU9WKYwGHkA6m4tmcgDMM6rJZgMv8rqUlB+Ppts85oJpesbUjvNDvd10fCQ2qARzv9AXAGCqdG4bVSQRBEHMDzXfyUF+MoKoekh0Iy4Cktnco8fHpJxsEHTbO9yDoQSAJmfRKuIwCaxgmjlTXGZhkqDssghn/BiPpVmSIwukd1kEPQdmbVoC0XsEQRCLytt3tG/t8LR7zKLi/ltebzsxEn3k+BiA7toSDs1Wt/nIUGQgmBiPZgCwbkMjrxP0XDYnR5LZGQTovvEYgHAqK+VkbbgHsQT43Ytnf/fS4FdvWj9ptLgaOHA2rC5HUzmLUQJgNhR8VQ1OY3gkOxpOLa+bQwrh86f9AG7c2HTvoXPRVO4nT/UPBpMAhkKFOGmbyGtTLJudIsfh5+/ZfnwkctXyWsvcx8hXNNj/8cY1k1aqHWhdtRb2mTLwOoHnspI8EEig0hnQgk4HIJPLsUuvmUf6OQ61NnEgmBiPpds85lihhPDCy7KNimrPrjMPnA0CECvqgCYIgiDmjV05e1IANEFUPxf+wo4gZuXbD/d+5Jcv3X73gQ/9/MXX/Mu+J076ALR4ignOeh3H6mu+8PtXALR5J9/Quk0GAGcCBQMLm3Oq47gaa8EETQ5ogiCImeE4rKi3aZWXy7o8AHJ5GUBX7WQHNJQ0pIFAcjSSBlCn6F8sBjoyY47Bq+NxthBKZipy/ET18KOn+p9+NfD+n+1n0mRV8fJgsSQwksywRAg1v5jNnRoJJ+e0z+f7AwC2d3o2t7kAfOOhXgDapEqbyBv0OnWchXUsd9dab1jXOA/1eTrU4njtcJHVwAM4G0wAcJoq6oAWdAAyWTlRaHGc5YnU2AxQCkvLSe04P9Q7Cy/ae3d3AmCRKWIVKOMEQRAENE1O7NqSIIhqhq6fiIuAh4+NAVjVYGt0iv54hk1lbXFNUJm/+MY1As8NBBMA2j2TdRC31QigfzwGwGzQqWa6WnvhXquCN3gEQRCXCLuX1ajLy2pKCNCtHjOAM764L1osIQTgEI0AIjP2EPb5YmzBHycBeqEwFbV68MfSAHpHY5+65+CMSeAXgINnQwD0Og5ALC0xiVydJsU03OFIuvwdxtLS0aEIgK3t7i2tbgCJbA7A379+lbqNzShwXDHIstllKrWnhVKvCNArGooCNBuSZw5od0VLCAWeAxDJFFK0Zx3pZxE9BQE6m0N1XJttbHEBuGFdw99saVFXVsOBEQRBENBkQFdDahNBEDNDAjRR7YxEUr2jMY6Tf/X+nQ98cu/Wdjdb3zKxZft1a+p/84HLWNlOd83kIhenSQDQ709Cuddi1Cgx0JZKx/kRBEEsebZ3uplO1+gUSwYZtbnNAPoD8bFoCkCNtSBA2816AKHEtMqyLKPfX3BAB2IkQC+Iux48sfaOPx86G7rQB1JAluGLZQBwnPzAK6Pf/EvvhT6iIslsrnc0BmBDiwNAJCXFJsZH1DtMAEbDqXL29tiJ8TvuPfKVPx2VgWaXqcEhbm53sV+1e823Xdaxst4OQOQL4+KqrNnsXpRkElaiCKC7rlgTx+Yss9hrl7WSDmiR1wEIxgvjTKbZYivYJZkvngEQS5Vlmj4P7On2PvSpvd+4deMyr5VJ6gCMFApEEARRHajJG465dDMQBHFBIAGaqHaeOjkOYG2j02kWbCL/8/duu2lT09Z219omx6QtN7Y6//SJPXe+afU7L5vc1cN6dc744pgoQNfZRQACz1HAKEEQxFyxGvk1jXYAXaXsz1AiOAYDyUA8A40D2m4UAETT09pyx6KpRKZQBOeLz8FtSkzl+f5ATsaBgeDsm54XYmlJyssA7rh+NYBvPXzyN/sHLvRBFTgyFMnlZY9VYN190VQ2NrENj5mIh0KTIzj6/fFHT4xp1/hjmY/88oWfPt3/q+fPAtjW7gKwodXFLjdu2dzCcbhlazM0+ZX2ogN6UQRoA69r95j1HNY1F6+gtNnTLnMlBWiDXg/AH8sAEHkdG6yaAeaAHg2nAcSzEjTJJxeW7lorr+d4PbdciS6h4hCCIIgqwarYyGxVMGZJEMTM0KeUqHaeOOUHsLvHy34UBf1dt2yYbuN6u/iOne1T17ssRgAj0RQAh+b+iqkhZH8mCIKYH9esrDs0GN7U5i7523qHqOfA1EZOGQuE8j0cnhLufHw4cjaUuGZl/enxmLpSdVBqCSWyiYyk9oMRMxBNSQDCqWpJW/bF0gDMgv5duzpGo+l/f+zVz//+lVq76YrlNbM+drF57PgYgE0tbuaoiiSleCYHwKpETDIBenRiBMfJsdhN//ZkNJX78ycvX1Ff0Ci/+9jJRCbf7jFvaHVFEpkP7O0CYBL0N29ufvZ04JatLQBu3tzyyLHxHZ0FW7Rq+G1atDf2r96/I5jIqlZoADbNqHylBWgOQDCeRnleZq9NBDAeTfli6awkc5zsrOjxLJzVjfZXhiIARBKgCYIgqgOb0l5gr4LaAIIgZoZ0N6KqkWU80TsOYE+XdyH7cVmKJyS7xuzDqgupgZAgCGJ+fOiKrpWNjl1dnpK/5XVcs8vMCmDdVkG1QNoVdU+7sSzjfT97YTCY/MNHd/X5E+p6lhesJZeXb/ne0wP+xL7PXVmnkdKIkkSTEhbQ5SjLSGZzFbR8slBvr9UI4HOvXTEaTv73gaFP/teBl75wjY67kLORXh4M//tjpwC8YV0Dq5SIprIsA9oiKhnQdpYBXXRA+2Lp2370HOumOzkWZQL0cDj1i2fPALjzxjV7uicI6//v5vXqsk3kf/6+beqPbDjcZRYWz2Db6DRNGraxGbQO6ErevbMSwlAyi/IutOocRgDjsfTLg2EAXV5rtRmNVzYUoktmjRMhCIIgzg9W5UxhM9E3M0FUOxTBQVQ1J0Yi/nhG5HWbp7HXlYlHY6JxaCM4HCIAG1UWEARBzAtez129slacXo5pdRdC+WttRaWYNZVPKiEciaQGg0kADxwdOT2mdUBPVk6fPOXrHY2lpPyBgWrJNa5mIqksgHBipsrHGfja/cfWfenPR4YilToe1kjptgkAOA7/7+b1gp4LJbJnNKMO5594Rvr4r1/Kybhudd2bNjSxmbyxtBTPSACshsJ1ArtsCCWyaSkPICPl3/vTF4ZChUjoEWXhOw+fzEry1nbX7q452LqZ7bplcfI3pv2jpoI0rNdxtoraxww8DyBQcEDPrgvUWA0AxiMplle+tslZwYOpCKuV8DeTQMYFgiCIqsCqRD9bjdU1aYYgiKmQAE1UNU+c9AHYscxt4Bf0XnVZNAK0uXjbsLvbe/Pm5ttf072QnRMEQRDT0eYtqGlqAyEAh8kAIJyaIIkeGiyoyQ8fG+vzxQG0e8wA/FMyoJm3FMCJ0eiiHPQSQpYRTUtYgAD97Gm/lKtkhLQvlgLgtRTeD4Jet7zOBuD4SLn/zV88e+Zv/uPp0HyfUUm++r/Hz/gT9XbjV/96PccVZNlIMhdPZ6HJ/HWaDIKeAzAaSQH4/hOvHjobcpj4166pg5INPRZN/9f+AQCfe92KOVm6mU24yXVeg2VU0dlu4itrQDfodQBYmLuljJF+VkLoT2TZm21dy+SqjwtO0QFdZdZsgiCISxY1+tluoqFBgqh2SIAmqg4pJ6vLj5/0AdjdVbvAfbo1ArTdVFw28rp//pv1162pX+D+CYIgiJKods5au9YBLWCKA/rQ2YLEeWIk+sKZAIAt7W4oiQ0qo5HUI8cLbW+9IxWz5S5VktlcLi9D8UHPA388C8AXm2eCx3Q7VBspAaxscAA4NhQucw8/erJ/f3/wiVPjlTqkaEr6rxcGAPzLLRucZgGAXTQAiKQyrITQqqi0HIcWlwXAz57uHwolv/PIKQBfeuOaHR0eAEORJICjQ5GcjJ4669b2uU3ecluNANq9lko9r3JQSwgrGwANJYKDUU6doMdq5Dg5l5efOe0HsL7FVdnjWThWI9/qNgGYYc4HQRAEcT5Rz2J2E81pJohqhwRoorq499DQii/c/+dXRtiPh8+FAKj9PPNGe0Ki0VGCIIjzRtEBrREcWdRAeJIAPRgGwHEygHBSArClzQ0gMFH6vGf/2VxeNgt6AMeGYyBmJKrozpNe7fIJxFNQmgMrgj+aBuDROOJXNloBHBsuywEtyxgKJQAMBVPlbJzM5tQfx6Lp4XCJR91/eCgryd01lsuWFQonbEY9gGgql8jmAViNxQvmT17TDeAHT/a9+T+fSWXzW9vdb9rQ1OgQAYyE0wAGAgkAbZ4568jv3tXxqWt73ru7Y64PXAjqBZLHYpx5y7minbtWTgkhr+NY62A2J+s5rGywVfZ4KsJ1axsFPbem0X6hD4QgCIIANB0DNpHu8Qmi2iEBmqgunn3VL+Xlp0/5AEh5mU2wbXQuNA+R13Fq9LOTRkcJgiDOF21uxQGtEaDZ93AkVSwhzMvy4cEQgOvXNbE1gp5b02TDRAd0Li//av8AgI+/phvAmUCcRfHOG606uSRRX+TQlCjtckhmcyxCwR+dXe0tE5ap4tHMTFpZbwdwrDw/eziZTUl5ACPh2TOj/8/vDm358l+ODUcAnA0krvj6Izu/+vDl//TIl+49ks0V3zn/feAcgBs3NqkZFGyyVCyViackAGZNgsQb1zd+5poeAAOBpF7H3fmm1RyHBqcZwHAwAWAgEAfQ5pnzpUutzXj7Vd1ea4WF4JmxKiWEzoo2EAIw6IqJHtYyMqChSYrvqbdVp8v489eteOVLr1vRQAI0QRBEVaDqzvaK1hgQBLEYkABNVBfhZAbAeCwNpXiKAxyVkIydlsJObCYqKCAIgjhPtCoCtFcjQLObBG0GdL8vEU3lBD334b3L2JplNRavTQQQSmbzciGa6VfPnRkKpWwi/+7L2h2ikMvLp8fnb4L+xbP9a+54QE2UXpKoDujgvBzQqv3cF69Y4DLbldZvyyI4BoPJqGZMYjqGw0m2MBiaXRN/5rQ/npb+5cETAP79sVeZmD4QSP746f7HlCCX4XDyuT4/gBs3NqsPZDe0kZQUTWehMVgxPnpV91u2tQB49652pkU2OkUA4/F0NpdnbYpq/WaVozqg3ZUWoEVN7Ia1vLZnVYDe0FJ1DYQqxoW1khAEQRAVhBzQBHERQZdQRHURSeagZE2yCb9Oi6DXVaAWx2UhBzRBEMT5xmLk2ddvvW1yBnRUUyLHGgjXNTtWNtibXSYAHR6L22wAkMvLkaQEoHc0+o9/PArgb6/pFgV9T70NwImym+um8nx/IJeX7/jDKwcGQvPeSZXDXjoA2Zycmrvd26c0QI5XzgHNdqUdkHCahXq7EcDx4ckmaFmGLE9YM6TozsOhpHb9/r7Avz5ykgVeqwQTGQB/OTb2yPGx37xwFsCP372VFQYeUEov/3BwSJa5re0ubfsfu49NSXkWXWIxTLit5Th85a/W/fkTe/7v61eyNW6LgddxssyNRtJKBMdCJ2+dH9Q7dlfFIzj02giOsuzMNbaCRWBtc/UK0ARBEET1IAr6t2xruWFdQ8WDpAiCqDgkQBPVRSSdhXJ3ymToOltlziVuxfhsp9FRgiCI88j/99qVN21q2thaTPNnDuh4JqfKhQcHggDWNTk5Dq9bUw9gTbPDwOtYdGwwkUlL+dt//VI2J1/e7X33ZZ0AltdbARxfgAAdS0oAcjI+/MsXmVK59NA2Pc4jBtqvOKD90yd4yDK+dO+Rux48UeY+mavaa50wG2lVA0vhmPzf/OK9r2y888HBYFFrZgHQAM6FiyufO+1/6w+f/fqDvf/7yrC6UsrJ0VS4DKVgAAAgAElEQVRBc//gL16Q8vL2Ts+Vy2v39tQCeFkZdfifA4MAbtpUtD8DsCmO3ZFwCqUSJDgOKxrsOiWzQ8dxjQ4TgOFQ8mwgDo33v8pR65sqH8HBF180cxkZ0NA4oNeTAE0QBEGUx1dvWvedt27iKuBYIwhicSEBmqguwokMlIBI5oB2VygMUd2Po9K3WARBEMQMvHlby123bOD1xTsDtQw2li74cw+dCwFY3+IE8Jlrl3/7LRvfs7sTgMdsAOCPZ370VN/xkZjLItx16wZ2j7Gi3g6gt1RwsCzj+HDkB0/0HT4XnuHAoukcAL2OGwmn7rzvyMKfaRUSSRWF4zIFaFnG4XNhlo4dUHTnaErKTBO3PRxO/vjp/m8/ckqbqjwdUk4OJbMAJiUdr2i0Azg2POH/dWgw9NNnzoQS2YeOjqgrhxTdORjPsgTw48OR9/xkf1aSAWi3DCWLz5399mNXdgHY0OwEcOhcKC/LJ8dix0divI57/doG7Z/m9ZzI6wAEE1mUp582uEwADg+FEpk8x8lNTtOsD6kG1FH5ikdwaEsIy82AthsACDy3vK4aGwgJgiAIgiCIeUMCNHHhiaYkSTHBsUjQaCqXkfL+WAqK+rBw1OQNKiggCIK4sAh6HVP3mD9XyslHhiJQBGhR0L9xfaNJ0ENJT/JHU0+f9APQVrQxier4aDSZzX3t/uOPnihE+r40ENz79Ude960nvvyno+/44XMzxApHUlkA79zRBuCls0szhYOJ7IwyBehHjo/d8J0n77zvKJSRYMZ0JmjVnlxOgnMgUbrdYWWDHcDRoeJwgizjK386zpYPDxb/O8PhtGY5mcrm3vWj/fFMrtVtArDvuE+9omDqucPEX7emHsD6FufuLi+AnjqbKOiiqVy/L/GXY6MAdnd7prZNaOdLWcsRoB0igGdeDQCos5sMF0lSsJrO7KrQ5ZaKcYIAXdalV5PDBGBdk0M7XkUQBEEQBEEsAS6Oi2NiCTMcTm398kMf/NkLAGQZUSWt0h9P+2JZAF57hRzQFgMAvY4zGyiCgyAI4gLDYqCZRHhsJJKVZJvIt3sm97Z5LAYAgUT25XNBAFva3eqvWAb0UCj1sV++9B/7Xv3KH4+y9fe8cHYgkBT0nEMUQonsvz56arpjYAV9y2qtABJliKcXIxGNCzg0fYyGlgMDQQAvD4YA+KIaATpWOgZ6MFDIxFD97DPgn6bdgUVwnBiJqqks+3rHWTcggIODRWf0OU0cx3Ao9fJgeCSacpmFP3xst9MkhFPZF/sD7LehRBaAy2y4442r37qt5es3r2PeeV7PrW6wAzg4EHzk2CiAq1fUTT1Uq1gUZC1lCdBGAPv7AgDapryTqxY1ndlVoQlnKloJvswIjqtW1v2f61Z8+ca1lT0SgiAIgiAI4oJDAjRxgXn2tD8l5V86GwSQlnKqcWk8mmHGK2+FLDmsXcdm5CkfiiAI4oKzvN4O4MWBAIDnTvsAbG1zTf1+ZulJBweC4aTE6yZMzHeYBFZs+PDxMQDjirrKPLZfuH71P9+6DsAPnzqtTRDWwhy7dQ4jgFh6zgV9FwVqCDIUx/esnAkkoPiaA/GiAM1GhacyGJ6DA5q1O9RMaQpq91gEPZeS8qzBLy/LX7v/KICbNjYC6PPF4oq6PRxOQlGEz4UTR4bCADa1ulxmw1UragA8dHSUbcmGNzxWQ71d/MpN63o0b54NLS4Aj54Ye6E/CODqlSUEaJtYTI0op0OPZUCzgJFW18URAA1Ax3Eus4DKVW6oTIzgKEuAFvS6D+1dxuzwBEEQBEEQxFKCBGjiAsNuHSNJSZYn3Lv6YmlmvKqp0B0Rm8c9dY4tQRAEcf7Z2emGklfw9Ck/gO2d3qmbeaxGAPt6xwGsarBNijXori9KiuFENi/LAEJxCYDTJLxmRf32Dk9Wkv/2vw5+/FcvvfUHz54ej6vbyzJiKQlAk8MMIJEtNiIuJcKacsVgoiyXd994DEAomY2nJV+s+PDpHNDnVAd0GQI3c0BPnduk13Er6+0ADp0NATh8Lnx8JGYW9P9ww5p6hyjL3CvnwgDysjwSSQLY2OIAMBRKHR2KAljdaAdw5co6ACxVA8pQhNtc4iqChb388eVhGVheb2ssldds1zigWSDMzNQ7RXW5zX1xBEAz/uWWDf/4pjUtlW5NNOiLn9ZyFHyCIAiCIAhiCUMCNHGBYbeUubwcTWW15ixfNMUc0B6rOO2D58K6JofI67Z2uGfflCAIglhkLuvyAnj+dEDKyc/1BQBc1uWZupnbbAAwEkkDWNvsnLITD4BbtzQDkIF4Ogeles5pFjgOX7h+BcfJ+/sD9708/PQp/6+eP6M+NpGRmN7coOiGicwSNEGzkV1RYInbJSI4pNwE2V2WcSZQkOkHQ0m/EqMMYDxWOsHjXKjggI6UkTHNFO2S7Q47u7wAHj8xDuDJk+MAdnV7nWZhbZMDwMuDYfZwKQcO2NDqAjASSh0dDgNY1egAcEVPrZ5Dvz/R54sDCMbSmKZ5eEOrEwB75levrC15qHZTQTM1C3pdGZOn2EgGo9V70URwALhqRe07d7ZVfLdGYc4OaIIgCIIgCGKpQgI0cSGRZRwbirLlQCITSRbNWePRtC+eAeC1ViaCo9FpOnDHtV+/eX1F9kYQBEEshDWNDrOgD6eyv31xMJ7J2UT9qlLz7j2aU8DapskC9Pv3dD7wt5d/7a/XM4E1lMhA8fwy2XFNk/OO61e/YW39a1bWAugdiaqPjaQkAHod5zQZeD0AxNJlJVRcXLCca+bwDU+JyHjlXGjNF//83YdPqmuCiYya2jEYSDLD8ooGBybmQWtRE05iZSj4/ngKgLdU3PDenhoA+06NyTIe7/WrazY0OwAcPBsCMBRKAqizG5udZgAD/viJkSiAVY12ADaR377MA+DhYyMAgskslBjxSbS4zGo18TUr60seqqqZWstz79Y7iuPlrZV2E1+MGPXaDBMSoAmCIAiCIC5pSIAmLiRDoWRYcT0H4xMd0LGMP57GNLep88Mk6CkAmiAIohrg9dy2TheA7z56EsC2ds+kVjqGW6Merm9xTN6JjlteZ+M4OEUDgHAyAyXp2GkqPPBduzr+9W2bP7h3GYDe8Zj6WNaYZzXqOQ5Wg4DyIowvOqJpCUCr2wQgmJisID97OpjK5p8+7VPX9PuLKSUDgTgzLHfXWjAxD1pFlosO6HIiOMajGQBeWwlReEubS+R1/lj2pYHgiwN+ALu7vQDWtbgAHD5XFKCbXKYmlwjguf6AlJctRr7ZVYi82NNdA+DAQBhAIJoB4ColQHMcNrQ6ALjMwrrmye8rhk0sKNRlFui5zAZBX3gPkwANQK/jOK7gr7dQ/zNBEARBEMSlDQnQxIXklXMhdTmYyIQTxXvXPl88K8mYaH8jCIIglgw7Or1Q/LM7l5XOR1Ltq4Ke6661ldwGgNPCAwglpYyUT2TyAJwTgxfYY0dCKbXLjlmDbaIBgFUUoEjSSwwWi9HsMqNURMZYNAkgrJl+dNpX1Oh7R6OsGXhFvR3AeLSEvuyPp7NKiEc5ERyBWBqA21IiXMvA63Z0egD8059PSDk0u0xtbgsAJhAPBJKhRHYolAJQbzc1OEwA2J9e1WBTIzLa3GYALCe6EMZiKn0Vsa3dA+DaVXUlRz4A2E0FzbRM9y7HFZzmFiPvqlB/8kUNx4HXFW40zAbKgCYIgiAIgrikIQGauJAcHS7Ohg7G05FUMV/y+EgEgMXIi2U0/xAEQRAXHTuXeTTLNSW3UR3Qq5vsvH7aOSwOsxFsIDOZBcBxsk2cIBo6zYLHKgA4NVYQWJnf2SbqAdiMPFDoJFxisGyrFpcFQGiKQDwSSQGIagToAV8CAHulDw6EAZgFPdOvffESJYTnlPwNALGMBEDKyb978WwgXjowmlmqvZbShcB7l9cAeK7PD2BPt5epyg6TwBzch8+Fz4UTAJpcYoOm8Y8FQDOYBMyOigVYu6cZxn7vns5/+uu1f3/96pK/hcYBbRXLrS9ucooAWl1mmm7FYNk4Iq+bTuUnCIIgCIIgLhFIgCYuJEeHIupyUMmAZimKrHLKM809KkEQBHGxs7rRwbylNpFfUV/a3ayqh+ubXTPsyi7yAMKJDNNY7UbD1Na45fV2ACcVAZolddhNzAHNQ0mrWEpIeTmRzQFo9ZgBhOKTBejRcAZAWDP6y+r7NrW5APSORQG4rUY2FclfqoRwMFQUoFl49L0Hz336npff/9P9sjx1c/jiaQA19tL1wnt7in2Au7uLYxLrW1wAXh4MjgSTABocJouBdyi68Mr6Yno4E6BHI2kpLwcTGUxMcdFi5HW3bG2dNFChxa78yiKUe7Vc7zABaHabytx+yWPQ60EB0ARBEARBEAQJ0MSF5fBQGMDKBhsAfzzLKqG6NN3xbkvFAqAJgiCIqoLXcdvbXQC2d7inM0iaBZ7l6q5rKlFRqMJiFsLJLHNAO8wlBK/uGiuA3tHCwCdzQNuZAm7UY6IR+Pxz38tDv33pbGX3qXq6WURyeIoDejSSBBBJSqpYfMYfhyL+5vIyAI9F8BYE6HR+iqg8GNA4oNMSgLOhJIAXB0KPnxwHIMvFbBNZBnNGlywGBNDhtTQ6RQAcJ+9a5lXXb251AvjRU33HRqIAGh0iFK0ZwGrNe8NrNfB6yMBYJBVMZAG4zPMcyVZLCMvXT5fX2QGsaSodKn0JIgg6AJbyWhwJgiAIgiCIJQwJ0MQFI5jIjIRTANhNZjiRjSQzADprrOo2NTYSoAmCIJYs77is3WUW3rmzfboNOA5dtVa9jtva4ZluGwAuCw8gGM+ynr2Ssb/ddVYAvSOKAzqZhSKNMYUxnpk9wniReOKk7+O/OvCZ37ysGrQrAsu5FgUdq/ONJLOTBOSxSBqADCQyEgBZRh8ToLuK4q/XavRYjAByciHQQ8tQOAklcTuSyEBJeQbwLw8cjySzb/7+s+u/+MCJ0SiARFZKZfMAPNPUC3Mc9vbUAFjb6NSmeN+6rbWnzuqPZfv9CQCNLjOABocRgF7H9dQV7fM6jmu0mwGc8SfYGMO845htyrvIVnYEx7t2tf/0Pds+eHnn/P7i0sOoZwI0OaAJgiAIgiAudeYmQMuyfPjw4T/96U/5fF6SJLnk7EqCKA+Wv9HqNrV6LAD8iTTrQWr1WFQrXM0096gEQRDEEuDK5bUH/uHay3tKB0AzfvLubfd+bHer2zzDNiyNIZyUIgnmgC6hOTJ3KouVgGLXtYsCAJbDEEvn5vcsFkgokf30bw6y5T8eHKrgntm8IotRz8TcnFwQmhnxtMQCOqAEkgQTGRajsbrRrgZcuC1GA69jYdn+eHrSnxgMJACsarBByTAJJgtJHS+fi1z7jX3PnfbnZBw4EwLgi2YAiLxuhkq623a2d3qtH7ximXalSdB/962bRCUKo9FhgiJDL6uxGPkJV7MNThOAI0MRABwnO0zzdECr6Rzmsg28Rl63t6eGuitUmABtNVKcGkEQBEEQxKXOHATo/v7+DRs27Nix4/rrr8/n87fddtvdd9+9eEdGLHleORcBsLrB7rIIAAKxDPNqucy8U5k97Z2mO4ggCIK4RKizi6sbZ8rfAOAyGwGEkplgQoJiyJ1EV50VwFAoFc9IUCI4rCYWQi0AiE5MqHjk+NiQJuCYcWw4EkpU0igty/i73788Fk2zpJH7Xh6WZUh5+Z4XBvr98QXunM0rcohGkdfzOg4TUzhGI0U1mQ0An/EnANTbjaKgb3IVYpq9NgFKIpYvOkWADiWhiPuxVA5AMC4BYL2FI8qf8MdTAHyxNACvrXQANGNFg/2Rz+x9w9qGSet76mxfvGENAJuoZ7HO7R4LSuVdNDmNAI4OhQDYRWHe9XeqAG0xkIF3nrAxA8v04w0EQRAEQRDEJcIcBOhPf/rTe/fuDYVCPM8D+PznP/+1r31t0Q6MWPoMBOIAuutsbHpsOJmNpLMAbCZDrbUQ7DhddxBBEARBqDgsAoBQIhNKZAA4TCUUQ5fZwMY7Xx2LA4gmslAc0BaRRXAU3cFPnvK95yf7b/nesxkpr648eDb0+m8//tnfHqrgkT972v+nwyN6Dj97z3aB5077YidGIt995NRnf3v4s/fM/ofSUv6fHzhx+FxYXRNMZM4FkwOBhCwXYkZsop7jwIzAEwXolLrMxPe+8RiAdq8FQJOrYDn3WEQAtTYjAF98cg/hUCgBpcuBOaDDiTSAT17T1eoyN7vM162ug6Jcj0fTWMDQ8q1bW75564b/ePsWVjD55m0tf/f6lZ997fJJmzFn9CtDESwgfwPKewOaMGhirggUwUEQBEEQBEEAAOZwRfjggw/29fUJQuFyfMWKFcePH1+coyIuCQKKE8ptZu1GGSlnAOAQea+SvOGhDGiCIAhiNgrqaiLLJNeSGdAAltfZnj0dODkaWdfsYEOedqMAwGbkgQkBxw8dGQEwGEz8+Kn+D+4tRPo+emxMlrnDZ8PafWak/Ff/99hrVtXt0uQmlw9r6nvThsadyzxX9NQ+dHT0Xx979c9HhgG80B8MJ7MzJ0j8/Jm+7z566vHesXs/vgfANx7q/dbDJ9mvbtvZtq7ZAcBuMgBwmAV/PKO1b2sF6FAqA8UB3eG1AGhVBWirAYDbagAwrnkIgGhKYpEdyxvsAKKpDIBAQgLQ6bU+9Om9gp778VN99x8ZHYtmoDig593uwHG4cWOT+qPVyL+/VNoyKyc8ORpTD35+FB3QIumn88QosAgOckATBEEQBEFc6szBAW2xWILBoPrjmTNnPJ6ZGoEIYmZ88SwAl0VwWQwAQolMOJkBYDcJNbbC/XYtZUATBEEQs+E08QBCyWwwkQHgnMb32lNrA9DLHNCpHACryEMRyLQlhI/1jrOFbz/cG1Bsv/sHAgBGY0kpV+zA2Hdi7MdP93/9wXkOyb/QHwCwtcML4Ib1jQDuOzSUlWQAMvDkKd/MD7/v5REAh4fCgXgmL8u/fu4MAF4PAA8cG2UZ0HZRD8BlnuyAHtE6oBMSgNO+GIA2jwVAs7swFYkZlr0WI4DARAf0uWACgNMk1NpEALGUJMsIxtMAXGaDkdfpOK7GJgLwxTJQHNA1ixyu1eQ0AWD/oemGIspB0OtYLgpFcMwbA68DYCYFnyAIgiAI4pJnDgL0rbfeevvttw8PDwMIhUKf+cxnbr755kU7MGLp449lAHgtBpdSjhRIpAHYRcGr2KM8JEATBEEQs+E0GwEEE5lQctoMaADddVYAJ0ciUOy6dpMAwCoaAEQVB/TZQOKMP6Hn0FNnjWdy33yoF4CUlw8OBAHIMqf1Dg9H0gCC8fkEQ2dz+YNnQwC2dbgAXL2ylmXmCjz3mpW1AB4/MTbDw88GEofOhtghPXHSd2QoMhbLmA26/X93DQeMhFKnxmIAHMwBLQoAgloHdLT4LMKpLBRJusllAtDsLAjQHosRAJuZxCzMxQMIJQA0u0x2kQeQkxFLS/FMDpp/AXvgeKyYAV1jnSkDeuE0KkcOwLWwIC+WwmE2zq2ym1AR9HoANlLwCYIgCIIgLnnmcEn9pS99CUBjY6MkSXV1ddFo9Itf/OJiHRdxCcAqibw2URT0Iq8DIMscAJvIs8RJLGzyLEEQBHGJwOTObE4ejyYBOKZxXHbV2gC8Oh6H0phnKzigJ2RA7+sdA7Cpzf3FN64B8MvnB4ZCyWPDkUSmkAc9FC6WE45FUwBiKQlz58hQJJuTnSah02sFYDHwr1vTAOBjV3a/c2c7gH2947I87cP/dHhYXd53YvThY2MAdnXVuMyGnnobgH29PvU5OgsO6KKFeSyscUCnsgDGomkAdTYRQIu7EMHBwjfqHCKAJ0/6o5pnytK0W9xmk0HPcTKAwWACAMfJaoAyM1D7Y2l1/17b4p7ZGx1FgduzMAGaObu9lsVVzJcwJgPLgJ4pRoYgCIIgCIK4FJiDAO10Ou+///6+vr4HHnjg2LFjf/nLX9xu9+IdGbG0kXJyOClBuTl0KreIHCdbRZ7Nz9UrpUkEQRAEMQMWA6/XcQD6fQlozimTYKLquVAyL8uRVBZKBAeTaCOKtPrYiXEAe7u9ly3zbO/w5PLyb14Y3N/vV/czrJFuR8IpAGxvc+WFfj+AzW0u1qoH4M43rfnF+7bfflX3tg63oOdGIulT47HpHn7foSEowR37en0PHR0BcO2qWgCbW11Q5GCWcD21hJDJwc0uk/rcA/E0lKHfFo9ZFHQWI89O09etqa93iAPBxCd+/VJeEcWfP82O36njOCbinwkkADhEA/t3QHFAh5OSlJMLJYS2xdVzLUZejW+e7p1QJnf+1ZrPX7dyfYujEsd1KXLrltbdXZ7r1tZf6AMhCIIgCIIgLjBzEKAHBgYAtLe3X3vttT09PYt2SMQlAYvp5JRbYre52DWv47gauxGAx2LQqTflBEEQBDENHAeWApGS8pg+A7reIep1nJSXx6Jp5vm1ax3QaQmAlJOfOR0AsHdFLYC3bm8FcPcLA8/1BdT9nAtpHNCRFIBsTs7m8nM97P1nggC2dBSH820iv7vLy3EQBf2ODi+AfSfGJz3qGw/2fuo3B+89OHRkKKLXcX//hpVmg84fzxwZigC4ckUdgI2tRc3UbjZAqSIMJ4oO6NFwGkBXjRVANJlNS3mWi80kY4uBv/sDO3/9/h2CXgfAZTb85zu2CDz3yIlxNZOEvSY7Oj1QXK6DgTgmRqA4zQITo33xdCCWwQJKCMtHTeFwLSADGsCWNtcH93bSpci82dXl/cX7drQqbnqCIAiCIAjikmUOAnR3d/e111579913J5PJ2bcmiBlhs3HV+1K3IhbYRAHA+mZnu8f8Rk3ZPUEQBEHMgEMrek4ze4bXcXV2I4BXx2KsR5CddJgPmnXovTQQjKcll1lY3WgH8Lo19Q5RGAml/nJ0DMDmVieA4WDxQmg8WpB0WTbF7w+c2/blh148E8QUDp4NvfUHz/72pbPsR1nG830BAFvaXCWPdu9yD4B7Xjz73p/sv/aufQOBBIBEJvetR07+90vnbr/7AIDLOr11dnFHR6EUen2Lk8nHG1sniNooRnBk1b8+HEkC6Km3Aogks+y8zOuhpmdsaHGuay4K2euaHV+9aS2A7zxyajSSOjoUiWdyNlG/ssEBwG7kAQz4k5g4AKDjOI9ZAOCLpnwsemvxw7WalBQONwV5EQRBEARBEEQVMAcB+siRI9u3b//MZz7T2Nj40Y9+9MUXX5RnCCYkiBnxxSfYoFxK2aBDZEYt4bHPXvn3b1h1oQ6PIAiCuLjQum5niG9qcVsAHBuOAuA42WzQQwmpyMlIS7nHT44D2NPjZb5XI6+7cWMjgFxe5vVgYQITIjgiBTE6lpYA/PnI8Fgs882HTmr/aC4v/+ujJ//6359++pT/Ow+fYivPBOLBeJbXceuanSUP9fKeWgAnRqIPHx/rHYvdf3gESuS0XscJPAfglm3NAC7vqWEPuXpFYaGzxmIT9WyZCcqsS3BQkc4jqWw2J0NxQIfTko81A5vFGfy+N29q2dzmlIHfHzj3zKt+ANvaPWwg2WbiAQwE49DMamJ4bEYAA4EkC9GuWfx64UaX4oCepo6SIAiCIAiCIIjzyRwE6K6urjvvvPPMmTP33HNPMBjcvXv3hg0bFu/IiCXJQ0dGTo7FAATiGQBuJZzRpYgFdrpXJAiCIOaOUyycUEReZ+CnvbxpcooAjg6HoYQ+AVA79GJp6cRIFMCmlqIr+c3bWtnC6gZHh9cG4FwowdZIOTmYKHiKWQ9hOJEF8MSp8T5fXN3Dtx8++fUHenN5GcAZfyKUyAJ4sT8AYE2TwzjN0XbX2q5ZVdfmNq+st0PJ+hiLpAE0O03Pff41f/jorhvWNQLYu7yWPeTqlYWwXR3HbWgumKBZzMi6lv+fvXuPk7Ou7/7/vq5rZndm57yn7CkhISEkIiaEUxBoLN6g9Ub0oUgJRfFuFR8/KfLor/lJvUutSuutiA8RFYqtvb2hKK22tg3e1cZTC2KsBKWUQxITyHGTPWQPMzszO6fr98e1M9ndJLs7OzPZObyef81cu3vNN+Yrm33PZ9/fkKQXj46nMjlJx8eTkkJeV0fQI2k8nh6KTUpqm++EwHdfvFzSPzx3+Gf7hiRdsXrqVXxNLkmvDZ+mg7vd75H0Sv+4JI/bbGk6/RGRZdQTmgqgW0vrgAYAAABQFkUE0A7LsrZs2XLzzTdfeeWV//mf/1mJNaFe7RuMffCxXXc8vkvSUCypacfTR/IPAs3WUi0PAFC7ChPQ4TnfyFweaZH0cv+4JF++a8I0jBa3S1I0mekfTUjqbfUWvmR9d/ANvUFJl65qdfLro6NTE9CDscnCpzml0uP5jovHdx4ofGj78/2S/ui31q2ItEh64cioNNW/cfmqM57nbBj6y/dd8m8f/c33XNor6dh4UtLxaFJSZ9DT6mvasHxqdHplm+//edO5v3flqtd1BwtfvmnF1EcDXrekc1p94RZ3Jme/1D8u6fj4pKRlAY8zHz2eTA9Fk5I65gugr7+w2+0y9hyPPbV3UPkCaOXLTJx27NaZHdwdviZJzuu2+5vPQqNyb2SqdDhyhjZwAAAAAGdTcQH0Cy+8sG3btr6+vttvv/3iiy9+6aWXKrQs1CXnd5b3Ho9lsvbUr/oGploaC3lB8My/Nw0AwJkUyhZCc2aOfRGPpL3HY5LCnpOjuE5Rcmwy40SofeEZx6Z94h2vv3b9st+9clV32CtpNJFOpLPKF2I4xifTksaTGefpt3YdSqazko6PJ/cPxQzD3nrZig3LQ5J+eWjUtvXUr4ckXZ4PcOewLOiVNBCdVH4OunNmTGwYuvut6//k7a+bnu1elK+WdiagDUOblocl7TpwQtLAeMK5s/NtdzwxVcHR6punHyPodV+3vktS1lahAFpS0OuSlM7YOqX4wjlY+JVjMUnt8wXcZdET9pTcU4IAACAASURBVEgyDHuOMhYAAAAAZ00RAfTmzZs3bdq0b9++r33ta4cPH/7sZz+7fv36yq0M9cf59WRbOjwaH5lISWrzTf1k2HayA5qfFQEARQu1TH0fCc8TQPskZXK28kO7DqcGeig26VRq9IS9079q04rIX952SU/YG/S4W5pMScfGksrPETtiyayksURKksdtjiUyT75wVJLTlXxBdyjkdW9cEZb0/MHRV4cmjo4mXaaxeUEBtEfS8bGkpIFoSlJn/pC9OWxcHrZMwzKNwvGMm1ZEJD13YLSw/mWhZid5j05mBicmJXUE5r/zey5Z7jy49JxWpwBa+QTfEZnZ8uyci3h4JC6pfb6AuyzWdPo9bnNVu7+wPAAAAABLqIgavq1bt27fvr2jo6Nyq0F9cw5oknRwOD4YndT0Duh8XsAENABgEULeqX/SBD1z/dumL3IyWfZNKyP2eV2SnALoFrcVPMO7oYahrmDL/qHY0dHEqnbfQP4EQkmxZDqbs6PJrKStly7/388ceOxnB2/ctNzpSn7jmjZJG5dHJP3q0Oi/7RmQdNm5rc4piHNbFmiW1D+esG0dH0tIWraAmDjc4n5w60WZrF34Y25a2Spp16ERSQOxlKTOYLPzJ83m7INDcUkd/vm/C191Xnub3z0cS1+xur1w0d88LYCe+R5Ae+Bk6Ny5gJWXLtLS9IP/900+Sr0AAACA6lDEBPRdd91F+oxSOP2Ykg4MT4zEU8ofTCQp0pIPDrwVP5sIAFB/CqFn65wd0N0hb2EmdvrQbqCpSdKe/qik3rBnjp7i3rBX0tHRuKTB8VThejSZKbzP+qE3rXG7jOcPjT53cOSn+05IeuPqDkkX9AQt0xieSP3tLw5K+o3zFvTPqs6gR1I6a48n0wOxSUmd/gXNEf/3C7vfsbGn8HRDX8iQjo0mj48n9w9OSOoKer1uyzIkad9QTFKbf/6A2GUa977jwjev63z3xX2Fi9PHycMzv5W3T1ttu/8slTL3RbwUQAMAAABVYv6w79FHH7311ltN03z00Udt25710dtuu60yC0Mdmsg3Yx44ER+KOhUc+bwg/zu5IS8/LgIAihY6eQjhXN9HXJaxLOw5NprUzN+58XssSbsHopK6Z/ZvzNITbpZ0dGxS0rFpE9DRyfRYIi3J4zK7gp53buj71q5Dn3ryxcMjccs0Ll0ZkeRxW+cv87/UH3UKkd+0dkEBdLPLDHldY4nM8fHk4FhSC6vgOJWv2bW2K7D7WPQvn9r/1N5Bw7AvW9VqGAp43aPx9KHhuGaGxXN424Xdb7uwe/qV6QF068ybdEwLndvPygQ0AAAAgKoyfwD90EMP3XLLLaZpPvTQQ5lMZtZHCaCxcNFU1nlwYDg+FJvUtOrnQl4Q4BdmAQDFC+ffv5y7gkPS8rDXCaCnZ6a+ZpekPcejkvoiLWf6Wknd4RZJR0fikpw6qU5/00AsFU1mnADaWcnvXb3qW7sO/ergmKQLe0O+fEPFxuXhl/qjzled3xVc4J9uWcAzlogdH590OqCdVuhFuHhFZPex6F899aqkmy5evq4rICnkcY/G01lbmhkWF8XvWVAFR0fgbHRAAwAAAKgq8wfQO3funPUAWJxYvoJj7/HoRCorqS3/g67XbbktI5216YAGACxCOD8BHWmZJ+JcHvH+4rURzXzL0zmE0Elhe+acL+4JnZyAPh6dlHRup38gdiI2mXUC6GCLS9K6rsBVq9ue3jesfAG0Y+Py8Df+45Ckq9Z2zFH0McuyoHfPQOzAcGwsmZbUudgY96IVoW/8hyQFPNZH3zp1lHRoWmNG+2LvHJjRAT3jW3mkpcmQnN+hO2sVHAAAAACqRxEd0Fu2bJk1Ab1ly5Zyrwf1LDo5FUC/NhyXZBkqnPJkGFoe8Wm+X3wGAOC0Qvn3L0O+ed7ILAw4T3/Lc3ofdM/cFRyRFklHpjqgk5JWd/glRRPp8UR6+kp+7zfOdR5cOe2wvg0rIs6DN53fOc8faZploWZJLxwek+R2GWc6I3Fem85pdR7c9ebzC+8BT/tebM9dYDKHwgR0i9tyWzP+eWmZRjj/l7LAig8AAAAA9aSIA9+eeeaZ6U+z2Swz0SjKRDI7/Wmbr2n68NfD7910cGhiZZvvbC8LAFD7CmlyeL7fpOmLTOXLMys4Tj7ujcwZQIe8ko6NJrM5ezCWkrS60ycplspPQOdvu2Vtx5vObx+JZy5Z2Vr48jUd/p6wJ5rMXH1e+2nufgZdIY+kF46MSVoWmOuMxLmtavf91uu7Upnc+9+4snAxcPJ/uiaXuchbF/7U4dO9AbAs0DwykRYVHAAAAEBDWlAA/fjjj9u2ncvlvvGNb5imKSmXy7344ovnnHNOUS/2wx/+8LOf/ezPfvazSCTyzne+88///M8DgcBiVo3aFEvNCKAjM8egzl8WOH8Z+wEAsBgu0wh4rGgyO+8Mb1/r1Dud0wPogHehE9DdYY+keDq7bzBmS4a0qt0vaTyRGpuagJ66lWkYX/8fl8/6css0/umOq9LZXKSYWeNlgWZJewaikpYFF5/hmobx8K0Xz7pYaM3uKGE82Z+v4Djtn6vd1yzF3Jbhaypi9AEAAABAfVjQjwGf//znnQD685//vBNAS+rq6vrqV79a1Ivdd999d99992WXXbZ///6bb755fHz861//erErRu2KJlKSCkWQHT6KIAEAZfOhq1c/f2Ts/K553sssTEBPP67Qnw9GDcPumrMD2uu2zmlrOTAc/+q/75fU6nc7nRsTyexYIqVpFRxnsogpYKf0OZOVpM5yt1iE8pXN7YHFf18udJi0nq6Duz3okdQRaF707DYAAACA2rWgAPq5556TdNNNN33zm9+0LGvezz+T733ve4ZhSNqwYcOHP/zhz33uc9M/att2NBotPHUe27a96JdDtYlNZiSt6fDtHZyQ1FrCD7oAAMzy+28+byGf1h3yOG+F+qcF0IUJ6A6/Z1aF8ak+ePWqe/7xxW/vOixpWcDjDP+OJ9PjiYykoLf83926QieHsjtDZT4sIZivH2nzLT7abnZZlqGsrXDLaf5t6Zw9WMqENQAAAIDaVcQhhH/3d39XSvosyZg29/LUU09deOGF0z8ajUZD0/T19UmKxWKlvCKqSjSZkXRBX9h52na6ISkAACrKbZnXrOvsi3hXtp88daDQINETmWv82fGeS1a0+adC266gx6nyiKXSo/G0pNDpEtgSdQZPrqqz3G/fBvOlGe0llHsYxlSlSevpUmbn7MHOwPz/2wIAAACoP0X8jJTL5f7+7//+H//xHw8fPpzJZJyLP/3pTxfxqg8//PCOHTt+/vOfT78YCATGxsYKT6PRaF9fn9/vX8T9UZ2cCej1XcF/1BGV9qu+AAAs2l/ddmnOtq1pB+4F8gF07wLmi5td5u1Xr/lf//KypI5As9M+kclqIJqUFPLMU8GxCB3+ZsOwbduQtCxY7gno/CR4ezG11Kfye9yjifRpD4H8rdd3//iVwVs2ryjl/gAAAABqVBET0J/+9Kfvvvvuiy666Omnn77hhhsOHTq0cePGOT7/8ccfd+eNjo4Wrj/88MP33HPPjh071q5dO/3zDcMITuOcT2hQFlgv0tlcOmtLuqA36FxpLeFXfQEAWDTD0PT0WZI/nxr3RhYU7966eYUTNC8LelqaLMOwJR0ZTUgKViCAdllGoVu5s/gK6bkF85HxIsqppwt4LEnhltP88c9pa/nbD23+zfM7S7k/AAAAgBpVRAD91a9+9Zvf/Oa2bdtM0/yDP/iDb33rW7t27Zrj87du3ZrIC4VCzsXPfe5zn/jEJ3784x9fcsklJS0ctcYZf5Z0Qc9UAN1GFyQAoDoUKji6F9aw7Gt2/dHb1oW8rmvWLzMNo8XtknR8fFJSuLQ54jMpHI1YuQC6vbSKjLaWJknLgvRsAAAAAJihiAqO/v7+DRs2SGppaZmYmNi0adMvf/nLOT7fNE3TPBlw27b9p3/6p3/913/91FNPzZp9RiOIJTOSPG4z0tIUbnGPxtMcRgQAqBKFALo30rLAL9l62Yqtl011SgS87olUNpuzJQVPNwJcumWB5hclzeyDLotAvoKjzV9SdL7tresufLH/mnWMOQMAAACYobhzclwul6TVq1f/5Cc/WbZsWTgcXvjXTkxM3HvvvZIuuOAC50pTU9PExERRC0C5/N0vDv7bnqEHbt7otoqYgl+EiVRmLJ7uCXudCWhfk0vS//ytdbsOjLyhL1TRlwYAYIFcluFxm8l0rie0mDdHgx7XsbHC44oE0F0hrySXpUi5J6wLCy7xjeGNy8MblxfxL0MAAAAADaKIAPq6665zGpk/9rGP3XjjjZI+9alPLfzL/X6/bdvFrg+VMBSb/ON/+q90xr5184orVrdX9LXe/9f/8dyBkaf/6BongPZ7XJJuunTFTZdyEhEAoIrcuvmcPcei67oX8+ZoYYhYUuh0p/CVzhl8bvd7yn46RquvqaXJNAyznd9MAgAAAFABRQTQ3/3ud50H73nPe6688spYLEaTRo36+k9fS2dsSZlcZV8ok7N/eWgka2v3sZgtW9N+xxkAgKpyz39/3aK/1vn9HkkuS163VaYVzbAs2KzKNCw3u8xvfvAKwzCaXJX9pSgAAAAAjamINPDgwYMrVkxNrfb09FRmPai4eCr72M7XnMe5Cs+kHx1NZLKSNDCe8LhdkvzNFZkLAwBgCRUmoAPN7rJPKDt+47yOc9v9797UV4mbb6A6AwAAAEDFFDHqct5551133XVPPPFEIpGo3IJQad/edXgskXEeO8clVc5rQ1Md3wPjk7FURlLQwwQ0AKDeBPO1GxXq35DUG/H+aNuW911xToXuDwAAAAAVUkQA/eKLL15++eXbtm3r6em54447du3aRadzzcnm7L/69/0nn2Yr28GxfzDmPBiITkYTGUm+5or8YjIAAEuoUMFRuQAaAAAAAGpUEQH0mjVr7r333gMHDnzrW98aGRm56qqrNm7cWLmVoRJ+PRg7OBJvcVvru4KqfAXHgeGpCejBaDI+7RBCAADqSdBLAA0AAAAAp1d0GmhZ1pYtW+Lx+MDAwA9/+MNKrAmVMzA+Kakv4m1pMiXlVJmiyrxX8wH0QGyyK5LWtJZMAADqRuHt1VBL09KuBAAAAACqTXHHnb/wwgvbtm3r6+u7/fbbL7744pdeeqlCy0KFDMUmJbUHm03TkJTJVbaC49XBuPPg+HgqlshK8jcTQAMA6k3QM5U7MwENAAAAALMUkQZu3rx5165d119//de+9rW3vvWtLhdJYu1xJqDb/U3Og4o2cGSy9uHRqfMqj48nYsmUprVkAgBQNwpvrxa6OAAAAAAAjiJ+TNq6dev27ds7OjoqtxpU2vBEUlJnwHMimpKUy1UwgT40Es/mbJdpZHJ2OmsfHUtK8vOTOQCg7hQKpoIeJqABAAAAYIYi0sC77rqrcuvA2TEUdSagmw3DlJSxK1jB8drwhKQ1nb4jo4loMrt/aEJSgAloAEDdOdkB7aUDGgAAAABmmD8NfPTRR2+99VbTNB999FH7lMqG2267rTILQ6kmM7l3fuXp85cFHrj5osLFASeADjRZli3JruQE9KtDMUnntPtSGUWTsWgyIynAT+YAgLpTGHwOtzABDQAAAAAzzB9AP/TQQ7fccotpmg899FAmk5n1UQLoqrX3+PjL/dFXjo1/+l1vaGmynIuDsZSkTr/HlHMIoVG5Bbw2GJe0qs0/Fk/vH5q6yCGEAID6U/juxiGEAAAAADDL/Gngzp07nQcf/ehH3/nOd5qmWeEloTyGYmlJtm3sHYhu6AtPXcxXcJimIclWRSeg45JWtvmOjsULFwmgAQD1x3+yA9pa2pUAAAAAQLUpIk3+nd/5nVQqVbmloLyGY0nnwe7+cedBNmefmEhJ6gg0G4ahCh9C+OrwhKRzO3ydfk/hYuFHdAAA6obHZbktQ1Krr3mp1wIAAAAA1aWINHDDhg3PPvvsVVddVbnVoIyctg1JLx+POg9G4ilbMgw74mtymYakTLb8hxBmcvZzB0YM6chIXNLKdt+y4LQAmgloAEDdMQx98u2vPzae6Al7l3otAAAAAFBdikgDt2zZcuONN951110rV6505mcl3XzzzZVZGErltG1I2n1sKoAejE5KCnubXKZhOhPQFajg+D/PvHrvky87j1vcVoe/uTMfQBuS183vJgMA6tAtm1cs9RIAAAAAoBoVEUB/73vf6+jo+MY3vjH9IgF01RqKTQXQL+crOJwry4LNkixLknIVOITw2VdPSAp73batGy/uMwx1BKZ+H9nvcRkVPPUQAAAAAAAAQHUpIoB+/vnnK7cOlN1wLO08GJlID8dSbf6mwfFJSe2+ZkmmDEnZCnRA/3ogJumLWy/asrbDudKZD6B9FEADAAAAAAAAjaSIQwgl2bb9wgsvfPe7383lcplMxrYreIQdSlSYgJb0yrFxSQOxSUntQY8k06xIBUcmZ796YkLSmg5/4WIhgA5SAA0AAAAAAAA0kiIC6Ndee23jxo2bN2++/vrrc7ncbbfd9sQTT1RuZSjRQCwhqSvsUT6Adlqh231NkizDlJTLlfkQwoPD8UxWHpfZHT558GDA43ZbhqSWJgJoAAAAAAAAoIEUEUD/4R/+4ZYtW0ZHR10ul6SPfexjn/nMZyq2MJQkZ9uj8Yykq1d3SHqlP6b8THR7oFmSy5KkbLlH2PceH5e0utNvTit7NgwtC3olBTzuMr8eAAAAAAAAgCpWxETqv/7rv7766qtu91SGuG7duldeeaUyq0KpRuNpp9/5yjVt39p1aM9AVPkJ6E5/syQnHi73APRUAfR5ywKzri8LNh0eiQc9VplfDwAAAAAAAEAVK2IC2ufzjYyMFJ4eOHCgra2tAktCGQxPpCSFPO4L+0KS9h4fz9n20MSkpI5gswod0OVOoPcNxiStaffNuu6k3n46oAEAAAAAAIBGUkQA/du//dsf+chH+vv7JY2Ojm7btu3GG2+s2MJQEmfYOeJ3n9Pmc7uMeCp36ETiuNMB7W+WZBmGpEy5j5F0JqDXnDIB3RnySvI3U8EBAAAAAAAANJAiAuhPfvKTknp6ejKZzLJly6LR6Cc+8YlKrQulmRp29je7TON13SFJO146PhpPSeoINEsyLUOSXdYA2rb164EJSWs6/bM+dOPFfVetbnvnpt4yvhwAAAAAAACAKldEJUI4HP6Xf/mX1157bc+ePStXrly7dm3lloUSDU0bdr5xU+/zh0Yf/smvbdswpEhLk/IT0OVt4Dg2noins5ahlW2zKzgu7A39zQc3l/PFAAAAAAAAAFS9eQLo0dHRWVfC4fBll11W+FA4HK7QylCKwdjUBLSkd23q+8z3djut0GGf2zIN5QPobFknoJ3+jXPa/C7LKONtAQAAAAAAANSoeQLojo6OTCYzxyeUt8MB5TLsTEAHmiT5ml03bur9Pz87IKkz4HE+wTQlKZst51/f3oGopNWds8efAQAAAAAAADSmeTqgX3311UN5991338aNG7/3ve/t3bt3x44dl1566b333nt2VoliDcVSktp9U3Hz+9640nnQ4W9yHlimKSlX3gno4zFJ5y2bXQANAAAAAAAAoDHNMwHd19dXePzII49s3759/fr1ktasWbNmzZqrrrrqnnvuqewCsShDsUlJbX6383R1h/+q1W1P7xt2WqGVf+ehvBUcewdiks7rDJTxngAAAAAAAABq1zwT0NP19/eHQqHC02AwODg4WIEloQycxueOoKdw5Y/etm7D8vBNl65wnprOBHSunAH0geG4pHM7qOAAAAAAAAAAIBUVQL/5zW++8847ndB5eHj4zjvvfNOb3lSpdaE0Q9FJSW2+5sKV1/eG/+mOK9+4us15OtUBXb4AOpO1B2NJSb1hb7nuCQAAAAAAAKCmFRFAP/jgg8eOHevs7AyFQu3t7Xv37v3yl79cuZVh0SZSmWQmp/whhKdlSZJytlGuFx2IJm3bcFlq9Z3xRQEAAAAAAAA0lHk6oKdbuXLl008/vXfv3sOHD/f09Jx//vmGUbb4EmU0FE1J8rjNFvcZ/35Ny5SUtXPletH+saSkrmCLya4AAAAAAAAAIKmoAFqSYRhr165du3ZthVaDshiemJTU7m+eIwo2ZaisHdBHxxKSukOeeT8TAAAAAAAAQIMoooIDtWJwPCmpbc4qDMs0VNYO6KMjSUnd4eZ5PxMAAAAAAABAgyCArhP9Y4nReNp5PBxPS2r3z5UFW6YklS9/1rGpCeiWst0RAAAAAAAAQI0jgK4Ho/H0b97/k3c9/FPn6fGxpKTO4FwBtFPOkbPLNwE9npDUPeeLAgAAAAAAAGgoBND14NeDsWQ6t39wwhmC3j8Yk3ROm2+OL3FZpqRM+Uagj41Nig5oAAAAAAAAANMQQNeDo6MJ58H+oZikfYMxSed2+Of4EtM0JKl8FRz9I3FJPREqOAAAAAAAAABMIYCuB4UAet9A1Lb12vCEpNUdc01Am3IOIcyVZQGZrD04wQQ0AAAAAAAAgBkIoOvB0ZGpAPrXg/Fj48l4KmeZxorWuYaRXZYhKVemEejj40nbNlym0eprKssNAQAAAAAAANQBAuh6cKRQwTEQcwqgl0e8bmvOv1zDlpTNGmVZQP94UlJXyGsa5bkhAAAAAAAAgDpAAF0Pjo5NBdB7B6JOAL16zgJoSS7DlJRVeSo4nBHs7lBzWe4GAAAAAAAAoD4QQNeDQgf0oZHEK8eiklZ3zlUALckZVc7lylPB0T+WlNQdpgAaAAAAAAAAwEkE0DUvnsqOJTKSXKaRzdk/3D0gaVV7YO6vsiznEMLyBNDHxuKSekJztU4DAAAAAAAAaDQE0DWvfywhydfsWtcVkHRsNClpTcdZnYA+6nRAB6ngAAAAAAAAAHASAXTNOzqalNQb9qzpPNn7vLpzng5oU7akrMpUwTGSlNQTYQIaAAAAAAAAwEkE0DXvyEhCUlfQsyZ/8GDI4460NM39VaZlSLJtoyxrODbmHEJIBzQAAAAAAACAkwiga55TwdEXaVm9bKr3eVVnizFfsOwyTUnZbK70BaSzucGJSUk9IW/pdwMAAAAAAABQNwiga96R0YSkrrBndb73+dz2efo3lO+AztplqOAYGJ+0bcNlGhGfu/S7AQAAAAAAAKgbBNC16uf7h7+wY086mzs2mpDUE/asbPM5c8+r2+c5gVD5ANouRwB9dCwhqSfkNeeduwYAAAAAAADQSFxLvQAs0v/37ecPnki0+ZsPjyYk9YZamlzmitaWAyfihS6OOVimISlXjjMI+8eSkroj9G8AAAAAAAAAmIEAuiYdHU0cPJGQ9PVnXj02npTUE/ZK2vbW83/88vE3re2Y9w6WIUmZbHkWI04gBAAAAAAAAHAKAuia9Mz+IefB/sEJ54GT/779DT1vf0PPQu6Q74AuwyGEUxPQoebSbwUAAAAAAACgntABXZN27jshye2a6lxu8zU1uYr7qzRNQ1I58mcdGYlL6glRwQEAAAAAAABgBgLomrRz/wlJ265d5zztDRcd/k51QKsMJdDOBHRXmAoOAAAAAAAAADMQQNeeIyOJwyNxyzRu3bzi8nPbJHVHig5/nQqOTDlOITyaPwWx9FsBAAAAAAAAqCcE0LVn5/4hSRf2BX3Nrm3Xru0KNl+/sN7n6UzDlpQrOYCezORG4mlJ3UxAAwAAAAAAAJiJQwhrz8/2n5B0xbltki5d1brzf/63RdzEMk1J2ZID6P6xhCSP2wx7m0q8FQAAAAAAAIA6QwBdM+Kp7BO/OJDO6N93D0i64tz2Uu7mHEKYs0sOoEcTkrqCHsMo8U4AAAAAAAAA6g0BdM147GcH/te/vOw8tgxdvDJSyt0so1wBdFJSD/0bAAAAAAAAAE5BAF0znn3thKQNfaHOoOeadZ2+ppL+7sxyBdDjCUldIW+J9wEAAAAAAABQfwiga4Nt67mDI5I+/vYLLj6npNlnh2lKUjZb6n2OOhPQBNAAAAAAAAAATmEu9QKwIEdHE8MTKcvQBT3BstywfBUcCUk9EQJoAAAAAAAAALMRQNeG5w6NSFrfHfS4rbLc0DINSVmVGkAfGWMCGgAAAAAAAMDpEUDXhucPjUrauCJcrhsazgR0ttQA+thoUlI3hxACAAAAAAAAOAUBdG345YERSRctL1sA7UxA50qbgI6nsmPJtJiABgAAAAAAAHA6BNA1IJO1X+wfl7RxRRmOH3Q4HdC2bZTSAt0/lpDU4rb8zZxmCQAAAAAAAGA2AugasPt4NJnOBTzWqnZfue5p5v/mSzmHsH8sKakr7DGMsiwKAAAAAAAAQF0hgK4Bvzx4QtKGvrBZvqC3cKuSAujRuKTeUEt51gQAAAAAAACgvhBAV7vxRPoHLw1I2ri8bP0byndAS8rmFh9Avzocl9QTbi7PmgAAAAAAAADUF6p7q5dt61Pb/+ubvziUTOckXbaqtYw3nzYBvcg7ZLL2P+w6rHIvDAAAAAAAAEDdIICuXodG4v/7mQOS1nb63/fGc646r72MNy9MQC+6guP//lf/sfHJiM99/Ybe8q0LAAAAAAAAQP0ggK5eQ7FJST1hz/f/YEvZT/nL58+LrOCwbf3Vv++X9P43rmp2UeQCAAAAAAAA4DQIoKvX8MSkpHZfc9nTZ02r4FhgAP2zfcMffnzXBT3BGy9efuWa9teGJv7zyJjbZdx6+TnlXxwAAAAAAACAukAAXb1GYilJrX53JW5eCKAX2MDx3Rf6R+Lpp389/PSvhwsX37Wxt83fVInlAQAAAAAAAKgDlCdUrxPxtKRWb3Mlbm4YchLo7MIS6MMn4pKuXtOxsq3FMGxJbsu4fcvqSqwNAAAAAAAAQH1gArp6nZiYlNQaqNSIsWkoay+0guPISFzS7VvOvfq89kzOHopNNllmq4/xZwAAAAAANwgnngAAHfZJREFUAABnRABdvU5MpCW1tlQsgLaMbMbOLSCAtm0dGUtI6ot4JblMoyvoqdCqAAAAAAAAANSNJajgyOVy11xzjdvtfv7558/+q9eQE7FJSa2+ilRwSLJkSMotoIJjJJ6Kp3KSesLeCi0GAAAAAAAAQP1ZggD6S1/6ksvlymQyZ/+la8uw0wFdsVP+LMvUwjqgD48kJHX6m5pdlIYDAAAAAAAAWKizXcGxZ8+eL37xi08++eQFF1ww60O2bUej0cJT57G9sCPy6tJILCWprWI9y6ZhS8rl5v/MI6MJST2tjD8DAAAAAAAAKMJZDaAzmcxtt912//33t7a2nvrRaDQaCoVmXYzFYqdebBDD8ZSkyh30ZxqGFjgBfSIuaXnEV6GVAAAAAAAAAKhLZzWAvv/++/v6+t71rncdO3bs1I8GAoGxsbHC02g02tfX5/f7z+ICq0gqk5uYzKjyAfRCOqAPj8Ql9UU4eBAAAAAAAABAESoYQD/++OPvf//7nceDg4NHjx598MEHf/nLX57p8w3DCAaDp16s3Aqr2Yl4SpJlGgFPpf6OTFOScrmFdkD3cgIhAAAAAAAAgGJU8Ey5rVu3JvJCodBzzz3X39/f19fndrt7e3slbdq06e67767cAmrayERKUtjrNisWwVuGKSm7gBLoI6NxSctbqeAAAAAAAAAAUIQKBtCmabryDMO45ZZb0um0k0cfOHBA0s9//vNPf/rTlVtATRueSElq81eqf0OSaTod0PN8mm3r0AkmoAEAAAAAAAAU7ex1QJumaZpTebfL5ZLkdrstyzprC6gtJyZSkiItzZV7CZdpSJq3Ano8mZ5IZSX1RgigAQAAAAAAABThrB5CWNDV1WUv4Oy7RjYcm5TU6nNX7iVMQ5Ky83VAHxlJSIr43F437xYAAAAAAAAAKEIFKzhQipGpCo4KTkA7BzzOewjhoRMTkpaHWyq3EgAAAAAAAAB1iQC6Sp2IpyW1tVSwA9o5hDAz3yGEh0cTkpa30r8BAAAAAAAAoDgE0FXKqeAIV7KCw2VJki1j7k9zAmgKoAEAAAAAAAAUiwC6Sp2YSEtq81W8gmPeDujDJxKS+iK+yq0EAAAAAAAAQF0igK5SI/FJSa3+ClZwOIcQ5uY7DfLISFxSb5gJaAAAAAAAAADFIYCuUoOxSUltvop2QC9oAnoolpLUGazgLDYAAAAAAACAukQAXY1ytj2eyEiKVDSAtkxJWXuuQwhtWyOJlKRIJY9DBAAAAAAAAFCXCKCr0Xgi4wwmt1Yy9nUOH8xl55qATqSz6YwtKdJSweMQAQAAAAAAANQlAuhqNBJPSfI1u5pcFfwLspwO6Kkg+vRG4ylJLkstTa7KrQQAAAAAAABAXSKArkbDEylJbRVuvTBNQ1ImN1cFx0g8LSnkdRtzxdQAAAAAAAAAcBoE0NXoxERKUsRf2QDaMg1Jc1ZAT81it/k4gRAAAAAAAABA0Qigq9FwzJmArmztssswJOXsuTqgnQA65KUAGgAAAAAAAEDRCKCr0YlYUlKrv7Jzx4ZhSsrMOQI9OpGSFK5wGQgAAAAAAACAusTJctXoutd3d4U8fZGWir6KZdmS7Nz8E9CtFZ7FBgAAAAAAAFCXCKCr0Xmd/vM6/ZV+FVOGpGxuruMFRybSkiJ0QAMAAAAAAAAoHhUcjcs0DUk5zT8BHWYCGgAAAAAAAEDxCKAbl+EcQjhnBcdoggoOAAAAAAAAAItEAN24XKYhKZOd6xDCkXhGUpgKDgAAAAAAAADFI4BuXKZhSHMWcEgjE5OSIkxAAwAAAAAAACgeAXTjsixJmnMAWiPxtKRIS9NZWREAAAAAAACAukIA3bhMGZKyZ+6AzuTsaDIjAmgAAAAAAAAAi0IA3bhM05CUO3MJx3gi7TwIUcEBAAAAAAAAoHgE0I3LMkxJuTN3cIzEU5ICHss5rhAAAAAAAAAAikIA3bhcTgf0mT9hqgDa23yWFgQAAAAAAACgvhBANy5nqjl35kMIR2KTksL0bwAAAAAAAABYFALoxjXVAX3mBHo0kRIBNAAAAAAAAIDFIoBuXJbhHEJ4RicmMpJa/VRwAAAAAAAAAFgMAujGZVqGpOxcE9CTkiJe19lbEwAAAAAAAIA6QgDduKYmoM88Aj0aT0sK+5iABgAAAAAAALAYBNCNywmgs7Z9pk84EU9JirQ0nb01AQAAAAAAAKgjBNCNyzSl0wXQiXT2uy/0J9PZ0XhGUtjLIYQAAAAAAAAAFoN638ZlmaakXHZ2AP3Efxz85PaXbtjYPRKblBTxMQENAAAAAAAAYDEIoBuXM/1+6gR0/1hC0vbnjza7LEmRFjYJAAAAAAAAgMWggqNxmc4EdG52AJ1M5STZtpFM5yRFWjiEEAAAAAAAAMBiEEA3LqcD+tQjCOPp7PSnYR8d0AAAAAAAAAAWgwC6cVmSpEx29vXJTE6SZRqSXKbR4qaCAwAAAAAAAMBiEEA3LtMyJWXt3KzryVRW0o2bei3TOK8zYBhLsDYAAAAAAAAAdYDh1sZlytDpOqATqYykzavbb3vjqoivaQlWBgAAAAAAAKAuEEA3LqdkI3dKC3QinZXkdVuv6wkuwbIAAAAAAAAA1AsqOBqXZUpS9pQOaCeA9rits74iAAAAAAAAAHWFALpxOd3OOXv2BHQybUvyutkbAAAAAAAAAEpCyNi4XJYpKXNKB3Q8kxET0AAAAAAAAABKRgDduEzTkGSfMgE9mcpK8jQRQAMAAAAAAAAoCQF04zJlSMqdMgE9mclK8rgIoAEAAAAAAACUhAC6cVmmLSmnGQG0bSuRyknyMgENAAAAAAAAoDQE0I3LMA1J2awx/WI6OzUR7aUDGgAAAAAAAEBpCKAbl8swJdl2bvrFRDrrPPC42RsAAAAAAAAASkLI2LhMw5CUmXkIYTKdlWSZhstkbwAAAAAAAAAoCSFj4zJMScrOPITQmYButpx0GgAAAAAAAAAWjwC6cTkzzrncrAnonKTmJjYGAAAAAAAAgFKRMzYuU7ak7Iz8eaqCw9fkWpIlAQAAAAAAAKgnBNCNy7QMSTPzZyVSGUlNLjYGAAAAAAAAgFKRMzYuyzAlZbO56ReTmZykFre1NGsCAAAAAAAAUEcIoBuXZRqSsvbMQwhTWUneJgJoAAAAAAAAAKUigG5cpmFIys3qgE5lJXlcdEADAAAAAAAAKBUBdONyJqDtmRPQyXROUrPbWJo1AQAAAAAAAKgjBNCNy5AtKZOdcTGRyUjy0gENAAAAAAAAoGQE0I3LZZqSsvbMQwjTWUktdEADAAAAAAAAKBkBdOMyT1fBkUjlJHma6IAGAAAAAAAAUCoC6MbldEDPPoQwk5XkoYIDAAAAAAAAQMkIoBuXYUhSJjdrAjoryeNiYwAAAAAAAAAoFTlj47IMScrNCqDTWUleOqABAAAAAAAAlIwAunFZpzuEcDKdldTMBDQAAAAAAACAkpEzNi7nEMLcjPx5qoLD6+YQQgAAAAAAAAClIoBuXKbhHEI4o4LDOYSwpZkKDgAAAAAAAAClIoBuXNbpAuh4Kiep2emHBgAAAAAAAIASEEA3LtOUpJw9I2ueTOcktTRTwQEAAAAAAACgVATQjcuZgM5mZ5RAJ9IZSR4XFRwAAAAAAAAASkUA3bicDuisZnZAp7OSPE0E0AAAAAAAAABKRQDduEzTkJTLzgigE04A7SaABgAAAAAAAFAqAujGZTkB9Iz8WZOZnCQvATQAAAAAAACAkhFANy6nA9qW7HwGbdtKpgmgAQAAAAAAAJQHAXTjMoypB7l8Aj2ZyToPPG42BgAAAAAAAIBSkTM2LqeCQ9MCaKcAWlIzE9AAAAAAAAAASkYA3bgKAXQ23wPt9G+4LLnyHwIAAAAAAACARSOAblymUZiAnrqSTGdFATQAAAAAAACAMiGAblzmKR3QiVRWktdFAA0AAAAAAACgDAigG9dpKjgyWUket2vJ1gQAAAAAAACgjhBAN65CBUchgHYmoD1udgUAAAAAAACAMjjbUePOnTtvuOGGQCCwfv36HTt2nOVXx3SFANo+2QGdk+ShAxoAAAAAAABAOZzVAHrnzp3XXnvtddddt2/fvu985ztPPvnk2Xx1zGIYMgxbUjafQMfTGUneZio4AAAAAAAAAJTBWY0aP/OZz7zvfe/7/d//fUmdnZ0PPPDA9I/ath2NRgtPncd2YToXFWDKyE6r4Eils5KaLWPOLwIAAAAAAACABTl7E9CpVOr73/++3+/fsGFDIBC44oornn766emfEI1GQ9P09fVJisViZ22FDci0DEm5Qgd0OifJ20wFBwAAAAAAAIAyOHsB9NjYWDKZfOyxxx555JGDBw++5S1vedvb3nb48OHCJwQCgbFpnA/5/f6ztsIGZMmQlLNnHELodRFAAwAAAAAAACiDCgbQjz/+uDtvdHTU7/ebpvmBD3xg8+bNkUjk4x//eFNT049+9KPC5xuGEZwmEAg4Fyu3QjjnEBY6oBOZrCRvEwE0AAAAAAAAgDKoYAC9devWRF4oFPJ6vRdddJFpTr2iYRimaaZSqcotAPOyLEnK5aaeOhPQHiagAQAAAAAAAJRDBQNo0zRdec4g83vf+96vfvWrzz//fDwe/8xnPhOLxW644YbKLQDzmjUBncxkJXmazl4xCwAAAAAAAIA65jqbL3bnnXem0+m3v/3tw8PDb3jDG37wgx90dnaezQVgFieALnRAT6ZykrxuJqABAAAAAAAAlMFZDaBN09y2bdu2bdvO5otiDlMBdC4/AZ3OSGp2ndVdAQAAAAAAAKBeUbbQ0CzTkJTNl0A7HdAtVHAAAAAAAAAAKAeixoZmOgH01AC0EpmsJG8TE9AAAAAAAAAAyoAAuqG5TEOSXQigU7akZje7AgAAAAAAAEAZEDU2NFNOBUe+AzqTleQhgAYAAAAAAABQDkSNDc0wpWmHEE6mM5K8bio4AAAAAAAAAJQBAXRDswxTUiaXk2TbOnQiIand37zEywIAAAAAAABQFwigG5rLkiRbhqSjo4mJVNYytLrDt8TLAgAAAAAAAFAXCKAbmmlI+Q7o3cejklZ3+N0WuwIAAAAAAABAGRA1NjTDMCTlbFvSK/3jks7vCizxmgAAAAAAAADUCwLohmYZhvIT0K8cH5e0rpsAGgAAAAAAAEB5EEA3NMsyJWXtnKTdx2KS1jIBDQAAAAAAAKBMCKAbmmHYknJZO5O19w1GJa3vCi31ogAAAAAAAADUCQLohmbJkJSTsX8olsmqxW31hD1LvSgAAAAAAAAAdYIAuqGZpiEpk8vtPh6VtLbbbxrGUi8KAAAAAAAAQJ1wLfUCsJQs05Bk57RnwOnfCC71igAAAAAAAADUDyagG5ozAZ2z7Vf6xyWtXcYJhAAAAAAAAADKhgC6oVkyJWXs3J5jMUnrmIAGAAAAAAAAUD4E0A3NsmxJsUTm4Ehc0vldTEADAAAAAAAAKBsC6IZmypD068GYpEiLu9XXtNQrAgAAAAAAAFA/CKAbmmWakg4OxyWtaG1Z6uUAAAAAAAAAqCsE0I3NkKQDJ+KS+iIE0AAAAAAAAADKiQC6oblMQ9KR0bikPiagAQAAAAAAAJQVAXRDMw1DUiYrScsj3iVeDQAAAAAAAID6QgDd0Ezj5GMqOAAAAAAAAACUFwF0Q7OmJdC9TEADAAAAAAAAKCsC6IZmTg+gwwTQAAAAAAAAAMqJALqhWcbUBoi0uFuarKVdDAAAAAAAAIA6QwDd0EzDdh4spwAaAAAAAAAAQLkRQDe0Qgc0BdAAAAAAAAAAyo4AuqEVOqCXtxJAAwAAAAAAACgzAuiGZhlTAXRfxLe0KwEAAAAAAABQfwigG5qZD6B7w0xAAwAAAAAAACgzAuiGZln5CWgqOAAAAAAAAACUGwF0QztZwcEENAAAAAAAAIByI4BuaKYpSSGvy9fsWuq1AAAAAAAAAKg3BNANzTAMSX2RlqVeCAAAAAAAAIA6RADd0FxOAE0BNAAAAAAAAIAKIIBuaOd2+CVdtDyy1AsBAAAAAAAAUIdo/m1o77yo95KVrT1hz1IvBAAAAAAAAEAdIoBudH0R+jcAAAAAAAAAVAQVHAAAAAAAAACAiiCABgAAAAAAAABUBAE0AAAAAAAAAKAiCKABAAAAAAAAABVBAA0AAAAAAAAAqAgCaAAAAAAAAABARRBAAwAAAAAAAAAqggAaAAAAAAAAAFARBNAAAAAAAAAAgIoggAYAAAAAAAAAVAQBNAAAAAAAAACgIgigAQAAAAAAAAAVQQANAAAAAAAAAKgIAmgAAAAAAAAAQEUQQAMAAAAAAAAAKoIAGgAAAAAAAABQEQTQAAAAAAAAAICKIIAGAAAAAAAAAFSEa6kXcEa2bUuKRqNLvZCzyrbtWCzm9/sNw1jqtQBFYOuiRrF1UaPYuqhRbF3UKLYuahRbFzWKrVu7nCDXCXWnq94AOhaLSerr61vqhQAAAAAAAAAA5heLxUKh0PQrxqmZdJXI5XL9/f2N9nZHNBrt6+s7fPhwIBBY6rUARWDrokaxdVGj2LqoUWxd1Ci2LmoUWxc1iq1bu5zp9e7ubtOcUftcvRPQpmn29vYu9SqWRiAQCAaDS70KoGhsXdQoti5qFFsXNYqtixrF1kWNYuuiRrF1a9Ss2WcHhxACAAAAAAAAACqCABoAAAAAAAAAUBEE0AAAAAAAAACAiqjeQwgbk23b0Wg0EAg01NGLqANsXdQoti5qFFsXNYqtixrF1kWNYuuiRrF16w8BNAAAAAAAAACgIqjgAAAAAAAAAABUBAE0AAAAAAAAAKAiCKABAAAAAAAAABVBAA0AAAAAAAAAqAgC6CqSzWb/7M/+rKenJxQK/e7v/u7AwMBSrwiY4SMf+Yjb7Xa73c3NzdOvn2nrsqVRJX74wx9ed911gUBgxYoVH/nIR6LRqHOdrYsqt2fPnptuuikUCnV1dd1yyy1HjhxxrrN1URNyudw111zjdruff/555wpbF1XujjvucE/zxS9+0bnO1kX127lz5w033BAIBNavX79jxw7nIlsXVa6trc0906FDh8TWrVME0FXkvvvu+4u/+It//ud/fvnll48fP37zzTcv9YqAGb7whS8kEolvf/vbuVxu+vUzbV22NKrEfffdd/fddx89enT79u07duy48847C9fZuqhmX/nKV2666aZDhw4988wzw8PDt9xyi3OdrYua8KUvfcnlcmUymcIVti6qXDabvf322xN5/IMBtWLnzp3XXnvtddddt2/fvu985ztPPvmkc52tiyp3/Pjxwn9yb7/99s2bNy9fvlxs3Xplo2qsW7fugQcecB6/+OKLkg4fPry0SwJOtX37dpfLNf3KmbYuWxpVIpfLFR4/+OCDy5cvdx6zdVHlpm/df/iHf/B4PM4Vti6q3+7du1etWuXsw1/96lfORbYuqtyHPvShO+6449TrbF1UuXe84x0f/vCHC08L/35g66JWxGKxYDD4N3/zN85Ttm5dYgK6WoyMjLzyyiuXX3658/R1r3tdS0vLM888s7SrAuZ1pq3Llkb1MAyj8Pipp5668MILxdZFLXC2rm3bx44de/TRR6+//nrDMNi6qH6ZTOa22267//77W1tbCxfZuqgJjz32mM/nW7ly5V133TU6Oiq2LqpeKpX6/ve/7/f7N2zYEAgErrjiiqefflpsXdSUJ554oqmp6d3vfrfYuvWLALpajI2NSQqFQoUroVDIuQhUszNtXbY0qtDDDz+8Y8eOL3zhC2LrokY8+uijLperu7t7//79DzzwgNi6qAX3339/X1/fu971rukX2bqofl/5yleGh4eHhob+9m//9ic/+cn73vc+sXVR9cbGxpLJ5GOPPfbII48cPHjwLW95y9ve9rbDhw+zdVFDHn744fe///0ej0f8V7d+EUBXi2AwqPz/0xxjY2PORaCanWnrsqVRbR5++OF77rlnx44da9euFVsXNeLWW29NJpMHDhy44oorrr766ng8ztZFlXvppZcefPDBL3/5y7Ous3VR/SzLcrlcXq/38ssv/+IXv7h9+/ahoSG2Lqqc3+83TfMDH/jA5s2bI5HIxz/+8aamph/96EdsXdSKZ599dteuXbfffrvzlK1brwigq0Vra+vatWufffZZ5+nLL78cj8c3b968tKsC5nWmrcuWRlX53Oc+94lPfOLHP/7xJZdc4lxh66ImmKbpdrtXrFjxx3/8x6+++urLL7/M1kWVe+655/r7+/v6+txud29vr6RNmzbdfffdbF3UFsuyJOVyObYuqpzX673oootMcyrbMQzDNM1UKsXWRa145JFHrr322vPOO895ytatW0tdQo2TPvnJTy5fvvyFF14YGhp6xzvecdVVVy31ioDTOPUQwjNtXbY0qkEul/uTP/mT3t7e3bt3z/oQWxfVLJ1Of+ADH9i7d28mkzl48OAHP/jBzs7OWCxms3VR3bLZbDrv0KFDkn7xi19kMhmbrYuq9973vnf37t2pVOpXv/rVxRdffN111znX2bqocg888EB3d/ev/v/27iYkqjWMA/hpnDE7U4YIWkFKJEFBgSI0NS1aWMtAaFEWLYSIij6EwGUr21iE5CqsjYUR5KJoKRQURBEJ5UYKwkQzF4Flko3OXUxfN29db3muU/x+q5lzXp73ncPDMPzn5Zze3vHx8VOnThUVFY2MjGS1Lr+D169fh2F47dq1rw9q3T+SADqPfPjw4eTJk2VlZWEY7t27d2hoaL5XBH/T0dERj8dz/67H4/F4PD46Opr9futqafLBmzdvcn+4xj8JwzB3SuuSz6anp7u6ujZs2FBYWLh8+fKdO3f29vbmTmldfhfDw8NBEGhdfhefv3UrKysPHz786tWr3HGtS56bmppqbW1duXJlGIapVOrOnTu541qX/Hfu3Lny8vLJycmvD2rdP9KCbDY7j/uvAQAAAAD4U7kHNAAAAAAAkRBAAwAAAAAQCQE0AAAAAACREEADAAAAABAJATQAAAAAAJEQQAMAAAAAEAkBNAAAAAAAkRBAAwAAAAAQCQE0AAAAAACREEADAAAAABAJATQAAAAAAJEQQAMAAAAAEAkBNAAAfFc6nb5w4cLvUhYAAPLNgmw2O99rAACAfJFKpQ4dOrRv377c20wmE4vFYrE53rcRUVkAAMg38fleAAAA5JFMJvP1Fo14PJIfzBGVBQCAfGPPBQAAfNTQ0PDw4cPGxsZEIpFOp4O/3yujpqbmxIkTqVQqmUyuX7/+/v37Z8+eraioKCkpOXjw4NTUVG7Y2NhYU1PTihUrkslkfX39s2fPZk70Tdnm5uZ0Op1MJteuXdvT0zNz/Cynbm9vr6qqSiaTqVTq3r17c359AADgvxJAAwDAR52dndXV1efPn5+YmLh9+3YQBFNTU583RGez2atXr7a1tQ0ODlZXV2/btu3x48cPHjy4e/dud3d3d3d3blhDQ0NfX9+tW7cGBgYqKip27Ngx865335S9fPny6dOnh4aGdu3atWfPnunp6W/Gz2bq/v7+pqamjo6O0dHR9vb269evR3ehAABglgTQAADwUUFBQSwWi38yc8CxY8c2btxYUlLS2Ng4NjbW1tZWXl6+bt26urq6R48eBUEwMDBw8+bNixcvrlmzprS09MyZMwMDA7lTP3D8+PFNmzYtXbr0yJEjIyMjw8PDPzF1QUFBYWFhWVlZGIa1tbUtLS1zcUkAAOCXCKABAGC2ysvLcy+KiooWL168ZMmS3NswDMfHx4MgePr0aRAEq1atSiQSiURi0aJFb9++ffHixY/LLlu27HOdIAgmJiZ+YurVq1dfunTp6NGjtbW1+/fvf/Lkya99VgAAmAMefgIAAF/EYrGZd8CYvYqKilgsNjg4WFpa+nXNuVjav6uvr6+vr89kMp2dnVu2bBkeHs4l2gAAMF/sgAYAgC/Kysr6+vo+P9bvv6qqqqqrqztw4MDz58+DIOjv729sbJycnJzLJX5HT09PS0vLy5cvs9lsIpF49+5dJpP5H+YFAIAfEEADAMAXzc3NN27cCMMwnU7/XIUrV65UVlZu3bo1mUzu3r17+/btCxcunNtF/qPNmze/f/++pqamuLi4tbW1q6uruLj4f5gXAAB+YMHMR3IDAAAAAMCvswMaAAAAAIBICKABAAAAAIiEABoAAAAAgEgIoAEAAAAAiIQAGgAAAACASAigAQAAAACIhAAaAAAAAIBICKABAAAAAIjEX/QvTc3i0EYyAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from teradataml import subplots\n", + "# fig, axes = subplots(grid = {(1, 1): (1, 1),(2, 1): (1, 2)})\n", + "# Plot 1980 data at first Axis.\n", + "fig, axes = subplots(nrows=2, ncols=1)\n", + "plot = single_welding_subplot.plot(x=single_welding_subplot.TIME_MS, \n", + " y=[single_welding_subplot.RESISTANCE, single_welding_subplot.RESISTANCE_SMOOTHED],\n", + " legend=[\"RESISTANCE\", \"RESISTANCE SMOOTHED\"],\n", + " figure=fig,\n", + " style=['blue', 'red'],xlabel='time in ms', ylabel='resistance ', \n", + " ax=axes[0])\n", + "\n", + "# Plot 1981 data at second Axis.\n", + "plot = single_welding_subplot.plot(x=single_welding_subplot.TIME_MS, \n", + " y=single_welding_subplot.DERIVATIVE,\n", + " legend=[\"DERIVATIVE\"],\n", + " figure=fig,\n", + " style=\"red\",xlabel='time in ms', ylabel='derivative ' , \n", + " ax=axes[1])\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "id": "92c9f6e0-7b26-4fed-9b43-1d35989affad", + "metadata": {}, + "source": [ + "

    We see that the most interesting part lies between 40 and 400ms from the start of the curve, so we plot only that subset.

    " + ] + }, + { + "cell_type": "markdown", + "id": "4615d965-6892-4729-81b0-9dd39f7d9411", + "metadata": { + "tags": [] + }, + "source": [ + "

    It is hard to assess the diversity of curve shapes in this plot since many of them are superimposed. However, we see in the middle of the picture a sharp drop that looks unusual. Moreover, we guess that there are shifts in time and height.

    \n", + "\n", + "
    \n", + "

    4. Feature Engineering

    " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "da82ee40-3e38-49af-a6ca-a678ba240ca2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['PLANT',\n", + " 'ROBOT_ID',\n", + " 'WELDING_TYPE',\n", + " 'WELDING_DAY',\n", + " 'WELDING_ID',\n", + " 'TIME_MS',\n", + " 'RESISTANCE']" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "welding_dataset_new.columns" + ] + }, + { + "cell_type": "markdown", + "id": "539a4c25-f868-44af-bca3-13b4ca477445", + "metadata": {}, + "source": [ + "

    We will create a feature table by using different functions on the Resistance column. Valid values for functions are: 'count', 'sum', 'min', 'max', 'mean', 'std', 'percentile', 'unique','median', 'var', 'skew', 'kurtosis'.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "aa37d2af-c185-4a84-9ca5-8628a216aa27", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3d71e7bf77b44a3994113f0fe2dc8068", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDmin_TIME_MSmax_TIME_MScount_RESISTANCEsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEpercentile_RESISTANCEunique_RESISTANCEmedian_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCE
    14152025-07-1247121646626108176.805487928988.4331503589787308.8898639352117172.806398543017467.43470974015446155.80095377664534626155.800953776645344547.4400777388830.49796745320216573-1.1467845713561156
    14182025-06-2470521633613117433.3847865466882.76152873653831316.66867750259905191.5715901901250878.08923446856586206.63668033820593613206.636680338205936097.9285398866550.04364970537902622-1.5898532421335452
    14152025-07-124462111061086166518.945355507370.0355276366476315.4566895327382153.3323622058078472.20479609391711108.804345050039221086108.804345050039225213.5325789641480.9529411796445812-0.6269191898462032
    14182025-06-2474821764744109921.2726066986484.02047298240994282.98968717382587147.7436459767454859.15325216552249111.91280735495172744111.912807354951723499.1072417578910.8606279445787202-0.7317898244111711
    14172025-06-3060521590570108569.6322568252281.47252264867211299.90656597268855190.473039047061867.5249319900682195.99852023934073570195.998520239340734559.616440263336-0.07402858894022789-1.4208348503506993
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID min_TIME_MS max_TIME_MS count_RESISTANCE sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE percentile_RESISTANCE unique_RESISTANCE median_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE\n", + "0 1 41 5 2025-07-12 471 21 646 626 108176.805488 88.433150 308.889864 172.806399 67.434710 155.800954 626 155.800954 4547.440078 0.497967 -1.146785\n", + "1 1 41 8 2025-06-24 705 21 633 613 117433.384787 82.761529 316.668678 191.571590 78.089234 206.636680 613 206.636680 6097.928540 0.043650 -1.589853\n", + "2 1 41 5 2025-07-12 446 21 1106 1086 166518.945356 70.035528 315.456690 153.332362 72.204796 108.804345 1086 108.804345 5213.532579 0.952941 -0.626919\n", + "3 1 41 8 2025-06-24 748 21 764 744 109921.272607 84.020473 282.989687 147.743646 59.153252 111.912807 744 111.912807 3499.107242 0.860628 -0.731790\n", + "4 1 41 7 2025-06-30 605 21 590 570 108569.632257 81.472523 299.906566 190.473039 67.524932 195.998520 570 195.998520 4559.616440 -0.074029 -1.420835" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "features = welding_dataset_new.loc[welding_dataset_new.TIME_MS > 20,:]. \\\n", + " groupby(welding_dataset_new.columns[0:5]). \\\n", + " agg({\n", + " 'TIME_MS':['min','max'],\n", + " 'RESISTANCE':['count', 'sum', 'min', 'max', 'mean', 'std', 'percentile', 'unique','median', 'var','skew','kurtosis']\n", + " })\n", + "features" + ] + }, + { + "cell_type": "markdown", + "id": "0196e16a-9d9d-4d44-a0ed-e5220c3314e2", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Anomaly Detection on Sensor Data

    \n", + " \n", + "

    Let's start by getting the feature columns from the features tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "27cdf0f8-e0b3-41b5-b18d-b77cdbc5652b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['count_RESISTANCE',\n", + " 'sum_RESISTANCE',\n", + " 'min_RESISTANCE',\n", + " 'max_RESISTANCE',\n", + " 'mean_RESISTANCE',\n", + " 'std_RESISTANCE',\n", + " 'percentile_RESISTANCE',\n", + " 'unique_RESISTANCE',\n", + " 'median_RESISTANCE',\n", + " 'var_RESISTANCE',\n", + " 'skew_RESISTANCE',\n", + " 'kurtosis_RESISTANCE']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_names = features.columns[7::]\n", + "feature_names" + ] + }, + { + "cell_type": "markdown", + "id": "9655f048-ffbd-4785-9e8b-39d192ff7808", + "metadata": {}, + "source": [ + "
    \n", + "

    5.1 Clustering by curve shape

    \n", + "

    To cluster time series by shapes, we will use the Dynamic Time Warping (DTW) distance that measures the similarity between two time series. This distance is well adapted to this kind of problem since it provides robustness to shifts in time and height.

    \n", + "\n", + "

    Distance Matrix in-database Computations

    \n", + "\n", + "

    The ClearScape Analytics DTW function computes at scale distances between one reference curve to a set of curves, a many-to-one approach. ClearScape Analytics offers in database dynamic time warping function, callable in SQL as TD_DTW. TD_DTW measures the similarity of two time series. The Dynamics Time Warping (DTW) algorithm is used for space and time. The algorithm uses the FastDTW algorithm. TD_DTW measures the similarity of two time series. The Dynamics Time Warping (DTW) algorithm is used for space and time. The algorithm uses the FastDTW algorithm. This function computes at scale the DTW distances between one reference curve to a set of curves, a many-to-one approach. We want to compute the distance matrix of our subset, i.e. the DTW distance between each curve. The distance matrix is symmetric, since the DTW is, hence we only need to compute the triangular matrix. We wrapped this computation in the tdsense package that calls the TD_DTW function and iterates on the matrix row to compute and store the whole triangular distance matrix in a table.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "207e72c8-41e3-481a-9727-a4c7510f4206", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['2025-07-12',\n", + " '2025-07-06',\n", + " '2025-06-12',\n", + " '2025-07-30',\n", + " '2025-06-24',\n", + " '2025-07-18',\n", + " '2025-06-30',\n", + " '2025-08-05',\n", + " '2025-07-24',\n", + " '2025-06-18']" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "overview = welding_dataset_new.groupby('WELDING_DAY').count(distinct=True)\n", + "dates = list(overview.to_pandas().reset_index()['WELDING_DAY'].values.astype('str'))\n", + "dates" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "7c7180b4-a8b5-450a-96be-8aed93d1199a", + "metadata": {}, + "outputs": [], + "source": [ + "subset = welding_dataset_new[ \\\n", + " (welding_dataset_new['PLANT'] == 1) & \\\n", + " (welding_dataset_new['ROBOT_ID'] == 41) & \\\n", + " (welding_dataset_new['WELDING_TYPE'] in (8,9)) & \\\n", + " (welding_dataset_new['WELDING_DAY'].isin(dates)) \\\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "0dda2eca-af26-4741-abeb-b63758f8c996", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(344622, 7)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subset_zoom = subset[(subset.TIME_MS < 400) & (subset.TIME_MS > 40)]\n", + "subset_zoom.shape" + ] + }, + { + "cell_type": "markdown", + "id": "9d40f422-886d-48e5-a4ce-03b259523917", + "metadata": {}, + "source": [ + "

    The subset of data we have taken contains 7 columns and 344,622 rows.

    \n", + "\n", + "

    Since this is a 2CPU system, the below computation takes around more than 2 hours for 350k rows and so we have pre calculated it and stored in the table in database.

    \n", + "\n", + "

    **In case we still want to compute the matrix please set the If part of the below code to True instead of False

    " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "276fd1b7-e057-4c0c-b8b0-4e063d70eb7a", + "metadata": {}, + "outputs": [], + "source": [ + "if False:\n", + " dtw_matrix = dtw_distance_matrix_computation2(subset_zoom,field='RESISTANCE',\n", + " table_name=dtw_result_table,\n", + " schema_name = Param['database'],\n", + " row_axis='TIME_MS',\n", + " series_id = 'WELDING_ID')\n", + "else:\n", + " dtw_matrix = DataFrame(in_schema('DEMO_AnomalyDetection','DTW_Matrix'))" + ] + }, + { + "cell_type": "markdown", + "id": "42f770a5-f3b2-4862-8256-b1cc1f969750", + "metadata": {}, + "source": [ + "
    \n", + "

    5.2 Hierarchical clustering with Scipy

    \n", + "\n", + "

    Now the distance matrix is available, we can perform the clustering. Here, we will use the open-source package Scipy and its cluster.hierarchy modules, that have been used in a tdsense for convenience.

    \n", + "\n", + "

    Hierarchical clustering is an alternative class of clustering algorithms that produce 1 to n clusters, where n is the number of observations in the data set. As you go down the hierarchy from 1 cluster (contains all the data) to n clusters (each observation is its own cluster), the clusters become more and more similar (almost always).

    " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "0b87b35b-c283-42d8-845b-5c9c7851c822", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    MATRIX_ROWWELDING_ID_1WELDING_ID_2ROW_IDDISTANCE
    012103404.181076
    123102879.840770
    234102035.367486
    345102641.395023
    4561010501.828495
    ..................
    49749899699999704333.889951
    497499997100099704851.558731
    49750099699999802143.966383
    497501997100099802132.062450
    497502997100099902119.041857
    \n", + "

    497503 rows × 5 columns

    \n", + "
    " + ], + "text/plain": [ + " MATRIX_ROW WELDING_ID_1 WELDING_ID_2 ROW_ID DISTANCE\n", + "0 1 2 1 0 3404.181076\n", + "1 2 3 1 0 2879.840770\n", + "2 3 4 1 0 2035.367486\n", + "3 4 5 1 0 2641.395023\n", + "4 5 6 1 0 10501.828495\n", + "... ... ... ... ... ...\n", + "497498 996 999 997 0 4333.889951\n", + "497499 997 1000 997 0 4851.558731\n", + "497500 996 999 998 0 2143.966383\n", + "497501 997 1000 998 0 2132.062450\n", + "497502 997 1000 999 0 2119.041857\n", + "\n", + "[497503 rows x 5 columns]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dtw_matrix_loc = dtw_matrix.sort(columns=['WELDING_ID_2','WELDING_ID_1']).to_pandas(all_rows=True)\n", + "dtw_matrix_loc" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "49f64fd3-1f33-4b7c-9d8f-b0636bffc2f4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAANqCAYAAAAOjlCDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAADro0lEQVR4nOzde5RmZX0n+u9PCCIiMSQQosQ70pLg0QiIyzMQg7NUgg4eQbxEJ32ylhkwohkngIszs9Y50QmQixpRRo8R4oWMQqKcABLjnUSGRXtFSSNKgoi0ElvEFhFDP+ePd5cUL29VV3XXU29dPp+1eu137/389n52dVVBf/ezn12ttQAAAAAAAP08YNodAAAAAACAtU4YDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOdp92B7jXL/zCL7RHPepR0+4GAAAAAADz+OxnP/uvrbX9FlMjjF9BHvWoR2XTpk3T7gYAAAAAAPOoqpsWW2OaGgAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0tvu0OwDTdOHV38glX7hl2t0AAKCT//Ckh+clT33EtLsBAABGxrO+XfKFW3LdrXdMuxsAAHRw3a13GHgBAMCKYWQ8694hv7RP3v+7T5t2NwAAWGInvf2qaXcBAAB+ysh4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0NmCwviq+pmqOqaq/rSqNlXVHVV1d1XdUlUXV9Wv76D+JVV1ZVV9v6q2Dcd4ZVXNe/6qenZVfaSqtlbVnVX15ao6s6oeuIO6p1bVB6vqO1V1V1XdUFXnVNXP7qDu4Kp6b1V9q6p+XFU3VdV5VfVLO6h72NDupqHuW1X1nqp6/Hx1AAAAAACsDwsdGX90ko8m+c9JHp7k00k+mGRrkhck+URV/T+TCqvqrUnel+SwJFcm+fskj09ybpKL5wrkq+q0JB9O8htJPpfksiT7J3l9kk9W1V5z1L04yT8mOT7JV5NckmSPJH+QZFNV7T9H3dFJPp/kpUluHa7vziT/KckX5wrWq+oJSb40tLtzqNuS5LeSfL6qnj6pDgAAAACA9WOhYfz2JH+d5KjW2i+11o5rrZ3UWjs0yYuS3JPkv1bVM2YXVdULkpySUTj9xKHu+UkOSvJPSZ6f5FXjJ6uqw5KclVG4/fTW2jNbaycmeUxGNwKOTPKGCXUHJvmLJJXk+Nba/95aOynJY5O8P8njkrx9Qt2Dk/zPJA9K8qrW2lNaay9qrT0hyZ8m2S/JX1VVjdU9YKj7+SR/0lp7wlD3a0lOTbJXkg/MdeMAAAAAAID1YUFhfGvt4621E1prV07Y9/4kFwyrvzW2+3XD8vTW2g2zar6d5ORh9YwJo+PPyChQP7u1dvWsum1JNmZ0c+CUqnroWN1rMgrU/7K1dsmsun9L8ookdyQ5vqoOGavbmOSAJJ9orZ07tu/0JF9P8mtJnjO279gkT0zytaHPP9Vae0uSTyZ5WJLfDgAAAAAA69ZSvcD188PywJkNwyj1pyS5O8lF4wWttU8luSWjEPzIWXV75N7Q+30T6m5MclVGU88cO7b7+Hnq7kjyt2PtFlJ3T0aj3+er+59Du3HvG2sHAAAAAMA6tFRh/EHD8tZZ2548LL/SWvvRHHXXjLVNkoMzmt5la2vt6wutq6p9MpqOZvb+hZxv9vpy1QEAAAAAsI7schhfVQfk3mlY/nrWrkcPy5vmKf/GWNvZn7+RuU2qe9SwvH0YBb+guiHE33cHfZ10vtnrO6r7harae442AAAAAACscbsUxlfV7knem+Rnk3ystfa3s3bPhM8/nOcQ24blQ1ZA3Xy1k+oWcs5tsz6P1yZJquoVVbWpqjbddtttcxwGAAAAAIDVbFdHxv+PJMckuTn3f3krC9Bae0dr7bDW2mH77bfftLsDAAAAAEAHOx3GV9Wbk/xOki1JjmmtbRlrMjMq/MHzHGZmZPkPVkDdfLWT6hZyztmj7sdrAQAAAABYJ3YqjK+qP01yapLbMgrib5jQ7F+G5SPnOdQvj7Wd/fkRi6ybmbf9ocM88AuqG+aX/96wOldfJ51v9vqO6r7bWts2RxsAAAAAANa4RYfxVXVOkv+c5LtJntlau26Opp8flr9SVQ+ao83hY22TZHOSHyXZt6oeO0fdEeN1rbXvJ/n62HF3WDf43DLXAQAAAACwjiwqjK+qs5L8QUYjyf99a+1Lc7Vtrd2cUVi9R5ITJxzr6CQHZjTNzVWz6u5O8uFh9aUT6h6T5GlJ7k5y2djuS+ap2yfJc4fVDy6ibrckL9pB3YuGduNmjjdeBwAAAADAOrLgML6qXp/k9CS3ZxTEL2S09x8Ny7Or6nGzjrV/krcNq2e11raP1Z2VpCU5vaqOmFW3d5J3Df1+W2vt9rG6N2U0qv4/VtXzZtXtnuTtSfZJ8qEJo/nPz+imwDOq6pUT+vLYjEa3f3hs32VJvpTkcbOudeacv5fk15N8K8kFAQAAAABg3dp9IY2GYPvMYfVrSV5VVZOabm6tnTWz0lq7uKrOS3Jykmur6qNJfpLkmAzBeJJzxw/SWrumqs5IcnaSz1TVxzO6CXB0kv2TXD2rP7Prbq6q30nyniQfqqp/yCgMPzKjed2/luR3J9Rtq6oXZRS2n1tVG5PckOR/S/KEJP+a5MWttTZWt72qXpzk00n+oKqOS/LFJAcleUpGNwZOaq3dOemLBQAAAADA+rCgMD7JvrM+Hzb8meRTGY0k/6nW2ilDKP7KjML03TKaF/5dSc6bMCp+pu6cqvpSktdmNCf7nkluTPLnSf6ktfbjOer+qqpuTPK6JE9P8tQkNyf54yRvGOaWn1T3qap6cpL/ltHNgkOTfDujEfX/d2vt1jnqrquqJw51xyb5P5JsTfK+JP9Pa+2rk+oAAAAAAFg/FhTGt9YuyC5MtdJauzDJhTtRd0WSK3ai7uokx+9E3fWZMG/8Auq+leQ/LbYOAAAAAID1YVEvcAUAAAAAABZPGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQ2e7T7gAAq8eFV38jl3zhlml3AwAW5Lpb70iSnPT2q6bcEwBYmP/wpIfnJU99xLS7AXRiZDwAC3bJF275abABACvdIb+0Tw75pX2m3Q0AWJDrbr3D4CdY44yMB2BRDvmlffL+333atLsBAACwpniSC9Y+I+MBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM4WHMZX1cFV9eqqem9Vba6q7VXVquqEOdr/+rB/IX8eMVZ7wQ7ab56nnw+oqldW1aaq2lZV36+qK6vqxQu4xpcMbb8/1G4ajjXv16mqnl1VH6mqrVV1Z1V9uarOrKoH7uicAAAAAACsfbsvou3JSV69iPZbkvzlPPuPSPKEJF9PcvMcbf4xydcmbL91UuOq2i3J3yR5XpI7knwkyQOTHJPkwqo6srU28Rqq6q1JTklyV5KPJfnJUHdukmOq6oTW2vYJdaclOTvJPUk+meR7SY5O8vokx1XVMa21O+e4PgAAAAAA1oHFhPFfTvLHSTYl+WySv8godJ6otbY5yW/Ptb+qrhs+vqu11uZo9s7W2gWL6ONrMgrir0vyG621bw/nOijJlUlOraqPt9YuGevLCzIK4rckOaq1dsOw/ReTfCLJ85O8Ksmbx+oOS3JWkjuH8109bN87yWVJjkryhiS/v4hrAAAAAABgjVnwNDWttXe21k5rrX2gtfb1XTlpVT0to1Hx9yS5YFeONeuYuyU5bVg9eSaIT5IhXD99WD1zQvnrhuXpM0H8UPftjJ4ISJIzJkxXc0aSSnL2TBA/1G1LsjHJ9iSnVNVDd+qiAAAAAABYE6b1Atf/c1he0Vr71hId82lJ9k/yzdbapyfsvyijqWcOr6qHz2ysqgOTPCXJ3UOb+2itfSrJLUkOSHLkrLo9kjxnWH3fhLobk1yVZI8kx+7cJQEAAAAAsBYsexhfVXslOWlY/YsdNH9GVf1ZVb2jqv6wqp41z8tUnzwsr5m0c5i3/SvD6pMm1H2ltfajOY59zVjbJDk4yV5Jts7zpMCkOgAAAAAA1pnFzBm/VE5M8pAk30ly6Q7avnzCtuuq6kWttWvHtj96WN40z/G+kVEQ/+hZ2xZaN7vt7M/fyNwm1QEAAAAAsM5MY5qamSlq3t1a+8kcbb6Q5NQkhyTZO8nDkhyX5IvDto/OnmpmsPew/OE85942LB8yxToAAAAAANaZZR0ZX1WPS3LUsPquudq11t40tumHSS6rqr9P8qmM5m5/XZLf69DNZVVVr0jyiiR5xCMeMeXeAAAAAADQw3KPjJ8ZFX9Va+2fFlvcWrs7yR8Nq+MvRZ0Zhf7geQ4xM5r9B1Osu4/W2jtaa4e11g7bb7/95jkUAAAAAACr1bKF8VW1W+6dA35HL26dz+ZhOT5Nzb8My0fOU/vLY22Xom6+4eyT6gAAAAAAWGeWc2T8szIK0Lclef8uHOfnh+W2se2fG5aHTyqqqr2S/Oqw+vlZu2Y+/0pVPWiOcx4+1jYZ3RT4UZJ9q+qxc9QdMaEOAAAAAIB1ZjnD+N8Zlh9orY0H6YvxwmF5zdj2q5LcluTAqjoq93dikp9Jck1r7ZaZja21mzMK8vcY2txHVR2d5MAkW4ZzzNTdneTDw+pLJ9Q9JsnTktyd5LKFXBgAAAAAAGvTsoTxVfULSZ47rM47RU1VPamqjhumtZm9ffeqem2SU4dNb5y9v7V2T5JzhtXzqmr/WbUHJTlrWH3DhNPOzEN/9vCS2Zm6/ZO8bVg9q7W2fazurCQtyelVdcSsur0zekHtA5K8rbV2+zyXDAAAAADAGrf7QhtW1a/l3mA6SQ4Zlv+9qv7LzMbW2pETyl+W0aj0za21z+zgVI9K8sEkW6vqc0m+k9HUNIcmeViS7UlOa6393YTaNyY5KqPg/4aq+thw3mcm2TPJW1prl4wXtdYurqrzkpyc5Nqq+miSnyQ5Jsk+ST6U5NwJdddU1RlJzk7ymar6eJLbkxydZP8kVyc5cwfXCwAAAADAGrfgMD6jUPqpE7YftIDajcPyXQto+8Ukb85ovvVDkvy7jEaffzPJ+Une2lr77KTC1to9VXV8klOGcz4ryT1JPpvRCPUL5zppa+2UqvqHJK/MKEzfLaN54d+V5LwJo+Jn6s6pqi8leW1Gc8vvmeTGJH+e5E9aaz9ewDUDAAAAALCGLTiMb619MkntzElaa09cRNt/TvKanTnPUL89o1Hs9xvJvoDaC5PMGdjPU3dFkisWWwcAAAAAwPqwnC9wBQAAAACAdUkYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOFhzGV9XBVfXqqnpvVW2uqu1V1arqhHlqLhjazPVn8zy1D6iqV1bVpqraVlXfr6orq+rFC+jrS4a23x9qNw3Hmvd6q+rZVfWRqtpaVXdW1Zer6syqeuAO6p5aVR+squ9U1V1VdUNVnVNVP7ujvgIAAAAAsPbtvoi2Jyd59U6e5x+TfG3C9lsnNa6q3ZL8TZLnJbkjyUeSPDDJMUkurKojW2sT+1JVb01ySpK7knwsyU+GunOTHFNVJ7TWtk+oOy3J2UnuSfLJJN9LcnSS1yc5rqqOaa3dOaHuxUnek2S34TpvSXJkkj9I8vyqenpr7TuT+goAAAAAwPqwmDD+y0n+OMmmJJ9N8hcZhdUL8c7W2gWLONdrMgrir0vyG621bydJVR2U5Mokp1bVx1trl8wuqqoXZBTEb0lyVGvthmH7Lyb5RJLnJ3lVkjeP1R2W5Kwkdw7nu3rYvneSy5IcleQNSX5/rO7AjL4OleT4mf5U1e5J3pvkpCRvH84LAAAAAMA6teBpalpr72ytndZa+0Br7eu9OjSMij9tWD15Jogf+nBDktOH1TMnlL9uWJ4+E8QPdd/OaGR/kpwxYbqaMzIK1M+eCeKHum1JNibZnuSUqnroWN1rkjwoyV/OvjHQWvu3JK/IaFT/8VV1yHzXDAAAAADA2rYSX+D6tCT7J/lma+3TE/ZflNHUM4dX1cNnNg6j1J+S5O6hzX201j6V0RQyB2Q0jcxM3R5JnjOsvm9C3Y1JrkqyR5Jjx3YfP0/dHUn+dqwdAAAAAADr0HKF8c+oqj+rqndU1R9W1bPmeZnqk4flNZN2DvO2f2VYfdKEuq+01n40x7GvGWubJAcn2SvJ1nlG/N+vrqr2SfLY+fo6x/kAAAAAAFhnFjNn/K54+YRt11XVi1pr145tf/SwvGme430joyD+0bO2LbRudtvZn7+RuU2qe9SwvH0YBb/QOgAAAAAA1pneI+O/kOTUJIck2TvJw5Icl+SLw7aPzp5qZrD3sPzhPMfdNiwfsgrr7qOqXlFVm6pq02233TbPoQAAAAAAWK26hvGttTe11t7SWvun1toPW2u3ttYuS3JEkv+V0dzwr5v/KGtba+0drbXDWmuH7bffftPuDgAAAAAAHUzlBa6ttbuT/NGwOv5S1JnR5A+e5xAzo9J/sArrAAAAAABYZ6YSxg82D8vxaWr+ZVg+cp7aXx5ruxR1j1hk3czc9A8dXua60DoAAAAAANaZaYbxPz8st41t/9ywPHxSUVXtleRXh9XPz9o18/lXqupBc5zz8LG2yeimwI+S7FtVj52j7ojxutba95N8fb6+TqoDAAAAAGD9mWYY/8Jhec3Y9quS3JbkwKo6akLdiUl+Jsk1rbVbZja21m7OKMjfY2hzH1V1dJIDk2wZzjFTd3eSDw+rL51Q95gkT0tyd5LLxnZfMk/dPkmeO6x+cMJ1AAAAAACwTnQL46vqSVV1XFXtNrZ996p6bZJTh01vnL2/tXZPknOG1fOqav9ZtQclOWtYfcOE087MQ392VT1uVt3+Sd42rJ7VWts+VndWkpbk9Ko6Ylbd3kneldHX6W2ttdvH6t6U0aj6/1hVz5t9jUnenmSfJB9qrV03oa8AAAAAAKwTuy+0YVX9Wu4NtJPkkGH536vqv8xsbK0dOXx8VEYjwrdW1eeSfCejqWkOTfKwJNuTnNZa+7sJp3tjkqMyGll+Q1V9LKPR8M9MsmeSt7TWLhkvaq1dXFXnJTk5ybVV9dEkP0lyTIZgPMm5E+quqaozkpyd5DNV9fEktyc5Osn+Sa5OcuaEupur6neSvCfJh6rqH5J8K8mRGc1d/7Ukvzvh+gAAAAAAWEcWHMZnFGY/dcL2g+Zo/8Ukb85o3vRDkvy7jEaffzPJ+Une2lr77KTC1to9VXV8klOSbEzyrCT3JPlsRiPUL5yrk621U4ZQ/JUZhem7ZTQv/LuSnDdhVPxM3TlV9aUkr81oDvg9k9yY5M+T/Elr7cdz1P1VVd2Y5HVJnp7R1+jmJH+c5A3D3PIAAAAAAKxjCw7jW2ufTFKLaP/PSV6z+C79tH57RqPY7zeSfQG1FyaZM7Cfp+6KJFfsRN3VSY5fbB0AAAAAAOvDNF/gCgAAAAAA64IwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOhPGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM6E8QAAAAAA0JkwHgAAAAAAOtt92h0AAAAAWC7fe/8Hcsell067G3A/P/6FZyRJbnrZeVPuCdzfPscdl5876YXT7saqJ4wHAAAA1o07Lr00d23enD03bJh2V+A+3vyvn5h2F2CiuzZvThJh/BIQxgMAAADryp4bNuSR73n3tLsBsCrc9LKXT7sLa4Y54wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhswWF8VR1cVa+uqvdW1eaq2l5VrapOmKP9z1TVMVX1p1W1qaruqKq7q+qWqrq4qn59nnNdMBx7rj+b56l9QFW9cjjntqr6flVdWVUvXsA1vmRo+/2hdtNwrHm/TlX17Kr6SFVtrao7q+rLVXVmVT1wR+cEAAAAAGDt230RbU9O8upFtD86yd8Pn7ck+XSSHyY5JMkLkrygqv6wtfbf5jnGPyb52oTtt05qXFW7JfmbJM9LckeSjyR5YJJjklxYVUe21iZeQ1W9NckpSe5K8rEkPxnqzk1yTFWd0FrbPqHutCRnJ7knySeTfG+49tcnOa6qjmmt3TnPNQIAAAAAsMYtJoz/cpI/TrIpyWeT/EVGofNctif56yRvbq1dOXtHVZ2U5H1J/mtVfaK19ok5jvHO1toFi+jjazIK4q9L8huttW8P5zsoyZVJTq2qj7fWLhnrzwsyCuK3JDmqtXbDsP0Xk3wiyfOTvCrJm8fqDktyVpI7h/NdPWzfO8llSY5K8oYkv7+IawAAAAAAYI1Z8DQ1rbV3ttZOa619oLX29QW0/3hr7YTxIH7Y9/4kFwyrv7Xg3s5jGBV/2rB68kwQP5zvhiSnD6tnTih/3bA8fSaIH+q+ndETAUlyxoTpas5IUknOngnih7ptSTZmdEPilKp66E5dFAAAAAAAa8I0X+D6+WF54BId72lJ9k/yzdbapyfsvyijqWcOr6qHz2ysqgOTPCXJ3UOb+2itfSrJLUkOSHLkrLo9kjxnWH3fhLobk1yVZI8kx+7cJQEAAAAAsBZMM4w/aFhOnP998Iyq+rOqekdV/WFVPWuel6k+eVheM2nnMG/7V4bVJ02o+0pr7UdzHPuasbZJcnCSvZJsnedJgUl1AAAAAACsM4uZM37JVNUBSX57WP3reZq+fMK266rqRa21a8e2P3pY3jTP8b6RURD/6FnbFlo3u+3sz9/I3CbVAQAAAACwziz7yPiq2j3Je5P8bJKPtdb+dkKzLyQ5NckhSfZO8rAkxyX54rDto7OnmhnsPSx/OM/ptw3Lh0yx7j6q6hVVtamqNt12223zHAoAAAAAgNVqGtPU/I8kxyS5OXO8vLW19qbW2ltaa//UWvtha+3W1tplSY5I8r8ymhv+dZNqV5vW2jtaa4e11g7bb7/9pt0dAAAAAAA6WNYwvqrenOR3kmxJckxrbcti6ltrdyf5o2F1/KWoM6PQHzzPIWZGs/9ginUAAAAAAKwzyxbGV9WfZjT1zG0ZBfE37OShNg/L8Wlq/mVYPnKe2l8ea7sUdY9YZB0AAAAAAOvMsoTxVXVOkv+c5LtJntlau24XDvfzw3Lb2PbPDcvD5+jDXkl+dVj9/KxdM59/paoeNMc5Dx9rm4xuCvwoyb5V9dg56o6YUAcAAAAAwDrTPYyvqrOS/EGS7yX59621L+3iIV84LK8Z235VRqPuD6yqoybUnZjkZ5Jc01q7ZWZja+3mjIL8PYY24/0/OsmBGU2tc9WsuruTfHhYfemEusckeVqSu5NctpALAwAAAABgbeoaxlfV65OcnuT2jIL4HY4Qr6onVdVxVbXb2Pbdq+q1GU11kyRvnL2/tXZPknOG1fOqav9ZtQclOWtYfcOE087MQ392VT1uVt3+Sd42rJ7VWts+VndWkpbk9Ko6Ylbd3kneldHX922ttdvnuWQAAAAAANa43RfasKp+LfcG00lyyLD871X1X2Y2ttaOHNo/L8mZw+avJXlVVU069ObW2lmz1h+V5INJtlbV55J8J6OpaQ5N8rAk25Oc1lr7uwnHemOSo5I8N8kNVfWxjEbDPzPJnkne0lq7ZLyotXZxVZ2X5OQk11bVR5P8JMkxSfZJ8qEk506ou6aqzkhydpLPVNXHM7rxcHSS/ZNcPetrAAAAAADAOrXgMD6jUPqpE7YfNEf7fWd9Pmz4M8mncu+o9ST5YpI3ZzTf+iFJ/l1Go8+/meT8JG9trX120oFaa/dU1fFJTkmyMcmzktyT5LMZjVC/cI4+pLV2SlX9Q5JXZhSm75bRvPDvSnLehFHxM3XnVNWXkrw2o7nl90xyY5I/T/InrbUfz3VOAAAAAADWhwWH8a21TyaZOLR9jvYXJLlgsR1qrf1zktcstm5W/faMRrHfbyT7AmovTDJnYD9P3RVJrlhsHQAAAAAA60P3F7gCAAAAAMB6J4wHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADpbcBhfVQdX1aur6r1VtbmqtldVq6oTFlD7kqq6sqq+X1XbqmpTVb2yquY9f1U9u6o+UlVbq+rOqvpyVZ1ZVQ/cQd1Tq+qDVfWdqrqrqm6oqnOq6mcXcI3vrapvVdWPq+qmqjqvqn5pB3UPG9rdNNR9q6reU1WPn68OAAAAAID1YTEj409O8qYkL01ycJJaSFFVvTXJ+5IcluTKJH+f5PFJzk1y8VyBfFWdluTDSX4jyeeSXJZk/ySvT/LJqtprjroXJ/nHJMcn+WqSS5LskeQPkmyqqv3nqDs6yeeH67s1yQeT3JnkPyX54lzBelU9IcmXhnZ3DnVbkvxWks9X1dMnf2UAAAAAAFgvFhPGfznJHyc5KcnjknxqRwVV9YIkp2QUTj+xtXZca+35SQ5K8k9Jnp/kVRPqDktyVkbh9tNba89srZ2Y5DFJPp3kyCRvmFB3YJK/yOhGwfGttf+9tXZSkscmef/Q77dPqHtwkv+Z5EFJXtVae0pr7UWttSck+dMk+yX5q6qqsboHDHU/n+RPWmtPGOp+LcmpSfZK8oG5bhwAAAAAALA+LDiMb629s7V2WmvtA621ry+w7HXD8vTW2g2zjvXtjEbaJ8kZE0bHn5FRoH52a+3qWXXbkmxMsj3JKVX10LG612QUqP9la+2SWXX/luQVSe5IcnxVHTJWtzHJAUk+0Vo7d2zf6Um+nuTXkjxnbN+xSZ6Y5GtDn3+qtfaWJJ9M8rAkvx0AAAAAANatbi9wHUapPyXJ3UkuGt/fWvtUklsyCsGPnFW3R+4Nvd83oe7GJFdlNPXMsWO7j5+n7o4kfzvWbiF192Q0+n2+uv85tBv3vrF2AAAAAACsQ93C+CRPHpZfaa39aI4214y1TUbz0e+VZOs8I/DvV1dV+2Q0Hc3s/Qs53+z15aoDAAAAAGAd6RnGP3pY3jRPm2+MtZ39+RuZ26S6Rw3L24dR8AuqG0L8fXfQ10nnm72+o7pfqKq952gDAAAAAMAa1zOMnwmffzhPm23D8iEroG6+2kl1Cznntlmfx2uTJFX1iqraVFWbbrvttjkOAwAAAADAatYzjGcBWmvvaK0d1lo7bL/99pt2dwAAAAAA6KBnGD8zKvzB87SZGVn+gxVQN1/tpLqFnHP2qPvxWgAAAAAA1omeYfy/DMtHztPml8fazv78iEXWzczb/tBhHvgF1Q3zy39vWJ2rr5PON3t9R3Xfba1tm6MNAAAAAABrXM8w/vPD8leq6kFztDl8rG2SbE7yoyT7VtVj56g7Yryutfb9JF8fO+4O6wafW+Y6AAAAAADWkW5hfGvt5ozC6j2SnDi+v6qOTnJgki1JrppVd3eSDw+rL51Q95gkT0tyd5LLxnZfMk/dPkmeO6x+cBF1uyV50Q7qXjS0GzdzvPE6AAAAAADWkd4vcP2jYXl2VT1uZmNV7Z/kbcPqWa217WN1ZyVpSU6vqiNm1e2d5F0Z9fttrbXbx+relNGo+v9YVc+bVbd7krcn2SfJh1pr143VnZ/RTYFnVNUrJ/TlsRmNbv/w2L7LknwpyeNmXevMOX8vya8n+VaSCwIAAAAAwLq1+0IbVtWv5d4APUkOGZb/var+y8zG1tqRsz5fXFXnJTk5ybVV9dEkP0lyTIZgPMm54+dqrV1TVWckOTvJZ6rq40luT3J0kv2TXJ3kzAl1N1fV7yR5T5IPVdU/ZBSGH5nRvO5fS/K7E+q2VdWLMgrbz62qjUluSPK/JXlCkn9N8uLWWhur215VL07y6SR/UFXHJflikoOSPCWjGwMntdbuHD8nAAAAAADrx2JGxu+T5Kmz/jxk2H7Q2Pb7aK2dktF0LZ/LKEx/Vkah+O8leUFr7Z5JJ2utnZPkOUk+kdGc7M/NKBT/v5IcPVfA3Vr7qyRPT/L/ZRSkPz/JvyX54ySHtda+M0fdp5I8OcmFGU2f838k2TujEfVPbK1dP0fddUmeOLTbe6h7eJL3JXlSa+0fJtUBAAAAALB+LHhkfGvtk0lqZ07SWrswo5B7sXVXJLliJ+quTnL8TtRdnwnzxi+g7ltJ/tNi6wAAAAAAWB96zxkPAAAAAADrnjAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6233aHQBYqIu+elEuv/HyaXdjXbt+69FJko1XvGPKPVnfjn3MsTnx8SdOuxsAAADAIgjjgVXj8hsvz/Vbr8/B+x487a6sW09+8qem3YV17/qt1yeJMB4AAABWGWE8sKocvO/BOf/Z50+7GzA1G6/YOO0uAAAAADvBnPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB0JowHAAAAAIDOhPEAAAAAANCZMB4AAAAAADoTxgMAAAAAQGfCeAAAAAAA6EwYDwAAAAAAnQnjAQAAAACgM2E8AAAAAAB01jWMr6pfr6q2wD+PmFV3wQ7abp7nnA+oqldW1aaq2lZV36+qK6vqxQvo70uGtt8fajcNx5r361RVz66qj1TV1qq6s6q+XFVnVtUDF/cVAwAAAABgLdq98/G3JPnLefYfkeQJSb6e5OYJ+/8xydcmbL910sGqarckf5PkeUnuSPKRJA9MckySC6vqyNbaq+eofWuSU5LcleRjSX4y1J2b5JiqOqG1tn1C3WlJzk5yT5JPJvlekqOTvD7JcVV1TGvtzknnBAAAAABgfegaxrfWNif57bn2V9V1w8d3tdbahCbvbK1dsIhTviajIP66JL/RWvv2cJ6DklyZ5NSq+nhr7ZKxfrwgoyB+S5KjWms3DNt/Mcknkjw/yauSvHms7rAkZyW5czjf1cP2vZNcluSoJG9I8vuLuAYAAAAAANaYqc0ZX1VPy2hU/D1JLliC4+2W5LRh9eSZID5JhnD99GH1zAnlrxuWp88E8UPdt5OcPKyeMWG6mjOSVJKzZ4L4oW5bko1Jtic5paoeulMXBQAAAADAmjDNF7j+n8Pyitbat5bgeE9Lsn+Sb7bWPj1h/0UZTT1zeFU9fGZjVR2Y5ClJ7h7a3Edr7VNJbklyQJIjZ9XtkeQ5w+r7JtTdmOSqJHskOXbnLgkAAAAAgLVgKmF8Ve2V5KRh9S/mafqMqvqzqnpHVf1hVT1rnpepPnlYXjNp5zBv+1eG1SdNqPtKa+1Hcxz7mrG2SXJwkr2SbG2tfX0RdQAAAAAArDO9X+A6lxOTPCTJd5JcOk+7l0/Ydl1Vvai1du3Y9kcPy5vmOd43MgriHz1r20LrZred/fkbmdukOgAAAAAA1plpTVMzM0XNu1trP5mw/wtJTk1ySJK9kzwsyXFJvjhs++jsqWYGew/LH85z3m3D8iFTrLuPqnpFVW2qqk233XbbPIcCAAAAAGC1WvYwvqoel+SoYfVdk9q01t7UWntLa+2fWms/bK3d2lq7LMkRSf5XRnPDv25S7WrTWntHa+2w1tph++2337S7AwAAAABAB9MYGT8zKv6q1to/LaawtXZ3kj8aVsdfijozCv3B8xxiZjT7D6ZYBwAAAADAOrOsYXxV7ZZ754Gf78Wt89k8LMenqfmXYfnIeWp/eaztUtQ9YpF1AAAAAACsM8s9Mv5ZGYXo25K8fyeP8fPDctvY9s8Ny8MnFVXVXkl+dVj9/KxdM59/paoeNMc5Dx9rm4xuCvwoyb5V9dg56o6YUAcAAAAAwDqz3GH87wzLD7TWxsP0hXrhsLxmbPtVSW5LcmBVHZX7OzHJzyS5prV2y8zG1trNGQX5ewxt7qOqjk5yYJItwzlm6u5O8uFh9aUT6h6T5GlJ7k5y2UIuDAAAAACAtWnZwviq+oUkzx1W55yipqqeVFXHDVPazN6+e1W9Nsmpw6Y3zt7fWrsnyTnD6nlVtf+s2oOSnDWsvmHCaWfmoT97eMHsTN3+Sd42rJ7VWts+VndWkpbk9Ko6Ylbd3hm9nPYBSd7WWrt9rusFAAAAAGDt230Zz/WyjEamb26tfWaedo9K8sEkW6vqc0m+k9HUNIcmeViS7UlOa6393YTaNyY5KqPQ/4aq+thwzmcm2TPJW1prl4wXtdYurqrzkpyc5Nqq+miSnyQ5Jsk+ST6U5NwJdddU1RlJzk7ymar6eJLbkxydZP8kVyc5c55rBQAAAABgHVjOMH7jsHzXDtp9McmbM5pv/ZAk/y6j0effTHJ+kre21j47qbC1dk9VHZ/klOF8z0pyT5LPZjRC/cK5TtpaO6Wq/iHJKzMK03fLaF74dyU5b8Ko+Jm6c6rqS0lem9Hc8nsmuTHJnyf5k9baj3dwvQAAAAAArHHLFsa31p64wHb/nOQ1u3Ce7RmNYr/fSPYF1F6YZM7Afp66K5Jcsdg6AAAAAADWh+V+gSsAAAAAAKw7wngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnu0+7AwAsn4u+elEuv/HyaXeDXbB56+YkycYrNk65J+ysYx9zbE58/InT7gYAAADLzMh4gHXk8hsvz/Vbr592N9gFG/bdkA37bph2N9hJ12+93g0xAACAdcrIeIB15uB9D875zz5/2t2AdckTDQAAAOuXkfEAAAAAANCZkfEAAAAAAKvU997/gdxx6aXdjn/X5tG7y2562cu7HH+f447Lz530wi7HXmmMjAcAAAAAWKXuuPTSnwbmPey5YUP23NDn3WV3bd7c9UbCSmNkPAAAAADAKrbnhg155HvePe1uLFqv0fYrlZHxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6233aHQAAAGDt+977P5A7Lr102t2A3LV5c5Lkppe9fMo9Yb3b57jj8nMnvXDa3QCWkZHxAAAAdHfHpZf+NASFadpzw4bsuWHDtLvBOnfX5s1uUMI6ZGQ8AAAAy2LPDRvyyPe8e9rdAJg6T2bA+mRkPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ11D+Or6oKqavP82TxH3QOq6pVVtamqtlXV96vqyqp68QLO+ZKh7feH2k3Dsea93qp6dlV9pKq2VtWdVfXlqjqzqh64g7qnVtUHq+o7VXVXVd1QVedU1c/uqK8AAAAAAKx9uy/juf4xydcmbL91fENV7Zbkb5I8L8kdST6S5IFJjklyYVUd2Vp79aSTVNVbk5yS5K4kH0vyk6Hu3CTHVNUJrbXtE+pOS3J2knuSfDLJ95IcneT1SY6rqmNaa3dOqHtxkvck2W24xluSHJnkD5I8v6qe3lr7zhxfEwAAAAAA1oHlDOPf2Vq7YIFtX5NREH9dkt9orX07SarqoCRXJjm1qj7eWrtkdlFVvSCjIH5LkqNaazcM238xySeSPD/Jq5K8eazusCRnJblzON/Vw/a9k1yW5Kgkb0jy+2N1Byb5iySV5PiZ/lTV7knem+SkJG8fzgsAAAAAwDq14uaMH0bFnzasnjwTxCfJEK6fPqyeOaH8dcPy9Jkgfqj7dpKTh9UzJkxXc0ZGgfrZM0H8ULctycYk25OcUlUPHat7TZIHJfnL2TcGWmv/luQVGY3qP76qDpnvmgEAAAAAWNtWXBif5GlJ9k/yzdbapyfsvyijqWcOr6qHz2wcRqk/JcndQ5v7aK19KqMpZA7IaBqZmbo9kjxnWH3fhLobk1yVZI8kx47tPn6eujuS/O1YOwAAAAAA1qHlDOOfUVV/VlXvqKo/rKpnzfFC1ScPy2smHWSYt/0rw+qTJtR9pbX2ozn6cM1Y2yQ5OMleSba21r6+0Lqq2ifJY+fr6xznAwAAAABgnVnOOeNfPmHbdVX1otbatbO2PXpY3jTPsb6RURD/6FnbFlo3u+3sz9/I3CbVPWpY3j6Mgl9oHQAAAAAA68xyjIz/QpJTkxySZO8kD0tyXJIvDts+Onu6maFNkvxwnmNuG5YPWYV191FVr6iqTVW16bbbbpvnUAAAAAAArFbdR8a31t40tumHSS6rqr9P8qmM5m9/XZLf692Xlai19o4k70iSww47rE25OwCsYxd99aJcfuPl0+7GmrZ56+YkycYrNk65J2vfsY85Nic+/sRpdwMAAOCnpvYC19ba3Un+aFid/WLUmdHkD56nfGZU+g9WYR0ArEiX33h5rt96/bS7saZt2HdDNuy7YdrdWPOu33q9G0sAAMCKs5xzxk+yeVjOnqbmX4blI+ep++WxtktR94hF1s3MTf/QqtpnjnnjJ9UBwIp18L4H5/xnnz/tbsAu8eQBAACwEk1tZPzg54fltlnbPjcsD59UUFV7JfnVYfXzs3bNfP6VqnrQHOc7fKxtMroh8KMk+1bVY+eoO2K8rrX2/SRfn6+vk+oAAAAAAFh/ph3Gv3BYXjNr21VJbktyYFUdNaHmxCQ/k+Sa1totMxtbazdnFOTvMbS5j6o6OsmBSbYM55ipuzvJh4fVl06oe0ySpyW5O8llY7svmadunyTPHVY/OOE6AAAAAABYJ7qG8VX1pKo6rqp2G9u+e1W9Nsmpw6Y3zuxrrd2T5Jxh9byq2n9W3UFJzhpW3zDhlDNz0J9dVY+bVbd/krcNq2e11raP1Z2VpCU5vaqOmFW3d5J3ZfR1eltr7faxujdlNKr+P1bV82ZfX5K3J9knyYdaa9dN6CsAAAAAAOtE7znjH5XRqPCtVfW5JN/JaGqaQ5M8LMn2JKe11v5urO6NSY7KaGT5DVX1sYxGwz8zyZ5J3tJau2SsJq21i6vqvCQnJ7m2qj6a5CdJjskQjCc5d0LdNVV1RpKzk3ymqj6e5PYkRyfZP8nVSc6cUHdzVf1Okvck+VBV/UOSbyU5MqO567+W5HcX8oUCAAAAAGDt6j1NzReTvDnJ9UkOSfKCjALuO5Ocn+SI1tofjxcNo+OPT/KqjALtZw11n03y0tbaqeM1s2pPyWjamM8NNc8ajvF7SV4wHHtS3TlJnpPkExnNAf/cJP+a5P9KcnRr7c456v4qydOT/H9JnpDk+Un+LckfJzmstfadufoKAAAAAMD60HVkfGvtn5O8Zidrt2c0iv1+I9kXUHthkgt3ou6KJFfsRN3VGd08AAAAAACA+5n2C1wBAAAAAGDNE8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQ2e7T7gAAAAAA69f33v+B3HHppdPuxrK6a/PmJMlNL3v5lHuyvPY57rj83EkvnHY3YGqMjAcAAABgau649NKfhtPrxZ4bNmTPDRum3Y1lddfmzevupguMMzIeAAAAgKnac8OGPPI97552N+hovT0FAJMYGQ8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6233aHWCV2nR+cu3F0+7FrtvyH0bL818/3X7sqkNPSA7bOO1eAAAAAABzEMazc669ONlybXLAodPuyS55/yMumXYXdt2Wa0dLYTwAAAAArFjCeHbeAYcmGy+bdi84/zen3QMAAAAAYAfMGQ8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhs92l3AACA5XHRVy/K5TdePu1udLd56+YkycYrNk65J/0d+5hjc+LjT5x2NwAAgAUwMh4AYJ24/MbLc/3W66fdje427LshG/bdMO1udHf91uvXxc0VAABYK4yMBwBYRw7e9+Cc/+zzp90NlsB6GPkPAABriZHxAAAAAADQmZHxAAAAALDCfO/9H8gdl1467W4smbs2j97rc9PLXj7lniydfY47Lj930gun3Q1WESPjAQAAAGCFuePSS38aYK8Fe27YkD03rJ33+ty1efOaulnC8jAyHgAAAABWoD03bMgj3/PuaXeDCdbSCH+Wj5HxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhMGA8AAAAAAJ0J4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAznafdgcAAADWku+9/wO549JLp92NFeeuzZuTJDe97OVT7snKs89xx+XnTnrhtLsBAHRmZDwAAMASuuPSS38aPHOvPTdsyJ4bNky7GyvOXZs3u3kDAOuEkfEAAABLbM8NG/LI97x72t1gFfCkAACsH0bGAwAAAABAZ8J4AAAAAADoTBgPAAAAAACdCeMBAAAAAKAzYTwAAAAAAHQmjAcAAAAAgM66hvFV9TNVdUxV/WlVbaqqO6rq7qq6paourqpfn6Pugqpq8/zZPM85H1BVrxzOt62qvl9VV1bVixfQ35cMbb8/1G4ajjXv16mqnl1VH6mqrVV1Z1V9uarOrKoH7uicAAAAAACsfbt3Pv7RSf5++LwlyaeT/DDJIUlekOQFVfWHrbX/Nkf9Pyb52oTtt05qXFW7JfmbJM9LckeSjyR5YJJjklxYVUe21l49R+1bk5yS5K4kH0vyk6Hu3CTHVNUJrbXtE+pOS3J2knuSfDLJ94brfn2S46rqmNbanXNcHwAAAAAA60DvMH57kr9O8ubW2pWzd1TVSUnel+S/VtUnWmufmFD/ztbaBYs432syCuKvS/IbrbVvD+c6KMmVSU6tqo+31i4Z68sLMgrityQ5qrV2w7D9F5N8Isnzk7wqyZvH6g5LclaSO4fzXT1s3zvJZUmOSvKGJL+/iGtgLdt0fnLtxUt7zC1fGi3P/82lPW6SHHpCctjGpT8uAAAAAKwzXaepaa19vLV2wngQP+x7f5ILhtXf2tVzDaPiTxtWT54J4odz3ZDk9GH1zAnlrxuWp88E8UPdt5OcPKyeMWG6mjOSVJKzZ4L4oW5bko0Z3Yw4paoeulMXxdpz7cXJlmuX9pgHPHH0Z6ltuXbpbxwAAAAAwDrVe2T8jnx+WB64BMd6WpL9k3yztfbpCfsvSvL/Jjm8qh7eWrslSarqwCRPSXL30OY+Wmufqqpbkjw8yZFJPjPU7ZHkOUOz902ou7Gqrkry9CTHJrlw1y6PNeOAQ5ONl027FzvWY6Q9AAAAAKxTXUfGL8BBw3LiHPBJnlFVf1ZV76iqP6yqZ83zMtUnD8trJu0c5m3/yrD6pAl1X2mt/WiOY18z1jZJDk6yV5KtrbWvL6IOAAAAAIB1Zmoj46vqgCS/Paz+9RzNXj5h23VV9aLW2vhcH48eljfNc9pvZBTEP3rWtoXWzW47+/M3MrdJdcDgoq9elMtvvHzB7Tdv3Zwk2XjFwuaxP/Yxx+bEx5+4U30DAAAAgKU0lZHxVbV7kvcm+dkkH2ut/e1Yky8kOTXJIUn2TvKwJMcl+eKw7aNV9fCxmr2H5Q/nOfW2YfmQKdYBg8tvvDzXb71+we037LshG/bdsKC212+9flFBPwAAAAD0NK2R8f8jyTFJbs6El7e21t40tumHSS6rqr9P8qmM5m5/XZLf69vN/qrqFUlekSSPeMQjptwbWH4H73twzn/2+Ut+3IWOngcAAACA5bDsI+Or6s1JfifJliTHtNa2LLS2tXZ3kj8aVo8d2z0zCv3B8xxiZjT7D6ZYdx+ttXe01g5rrR223377zXMoAAAAAABWq2UN46vqTzOafua2jIL4G3biMJuH5fg0Nf8yLB85T+0vj7Vdirr5hrNPqgMAAAAAYJ1ZtjC+qs5J8p+TfDfJM1tr1+3koX5+WG4b2/65YXn4HOffK8mvDqufn7Vr5vOvVNWD5jjn4WNtk9FNgR8l2beqHjtH3RET6gAAAAAAWGeWJYyvqrOS/EGS7yX59621L+3C4V44LK8Z235VRiPuD6yqoybUnZjkZ5Jc01q7ZWZja+3mjIL8PYY2430/OsmBGU2rc9WsuruTfHhYfemEusckeVqSu5NctpALAwAAAABgbeoexlfV65OcnuT2jIL4eUeJV9WTquq4qtptbPvuVfXajKa5SZI3zt7fWrsnyTnD6nlVtf+s2oOSnDWsvmHCaWfmoT+7qh43q27/JG8bVs9qrW0fqzsrSUtyelUdMatu7yTvyujr+7bW2u3zXDIAAAAAAGvc7j0PXlXPS3LmsPq1JK+qqklNN7fWZsLyRyX5YJKtVfW5JN/JaGqaQ5M8LMn2JKe11v5uwnHemOSoJM9NckNVfSyj0fDPTLJnkre01i4ZL2qtXVxV5yU5Ocm1VfXRJD9JckySfZJ8KMm5E+quqaozkpyd5DNV9fGMbjocnWT/JFfPuv7ls+n85NqL+55jy/Bww/m/2fc8SXLoCclhG/ufBwAAAACgk65hfJJ9Z30+bPgzyady78j1LyZ5c0bzrR+S5N9lNPr8m0nOT/LW1tpnJx2ktXZPVR2f5JQkG5M8K8k9ST6b0Qj1C+fqaGvtlKr6hySvzChM3y2jeeHfleS8CaPiZ+rOqaovJXltRnPL75nkxiR/nuRPWms/nuuc3Vx7cbLl2uSAQ/ud44An9jv2bFuuHS2F8QAAAADAKtY1jG+tXZDkgkXW/HOS1+zCObdnNIr9fiPZF1B7YZI5A/t56q5IcsVi67o64NBk4xqYqn45Rt4DAAAAAHS2LC9wBQAAAACA9UwYDwAAAAAAnfWeMx4AAAAm+t77P5A7Lr102t2Yqrs2b06S3PSyl0+5J9O3z3HH5edOeuG0uwEA3RgZDwAAwFTccemlPw2j16s9N2zInhs2TLsbU3fX5s3r/sYMAGufkfEAAABMzZ4bNuSR73n3tLvBlHkyAID1wMh4AAAAAADoTBgPAAAAAACdmaYGAAAAAIAFW6qXsC/li8xXw4vAjYwHAAAAAGDBluol7Ev1IvPV8iJwI+MBAAAAAFiUlfQS9tXyInAj4wEAAAAAoDNhPAAAAAAAdCaMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnwngAAAAAAOhs92l3AGC9u+irF+XyGy9flnNt3ro5SbLxio3Lcr5jH3NsTnz8ictyLgAAAICVzMh4gCm7/MbLc/3W65flXBv23ZAN+25YlnNdv/X6ZbvJAAAAALDSGRkPsAIcvO/BOf/Z50+7G0tquUbfAwAAAKwGRsYDAAAAAEBnwngAAAAAAOjMNDUAALBAy/nS7R1Z7pdy74iXdgMAwPyE8QB0CZd6hkQCH2BaZl66ffC+B0+7K8v2Qu6FmHkRud/NAAAwN2E8AF3CpV4hkcDnXkt9E6XHDRQ3TliL1uJLt3fVShmdDwAAK5kwHoAkqydcEvjca6lvoiz1DRQ3TgAAAOBewnhY7zadn1x78f23b/nSaHn+b95/36EnJIcJRGElWMk3Udw4AQAAgHs9YNodAKbs2ouTLdfef/sBTxz9Gbfl2snhPQAAAAAwJyPjgeSAQ5ONly2s7aSR8gAAAADAvIyMBwAAAACAzoTxAAAAAADQmTAeAAAAAAA6E8YDAAAAAEBnXuBKf5vOT669eOdqt3xptNyZl4YeekJy2MadOy8AAAAAwBISxtPftRcnW65NDjh08bUHPHHnzrnl2tGyVxi/szcY3FwAAAAAgHVJGM/yOODQZONly3e+nQm7F2NnbzCs1JsLAAAs2Pfe/4Hccemlc+6/a/PmJMlNL3v5nG32Oe64/NxJL1zyvgEslx39LlyMhfzeXAy/Y4GVShgPO2s5bzD0vrkAAMCC3XHppblr8+bsuWHDxP1zbZ8xEzoJipiGpQxQl9JSh7FLRag7tx39LlyMpTjGDL9jgZVMGA8AALBIe27YkEe+5907VbvSwkbWl6UMUJfSSutPItRdiF35XdiL37HASiaMBwAAgHVkJQaoK5FQF9aupXhKaCme6PH0zfojjAdWrYu+elEuv/Hyifs2bx39R3HjFXPPs3/sY47NiY8/sUvfAAAAgJVpKZ4S2tUnejx9sz4J44FV6/IbL8/1W6/PwfsefL99G/ad/z+K12+9PkmE8QAAAOySXu9i6PkuBSOyp/+UkKdvdmwxP1s78/MyjZ8DYTywqh2878E5/9nnL7puvhHzAAAAsFC93sXQ610KRmSzWizmZ2uxPy/T+jkQxgMAAADALpj2KOvFMCKb1aTXz9a0fg6E8cCaNN988smO55Q3nzywXHb0+2opLeR9GkvF71FYG3pNvTCj5xQMiWkYAICVRRgPrEnzzSefzD+nvPnkgeW0o99XS2lH79NYKn6Prly9bv70vNHjxs509Zp6YUav4yamYQAAVh5hPLBmmU8eds2uhnZLEc6tlxBuZ39frVR+j65cvW7+9LrR48bOyrCapl6YzTQMAKxFk55am+tJM0+IrTzCeABgol0N7XY1nBPCQR+r6eaPGzsAAPc16am1SU+aeUJsZRLGAwBzmmZoJ4QDAAC4v4U8teYJsZVJGA8sm/EpLyZNYbFepqQAAAAAYH15wLQ7AKwfM1NezNiw74b7TGNx/dbru7xUDgAAAACmzch4YFnNN+WFKSkAAAAApm/Si2Jnm+ulseO8RPa+hPGryabzk2sv3nG7LV8aLc//zfnbHXpCcpjwE+hnfGqipTBpeqNdZXokAABYHQSEsDwmvSh2trm2z+YlsvcnjF9Nrr042XJtcsCh87c74Ik7PtaWa0dLYTzQ0czURAfve/CSHXP21EZLYWbqJGE8AACsfAJCWD4LeVHsfLxE9v6E8avNAYcmGy/b9ePsaNQ8wBKZb2qilcD0SMBsO3qiZyFP53jaBgD6EhCyWs1+smPSUxye2Fj7hPEAADDY0RM9O3o6x9M2ANOzo+lLFmuh050shqAN1rfZT3aMP8XhiY31QRgPzG/8XQWT3kng/QPAPHb23QG78n4AI5OXxnr9u9uVJ3o8bQMwPTuavmSxluo4MwRtQDL3kx2e2Fh6892kne+Ga88bp8J4Vq/5Xmi7o5fYCo8XbvxdBePvJPD+AWAHdvbdATv7fgAjk5eOvzuAlW+xo8F3drT3ahnRvavTl/QkaGMpLMUTIEv11Mdq+b3A6jDpe3tXp/KZ7ybtXDdce984Fcazes33Qtv5XmK7ksPjuW4wzHVzYbluKsz3rgLvHwAWYDnfHWBk8tLydwewsi12NPjOjPY2onvt2pVgd1cDXUHuzlmKJ0CW4qmPlfJ7YWe/h9f6jcnVaNL39lJM5bPYm7S9b5wK41ndduaFtis5PJ7rBsOkmwsr+aYCAKxh803fs6MpelbCNDzA2tN7NLgR3WvXrgS7uxLorpQgd7VaCU+ArJTfCzv7PezG5Mq0o+/tlfJ9tyuE8WvdYkdaJ6ZwmbaF3mBYyTcVYAqmMbd10i9YW8j1LLTvwj9YWvNN3zPfFD2m4QFgJZpGsLsWAjVWjuX6HvZ9y1IQxq91ixlpnRhtDaxayz23ddI3WFvI9Syk78I/6GNnpu8xDQ8ArG5zTYkyrRdBAquPMH49WMxULkZbsxCzn7gYf8rCkxVM0XLObZ30D9aW4nqEf8tjZ5/MSHb96YzE0w8AAMthrilRpvUiSGD1EcazdEyJs37MfuJi9lMWi3yyYjy8mhRICZiA1WBnn8xIdu3pjMTTD6x807xZ5f8jVr9pvlwyMaIVuL/FTIliWhNgnDCepWNKnNVjKUa2T3riYpFPVoyHV+OB1HIHTDNhwex/+O/MP+IXGzrsTNAgXIC5f9bm+5nq+bOz3E9mzPD0AyvdtG5WTftG1Xwh8o5C4uUIgBcaci800O7V52m9XDIxohUAWHrCeJbWWpsSZ62O9l+ike1LYb7warkDppmwYOYf/jv7j/jFhg6LDRqmHS7ASjHXz9pcP1N+dmB6pnGzato3quYLkWe2/eS223LPd797n33bf/CD3LV588SgfCkD74WG3AsJtHuH1tN4uWRiRCusJeM3IMdvNHoKBlau2T+/kwYJrLafX2H8SjUpBJ4rAF4N4e9qtZZH+y/ByPa1aHZYsCv/iO8ZOkw7XGDtWo1TRy3mZ83PDrDcdhQi3/Syl+ee7353aoH3UoXcQmtgpRu/ATn7966nYOa20p/yYn2Y/fM7/v9Mq/HnVxi/Uk0KgScFwKsl/F0JNxdm+rDYaVnW2mh/YE3blUB9pU0dBSzcQqdIW8zUaCvt5ttatdBAXOANsGvm+n3r9+vcFvKU1ySrMSBlx0+QJDu+ydLrKZS19PMrjF/JFhICr5bwd6luLuzKXOc/7cN0p2XZaeM3NDwpMdFSzfu+lk0KbOYKZ9b7125H4dZCQq3l/hruaqC+kqaOWu+WOlxd7u/FnXlp586+rHO9/65KFj5F2kKnRnPzjXG7MjoyMUISYLXamaeoliogXcj7TRbzsu7F/rdoKcLpxZxr9vGn8d/N+Z4gSRZ2k8VTKDsmjGf5LMXNhV2d63y8D6vlZkZy/xsaS/2kxKbz7w34N50/1UB/UqCeLCxsWap539eySYHNpHDG127H4daOQq1pfQ2nFaivtBeqrnZLGa5O43txZ17aOelabvvRbfnuj747ofXItp9sy+atm+cN/tfL99lSTpHm5hvjdnZ0ZDL9f3wv9GW14xYT8MzmxsP6NO3QcC1bzkCUlWUh7zdZ6Mu6d+a/RUsRTi/mXDPnmOZ/N+e7+bLQ/x6upVHsPQjjWX3W81znO7qhsaOvw6SpemZG0l97cZIabZ8ZgT9X251w0Vcv+mkgd9FXL5o3FBkP1JPFBUlLNe/7NM03onRHI0cXEjotJLBZrV+7pbaYcGv8762lZfPWzQu+oTS7vsfTHbN/Dns8NeKFqktvqcLVxf48L9VTRkvR/41XbMzWH21dVKg/m+8zWDo7O8f8tP/xvdCX1Y4bbz/phbvj5nsB7zjh4fx25ibKztxAWaq/h2mHhivdrkxdsZyB6ErhaaR7Tfv9JksRTi/2XNP+7yZ9CePXs5Uwj/tqt1RTx+zsfPaLNT5Vz/hI+tnTCO2o7SJdfuPlqSHsv/zGyxcdFq+3YHi+EaXzjYKdRujU+8bBQs+3EkZfzzdFzEL+bmbX93i6Y+bn8OB9D+72vbKWX6i63N/r07TSnjLalVB/ub/P1tP3CawmSxHmLOaFuzuyFsPDpbYzN1EW+3ez1H8P0w4N57ISXsK5q1NXLHUgOvtrslRzWi+l1fw00krhiYrVY+bv6q7Nm9PuvjvXH35E9tywYc3+/Qjj17O19pLYaZhr6pgf3Jr88LbR5x/fMQrZZ0L7SQH7ePD9g1uTrV+/N5xfyq/9zOj6mWlptnxp9Hm+tsn8o+5n30y45+7kj355qH/ifa53Z0c1TrKYkfar1c6ET9MINxd642B8qom5ppbYURi10kdfz/X3ttC/m525EbWYEfUzx1/M98r4KOmd+ZmbxrsKFvIy28WcbzXdJFsKa+Epo2lYb98n07YrNz+Sxf++mf2PxZn1tfiPxGmZFBjOFRRO6x/oKzVsXauW6us9l/Xy97BSXsK5kqaumP01WalzWq/Wp5FWih5PVPR6Oel6N/vv6q7Nm7P9zjuX7WdxGv/vIYxfrZZqJPVc057cZ8R3G51ndhi7UkbKj38dFjPX+VxzpM/1kti5rnmuaXN++K/3vdGR/7+9847T66ju/vfuatUl25JlSQZ3g42NabYx3RA6cUKAhBZKXvKmQBqh5CUFSEgwzZhQQg0QJyEETMfYprtgGyxZli0XuanLqquyu9q+z7x/nDnPPXeeufe5z+6qGM/v87mf57n3Tj1z5syZM2fmUr2wERq+D+yW/2u+Uc+rvm55FbFjaSYLu5iw/XYYPQAz5x3UhZxOPe0TDi7qHnvT7qiJusaoX2fva0Un3044FB716iV9z557Cn2u7kLAdH2roCw/hc233cds6+QXoh3vxQyD4XFFFtPtCT2ZnSNV5ZiOhZjDgU74ZDJpt6PHQ2Ux1WKqi1eH2iiumOziB0xOToaTxb4rrjiok8Tp8tx8KBi5IW4w1P/2iJjwKJiHg/HjYHo2T9dZ50dqOxwJXuFHAqoMu+1oFKPPQ4k29sOYdhE1RpPpMGQfSq/7h4p8P1yY7h0VD4WPkx7puz7KcLiO6KnSPSyms32TMf6hitCTGloNn9bY3Ol532UfSo3lE+YVM2xXlWOyxmRbznlLxJP8x++RZzZuWRlCY7SGj9W9XZ1j5Z3q2fbzjhXv+u23wzf/qDyvOuVVGmxdCRNjkkb/ttbFgjKE7RuD1tcuDP34PQXPe+sZffm9l7ckUWb0iZ1zDbBoziJ6h3pZu2dt1CAylfOx68Q9ko5Lma7znasMWNNR9piByubZ6Rnr7eoAB6cekylPp+WwBvBdQ7tYu2dtYTeBxre8qn3jynVX4nCs2b2Gp/7PUzlz0ZksnbeUtXvWsnjO4macxXMWl5YxLF+ZR33VQoC+h7wdququ5VIeqLvwoIgZ1jrhuengjapFh3a7Qw5W/rYMMVQZJKsWYkJMte91KlOr0uuUTzqRfb+ui8FTXbw61EZxizqLH3UXyur0w0M5WZwuz83DMdGcLKo8Z8MjYsZ27WJsw4YjotztMNXjEg6mZ/N0nHU+1TY4mAbFI8Ur/EhGGY1ii2GQL4j1fvnLzeca9kg09vVdcQVubAw3PMzOSy6Jhgl3Pk3FeHkove4fSvK9Dh4KnucHe4dH2eJRXUw3/1UZ96Fem8T618Fsy04XJOrsQplOvS8Z44801DFeK6yxN3bkyI/fI0ekLDoNNv6ieORJHUN9aExuGs2Np3zZxz9bDMUVRu3JGL+1jnoPMOsoMWCHdS0rAxQN3nYRoYq2tm5kEradB3iZB3+VZ/+BXTlN771a/of1szTQtqjihRmzDQ2cyQdZ0FiwPF52ja9p2bBlhvqQJ5YfR+9Qb8GAEaLM6KOGj0VzFrFyx0p2De1iyZwlLenFjHaTPR+7Ttw6Ri9rfKsyvE3ViDVd5zuXGbAO5vEJ053nVM5tn+5jTWx52pXDGtXfdf27mv/ViD4wNsBJC0+id6iXlTtWsmrnKq5cdyW7hnY1+8Fld1xG73BvIezQ+BD37LmnmcaZi87kynVXNv9ffu/lXLry0mYcgJU7Vjbzb0cruxCgYS/69kWs3bOWXUO7mrshFs9Z3Cz7mt1ruHTlpZy56MwWT3bb18OFB0VoeNOyqGGt7kei6+wkCI20Y42x5gJHWO+y8inKdofsGtrFxr6NpfUtQ9XRPxbtPJnLFiSs/Fo6bylrdq9h1c5Vzfq32/1QtpAUK5Plw/k981k8ZzFL5ixppmPLMzg+SMM1WLN7DZfdeRlL5iwpLE6V8WUVn4Q8UbUABsVj12JyQ/lEUcYvk10A7eTYp3ZpWbQzarfz3q+7I6Ddx67blXkydKuzO+dIPSpoujw3D+VEs8yYcv+LXlww3HU6EQ/roAZ6YFp3KZR5CVd5Ubery3QclzCZIyvqtmknaVfRZ7Ie1AfboFi3fjHePZhGwE557WB5VWt+ZXmUfS9Bj5Pomju3UO5Od+2E50SXlcPG0fy6Fy9uyoEqGZP19JD19ACw50tfYnzPnmZ6x7zqlS08ONXFvsnI7jIDYrt2n275Phnj63Sdz34oPM+nc+HlYHihWzqGY1vdsk/nro8y4z7UbxNNQ/vr4IoV07aIG1u4ONKPoUrG+CMJg7uLBnQQw+umm3Jvb2g9m3vZ48TLeWIUxodzY+lIH5z0DInTt1Xuf/we2HijGHetoV7zWHg89D0oHtQg6T//ffK/qmz923LD9taVxXjLzjGe6K5o1LaG3NCYHKYTMwirsffArtzYrnW98ZNyb9PX+/5tYkxWg/fI/pw2oWF8zTeKtFVouIXH52mGZ6d/+TflvdJ73hLJ8+p35XQ7sDv37P/B2/PnSjvNS//b+i1YnpetENfUSek06yih/yPOy9O0Bv8Du3IDe/92OLBT4q75RpGXNv5Cfhcsb2+ot4sd8x8L5AaMXYO76B3OveStgcN631oP3iVzlrCxb2PTQAOt3vEhzlh0Bi859SVtvW0hN/RoOmFcfV7H01cNBb1DvU3jkho6rYEHaC44WCOBGi6rjEGxupad79zuKJEyA1aV8aquN76GW7N7TcGQGRq2QgNOWR3qGETbGWurPF5jhvyyRZUy+oW0qHMOvPW2vXbztYX/A2MDnLf0PHYN7WJgbIBZ3bMYb4xzz557cLhmOZU2AL1DvQWDZsxIq/lqHIAlc5aw/cB2BsYG+NDNH2oa/G2/A7jszsvY2LeRRbMXsWd4Dx+6+UNcuvJS3nbe25p9VWn4klNfwodu/hAjEyPM75nPWGOMA2MHCob5t533NiDv0yD9wC48qEF4rDFWoHFYlktXXsotO25p4ZWyNlE5Y3cS6C4Du1CxeM5iNvdvZmRihHX717FneE+Brleuu5JVO1fRRVdLOtoHRiZGWL1zNbNnzG6+v3LdlewZ2lNYcAQKdYXWfqnyYX7P/Ca9rCHZGq3t4oeWxy7yAE1aK+yC57Wbr2W8MU5GxlhjrKVddhzYwZrda5q8pu0ZLvRonmGZlA/n98xnYGyAgbEBtvZvjdKpp6uHkYmRZhmV18L8NvZt5NKVl7Z9F+MJXTjRfmcXqCx2De4qpLtkzhLOXHQma/esZWh8iDkz5jDWGCuV5VWLAJZGtv21/aoMy3UXghXtdoNVHVdUR8aHqFq4CcvcbodMOF6WLfaFbRzWDSbvKR+infdXOHFXAxRUG6htvKHbb8eNjxfiQetkvO4Z99NhmAjr1ejvp2vBAgC6Fy+mZ8mSguEunBCrJ6DS47h3vINjXvXKyo+6adoTvb0Mr11bqN9UjElafrq7AeiaO5fuxYtbvPLtsTlDt9/OzksuaWlDTVPbLMw7LOd0eAvWNeiFZQv5qYxOZYbzsV27CkZdpY09UqgsTU3jUHomxjAZA85UPD6rPNJDenZCy7Bsto0tj9r8x3btahrI+q64otnHQv61+Wp7nPRf/9nsw7YvFvrU4CDZjBnc/6IX07NkCQsvuih6TnRoBFf6u9FRNr7+Dc2+1714MY3+/qasUVmg+QyuWMHgqlX0XXEFY7t2Nelq27PR38/OSy5hcOXKZh5av74rrmB8+3Ya/f30fvnLhfbqtJ21LdrFjfFfGe/VlduT4c/JGF+n83x2KwtCI//Q7bd3PPaFdY71u7rlU/6LLeLEFnLCvmTzsuVS/tDxsmzXzlTKPhVMx24ALfNEby9zzz+/IM+snqJQWm9959+06DF7v/Z1dl5yCY3+fnpOPpmxDRuau14O9jFU04FkjD+SMLgXJmbn9wuWw94N8n/7GjGQ9m0Rw+ushfJ89EDu5dw9E7pnyXP1dlbYd2oYVuOqzWP77fJO0x/py4+QmRgtL5t6WZNJXhpPP2RaZXS2hm67UDBjdjH/mEG46e1uPMW7Z0p6C5a3GtJ1kcIevaNG7o2/yD3Q1ZBt09QyhAsBWt5ljxMD+Z4HZMHiwC5Jc9ZCmsbw8ZHcKK7vtCxRekZg66f3E2PFuJpmFZ3C+tt3B3a20imGKkM9tBr7Z/Y0o/YOi5Gnf6y/YDiDolewGh/LtrhbY5F6BUPxGBw18vR09bByx0pu2XFLdKKuBkTrrWcNpJfdcRnbB7c3DYp6xEfowQsUDI9qINTwoTHIGg1BJv6X3XkZA2MDLJq9iPnMLxguL7vzMrYf2E5PV0/T4GUNJFA04i2dt7Rp0LUep9a4pIaNxXMWs7FvY8EIu2doT/O5NV6Fx6iUeTxruJ6uHsYbosTbY0zKFgfCOlmaAgyNDzU9iq0BMay7Ggltu8XiXbry0mYbrNm9pkBfzXtW9yzm98xnZvfMJv1u2XFLk76hZ3nI1zsO7Ci09VP/56nN9tg1tKtpmFq7Z23hv0J5tKerh3OOPaflPUBPVw8zu0Rm9Q71thjRY1DjpobVNByOlTtWMr9nPkvmLIkujo1OjLKgZwEOx8DYQOmul/HGON1ZNxkZPV099HT1kJG1xNMFrPOWysLhlv4tAE3vfjUIW/4NywL5gkZPV0+z/8SM3GH/0LBaz3BxY96MeQCMTowyq3sWA2MDXLryUhbPWcyeoT1kZDRotKRjjcjjbry5Y8EuTNp2VpplZC38ahcf5jO/aXQfHB9stuFYY4yGa9CVdQHSX8LyLJ6zmIGxgWaeW/q3MOEmCm1o+XDOjDlNWXzrzlsL7WIXBWx7hgs9G/s2NsPZdlkyZ0mTJ9QgX0anZfOWsbFvY7MPrNyxsslnNr/zlp7Hyh0ro2UJ3ylPqLyxC5NXrruyuUClba107h3ubaa7/cD2ppe+GsMvPOHCgnywsred7N83sq+w8KP8W+b5bxHbhVG1AyO2KwVoMf6HYwHkixyzumfhnGNwfLAwHqix3C4GxRZ+NZ1w3Fu9c3XLuLJraBcOV9g5pIvevUO9LX3eLuTasWHtnrUMjw8z7sYL47pdzFq1c1VhB8aTfb2rjCplxi0gOnGvMlBb2HjZzJkFw1hs4q95Da1ZQ9bTQ6O/nx0XX8zOSy5pTvZnLFvG+PbtYmgbGWkatDQ9NWDVMeRUGSQAFv+ffJFj4UUXsePiixlctYqNr38DM5YtY+Caa5pGtUZ/f3OCvuPii3EjI/ScfLIY2gYGmjS1HrFqVFPYeE1PvFWryGbMwI2MNI3nSouFF11E75e/zNiGDXQvXiyG+IkJmDGDRn8/bnS0GQ5oGgHo7qZrwQLc6GizbEO3395sB00zmyVzMcsPNp2ek09uvh9ctarJB50Y0sLFBG1Pm2+MP9zoKDjXrI+2+9iGDc2y2DZWg6W2tzXMxryn1ajcGByEiYmWhQtNK1xsabeAZeOrwVWNsYC09fi4tGN3d9MIrOHKDHmhAccamWP0D41j7QxjscUSW6YqeloDvTXOly0uKX9ls2bBxASNoaEmL4QGaKDJM4MrVhT4QPk3lA1qpNc62aNgBleubPZrzZ8ZM5jo7WVswwbGd+5seqfPWLYM1q5tethns2c3+7TycDZzJoMrVtC1YEEuYzZvbtICKCyaKe+GC0S2nUH6xsA11xTyUGQ9PbjhYXqWLKnVzlX9Vdtc6Wvjl+1QUBoPrlrVdiFF+70uQGgaMY9k7YNudJRs5szo4qcth32ndQ8NyXbBRscWa1zWupQt+gHNMlnaVY2ZZUbvmFwNF3fCuoULSdqe4SJxz5IljG3YUFwcHx1tlnHGsmXN9JWfxnbtai5Izz7zzKh3eN8VV9Do7285GkoXoWwfj+0SeyghPO4v3AmgUFpr/9T3yv9uLNft555/PoMrVlTukitb9G+Hg3HETjLGTxOyLHst8GbgcUA3sBb4MvAZ51yjdkKhoXXmvKIhdWIMsm6aRm/r5Qxxw6qi7F2YB7Qac+uUzeZhjbJ7HiimGRqdw4UC68U9Ptxaj05RtUgRg62D/bBpmE7MwK31XbBcrqYxPOLhbmkLcXrWxVTiHmw0z6Xf0fJKjQQrd6xs8QTW//Z85TJYY1FomFejSWjkscZta0SHotf+4jmLC+lbgyKOZjg1zqpRyYYb9QtZarxR7341ylijoRqVrHExIyPLMpxz9HT10DvUy8jECCMTIwUj08jESNNgoEY8NZRZj9PB8UHeePYbm7S3ixhA07CqRlg1vlljlBqRFs9ZzEtOfUnTMBMzfNqzya1xSo8xsQYgNTaqUW1kYqRpzAmNuWqICw2IYd3VSNPT1VNY2AnjhcZES1/NW9OYz/wWo6/Wb/GcxdF3126+tlmnrqyLnq4ehsaHmp69avCeDsQM+ZNNQ3kSKBxv0y5sCGvI1XJNJp69t8bUsCzhgsbA2ECLkdvyiBr/rRzpHeptWdywZal6BxTSsWW2/SrMr6zull9b5AMZXVlXs04OVyibw7UYrjVdu9tozow5TeN8O8Ta09ZRES702HC2XRSWJ+rSySKWX7t3yhMN12iRqSp/qha5wsUryGV4KB+s7G0n++3Cj75TD3SVRRf/8uLCzpLL7ryMzf1imOiiq2WXAhR3nCjsIpvK+n/55b80dz5YWRIuQmVkzXFDx9pFcxY1d5FA68KL0tcu/Go64bjXoFFYTIrRV8e3MxedyZI5Swq8pYtX9piv+T3zycgYGh/C4ejOupu8r3Wy/Url9ONv3MHw2t3CI94QFRpVoDjJ77viisIxKvreel8qFl50ETsvuaRpDLBpqVdY9+LFLLzoIoZuF31PJ/46UdXyWG9QPZah5+STGdu8GTci7TK2YUPTcz2bOVOMycagBTQNUE2D/uCgpL9yZdOYqkaXwVWrIMsYXruW497xDoCmcdwa1TRNNdoMr10L3og09/zzAZrGMBuuZ8mSpjFDEZ5VrRNxoBAPYHz7dpiYwDUaufHcG211wUAn/m50tGkUtBhcsaJpQFQDo+aTzZxJNnNmIaxNM5s5kzmPe1xrOY0xoWfJEjEuTky0LEZ0LVjQNOwMrlrFjosvbuar7dD/ox8VFlWUPt2LF5PNnt3M2xrYs56eZhl0oaKsLENr1uCGh6G7m2zGjMLCiDXsWiO98oHylu42aAwOMrx2bQs9wzSbvOUN6j0nnBBdlBnfvl3qMTHhK5Y1FxmEWSYY27yZRn8/E/v2wcQEI+vWiWHY92drCFz7+Cc0jZRq9Ml6eoR+t97KzksuKRhy1LhUZdTr/fKXm8ZjJiaa/NM1dy7j27bhRkdb6AlFg6HSsmvBgpYFnB0XX9zkB5U/Yb/qmjOn2fahAbpg5N6wodl3Qv7Vd83+aXjEHgWjhnibv+0Daoi3ZQHp1zYduyBhDeUgu1bCd1pu+67MIG9RlkcYRttZjeRqmINyI7BtTyguNthFC9vPlbdVxih/hAsh1otfFxEtb/csWZLvGvB5WPnnRkaii59afs0v9s6ONaFMB5H9jcHBZv93o6MiY4JFPy2n3VFl5a0dMzXe/Gc/u4WHmzTzMk13UGiaejyRlkfHqHAhSWEXs+wisaLZB5xryjStu9IZaC4Cah1UN7Ae3TruKlR+2wWiyRh/D9bHXOvuvKuKr3HDnWcx2EUn1ZHsYllZ2jFPetuek9nBNB07EZIxfhqQZdm/AW8BhoGfAmPAc4FPAc/Nsux3OzLIV+FINrrWRZUR3xqrp7N+05XmwShbQhPtvII7TSM0GoZpqlduaAhUr31oNbqEBihrPAAKRq3QUFWn3DGjpH0XGrEUoZEpzD9cjLAGzLC+MYOa5qHGKPX0tOePW2OmNXzadogZp8qM46Hxq4ymoQGxrpEwZngso29oALbtYvk1NHSGvNzOQJpwaNCuf4ayokoeTfZdp+HKDOU2btlix1QWZY4kHMz6hPQN5U+7/OvK8LLFo6p4sd0vGRndWTcNGgWZvqV/Cw3XiL4Ld5yEi5HKP+Eupk4WqGy5N/ZtjI4Llr6xhd9Qps6dMbfWAlyZHLVH3OkieEjfUL7bsth3j7lldzNdaxyyxxj0LFlSmNB3L15cOEZFJ+M6ubaeofou9AaF3Kg1+8wz2xqy1dhnDT/WwBYavGPGKvuhRqBpFAOaxp7Q8AA0vat14h8zsHdqKOuaOzc35Ab16SSeNe6pwccaBkPYPKyRTttLjTuahpaljkHPIjQm2HI329obsN3oaP7fG0Hd+HizHcKwWkY1bmq5Q6NSaNCMlSWkIVBYfLBGMTWUWwOb5YNs7twWutmFoTBNoMl3ZYsyYfvOPe+8Zn6adpMufqHFGsrUcK1hG/39BSNls97d3S18rkZRPUJFZcCOiy9ueuv2XXFFc3GjmY5BuJgzcM01pV7mKlN0cUv7vBsfLxhsQwOVooy3J4PJ9s+qsoR9qU46hwL2eJJm32w0CkZgRWgErlps0HfaN7sWLCj03Vj/bLcQYnlb0wnzCOVfuPgJkYUX+y4Ya0KZbsus5emaP5/GwABMTDRpZNMEovLWGqRDb2k1eofyLraYM7y2deE37OPhGKzp6kJlCJUnVbxsy22PTbLph+NuSIvJopOjt2Ke4zZszLCt8ig8IiYGe7ybpYE+swvIMfkV7kqoqrPKz+3ve1+B5u3aswx2N8J07ERIxvgpIsuyVyCG+O3As5xz9/nnS4GfAy8D/gL4+GErZEJCQhSTMYJMNtyRgCOpvrF0YsbGhxJ96+LXsU4JCb+OOJL7arjwrAgXmsp2OrTbBRGm08kCVad1eKgtRsYm2KExNTQCWIQentYzNOb9WWaMqjJkd+oN2q5+Ze/KDA+hYe5IwnQYNmw6h8JIGLZnmcGr3Ttb7qnUvxM+KDMGTyXNOvHqLq604/Oq/FoWTEx6VgbYssR2W5Qt5gyvXVtqsA0NrWG7d0L7hPoIDYFhe7aT4XX4vJ3st+h0IaRO/4+lWfZusjsPqhZ+q+J12q8nI6erjPjTCeWlyZazU1hDctVxQ82FiZkzCwuO4QKjNWzbhZB2x4nZ9g7pG76bqgyzu76qeCJcgLDHl0Hr0Ul6DJE9PmgySMb4qeNv/e//U0M8gHNuR5ZlbwauAd6VZdknp807PiEhISEhISEhISHhiEUnRoEjzfszISGhM8SMknUNiO1QdxEh4fAhtUvnOJJpdiSXLcRkjoopO3LF/tePIyvCBUZ7pJVNS9OH4i4pu3PkUOpDdRaMml704+O4kZGWI57Co5PsLq6pLGwnY/wUkGXZI4FzgVHg8vC9c+7aLMu2Ao8AngLceGhLmJCQkJCQkJCQkJCQkJCQkJCQkPBQxfjOnWx8/RsKhnf7cV49e95+n0DPVrfh9ZszkH842R6jB5M/MkeP3tNjZjrdBXG4UHXEE7TWfTp2mXVNOmYCwBP9753OuaGSMCuCsAkJCQkJCQkJCQkJCQkJCQkJCQkJbTG+Z0/T8K7fqYmdPa9HWunZ9xqm74or5Jsd/vsUgytWtHzLIDxXfjJlDI/JmmqahwqHupzJM35qOMX/bqwIsykIm5CQkJCQkJCQkJCQkJCQkJCQkJBQC/Zj7PYju/Zd7BsEdby8HwrH8vw6IXPOHe4yPGSRZdnfAe8HvuKce11JmPcDfwd83jn3J5H3fwz8sb89A7jnIBU3ISEhISEhISEhISEhISEhISEhISFhenCSc66jL84mz/jDDOfc54HPH+5yJCQkJCQkJCQkJCQkJCQkJCQkJCQkHDykM+OnhgH/O68izHz/218RJiEhISEhISEhISEhISEhISEhISEh4dcYyRg/NWzwvydVhDkhCJuQkJCQkJCQkJCQkJCQkJCQkJCQkPAwQzLGTw23+t+zsyybUxLm/CBsQkJCQkJCQkJCQkJCQkJCQkJCQkLCwwzJGD8FOOc2A6uAmcDvhe+zLLsQeCSwHbjp0JYuISEhISEhISEhISEhISEhISEhISHhSEEyxk8dH/C/H8qy7HR9mGXZccCn/e0HnXONQ16yhISEhISEhISEhISEhISEhISEhISEIwKZc+5wl+EhjyzLPg28GRgGfgKMAc8FFgLfAX7XOTdx2AqYkJCQkJCQkJCQkJCQkJCQkJCQkJBwWJGM8dOELMteC/wZcA7QDawFvgR8JnnFJyQkJCQkJCQkJCQkJCQkJCQkJCQ8vJGM8QkJCQkJCQkJCQkJCQkJCQVkWTYb+ATwEefcfYe7PAkJCQkJCb8OSMb4IxRZls0Ango8Bng0sAz4KXIUzgLgGcAxwHrgC865NSbem4DMv38EsAf4H+fcPSb92cBxzrlNQV7LgJOB2cA+H/xo//9e4GbgOOA5wPXAD5xzQ1mWnQFc4MsG0EB2CZwE9ALXIh+xPR24wu4WyLLsAmCFc66RZdnRwP8FngBMAJuBvchOg2udcwM1aHcGwttrsyxbDPwX8AAw4On3feBZwGnARuCrzrmtbdJURfQ64Chfv9ucczfa/HzYDHipT38vcCbwOGAusBtY7Wnx0052TWRZNh+40Kd3jH/cEW2ONBjeewJwLkKzIeB+pM2adcuy7GzgLOfc5Z4Wr0LacQmwFJgB7Ae2AlcDNznn7jV0ewGwCDgWGAR+BXy6jG5Zlp3m4xyFfKT5ZIT3HwUsBnqAEWAHwuP/4pz7SZZlzwZe4cOsBM4GrgK+hXxHYolP7wHgHjwf+TwvAFYg/eZs4I+AdyD9/ELgfF/P04GfI3y0CT9JQr4Doryv9f5d5EPS+33adwA3IMdodQOnIPLiUZ6Ov+nrPAuRHdsB5+u40z97PnAx0kdPAZ4HvAc5ouv5Pu0NiMz6DHA78CDwh0j/mw+c4dM635fnBGCOz2stcBvSZ+Yg8m62p/Um/7veX2dgZEqWZT2+vif5spxO3mc3+Dz3+v+v9PU4Bfh7H+7HwDpE3o0Drwce62mzBtiGyJEDPp3H+LZe6Muzx5fvRET+noIcX7bOl+HfnXP9WZadArzMx2sg/P+OI2Wi6/vmM4CXIDScDfQhHy3/jnPu3sNYvKacR+j8ZP/4RGAXUsYrnXNDHab3SIT/1iP8oXJ8A3AfMBrI+XeY8G3zy7LsxcBvAcuBs8j5okWGZ1l2MuCccxvr1mG6kGXZc3z5muPcoS7D4YKp+4nA95xzNxzEvE4DXkRxTB9CdJVPOeceyLLsicCTkHHtp4hMuQiRuTOBa4D/dM5tN+megsid9c659SW6w4i/SsfAoKxhGt0If9wHfKMqjSzLXoD00V5q8FOk/C38aHXYdmWvi0AXPg8Zq/cjOtvVJTreAeBnVh76MWg5MnZlyLiyApEVL0XGrAng37z+rPVdiugoPcCIc+4zPr3fINcZliC8cB7wQh/2Z8i4fpqPv8jTaqePdzaiK/0MaYfv+Pxn+PLf5uv4HeBvEbl2JSLXNvv8lC6a9nbgl7FxIKBj2/DtUNcQ7Hn0echYmvnHqiOvBJ4O/J2v053A8YguciNws+erZwOn+rrf5PP9GHBgKrxmeRppEztn6AHeiPDJBoT2Y+Q0PA1pr3uRPns0Ip9mIHOKb3tdN0P0vccjOsh1vp5PReZjz/V5rwe+gMzrTkPmmIuQ+dsyRIfRo1X3+XxvR/TVFwO/8O9OQcbMVyD65/3k/L0PkUuFMdHzxm8g4+CpiF4xANzl0w3HwWjb+/G6x5d9OcJjRyM642pPwxnAE51z17U0yEFAKLcmmcargB875/Z0mofXGWYiMvoKP6cuyE6EL34feKKPdgCZE/0cuME59wuf1gVIm38cT3uf/imIjtWH6Me7kDmD6kkFPci33xnI9/W+gdgNTvDleL6Ptx6xUWz3cXqA5d4+cQHCG89C+Po5vrwjiF3hOmRudg4w6sM25XFQ/72I/OxF5octbaR6F6LjvwDpf6cgsvxBT6dvAr/ty77Av9uCn386537q0zoDkUdnA/2+DDrPGvS034/IxnXIXOgEZB7Xg8w7bvHtsJN8Tux8nR+L8LjOp47xZbzH5/dI/+5+xFZzr5ljdvs03omXb8A/IP14DK97Zln2Vt9Oj/bPu5H+up18/rnFk0/HLx17bvVlVdvSMeT6xwFkjjnh26SPXFavAT6H9ONHIrJ8vY8zjsiP+5H2/yHCy2or6/JlutLndTwiZzbgedPz5LOQsfBGT7Nh8rnrcYgMvB/h70ci9q1diIx6M3LyxQ2+ff+fb4fjkf53wNd7pk93taf5t3xe4bx80NdxBsID/f7/HkR+q04wy5R1nqfXXuAu59y3De/uQGTmV5V27eSR59U5wIeBv0H4+jWILBlHdM+bET5b4GnU8HX7LvCvwI+Ab3m5o3LqGE+3M319j0H4+Bqkz/4JwjfOh9uIzIv+w6fTlAVV5e8EVfa8SFjVZc5BxuhrkDaZlC5TWqZkjD/08ArjHyMDWKisrkMGmrOQzlcXKxBF+y3kBvEQA8APEEPFCT7s5YhSpJOGTqEC9KQaYZ3JY9DHm4coUIPIJHRRUA6HDAA9Psy/IgPQJ/zz8xBD0Vx//yxEIGc+rk442mEcUWp3+3y0HD9CBMcjgbf6NEeRAanbx+vxz0cQwToPGQAnfJgQDZ/2HmRgX+L/r0QGtacjg8uHgF8iwvc/gFeTG4D7fD6zfB6DwEeBf0SEy58igweIYF+IKMf9yER+K8IPx/m6NXy6+3zaDV+HLk+LXyB80+PruBYZHJ0v38nAuxAevBtR2J+JKNrH+TLu8ukfjSj3pyBCblaERvi0Qdp13KfVVUHXGHYh/WEW5fw9grTxKkSB+D8IDSfzgetGSTytS1kZJoDPIn1yGKmrhr8XMfYqT9p+5Pz7RyETzBP8u7p8f7ChffdgYwRRPP4deDnwtoqwowh9ZlPdHnV5rFPowsaxkXcrEXl8JvApf30ROQLtbEQR0kWAcUTpPsGntRCRCcOI8r4NGVM2I3Xeg/S3831ckL58NyL/n4P0zbOQfvB4yvsmiAz4AELHU3y87/j8n4PI6gvIJ0JrEDkxhhgS1iI8+nuI0v4sRPkdQNrleERxG0CUy9M83SYQo0K79hkAPoksJjzK5/thZHLzt8BTkL56my/PcUF85d1x8r7kEJn9GWQR51Em/H5EsZyJTGoOIOMHvsx/gvRjC+evLv/b8OnMQsY0Hf+uReTxR4DXIYu78xE59VOER/qpNr4u8r/3+jzejSjBKldDNMj7wXrgCkSuX4PI1TN8+mOIIXArwku3I+PXmcC3fV1+D1Fm9/v4anxajPDnLb5cQ/5+E/BB/3ump8MAMhnoR3h+KdJmR3taXI3oT6/xz05AJmCfcs59TivlFfH/RCaHXUg79fj6Pg7pSzqu48v8FV821ZX2I7z6S5/3oC9/r0/nTMQg+BhkfB/0v6uQxb6fI+Pl7/vwe3y9j/b5H0Vcf7GyP8RtnvZLECOCjhX7kTGwG+mbAwiPzvfPJvyzBjIJWoX0vVf5tEDkaze5HrbH00H5eRBp+7k+nV2etkuQPj/Hhxv1aWxHFmVPQmRSNzL+PQuRF/NMvUZ9eSd8nTJET9uELFL8k6fXkC8/iIx7FGKYuQ3Ri77vy3k0soDwEqQNX+xptA3hnapx4Wbg68D7aZWN+xDD1dORvheOe/uRtrR1ayBt9jjyPmh1har2nm7sQPrTrxDZWAUtl0P49ipkEj0bkc1PJj7u64L4KqQfH4ssLs0glx/XI7rjCxC+mePjPdKHWYWMe2rwUd3oaQjvdJu8lF/qwgX/NyL8uwLhqbch/fdKhF9mIPKv18fZTy4XZ/i6zvJlD/Uxpd1PEKeA+R2UMwbtW2F91eGnTJ9tp5vGwmeR/19H2n4xeZ/tReYu6/z9y5D+UTV2DyF6z82Ioet0xPjWT64X6/yrqlwjiJ60DNE9hhEZ0oeMN6sQeXUqIj+ej/TFZQhfzkH69FJE/k/45y9E+EJ5fMSXVQ2Oii3A9xDDzXqEZ7uQ+dcf+Xo6ZPy5BdEp5iO60AQ5b/cAlyHzwX9E5LLWcQPSb4/19bA0mUDavp3+PejpEIun85lvIzJtUUtsGTvmkesx/cgc6rnInHUe0vZV+c9Gxtzfd859I8uy3wO+hhi9f7dN+aGenAzDOOB/EWebzyBOjFU81Wm+I1TrzwcD7cq7HpFnu5F5+zk+vNV3xsnpoG3aKcrmT8rX85D5SojpHO/sXFzrtBvRub5Kqy4eQ7vylM33p5LmVOHIbT4W/YgudCsim25CFmLUCWlukEad/nSAXJ+x4UfwC86dF7+QxscQmfwVZL4CsvB6IqLH7UfGz/9GxtC7kXni8UjbzPVhn+Djrkfk/nf9r86vQMbnTYhuq3U6GuET5WU7vjhkLHkzInvPQ/Ta6xAe72hBNhnjDzG8J9RPEObX1eMZiCDcR9xAoyjrIKOIsJkbeTdd6ESAdGLI0nRDodZAhMdR/v4uREl/HcXJzMMBSqOqAc5OQCYzeB5JiAnyGP9ZI1knGCQ3DnSqwEFuPFHvjEOtcNVFbFJfxh9HIt9Y2tsFiqrwcHAVncOBI61thhFF/tQ24VQBVo+GOgu27XAojVMhjrR2KMMwIhe7yQ00kyn3oZZt09m2VskODbm/bvKhjmycbugYqBPaqdJ0iHxMhnLDYl3dcjp4SR0euihOwqaTfya7WD1Z3edIwOGU4b/OCOm6AzEkg/TXBsIzdcYxm1YfccPZZFHW/tPBFwfb+WMqOoDqp3aBdbJ11sWOTtBuUaYT1C33ZOo3TO48pfSOpfMAolNaOXgX+W6Ldhj16d6CLORBrrPavCZ82DkUoWXaT+5d2xV5r7+hzD5Y+qQdS6dL1sb6lU1bx2VnnnfKH9M9LkyWvkfq+BQumh0qHCx62HRvRpxXDpYD3OFAA1nse4NzbqJd4IfCxPLXDZ9EVk12IgJuDFlZyZBVZ4d0Oih6aUB5h5hJ3kl1wA23y9dddSkLV6Y8xdBJh9J0Q17sIjfEg3i8/An1DfFV9d1RM43pgnbE4cg7F4SJQWlURlf7/Ejr07bOY6WhivVXA5D1jLdb4MeRFVmdWPwTuRJQB3OpryxoGO1X6imgu0/uorrtLJQWjcpQ9esBuYdziBGk7CNBemVe+/b5Oop82a68k4HKuDBtK7esklZHua5q07CNXM13ayNp1WkfPZJgOlDVp8M8Jmitz3S332zaG+JB+meGTJimwxAPre0b1r9BXM7GaBLSRb2vLQbMu37/f5DJ4UbEU+9gYzb5mDCLyY8J022It/I/xpPTqfBniF6kBotuikbVEGWyWXcHVGEP0t8nizIZ7iLliaHuIuV0ogtZjLYy146RIcrqoWFDXtuOGDnCNHTCP9qmfNPBSwtpNczo/xGK7RaTQ/o8rPuECR8zHNZpr+kyxCsd+8jlW1iORqRMUxlTyjy3Y3DBb6ewbRTmcyCSz3TD8oGVI53kVxV23IQJ6brU/O8i55k644EaQjdw6AwkncwxY5ig2J/umlpxopjK/Epl5XT0Xeu5DLnePE6Rz4dNmC5aHd4sLK2r5mph2Ni9PmvX12Njq92ZpOUNHbNAPGDD9jiV4lhSdWygyvanmWeqs4ZzptgYq2U6yoSLvdffsN3L+H2U1nnbZsppbDGOGOLHkbr3lYSt0mlc5L/2K6u/2vLrDruMaj0rbP+MXA5r3W3+o7TyYl0+rdtXtU5lephiJPLMlmUN4lDrEG9uix9XpBuOcWUyzxrilY7txpQDyG4ykN2KVSirf2x8bqcTV+mCisyEezKTG2e0TSY7fk/nuO/I5Y1DTh35bcRu2RZHmuHu4YBnAv+MeBTN99c6ipNFNRZniAdiCGWgA5F32qah4FhBPaOhNVQrc5VNfKwB9GcVaVYJuZ2RNPW3bHJQVhaLUcqV/CXm/z9WpFmV7wDlk8JrzX89Yw3EMPA9826Y/Ky1qSi8VXQZoNjusQmuwvLTGK30L8uzt+L9f5r7cOL5AfM/rP8vyBWJHopbeLvJ+bQL2b5UZoitmug1Sv7rvZ7Bu56iUujIFb5HI1vfQjhktdfSSQ1DXeR9oo5RKtbPFVbBGzP5aflmk5/rFpZPcVPw7tvk8kPbRfk8VITKDNnh87AOZRPDB2hFmWJXpaSFCCcvNs0NFfktpRW6yHF5RX5XBOmUydAJ4kpeXb6N7RYJ+1LDvFPoQrDigUietc9bnwQc0r/L2qy/5L9CyxrjjZjBO6RJODHVtOZTpMN8804nXaHhMJy8lCnVy8gndWGbf5fcyB/2nXFaeb3ddwVi8jC2SAGtvBDr044i/4RhwvqEdR+hKKvqGl60zO0mSlAtJ8ugddN2CXligFbeCRdjFiFHWFjUMTAqZpQ814ltLN466i8Ch2UJJ2VX1Ehjc40wWtY9/je2CDxMkVes0cXyp25DtumMmzjWK9TmU2VgGiWuqyhicrgMejwgxCe5Wq/LaeWp0MBfFjdE1aLxvor0LEKZrnWYT9zzE+QIBy2TtkG7BeIyuR573oXQPmZYGEeOhLHtOkHOY+0WZWy6dwTvPm7+W5o3aO3jt7bJpwxKp6sp7l5th5hBLIR6ukNni08hn5fJzS6kH84j3m/6Is9CxMpuy/rNNvGtc0E7w0lIgxNLyjNGfIEpDLfJ3NsFNCjnh3aL7THjqSIc4+8pCQetY5LOS9SYrAgdmyxCW8Fw8M4Rl4mrKfa7cXKd2PbhGE92UaznZOa91lge0izUe7oob+cxyncXhAuwZf0rTLsTnXlbJH6GzHfvC/K8l7isK1sknYG0/VHmXWg8r4Ow3jF7lMKWLxyr9GjQ8Cg2yB0su2jdEd9Dq/5v39vy3F1RtqrF5GNM/iBHrsXCh+mPBeHOIJ8vnBSEDY3za8z/cNFG4ZA+GWt3PV5R+2fZPHIu+dFZS3yaeyLhIH5E005yB4gwf0VZ+aC93mjH2bqGcRtO5ZvdodGJo0BIc124cMEVwzr/O0Le7z/r8x9CjpW9FDn+qi2SMf7QYxTxuNlE/vGFM4IwoVIcomyl1Q7YoTL5XfKBK3xn49kz79ToONOEs8xpV0BDT8lbzP8qT4DQe2EN+Yp6ePZ9lVdkqBiWeQS64Pku83x7a3BAPBrDDq4DSGxSqGftQavX+rzgPjyn2KKdYqeoGoRCOtg0dSXbDuCK0HgC5UbAcDJqPSKWmGdhmLNLSy3nStqtsaFyZNMtM1hoWDtYqKAkiLeaomLXBXze/59BueFjJrnBNvSUO40izazX7QPkE4N+iobJMC87cMcWDRQ9yOC9lWKb2PM1XSTeeUGaf0Gx7a3hckfw/C7i3gkfodgWoeE6VFo1jXDnS2hAtB7N2ym27dYg7BbzX/ne8rtiDkXFapt5F57jqmHuR85JHzP3Fu+myA97yb1dbP7dxD2QqwxtdpIWhot5bWtbXud/x8k/EKU4yj+z9LTlCj2u6iyEWH52tE7U5pswdgETip5I4bjTH+QXtuey4D7ki7JFVEWnetF689/2u3C8OpV8bA/bfBa50hbG+zeKbeWQc3RDtFNmLU1tmXuC9EPjjE5G7zTPQhp9JLj/YnAffrMjNrmtWlgJ+S3Gi50eX6fjVJUXT4x3yhDuqnDEx3Bbz5hhugy2b59AaztZL1nFPlongkuCe7uw8/WSvMNz67cE+Qybd3p0zRBxA7Idi6x8t/y5x6SvdFFdK0xzXySsIpzIV/FIp4uPmteDkXzHzbs6KOMr61QSyjnLbzrpHUH4wso3m3bYjoouyj037fwkNEqWGaNC79IwTYXy8I1BeLsb9CUU9ehucgNKu50FesyQQ44GtfgbE97qChmtczDbjlrmdrtmLG/vC9LPKF8ctf1cdYb9FNvf6tiUlKPKyG6hZ/JbTARhZ9PqhVh2dI2l/zgiQ39eEvZlQZ6xhUpt+3COp2H30zoPgKJ+oWXRs7G7qN7hNkHREWM1RXo/JlJWm6ftfzafkP8t/4bGMCuLy8qq6c2ifEf9CPF5g5ZR5ep15r0uGGr6Ns3HU5QV6vA1SKseF+PL0Lg3TmtfCA2d1xKXD5YuExT1qmGkbmW6XtWOMitzQ4PcOLJAacuh2BjcD5q4YbvML3meId83sc8/jPBK6BQV8vwM8y6jaKSN9S/MO8UBWumv0A83a7qxNoFWfS1mnI/NRcNFpwlE1peVW21EI+TfEYlhiOK8zpZVjapKy+f492FZQnvFOEX+6yH/qL3KAS33KUHc2K4dpZHqpHo8UpmTwCpy+TGB8HPMzqK7JLTM2kcbFOsY8nID+b6TLVssbDi3GyUfex4ZlOm2IJ0fmjjW/taJQd0uLqhTs6ITb3+Q8+iheKxlmRPE+/zvKLncucuEOR3pL3V2kYNzLl2H8EK+wLwZMfTtRyYLu8k77oj5rwLLDgjD5n/s0rDXRJ7r1ReEVSUlzCu8VJgPVoSJ5VlWRptm+H47YuCy4RtBmH7y7Vt31CxTmN+A+f+AeX9tEG5vcN9H0Uiklw5isXexsuw17RzS4Lk+jE5qy9JZHdB6jNby6PsD5t0VFPnJ8uEdiGFJ78eRj9U1yJU7TTekTVn9q3irkyukhb239I/xTRVfhtcvkEWzTsqmg2gZb8fqoh+ovcY/2x9J0/7XDz+NUJQXZXnqoBvLf0vJ87q0P1htXDf9uzrMey25t5V9bvvM9yvS20Erf9mw+0ry3Y8smmle6tUQo+8O4BsV9fqOeRa2622RttKwP/C/o4jc22jC6piwt0a7W/r1+vStHNX+pWH03W6K5bH12hq0xb5IfnVkakizRtC2Wv9RZEdEO/7SD07ZZ2E5bgjiD5p8x0viVPHq3UG455EvQOh1IJLem5D+UJW2lsPy3u1taBjySNhfHDKW2Pv/qNE2gxT5Kian7qOVv8IyxOSt5vHz4D7k473k/DUUySM2Nv8iKOd9vs22mDhatvuDuMoXZXK6Ln9X8eH6IL0Bc69GmLI015twZbw2jvTPfSVt2ltRJyuTVKcoq9N4SToqW5SHv23SDXXTS4P7AYqySWkR8kUn7aA6aDudZ5R4G3eaX9U1iBiON9QIO0G8X+m1K/JsKMgrbJN2eVreaiB9xyEfa7QyaU0kvF5ryT++NoHIxthY3GvC1KGFtuEKU7cw7xFDlwYyVg+be/XMayBjvk23iiZl7/p8e+6oCKNXb3A/VjOPWPk2kcvFsG0Ha6Rn892AfNAzHDMcxXFtPTLv03hhX47xY936adt9hbxvHKBVtllarjX3WwIaDAd5Ku+Ok+/ccIjuYOfxtv/ofEzpErbxV8z/cM4eXrGxy/JkbH7fTme117DJI9Yn/hf4F0OHIf8/bHONu87QUx2SYjwbjlXt2rlqXG2nPzaAb5XQqG5+B4J87PsqWdsJH08m3HW+bHXaWuOU9Y0YDcrGeU1Px3vtAwMlYTu5bJ5rI886mS/oFZNR+nyMON3r2sPaXVX2pDpxbVidFw8i+uo6f/8g+Zg7juinndC/jKZWjvcicwo7brSzuYxSnI9WtfeDFPnGzh3HETmqsuMe//yBkrTKynI55TJVL7UTbDb1/4BP+x5k/H8R0FfLNny4jdMPtwvxQPxhwKh1r11Ud85dhlHtNYEMlv0mzwnEOLLVMKZOTsvSn0CUtFv9//0l+WnYsH62zg/68gwgA73mO+A7wWCQlsa3HW+IVgWmbuefjqss/U7yrRowdDBU43dZutsRBfPLtC7WTIbP2tVXB9R2C0NVV1mZYgaZHRQNcnXa9g8RQfhFiosHda/VyNbi7eSKd1W+Y8gC2wPIl7231MzzXuBi4FXAB31eT6kIP0I+aH2HYn/4KjKRHKB8EUGNGLv99QJkUGlXVm0XO/G83bSVtudVyKRKz9RVmoWTkLCNx3wYNVTppMZOcC0/64TnBb6+1/v7cWQC1DDttpN8t4CmbZX8cNDVyYGdKIX9KWYEiPUVm+YOX9a1vn2Gae0HZUaAQ31V9W3bHvsQXg+NxZYnYjwc6z/t6DhGviBYtx6xvJT/7mqTX1VfiNVTJ9f6fBvwK9rL4CrjaN1rJ/AW4EMU+104UeiEdu3kbOxdaBDqNM+yK8ZfsavdmBTKnX7yiUzdcrYbTzeSG5XK4oaLee1oPI5MqHYFz9vVtVPaq6wO++Mg+aKUyuaptG24+LE2eF+l5zYoOg5M5VJZti5I3/7vJeeb6xHZvZ4iL5UZney1wYTTMegq8oljI4g7AvwrstC137fBlcgEWr3fHTKmfIx8fjCIjIVrqNZD1Bjf58OFstLKpckYNjppg0748wpTp6nooPZaj+hu3/fl2RWps/JsyB9V5Z+soSa2sBhrh7qOH7qVvswBwN7/krxvhgtiVk5W5alh7iE/jsMhTj5lNNmH6K+a966S8g4EeXQig/pK4pXNYyd7Wbk9QP0y9pMbTPcF7+r0k/1B+LCuD0TS0nG+n/yc8dABrI/cyBWWYz/lhtuw3neS688HTHoTiF0kdIKz/B0z+uplFzzChRK9lJe/h8jxmN5lHUjGI+k7RAZ/gJwPVTarY4rS4ifAT8n5eZDWuUYD4XE7lyizm2i/6UPGkj3UM9buR7yFd/s46oVs546jJp/v+7q1M8YPIzuavhWpV4wPQjlm275MV2m38Fc2Lql39hi5w+N+k88YuS41WfvIXXTmmDpIrjuFeYb6UIzXy+5HkMWWc4mPh6EzUVjnunNY2xZ7SuIMIk6FGu5FJp62wW7gcchpHdPpiKD8cCC4rxtP/48hfaxu2UYQe9EG8+zr/tnbgdvr2IYzbyBOOMTIsuwpwBP89XTgsZFgDhEY1yGCfT1y/MGTkA9CfBvxQLveh3khsn15NsJQCxElo4Fs15xPfiyCboXRM1Ht9t1R5KOyfwA8g9bzFFWJx6QJ+XbQO3y+T/DvdcuPflAtQwwHNyMT1y8AF/l07gaehWxNOhv4a1+Wk5FdBbqNJEQ/cm79B5CB5q2Ip+AAst0wA34X2U5/Kvk22rKt4Sq09yJboTKfx7eRc7heap7jaRJuM+xHlJ+5yHYdpfsGn/dxhj6KXchZqeF2G+fTm+HDnGSefxRRoBcjHrVXI1sJh33esWOCDiB8EjvDLXZMg/LKiC/buxFaqyKiW5lHaD33rR3WI8borwOfQHhxMWLsfRPC08eT110NHceQt+04skJ5DELXhk87QzwG/wAZBH6JfHiuy4fpIj//VbfEZsBvOeeuAMiy7AJgzDm3yt9/Gjkj+GTgHT6fbc65H2VZ9nVgwjn3mizLvuHzHEaM7nbb8O8DI86539IHPvxa59w/ZFm2gfwDcqpwHQv8pXPuk1mWvQZ4L61HXCls/YcQr+gfaDltwCDf3wZeg2x/+5Jz7sosy54DXAKcifTXbyN993qEJz8E/CnCT892zl1n0j4LeJQP2wU8ArjfOXcgfO+c2xOrSJZlyxAF8VxyvtJtkOHxHZc45/6GGsiy7GzyrWRLgd9A+vtVYVlsWOdcb53068TLsuw0ZAdMD8LnuxBF5bUIPw4gizXPRr5PcALFbb7DPpw9O1bf7SU3zsxC+pSeSamwypk9zmg30v+ORsamHnLafwLpq9/36c4lP6t+JXLsUYZM3maSnwWpR2btQwxap1EcdxzSh5ciytA8n2aVPHEIf9+CLGLNQLwshz3tTvXXj31aG5Dthd3k235nksuCCYrbs3WR6Epfthcg33x5JvB8ZLvy7yC8/zbE6+RGpK8M+Do4ck+7q5BzBV8A/JkPB3LuuLarlkmPMrDbqR9EZKGlxypk3BzzaX8ckTVLEPkQnos6TvH7NHoUXQ8iHxch4+wccp7ITBxoHe8mkMXAJ3oaP92n9xng9eTf/dAzQGdRPM9WJ6UNky+GFhbK33XGmAny8zVvQOTPY/yz/QjvavqO3Di5hJznxxFj5XJajxfSSWwP0t8Wkm8JHvHpD5EfDTOCtOHfIX39c+TbWHvJP1yv9R9GFl1/HxlzuhA6bybn13MRmg35/PYjxuXjkbHQHjVgjTMzyHWKeSbMIGLI3YjI5q8hsueNPuxlzrk/yLLsRYjH6zOQPmvlkuqJSkPVtfYg/f8A0mcfBZyFGJiXIe3TRf4dj0HEgNPt63OSp89MWuWg889nIG2mfKYfbA/7ltZ3BOH7JT79Wb7c25GdFe9G+HqFc24jNMetFyJjhsrkXp/GiT5Pq0c1kHHmDuBrwRj5dJ/HE5B2vA/px19yzjV8mFAHeQWw2Dn3eSqQZdlVyFi9ztN2H8JvQ8A3nXOrTdhjEYeOE3wdZpH3H91+78i342v9JvyvtodOaGeaMGOePjt8/kof24dHkT50tM9beUYXTzWvNYiB90KER09H2n+MvJ/prqRdSL9f7/N+FDLX+DoyJtzonBvx9X8WIvt2ITL0dF+HPYhO/RZE39PxY6cvq5VPg4g8vg3hv+OBC5CxLjwG8n5Py2PI9fQJch6G3DlJjzJcTj5nmEV+Trfq8t2IfFkD/AhxnHouov+e5pwb8frcB8iPJ7wXMcw916erYx7ksngMGWN2+DB7/f2DSLu9BPlYnc5xPogcd7gZ4SWH6BQ7fH1P8ekOIPOoBvAc59x1WZYd7eO/kvz4PIfIjEFyPeYtSJ9clWXZCkSOzKB1vNCxXf+rjBv06Ss/K9Rhxc6P9vpwyrc6b9bjjJRX9bcfkakTSN/7tA93CUX9S42U+zzN/wn4I1+3yxDdyyEyYcznPw/h+8dT1Nl0IfUAMg41fLjPIrr/NeT9aIan4xgi896MGM7OJP8wdx/SF3YAr/Nl1HBnIX1F26aByMsP+bqfg8yPXkg+B1fZoH3e9v1BT/OFtB4l2YXoVm8gn4N8FuGr/wvsdc6d4nXtNyD9bRl5HznB/19hyqHoQcYXRz7WPQEZQ48Ffgs5IuYtvl4Lyfn0NOBs59z3ALIs60GMb3+H9NFn+3BzgON07KgLL4/D+ZIdK2YjMuSziM75ZF/vExF+vQGxgzyP4pFE64FXO+dWeJr9ra/bpxCZ9xfADc6593ZY3hch/Hs2+cdGRxA5eS/S7z+C8OgbfLhvOuf+wcfvRvTF5wMvR/Sabznn9mRZ9mTEftOFOLttQOa/r0P4UHlG8/uZL8sXfHqjCM93IXx6J9Ley/xzlW83IfOaIYQHHh9U8w1If/gafk7ndYEvADc559QegJdjb0bm04+mqDuOIbLxS8AnnHP9Pk7b+bBFqAf4PP8acUZcRvzbALr4Yed06ti6AOF7DbcO0VG3IPOckxGZ+QzgncCrkTFuH0K/TyL66meA5/t+2bQvVNRD+fo55LJkDtLO55J/ayKUdzpnWI/o9So31MCu890dSDtfjehDx/k8zkP6zTHI2Kpp23nOnT686p26sKVjx3sQm+wZnn6zkG+h3I2MizfX6UvJGP8QQ5ZlLwE2O+fW+PsLgVXamWvEzxDBMAfpIMP+2W8hHWwH8Dnn3IB//mGEidX4doaPf4xPci9iZLjRv3sD8H3n3LVEEBtg/PNaxq4sy85HDBnbkY6wBBHYdwbhZgA458azLDsTuMA5d5l/9xiKA7Yqljc658aogSzLjkcUlUfXKXeN9I5GtlR/wDl3n392DrnysVInZubdc5AJTovxsCKfjoyKJnzl4NBJumYhSpWJH9ale0Watr0fgRg0ZyF8dkcH6XQ0GAZxj8fv8HDOlZ0HqmFfjfS/1bbsYV1MuruApwG3OOcGTDpvQhT2teQfvRsi/x7FWsyEs0b51Vugmb99p+0UKWO0X5fkE61fFQ8YuTUXkT1n+N8zEcV3DbIQdV872rcpm9JgSVDfZhn9/xnIwsZYzfLPQAb77XV4vRN6TgVejvQ65x7096X8X/Yuy7JTkMnzoxElcIT6skDlhtI8lu8yRCHbgfB6VG6rnEeMLH2IPP2IytNI3oVyG0NX2/acDoT9IHhXkLslEzM1og445ybCNIL0LkQMRE9CFojnUd7OTdkUPD8kPOnz6mQ8OQtp96X+moVMIoYQHaEwxkx2YW0qOBh5Gll1FFNsl1jfzrJsNrLw9hHn3H1ldWjXXzyfLkXG/Oudc+HZzzZsQVcz8aP9pGbdYn2ntD1qLKBOqTwlZTzoMqeTctctT422r9SnzLjeo3qamY+cgei+V1qdZzKI6C+nA+8CPhSOD55O3YhTRUw2F/ipbBwJ0iule+x94Ciwvyp+kNZJiF4yap4tQHTD9c65srPH8Xrz7yHjd8v8rqYOqeW+H7i3pq4z2TnJdMrSMt2mchyezJjY4djWTB9/dnQFH9WRwy3xI30jtDHUlQWzEWPcR51za/2zhcDfI33jS8gCgOpvuhA8Rv6h0QK/tdFHVS+83jnXV1E/qxe21CMc5wwNdgB/ghiQxynp4+3mQodKn4zU6ZOIo94xyGLyccji3JU1+6U6B41DZ+Odl4l/B3y4RL5Oy/jp05qF7Ayz7Wfna9besAe43Dk3ZNI4wYdtO28sa8vJzGk7CTdd8SaLir7ViU5ROa5WxDvk+npFWSqdC6eUtkvG+CMCmXgrnIWs7NyLeN49C1k9XIw0fB+y4vddxGP48YiAUS+jD/lnv4kYLRZDc5vKA+Qfm+xDPBMXIZPy05CVngPICvTbkNWuzYhR81iKH2BrICtlVyArQU9DmFJX/uyWI5BVyX5kcFuDrCqqx14vsnK70OepK4jD5lc9Ph5AVhE/F6HfcuDPkdW7E329rJeoeif+FDm65CmetrORlfsTEePNfmCdc26TF3hPRD70pG1zGzI4X42sfF/v81dPljmIt9iTyL0G7kc8T75F7kWkvycD/w9Znd4MvBj/kRRVnI3x722Ix+GZ5CvPQ4jy8gPgU865XWWGv+kU4NMwQb4K8Ta9G/GKuB9RHB6DtPvxCG/pSuUYwsdjyCr0byO8riuV2taDyGrqTIS2tyJKwQrEo+kFPv39iDfcDKS/HOvTXoW0xWsRw+JMcu+5MV8mbddef83xz49CVsHfhOyEOJOi95eu+P7S1+vJiIIUW70OsQtZtd+CTFBfjPDTrcikcgnSp/8F4c8BROl9LHlfGEMWzT7i6ff7FPuJ7S92ZfgniHfBPkSxi3mkDiHyYCGi+OgqsqYVi6M7f5YgfXuTT+NERAmebeLjy78V8dg+ypfr2YjsOYnWj66px05G7sk7RL4TAkRW7fX5fhSRT/ch8klX19X7bghR5o73716LeHhdjCwEzEb46QmIjD2N3Ku4CpqP8u+NwN85524DyLJsFkL3BmI4n/DPS/tz3f6ZiTfPcufcJpPmCcBMI9tUDv4zQudxRA5+j5zGtznnbqzK38jI46he2FmMMQYEhr9XI5M79ca4BpGbb0Jk3igiG7+OGBZuRvrIl5xzKyL1PwU5wu1KxANE2/jZzrnrPe2vRHjtauCOQKaqHLvcObfdP5sPNJxzg1mWHYV4ur0Y6YtLaOWHUYT370M8cX/hnLspKKdNswsZv9a4yCJ8lmVPIN8V16RfJt61q4GlfnybATwVkYnPRPrREvJ+NIBsxX2/L1cLD8bQhi+b9SiLX5WGMUAfh3jYrsbvFDAGgFMQj6lZiDy/yjk35A1wjwIOOPFYeyKykLcBP1ZmWfZaZJePetncBvyjc+7GignJucCfOefelGXZ4qoJQ5Zlc4FXIOPDekRGLkd0vu8hvHEKMgb9sf//Dwj/vQDhz9UIr1ztwzwdkfv/4Jx7U5DP8cgC7Sm+CJ9xzl2bZdkLkCNQHoUcJfFVxFgy6vO4GtHZXow4WHwXkWdv9XRf5+N/HvEueplz7rs+7+MQXezFFHWVQURXuRI5vmm/kLMgN16EeBqdS+5BqmOSGgNVF/x4qAv6vPd0ONl7IqLn3ofwwi7ES/jDvvwzyI8/UG9ZldVaH9W9LC/8DrLjL0M8xfoQb+7/g8iCCeRYhqOQXQ+6gD4X6b+qc/chY9/RFL1q1fO7F9ENrkTG/PeS73boofgBdgvd+bnDh/tfhJdU54f8CLhLkL5wCiJ39/r8m7LS0LNQb89vr0DGjxORMfwLiOfmr1zu/X8V4s39E1+mXk/nNwFfDxdxvCwYQnbePMmHvc2X+TGIjLjH02UFMsY/HZFjSo9Rn08/ufeblc/a7p9HzpEd9/Xv9fkc4+Pcb8blxyGe5yf5S3dmTCB8e4t/9iJyHUc9v7d7+vR7Wp1G3n8myD3kZ/u81Zte9Qzn2+RWRP4/H5nnqQ7b4/9vI/8Q/BJfr7/1eb7T59vr8z6aoh7+IKLD9iM7Q5b55yuBf0Q8Cff4vO/CjBlZll3j073Tt8ftiJ7+LkTHmuXDn+DLrTrzrxCeWYh4+Y8g87ilSJ96LsKz25F5woXI/OA9vtxvJ9AlLLLAwSJ4VxizvH4yD/HU/U2E12xZfwn8u3PuZ23GwrIxbjEyJrzC0/d4T2MrR7f7/GYj8nm1p/kmH3cv8O9IW7+MXI45hF9GkT52LbLj6XqkLy336XYjffEopP+tQXhjPvnOo1FfjlHyHRs2j/2+vLsRvjseaTfdKbkXMRg7T8sTEd3jLmQ8Oxfp28dDc2feTvIPOOtOHC2vzjNGfbgexEP1OISfLkDk+1yk737bt9UZPr9vIjuXdnh6no/skLkL4e1TfJnPRHg23CU3gcwV+pCx+s+R3Y+LyY8F3o7IfrsjfTMyf1xo0hn29bLyyMqlcUR/WIT0TzvH0t2dsXnlEDLOzSa366gMPMpfM4L0YnDkO9wWk/fbBxC++5AP98+IrnoiufFyrqn/MCKrViA80EuRhroLxubboLhjS2mzzpfpOES/GvJ1m0Mu97oQ+TuB6D7HBOmqnLwVWaC51Zf9P5EdCO9D5OYjEfmnu59snXQnznsRD//TfLgexN4xwzn3ND9OfpuijWrCx7e799QGpnUYM/RWL/cx//8oH3bYxx/29WnqsQBZlp2K2BeX+vp83+r0WZb9BrJD4vk+L527aTnDXS7aHhPkpzhsQnTFhbTqHw5pG93V1UD65H6kvXSBbivCExdC09nSOl5WzoVMfZrzNGSHoZ1TNnU2f/9yZFcWSPssR2yFT0N4YRvSl8cRnvsYwvcNYM5kFwySMf4QI8uyjwJDLt+asxyZ6J4RCa5KVhmGyLfxW9hO0g63kxvkpxNlxr0RitvTs8j/svQ0nS3IxPFlxLfhq1B9kHzbs2KM4oQmhApS/bX5j/ny6zZRkA5pBZVigHy7cxU6aSvIt1tpvJiQs+kNIYN2hiiNFmOI8PsOMnh+FNlWGA7Gto2s4m/ztOEa5FvEu8m3T6rAPSGIv5P86JiwLtpe1mBcha1Im4ewcUdp5RmFGm/r5heLH5v42nKo8jhZtJML0wGlfRmdDic6bZdDQa/pgsqTUUQh1UkH5ArQAX8tI9+mN0Z+9EpZm42a/2qAOZZ8Qq/Hamhew+Tbwi02IxP42RQXPOy2QMUYOR/p5EmNWVC+SGPD9fn/80vCd4phikcoWOxCaLKfVsOMlm0YUchmI4q4Pt/u48ylFZPh2dsRpf9YE7cfaZOlCA8M+HxPRSZ0sXyHfHy7WLURUSynQk81VHWT89PRxBfFtD0Vasj7PGJ0WObffxaZND+bXJaqLNqB0GMf+SRqqtB2UePCXIqOBOFRGhbDSBvMQ3hBj/85gEzelyN6VTsdYCrl3oSMp7cgxote8qMatC4hn/cjvLIPaa9OMIH0x7nkht4YGsgC+yMRfrBj7zi5QUQNhHMRes43dRsl35ZcNq5uQ3jjEbTKeDvJHUImTAcQo8qgL1s3eRurrmH7qu5GLDNmW91IjVdPQXg7lJvt0E53OBQIy1BVppjua2mofV4XMaryVANDiM0If+9F+Ggz+fEfJ5DLaTU+xNI4VNAFxpj8h9xgEcoTdTwi8k7R6fjRydxKobT8KkLbZ5SEW+/fh22v+ZTxjMrKOmhX5j5y42UnsEY3K/uVP+vo71Xl2o3I1VMQOXs0xY+nhjJzDBmLx5Ax8Og26ZeVaZjWcVfTn2HCTVa+DJWkPxVMh7yzaVTplIcKk5kzHkqU2SsOBeycsg6djoTxsA5PWZtWCJ0ThbrJPuLzi8lC57hldB1FZM8N5EdAE4QfpFxnjCGm1x9qqC57B0Lro8yzJeTHdJ8ZxGsgusR1iNx9Hvkxj2WYQI4ZfTH50W12QUgxhCzivbsjp5BkjD+0yLJsM+IJ/QTkHLIhZLJdZ7CbjCC1HSvWyWKdN6aQj/jyVZVB302nEA0VWDUIV9FBw2i8u8iFT5j2OFNX4MsEoCM/m6td+IOh7KgidqQqB1WDmEU/02eIU2+wcKKsEwUd1BrIhPpYcu/tTjGKTGzeQGvZqxaFpkNhqtMH2ylE7cpYx+s7ZgjXlfyY0S5MTxWEMpQpBJOdrE0WVbRUI52WcQKp13Tx9MHAkTSp2Ej+jYzJ4HDXJdaPDnaZOkk/NuF4KC1gHSlQOpYZRmLhrdG3K/J8spiMDqYemtO5eDAVXXA6DQd1aFoVZjKL6AfLmOCQ8cMaNnUCasNYzzr1PlM9fiqoIxtitNT2nIxsmY4+0c6w0gm/tXPqqQNdbFIesbLAUU2jkLdiepIa1xXqPameyRCn63ZE3w3zD+dik+2fVe1gF26OBGNcHcRoWCbbpyPtycDyq+1/7cpeJz3rwFQ3fiyvdot2dVE3/1AOtdPhpzIWxdIeQOYAIawTQsyhMZZ2O0NiiCp7Q1hWy79Vcq9dOWPz/bK+YcuwHTGYxnAwZYSWoe54peFjsni6+nGYTju+nK581WM//N5FSPsym446kTYoX8Q9WHOiuu0X6lAxxPg/tiA4Afy9c+7DdQv5UBjoft2wBFmReQeiTKshvo6gbxcmdm5RV8l/RUxhVihj6Xa4qnJaA/l0dX4oGvy2+v+xMjQofrRyBrniGNt1oGnHtpqVQQ1/FneTT2IVevaYeonaOLqFDGS72ID/X+ZNGEOj5HkI+4EOG1frWHlUgMEucq9aK2wsrzSC9xb2rEn73nrwVtFdjeOTgY03htQj5rG21+Sl0K3an/S/Wl9bn6ojf2YiW0Bj/aFMobkf8W60CGnaKHk3ZP7Xke1Vyh1UTzbbLfJoH7BKv2KUuNIdS6+d4SAjXtdwUA1paGXlvuDd5uD+lpI0wnKUoY+iV/q7ke2LofGzLoZolSmKbf43VtZOjqeaDmOgRV/kWdUZjbb8oSFeZWZ4hu2Eead9VdP5OTmd9JntLyG96rSHxrFycDQSTvvRNeZ9huwIsmlZT96qPJWOjUjYcYS3t1akoXEVdiKt7+6OhI3VTTFU8jxWl8nK8rpYSzltDiaUjuolD3GdbMiEV1gZNpm+p/yq+dr0vk01Tyl6aN3VMpky2PYNdxfG2r6sbHbxEnLZFoPKAvW8D9OtQ9OYUcq+69SAXGcM7kTuK+oYXtQoAMWjUOrsdCuTyxMIP4fvQ7kV7hhQDPp7u528bp8MdyqEPFMmO+0YEcq5EHZeMRC8s33B0arXVyEWboJ8t9heWmVBO94J3+uxZpaeRwVhehBesH08Rg97dKLlz9cgx5kowvG37JiAkMfDdrDvrV64j4M/VlQhNt7F2jI2hy6T7Y7iWF+FcfL23B2U5x7iY0sZvbTN1ZsT5IgF25fDcSkm/8fI+R///0MU66v/3xuJH/Z3G69qPtrJ2B22R5mMDeV51XwoHHvsWGbbsoz+sbRjhnhoXZyLOSiFZZmLP97WY4cpj0OOzbIYIv9IuoZTXBaEHSGvY/guRJV8jRlpy+ScTafMEB/Gj+l8E+Sy0b57d0WaYRnqjvsaPjZn7USn62Se2c4maO1ineZlobuuFXrcVIgy50rdiRyjpdbpb4NylZWtqr/F4tVtP9sfbyoJ04McsabYRJEOm5C57n7E9lMbyRh/6LEJMQ5/3Dz7F/IBY5giM91Lq9KjCAeoulsAq6BG7PBZhmxPDKFlfcA8CwXGAeobfjW9WAeKHT+ieJBcWdFzoBWbgrCN4L+l956S9L9JcZKheAytE5xQINk4tl6PonxAHonkpSjrt7f6X8sXYd3tpLKuh9Ri5Dx9jQ9FLzFHqwKhuB0RYH2R92V0CTE3eN8A/sf/72sNXkBIq3tLwj2yIt4/+V8d+Gz7Vg10oTIbtoXCDiCnkS8CxFBlWNFvNXQCh3w93ir6g8Qn5KMUJ6l9lNfJThQaFNtphrkP6xK256qS9NvhNZG0FXYyAdIPrMJ+QhD+LP87RpG+qyNpx4ygx1DkhROQ8ygtlN4xRSOU/7Mp7zvL/W9MdlxGZ8YfF/kf/g7QOmm15wcq5gf3jmovqCrlVWWmLlrZMUNpYReGM+DZ5l1MaQ7zq6PAaRyrEIdjwTrz/6nkkyQoGksych7YHaQxGoTT+saOPNCzokN5FsLKt3Ci2UXxSDPb5mW6yJeCe13AirVj3YnJGDlNRqhevIG8nD8hp40dCzNksRNav2sDrQsKB5AFFIUuSseMvRbWYSCmk4ULH2VYS/lCdtmEIzY5W4N8p6cMZTqPHoenZdDzQEG291o48rN6bytJL6NVVoSGSAvlUa2byjbrUKCwRx9Ol1NI3fj/QTkvfLXiHbTK+zr6hDpZWBrEPLpintJlcq3MScKiG+HnkKdDo1HZwtJCf3+0edapt6n20cHgN3zfQAyWMWeb2Fh7NcV+rWOMPosZsOvyRyycbYdFNeNo2WJ4rv+djp0kZWPDZ4P81wblquKbKpS9X0Sr/m7zt7L9a7TqJmXx9F7lVQiVd+E5yZC3y8pIPEVVfTNzVZXRUTSALaZI3zMon++Hdf138oUS66A1SLF/hPPBMjkeLlI+oeTd/hplsyhzMgI5ShXy8aNsoTiWfll77Ivkq/hYkOYx/r91tNPjbK2BOuRXq7OE7XtHJN86+rnygfKptu3TyWm+1P/q/clBGouCZ7bcoRHR8qrdIV56RneH+Jb5Hzoa6eKtPivTPyGfD1iadyN03kyxHhcQtx1cgZwVr3lbhG3528QXZMocU9pB2/7b1J+nHSC3y8X42O68CuEQmpTpHJbmYZtcU7N8UByjQ09xm+7vmv92nhO2g+37Yd3aLbiX5a1xFaF+a2FP2bC2Ak3vKERePzrLst/y32WrURrn0nUIL+RDNVuQwVQnFaPkAmclxdXzB5BBQ1di7Ts13I+aZ73+90dB2AHzfyJ4Z6/9kXz0/rvm2WAQ5s7g/kHzf6PJM0w7vKrKuaZN3HHz/9mIsA3DbCcXLgOehprPkKmXTowsXUcq8l5h/h8g39Zj26mBCPCqdPT6TgmtGr69/yDyTs9lHzbPXhvQ0ab5/ZJ2jl3hu7GKsLE2G42k80Nz36CV5pZ2ZeUbD+5vDu731ijjmE9nOHgey+9LJXUPw8b6WKzdNd6tbeiv11vI+/hwkM9diGyxfKg0CsusxqgJiryq9BgLwmobvtk8344oArE6apyJ4Dest6X5MDIBsGFtOfaV0HuUVv75ZJBumPdbzf9GkKZtp93muSo++u4/zP19vqz3lrTbEMX8w7YO+XinCbuvJE1932/u/yeoi5Wn3/f1iaXx4aAsjeC9/W/HG/3go95vQgwbLihXeKkXexk9yvpJjMdicTXMDv97DTlfabxwDNsfSac3yEPTeCBStgaixNl6h31L5eF4QDdH3nevDJ7bcMO01nfM5LUniFNG1w0VbRxeSq8dxMfUWPx7fXnsmKrXquC+TDdoIDLN1r2KRzSdm8z/sLyaRqytR4P7XtOWfeTn3O+kXnlsncL+bd9rmJAuMR7V6+0lNAv5VXnhryvK+IOSdtQyD/jnY+b9g7TWYwfyEdAy3WAv+ZgUyy/UfUciYex9O5kxgXw41d7H4lT1qbDfO1rl8Xcibazht9A69pXp3xPI4l07HrIyXWnUG8QJZYtDFpNiaZTlF/JnrO+X6ajjiCy0YWK8PFySjt6HfVLLv9H/qnwP26uBGGFGIrSx9I/pZGqwt+nqZfk3pOEnIuHDy75vIMbuqvAqp6rmT2Mlz6v4TsPfGIn3M0S30zgPBnEakbTtpXNBld0hL8b6/FbzTGm/J4gX8o9+58ORLxSUyQRtt3CuHLa/tskY0l/K+FzLNuzbKEbbGI1ifUDD/WsFTX9Mtb5TNY/aYOKWjd/jtPLCF83/sB/GymHbeYK4DNJyhHOXkFZhPwrHgp9FytBAxuYtQdxY/99DUUcI67IpuN/hy3Qgkuc9JW3iyPUHlYmWx2PtWSWXY9cY4ih3oCSfAfJjMcN2mKBVdoTxq64RxLmhSjYp39xP3E4V8uRq8u9ghbyg47eWMRzP+0y4kE//K/LMzj803n3IXEGfT1DUK234z1McDzTcXvPsTsS4HrZr1fxK5d+GCD1j/HFDpAxhf9Prh8jCREiDsH+E95cEabbjkdh8rYE4ynTC33p9p0Y+Om+1vB7KZSuTvhipq17XBvGsPLJ2SLW5qc3vbxE+7CfvW721bMOH2zj9cLuQlar/Ngy6L2ACOzFQodNuQqfXRuJMOEZxcGk3ial7KbPVMaRcTy78YwN7J3mqomgF+s6a8W15dSHEvo8pEGVXmVG9VEnxPKCGnH5aBzJrENxekXfMEDCGKLWhALL328y98tOmkja0htQ67ewCeip9G74+MYNwXVrXNdaVTerCOk3XFTPqtOPfOosxZbwWDtz3m3qtp9oAqvlPNw3qtM9kw9prD7LYorz4kynUpYHw5o8RBWwyaYyTKzY/QRYA9/kytZtk1ynfvhJ6hQqzlfva/5Qu4WLWrhL624npBKIU1+HtzUF630I8DP4tKGfY1xvkcrCMH9qNE3trlNGmvdb8/zmtCyexcoT9SSc29vlXyGXkeCRO3ats0bSTMUlpqkp2lYzVdOuOx+FCeWh8tO9D421Vmjb/wUgaYZywTuNBnLI6bTD/Y4tSVZddpA8XOrTfWB2k7ngZ1mFfyfswLQ2vOwLDxc8yo2BVmSYo6lQ64b0JMUa8Jghr446QH51Qt+6X1ShT1ft28bZSNFKEdLHGvjsoN1S147/QKDCELCqH8XojcadyKS8OU29haDI0dOTy7Cby3XGxuNbA1qk+8GP/P2yDwSC9mFOHozgGOmRcWF2zrnXLGjrqxBaWbiG+oDLVNumUntp36+Y1nXxpeWA/ogvZcfoX5Dw06Nt0e406xvrnD0vClulfuyka2R3F8XUcGSfKnEc0/I4gjg1nnescrX1zMEhPZe4e8zyct00nLx3s9p/MVXdOZOfusfeTmd/UndeGOk6nadR1YDscVwMx6nYiZ/a0Cd+gVS5PV1n1dzI03UE9nXcPRaeDUJeoe4XjxOG8HqRovF9N+Zg61Svm4FinXWPX9f437NtWdt9Nq2wt05sdInPswl3MWaNR8twZug2ZMLp404ss1jwF+Fgd23D6gOthQpZlL0KOPplJ69bCO4DHkjf4TETofAn4U/9ct6nqF5S1IbchxoHnI9uQZiLb2ZSZunyaH0TOBlwIXOjffxc5VuQvkUHnRPKjYRr+Vz36ZiJb3HRCMIfi+e5axj0+zhJ/vw/5gO2HyLerNhBlbDnwSuByH24IUeJm+bIcIJ+8H+XrFTsXHaSjbUQmyBuAV/gyukj4BqI8zaH6TE0VrGVHy4SwX7LXPPf6cms+6jn4auBTlJ9vP4i03XR84EYxjND2y8ALaH+0QacYRAydZ1O9ffYe5NimTyM03o/QZybSNu3OuAQxRJ/i/zfIPwa0Edmm+XKfzmnI9m1NR7eq/sqH+ySy9ege4HTyjxaPIm2/CTHqPQJ4JvlWRcv33eQTjD6ErpuAf0SMZWuRbY+/4X8f59M7H2mPnwPPQnhcj/vY7elxC2KA/x3goz79z/sw30DofAGicCz36WrZ1gLvAf7Ml33Chz+A9PsnkxtT9Iy3e5D+czKyiPh04Dk+7lU+7d9GDJtP9GGOQgb5OUjbjyP9eYt/14vInUcj/Xo+smNou6/XcZ4Ozj+b6dP+D6Q9ZwLHOuf+PcuyWUjf/huk/dWI/WMfbheyyv1D4P/6tjgZOT7gpz6P3wCeBLwQONW33Twf58fIboCTELm8xOezHVkFf42vx586536ZZdmZwAXOucuyLHs88D4f52xPjz5yGbaQfIt6H7K1TZUN6GzLeUyuTTasej6Eskb7lI5JigFy+T/ZMtWBQ9rwVISeQwhtbwT+AjmqwR7DpWjQ/kg+rbOOYe0+Tqxjb6yMNt4QrccKQT75nBV5p4ph3fYvK0sVwg8tNRBFvdMxYLIft1bsIN9S/XDCZD8AqbwxgIwpq5Gx7TpEhv857fWTdh+L149tqY6pPO06LHO7/q/jZhhmHzJOjCFyxuY/nfKkqt80EHl/FvU+OqoTN3t03whxfU2PXJqHjGenmTh3IR5bb/HPtZ/2kR/ZNoGMXS9C9ATd2Tcbod09yKL1g8DzyI9sOpFc5y/DjxE94Ch/vx/R45aXxihiDHgnsjvq48jYWsUzvQjvvpQiL6huqnJwwKfzUURXgOJHDkPo8wFyGfx8ZOz4oK+PHjUBcT7sBDrRb9c/1iO6xHuR74bNRPSiOQidHx2kaT8GrTJjDGnnN/nfjyI6zXGIXrIX2RHyFuQoTI03RE7TFYjeuReR4ZcCv4fooDsRfSg2LvX5+AupPz7p/LSPfM5WhhGEJu3a4krkOMfzyee1inHqnbs/XbB9fS1wZgdxddxdQr16K0YQWVPWBmsRXnsZ4pn7fB9+N6Lj/y/wYuAcinRaB/whMhfTuWgX+Q6AJdSnq8r3BxFv0l5EHi1CFvZO8unNJp9H3e/DPbUkvT3AfyK8vhTp3y9D5OgD/vcWZN6pev855H2oH5HrNwFvINddGgi9fo7YQ05BdJMVPq2XenpsQHjv9eRH+qo83YocOfxXPqwdv/4JuBg4F+lruhPhS8h8KkPmmzOQtluIyIPfQmSxzlkXImeo95DveO4hH3f6ga8j/eyFiOE1A85D+ottO11UWgu8xTm3yc+nPgD8CUUD52m+bLcgR7ms9NeH/fOlnk5nILymx5HZebGi6giujYgjz6N8nlcg/Hg6ctrDfyHzzn8Ffh/hHZX1Nt0G+UfOx30Z9XsJSqv7EHl4Ajn/dZn4FuF3H/Q3Q/rGDYjetdA/G0Nk6zPJj4IZ8OloW6pz6h5//1GET59GbtD9MdJGz0TGhs0I385G2uIYX44v+7z/EhnbrL4yYcpQ9vHUGF6DjFMLENk9F5Efp5DPWyd8nfp8/qMIP273Zd6K7Mh+sn83Sm4D2Yz0uccjeussih9C7WQ8nkB4/zcQfaKOjU75og4GEZ3mWVQfIwxS9pXARc652DFoUSRj/BGALMsypKM9FWnEd/v7yxDGXgR82zl3c5ZlpyCG7Ecjytgs5My2WchA9kPn3FiWZS9BDBY/RjruE/xvM8wUyzwLMcydgQgEFRQ/QzrbOUjnVy+IRyOCZq1zbtiX76mI0P0WMsCdi0w43uHLeKM/b6nbOddyXqwvw0VIBzwVEd7HIIrExc65ERP2TMRIeR2ijD8aMZTd55y7w4fJEAX2db5cM32dtiHCX2mbIYrM+YjxYgnS+U/3df8F8HHn3B7fXh9G6H85uUA+DxlcvhiU86k+7BmevouRzv0aRDH4HaRdlyCCQRWSuxCD8ixkcn6Kf7YSUVyehwxMDyIKxxiiOJwCrHLO9fu8X+vbYQxRWE7wdXqkr+MB/2yez2seosDtBo73tPolotD/3Dm3K8uyP0C8hjf7NpqHeI7d5+v4Wefc6izLfhsYdc5dHWln5bXHIYONbhn8tK/DKxEe+DfkzLsbPB3/2jl3d5DebB/uZODtPu/ZyDbj7wK3OucepA0ifQBkAF4L3KjtWsXDQXqvR9puBJEBm32ZPuKcuy8SXsu8BqHrE5GJQFiWFcA3nXM3+XgZouSdgSg/Vzrnwg+WVZXzJcBm59waf78Q+HukT/29c+6uumk9nJFl2TJESbnJ95MLgVu0LbIsewTC76ciCu4QIr9nIorofMQoswpR3O5HJhLP8/fqNfJD5BikcaQfvxSRDX3Iyv11SH/8b//+asSw14Us0j0COcpiKdLGX0N2AjwWuNM5tyLLsrMRuXkSuZy4B+GxmYhMOA5ZuDkB4dlbyI34fQjv3ofIJ1WSlIdn4Rc5DP0KfGiez0IU2rMQ+Tnu0xn0dTgFmdCMedo9CNzunFtt0niEp/E4Itde7cv6WURu34jI5AsRw9cu3067EOV6PjIZOQZR3hYji0n3eprcqPIgy7KnILLqBJ/H+5Cx8x0+zaOR7a7/gSi3H/V1uBQxyGa+HGd7+quxZsy322rfBs/3bdCDyI3zCWSAp92rEL5YQu4JO8+304Bvo3nA9c65n3i+HQD+DjEQzvTl2oS0O57e3b5M/+p/L0Am1o/25eryZfuCb6ed/vqlv37H17EPGZ+3km8Vfg7S3jrZPsa3y5cQGf1/yRfbR/w1gIzDSxF+PNmH+R75JGsX0gcXkk88BhC+WI70o9uRSWsfogP0+/Kc4MMs8u23F5HTa/x/5YuveBqdhhjB5iP9dpDcs+zFCC+8CzmKSidaX0DGum96GaJ6zgpk4XURuZH4ZKTdP4v0j/sQvnmPr9/FwBXOuY2mD2l6+5F+qEaEoxEDw+kIj61B9IQVnp5qROhGePGJiAzageh9F3g6DyFtf5x/dyUicx6NLI6f5mnwGIQ3dBHuVl/+AWQy92xEHt2BTB4fiehhV/lwz/L3j/A0vtvX7QFPx9/0+XYj+vUnvK73ap/vPER/HkH6xAsRGXUmYnQ+D+Hr9yB62KAPvxOReU/y9JuD9Os/QxaE/xTpg7sQ/toH/DNi0LnFt9/z/fNR/+5tvjz/DLwf4b/nIfL7iYi+uRnRcRYg7a9pfsTT+VzfThnCi6ojbUN4/LOe9h90zv3A02EZInd2+3o91tNZDcT/DvzIzi2yLHsGMheYifSHl/q8ViP9U3VqHese69P/GvAMxNC2zNdzCJm8L0XOdD4b0TvWIzro4xB+PAHhUV1QeQJFfUX1phgtHunL9jaEP+8hdwaaifDbXN8uO3w1+xE+WunL/w+eTit9Wr+F8N37Eb4/3Zf7PgK90NBhFnC/c+6OLMvei/BSL8Kje4F/UJ3Q6LMXAO9zzn3dpNesa6hDev3jXN8O77dhvE73DPLFqGOBTzrnNgZpPBdp38d42hxAdIlxT6+lCM9vRPr2GOI88TZkXF2D9KkeRJb2+votQdoxQ3jteYgMPdun+yZEBvwjIi9nI33sGvKzrLt9Oy3xbbYf4YnTkf52KzJevgLpT4PIOLMJ6T9bff17fdhnI8clPNPTZhvShvf5PJci899PI/31QkROfheR8U9D9L2lvm49wOudcz/WOYKnyR95Op5LbqDf7X+XILx4FaLv7fD10bPU7/f1OBFYrTpNlmWPQ+TU58h3OmkfuB+Rtz3BXDg6R8iy7Cxfj2W+TLP8pbsB9nuaXFNlZ/AyZa3Vu8y7pyLfQXg90ob/5WnbYrvIsuwkYJtzbjRMpy6yLDsHOU6i7bzPxNG+9Q2kff4M4aN3I/3hDIQvvxHOQWum+3Gkn1gZrvdXITrNAoTm30R495WIbPwriv05KgcCWahjxjzg3bE5Zyfwto9PI33ou0h/0bHmOGRMfgT52P5WZF5hy/MJxNC8CNE3+4y8W4DI6AVIv/h9H+f9yNh5if9diPDwT5GFhm8gOv/9pr4/Jx9rR5B+/mqEr7+I6A4XI+PDDUj//z5C89cg8kXn7E0aIrLkQv//ZnL5ttaX7WPkY3msrdu9+ydgfTCG6HxC7X2rEWelX3g6vRrhzSsoLgTPRcb86xE7zJdifdTYK08D/g8if/7Q0yYmL0r7uYXXOd/sb+eSy+/liIxfjMjTvYgsOBqRpTOROdECX/aTEJ3wucjY1evpfTeiQ78c6Vs3kC/IOYQPH+3pdsCnux3h3S+r3PHzzr9CZGgP+Vz3Dl/OjcBK51y4oFOJZIw/AuGF2NPIJ+Lj5KvMOxDj82MQ5X0zYhz4DqLovBxh4D3IALHFp3U8wsw9yGB5i49/PjJp+gUyqTqe4gRiPsLMXYiCex/S+VTR7QZegkyOT0I60TZkUjZB7gGqEw31ipiDKCS6ioSPv8D/LkQ6wz5E2V6JKGtj5B9N2Ew+EegJ3v0KGcif6el3v3/2S0TJeQqikP3MOXdjQPune7roqupCX47LfbCzfP13IwpJry/LCYjSehy55+N+RBhq+c73NG34d7ciihPkX3B+anB/of/dQu65qP/nIt7cf0C+S2KdL8sSX8dNJg9bzl0+HRtW39uwVe+O9XSI5RGLZ+s4A5lw3AiQZdkLkJVdFbALEV7agCh6e5DFJfXofCwiOGcgAvAoH/dvgD9GFM93Ip4CihcgSvXv+/tXITwxBxHY15B7A+5D2nY7ojScQW6Uupf8jN/H+jJtRgT3GxEem4Pwf0ZujDmdfJfIfv/8Hp/WAmSAB5m4ZEjfWonwyX+Re8ed6MP/ElF47kMmNl2IYWEZwhtHk080tvn43/f1fr6nl3paNsi9Obr9/d2IfFmMGHNi/fMAwkf4uvX558uRiaUa8Wb4+D3kRxcNkXv1zSQ/a/IAojA1fF2OIfdQHEb68qd8+dWg0ePfbfDhZvo2eBDpc+f4X/VGGCTfvbIoSH8G+SRjBJFBd/jyPM7X82ik/fs9nbYgSsCxvryzyL159nga2jT3eVrN9DTYClzlnPsaBl751P4zgsjnE8iPCtF7+07D7kLkROzdTuA47xFTlof9fwHCA31In/ilc26TL2MPsFzvI+VeQn40yEiQZ1l+WpZeZDw6hdz4sw/pb49E+tRJCO/fjkw47ghoeDLgrDHBT8CORfqQ0uhJCC/1Ie16FLnXzG5/3Y/w1PmIcWAR0qbfdc7d5mnxFGTc1Ta/2qe/FTEkPIPck+5nCO9sJN/WmSH98yRfz/9EeN35vJd7GmpeS33a20z8sL49vsxbET0ibPsR054vQCbcvT7sLZqWD388wnvbkH4e4y0dA8ra3fLv+b4t7gSGTTnq8Iims8vnVyhLwJPPRMaqZYiOMhPh6ef4tjqK/Ci96xAj21ZkvLLK+q3I2HWt8lZAU6X1Xp+mjiGPR+T0MmQy04XwXB8yHoz4sLch4/gepN/9HsKP/T6Nu/3/9yPnwX8RkfujwPecc40syy4AVpj/55LvtDqV/Fs+q3Wh1tBJx6kVpu6vIN818gVfX9WF9nka3OSN+achXlVzEJl7B7mn4bApVw9iVLgPcYzY6Cd7b/b5DiH8P+bLMAvhkUucc0OmvIU2IPeYvQOZ9Ksnlra7GlfP9O3R8O16is9L+/gfIQ4f+5AJ+z3k3urPQibDb0IWff4FMcS+EhmfnoCM3a/y96M+779AdLY/RcbFHYheo/gHn9ZfIvz3A/PuXxGjBch3Az6K6Aq/iRh4tQz9yIRT8V5f1s+Te6TuJnekWIfw53KkT/+zj/cBX9/Fvi7/gxjIdyJy8ijyIzC/RetOgNMQ2bTJ13Wzp+cDiMwbM3kuR/j9JYiuP+Tfb0bmNU/y6dyEtGO/L9Ny/+40RA4MIPObbl/P4xADxB5fvl2IfvhPPo/H+OebEC/izeRGnbMQfv0BojsN0yp/T6AoC7chc4jdiI6hutjTkLFrNaLfvBxp+1sR49pLkEWdPqQ/6PzgiQi/noPwBMjC982IHFajFAjvHe2fH0DGwx8ii0RXIAuao4isnefzuc2HebEvz3M87dYj/eCZnj4bfPg3+nqtjtxfiSxUnYboUJ90zg1mWfY0RHZsQWToYxG5+g2kr57u6THHp3kzMqc9F9E1v+vLvtOnc7uv78uQ9j0a4fvPk3vBbkKMeef4eE9E+EJlmPLeckQGbsDAjz2PAMbMePQ08jnBi3xatyKy5Fme5l9E+uiXkH7xAk+bpeRy72T/TuXR+f73KZ7WWxE+1QV0ED3jLGQs+ENPuzciMus08nnGnQivziTflbfT0/WvfH0XI7LtMv98MbmH/+UIn2u6v+Hf34LwzQLyHTj3+/iWRw74+gySj6On+LoNIWPQcUgf34H0nw2+TZ6E9K/ViE3iRHInj2HycfFCpF3VXnGfKVvDp7fRXycg/aqbfJeMOqncSe6tuxzp9y/19R5F+HDY03Azwm9P9+U5BhmLP4v0LZ27fRbpW0f7cMeSzwN0rreX3KFPHQQ2IePEasTx4v8hC8OKzyEe6yCL8h80797k2+I6xED6ZUTmnY7ocXMRXvoUIis2+HotRMa/v0YM4Wt8ej9BeHMBuS1pqy/7CxHZv9DQZr1vh5M9jT/jnPuaGctfgIyfn/fhL/LXDIQPrkPk3mOQReWrEP5/IzLmzEB4YRtih/qwL+c7kX78M0QmvI/8w+XvQGwBB3zcWUi//BrSrmvJx9Y/RWTTFRH6hu/+GTGu/6uvt46z30PGpNch/PVFhEdmI+PzJxCe2uXzPh1ZMMgQ2aVjLsjY9N5IWUC8yD/l/19BfjRKg9xrfwvCfw1yJ4gd/nlzbuDl0IlI/56D8KMuAuo8eDut8+l55F7525GFjsWIrreb3MC9COmjS8h3Gxzl41q7g9px7Pz+455ej/Dl7iK3jVl7043OuQ1Zlj3Kl30HMr50eVo/iIxpj0BkdwPh1R8iBntdnL0b4ZFjEVm31cfZhhjtn+jLqfX9pXPuXk/Dbvw44XXnZcAmO/doi9jZNek6JGfH9/gG3Uv+EbwBJn/e7KG8Jg5z/gerTo3DmP/D+XqQ1g/mpCtdD9drD+IZ8gAyLmygeB7dK8z/8L7jd348su8ayERP7/87KN+4+X+Uj3+Bj3esGeNeQVGm6rjRiOT5BRNut6lvg/pnOdtrDWIo/ytyr9MJRFH7DsUzSvtMORtB/Tq9DsXYOOzL+b+Uf+BT67ID2e31V+QfltKF8QZizPuGofdyys883u/Tsu2m7f4HFHnrxpI0tiKTSstrQ5Fwb/E8YvligylnyMv2WeGd4cc/psiPe6j3XYS6esGID/ttyr/3cKiu7eTnWq+uUb+rEeNuqH+2K//oJMu3m+KHdvWq23904XifL3ODfGt6nbh12mUqcuDheE1G9mk7HKgR5ki7xjp8XnWpTD/cdZrqFdZhgviHCPU6XH0sxqvj5DtQwjY8GOO60qovuH+oXpMt/8g05T8VXviV//0Z03de/8P9UrvWdPBIuqb/Sm0xfXRUedFPUXa8pa5NuIuEw4W/QVac1/l73f4639+7g5CnC34hX62yWyp0G1ivCW/jdlFkRht/YhrKNNm625VBxWby1V59tz2STxfTex6pTX866vbrgLDug/53ObknY1nYds/LoMY8zatT/gyxvuR5rI23EeeBMtg+OBx5p/1SDU0axpHXr6xso0H6igkThor/Yflj9QlpWydO3feOfOIWho3Jnlg7V6Ufo027uDHa2fCx53aLrZW9DjGaDSFeB+9APEbejcirjEN3Bqp6Ael/3UXizDPFpUG8U83988jPem74sA7Z6fjaIN4fktNsMXl9M/IxMgb1JFcv2e8gi9pnIV6TH0MWvV+FeA0+gHg+OWTiBflZ8yDeLt0V+SnKeKkL4dMQ4Tj7A1p5ZDAIU4ZZSHlfRf4dlBiUdp9C6LDCp/1KxGM4Q4zom8nr/x3Ei03HfjVuNhBPqH8j36ll81ka3KsHS1i24xFPaG3bjNxTrYF4DAF8KsuyT1LkC9sPeugcnwnuj6F4fvbaoLy7TH0g36UHxX4M+XdOMsSDU+tRV6fYF9zHPGpsnrqQUQY9dmMuspOnChniuXYJon+qUQpyXi7jscm0A4jH1FPIZZrK0nYybsL8ziD/dpDy0pwaeWvYKoxQLQfq6hFV4aYyHlYhpgfXQemREjUxmfFpxP+qN2OMpzNEpismq8Np2qF+E85h6rbLjJL3Zc+roDI9RLuxIMQIstDVTy6/Yqiqq+5i0Hcj5B6MVXC01qEL8Q4uQ52xNoZxctk0meNJQl51vixHITItbMOp6l4xnlVaLQjuY6ii/X7a991Qb94beRfmo3JkiHKoXv4ANM+lLutnE+SGdzXS6k7cAxQ/nlsXmp6FrYO+Gw/S1R25g4ge2IO08VJkF8Ym8iP2HEJjm+buijLZuVgn87+pwMr8nf53AqmDnSvGoG1oeUj71pAJE8Zphx5y3Q7yXeKKEfN/smNhXV5pl/5Im/d10g31+UNp64mVv5281raYqk2kCu3sChbTXY6yeXkMMVrVbb+MXB7MQ05i0P74yWCuW47D7SH+cL2QyZpup3onsm1dhaJ6tKnxyXry7Cf/yOJGWlfwG8Ez6/EXehiqF+D9Jl+HbIObMGEu8/8/StHzaBf5oKpbcDSN9UH+4f+yayP5wB3zmNOrP5LmJlNHNdKs9fT+oXm+1v+OINuDQ3rtMPfWYz7m9RGWK2wP62mmXnjWG+Q/g3QngrYoo9kAcdrG4oVpVN1P17vwKvNEiYXtQ/hJ79t5f+p/3epXFvZ6ZMtbrOxV7TYShLVxt1bEeya5h6RDjKuOIl+PB79hPg3yvqRncl7u79/v36t34gMm/28FZQ09Hi2dtgfvrq1oT63vhG8X264fDsJar9M7zf/hINwG839z8E7j6eqz9dJWmmkffXsQ13ptXk68Pjb/GD+uLonTQLZdltHp58Q95IZ9ez6UvRLCvny46qL53oRMOhzSP+4Oyjjmr+kqZ5XXXFke48H7u8g9lx0iE6xc6DP3jUg6et0U3A+a9KrKUJWm7Td7Iu+P9KvdeNdJOnU8rWP0qfL07bQMsTF9P5PfRVmHHgeCcA9SzTNh+sp/e0x5Y2GV18KdiWEZq/Kr0hM74d2wX9iraudkqAPErl0VNFhZUZ5w54HV4e8PaGjjtePbRs1yD5MbZqvaMdZuIe1DD1irw4a/Nu6Hg/thyvvXKK3l0Ot/S54fQM4DDsurNJxA+Fh5oGGe2zopnWLj/m3B/bdq0N5eG0raeTty9IWtSx+iC42Zdw1yPttk0hqiqI+po4fSYj35caONoNwNivptWbtX8UgZb3R63VxB+zqXlVmxKyxf3Xw68bAO9eJ2NAvfhWFGIu+0z4Xjyh7EQSBM41bzTOkT2hG0bwybtBrIudaWBg1kkV91+MvJ9f39yEL/GGJM1rS1D66L1Fvzsc/6fR4hXW2dVYZt92lsBn7XP/s95EiM1/rfL5t662L9WM12XR/c3x60me7Y3E+xz7QbW21b2OsbQZj3etvH8eTzn3GEL2L8eyCIP+7zsXW9x7wbRI5P0Xefr1kHbbuqOobtOogcgXN3SZk1v29FaBnad4ZL2tDOiUNd/Ie0ltPau5SHw3JvqWjDqmex9q2SAe9uQ2+97Fge1j/sN+Fc2+a/uiKPOyrqEu6YtW3zc4pjXKjDDJX8b3dZ+WPngTdUxLknEn/cl8/aS+4Lyvw1ZG6n4+h/IUeTJc/4Ixgn+d9liCJxS/D+aPJGt548c8k9sBZT9CzQsDP8fyiuRM6LhO1GjO3dJqyeL6XQ8/nuCfK7h/yMyFciQkvTWB3JX/9bpg/xc//bFXlv7/W9TfNoUx6lgXpcf9GU4SRfj5nI9uzQC0I9FRxFj/lGEC62Oq75alm7Iu8sDW8P6tAVvLfv7MrhbOK0jcWz70KaVYWdyrsQsbbeEnkG4t12VySfGOy7meReCbrKv9G8fwZybl4YL0MUI1vG+eb/dnIPgdCr7ljEA17Ra/7/d5DOraZsL/P/ta2r6vgf/nceRdoc7eM94O+/QH6e/qf97x5TB4tryOv70+Bd1UeM9Gxb5WsrJ/4oCDvX/F9t/of9yJ6Xuyh4p/JA6XPAvNNBUssSekjZvqcenDE+VHqGXloO8SYuw10lz51/F/OQm4V8uG+6d+EcSoR6QyhfDhU0ryuQsyZB+sejaaXvWOTZZBH2pfsrwmoZQ956RPC8i+J5yzPJ6Xy5eR563Z/lf7VPaf+PeSzbuK7kPxQ9u45m8t6Lhwthfeq2eyxeHc/vmFfirMizGNp5A42Ql9/WYxZy1mUZqvphSI9wV5VDZLcNtyxI96ogzu3mv+52gFwG6n0o+5W+XRTHkrCMVTwYnlNuUeURGMLSOkSV/LC7Qhxxj+TFFPVvi3ODe+2n+j0TC9tWS/zvZUEYS/8YH+izj9Deq7gb2cmiWBC8/0Fwb2kUjhMzI+lr+LHg3sqq1wX3enZtCF2wD8uh6CEu9+Ygxrcy3hz1VxdFD8RQPmjbxMb9UI+4MxJGcUfk2SMicXRH0qPMs1lIG33Yl6PPvPt7/zuHvNwNhL6KCfJ5IeTn8s4gP5Pc5q/tYGlX1VfHkbPUQ8R4I4QaPWI43/92kRtqyhB7Z/uMwsqOsHx7qIdObCzhmFHlkb7P/I+ND5p3+G6IfA5j381G5gEZRZlwtgmnPGPtC5Cf56y7O47yv2q8tjSYQ85DN/mw+LgPkH+/KZw/X0qrLD8mUuceWmWDbTtHsc8e7dPRedsOX6Zt/ncNuexZ6H/13HMLF/xC/n03xb3mf4bM0fQ0BMtP2n/K+BRkbhnm/9IgzJuzLHuhk4/SqgzvRur/riD9UfL5msbf68PsNeF0rqllvNG8s2NTu3H3GJN/OAZltNZ9DuIk9h/B83VBeZYiPP4+89zK4wzhh3dR1DeguDvflmkucuZ4WKYvBPczaPVQX0cr9JtEFmHatswqW0O7jY0bzpvL9Puq8fl75r+jONceD+JuoBxhnW1d1MitsGPFLRT7ZihzbXnrzklC+4C1c+6riGdtEmpr1L7zWZP2acj5/ooLKe4O/1/yOVqbkh4BXuIPx4v8XNx9yGrsPN+4uxHG34t4TeuKjhp4dUXSIR3frgJaz43YWZzW007DTCCCya5GXowIPo2r3nc3kH9UqYEIRl2ZHAnyDFc+wxX6XZFnjtwz3tHqTdIw9R2i1VvhAPkK+oQp5xnIFnWHrF72mnJ/KJK+3ZVgr/DZ9SYv+6uemI7c20HpHZZ5tQlrVwnDcKGHUtkVes+EK+BjNd+FVyfvGpF31utDV1n3Ub7a+zXzf1OQtq52N4K8rceUpvss5KzgsFz2/yitq8Jrzf8tVK/0fztoN21rW+cxU+8+RDmq8qi1q7nqlaheJ7oCr239WXIvqQP++ecoeoGEq8z7TPzwXczjxLaFlm0HeT+PeTNoH7R9R71jbDi7kj5OkS4/MffDQTsMGhqr91ojkrfmqx4yNv1QhtoV9zGKHni2TZSGjci7sI6hx9Pa4N7G1/zuIT/bO1zBt55JDYo7C24wzydK3oXxwjy0/FqmVaaMYZrqZaM89CzEMLePoiwKyzkW3F9SQg8r80N6Ku2/QnHb826KsvJrfsy9jfxDxqMm/10UyxVrG8vb4U6Zq4P7MO4ErfVSz2Nt7weDcIPk7fzfQfqNSHr6bJuJvz6I8+dKD8QTTMcjy6vjiPeR8s9t5J5b22jlZW330DPn6xVtG+5+sXXYELy7pOTdryI0v8Gn9bvBu9sonuGu7Wl31jhadxmEZR0k/wCUDRPzstJ2GDVhYvwUyt4w7X0mzDbzfBzZeaX3N5m44+Re8+ORNrP39yELnho2rH+sTI6inubId5yFHlSxXST2/aZImu28ZCco9tl1wTsb9stBPWze1wdhd0TqqvfqkTdIfkSGhgnL+zLT7nfRWn6rw8boq7QMxzBH0dNO3w2UpFN1DSO7ifbXiPtvEXq4IG8tb6ir2bChbrrT0GJHECeUcaHuNmbe2efXm/8aJxbW0ncHrbxg22kX8mFSfbavpI4PVtAybMcqD/4/p9iXw/Lof9Up9wZ12hJJfwQxtjjgR+b5AMXx5XvI0WUqc7ZTPNM8HNNj/x+ItJ+t388jdY7RIpRH2309vt2GvhtMWqGuadMNyxXON63uF8rQujtuwrHvmoo0Qn31RxX0sfJvmFb+UjncoCifJiJ56Zz3Ft/uNvz6SDl3BGndTP79DstvPwzSGkbGsPU+3P+acvQizkohP2sbfIXWHby2j9vxdDtx/tPfneQfHNa5uu7+v9jT4eP+9xZkXFL9Y9THDT1zQx0v3EWjZbNx7iDfybK7JK2yK9xpafUSLdsWZE70feQjrhr+Lh9+IEIbe+33YcKdMyrztyFH/IR8YfuL6pjhXN3ufrilRn0HgvLaMoa03Ue+U9bqe5ZvRmn1Wt8RhLEyOOaJPUa1buUQWajP9vo0dUd5lZ5jyxbWOZST+qFkZ/IJ+USvX9HKh3qtCvK0cW8PwsZO37Dvwjm2fVfm1X5pcB/qWbZeAxX52yucl9t4OyviVe2k/4lpo4kSeivfvQgYqGUTPtxG6YfrRavxQ5nmdvKtSz8nvs0ldl1Fq8Cre8UUi9AIstekPRKJ2y5fO2iqcK47eVD67EMmx6o8vB0RQqpINCif6Gs6/eSdvGF+H0SMFBPIwLia1olPmfKpCySj5t4KRzsgDVM8imaDL/MoonypF877yLeI7vA807wnVxBs+cJ4Ns3wvuqd5lGWTrt3atTQd0OePrcjCsgg+cDUTph2MsG0BkS9Vnrar/Q0Whe8/0XNPCb7obrYFSpqsfzLBuoJxMPCDqg6KZuu8qWrvF0O5mV5dw2iLOjZrzZceP+jknfhhK4sXiwPuxgbjkF7zf+tFA1zoeJbVs6x4P7akjjtrnYfvmsAG738/BxFI3W7IxeOlKvOUSl6lR3TZcfcjeQf1727De11AtzwbX1zSbhQ7q43/9u1rTV6/Mjk1wjihrwcjsf67BVB+p8jfqRLu/5dZ1JcJ53YVXebrR0Hqo5g+x1DsxeQT6xuprj4F26trlOXqYx9dT/Mvs/T+/Ml7ycri+vUNdTl2qX3NooTuZiRN0z7+7QaxS6KxFdDwQRiAK7Dg2H8WycRZ7L0jH2gr4HoKFXH4DQofjdjqtdk9Z86dbd13Gv+T/ZIlPCqOm5KFzlDWl5PLvPq1MnqvdbIEdKtgRjZLH/sox4fxgzfndLaXh8L4jYQufYTWmX/ZGmvcW9AFiXW+nZ9MKjPVyeZfki3Gyl+SN2+22Cevz54X1eOante4ut2gPZHpsWcBaZCS0c+ZliZt9uEqeNYVnZ813Rctt/Yxcw+4DpyW4E+Vx13H+2PqZkKP44Sn/uF/B622XfNs4Z5PkJRvgwhnruLKR7FcTCu8DijqVwNqo+2sbQIDeI6Hun9LxAjuY1jF+JD+t5X0t67I8+q+KGBGHkvj+QRhp+I/H+4XePk38PYjeyoUUeM9eT2p3A8KLum04ZT1m5W155Avg16dx2b8GQ+NJMwPbgUERADyDala4DzkAZ8M/LRtSchW2R0S0s3xe0Z4wiT3oR45/0UmYjOQQTuXHKmttveHfnq3AKf5gSyNWMGsm32aP9c4x/l46rBf51Pfxn50SoNUza7pcQhg8A+/7yL/CN9o+TH7sSgHpQ3Igb3ecBfIQP183z9b/Hl/h/gueQ01XIMkm8x1Q+KqPfYhKffDmQS8wmE9ro9T7fnjJk6TSDK8TZkm8pXgTf4ejQobovZjih25/l8Z5JvZVqHfMTsWh/ueF+frYgBbC+ynetmH97ePwJpky1IG85CjPo23n0mzbnB/daKd3NNHrF02r1b4MvwgH+3D+GnqxBDQYZMum9APBKUt2JwiFK83adxjafZsci2QUeucOxGeD9DlKedvhzvQfjmveSLIGq4fzvCO59GthOpTNzuwyz35dPnyuMTFLdUqQAu25bqyHm8y6ezG/Hcuxb4AHAmeV/QraA6yOxEFufuQrbMzSffgjeDfNC2xzeF29oOIHxS96N76uExo6JeU4Wli96H5Q/L1IsoXMto3YJKSbzJIKTfwTpaxpGf77oT4b3HAW8l38K6F/ko5jhyLMp+4F+QcxTfCrzcvNuLbF2/CuH78N1TEdl1E/DbPv09wbv/Qbbuvxl4LPnHl/YhilAv4mVxK2LQ/SLweOAvgeOQvjSAyKSZJr+XIx8evQvZ3vdyRJY8EfEoPdPf6wdkH4l86PwE8r59P9L2RyH8rPTLPP1WkG/xbiCLrCBb9/chHwX9ji/XiYg34GXIN1GeR3G7uiqC/T6vpeT98URkwjGPvH/8EJGtr/Xp67bIfYjX1TvJj5eAfFcOPux8xNvIfuBylqfXHJ/OMk/jXkT2Lfdx9yC8Mw+RrSf7+s/zNBkAXgz8BTLWX40YN96PjHlP8XHmkMu5zcjk9BfIOPxmX0fVMdYj7f525NiURyFy+nikPV9I3rYfQ3jsVl+H83zZ/hrZKXQywstfQ/SD9b7uL/P3yj/Ky7d7+rwH8RL/a1/PnUg7Ki9fg+gIZyGeKt9BtnRfBjzBl+94RC7uQcaxcfIPmr4O4T/1gulGZPFFPu2bkbHosYjOprt7jkX4Zh4ie5UPjiYfu8YR+areVwc8bT+G8M/LPV17PM0mfP7q2XWcT3MtMo7MRQw365B+tNuHUZmq/Oh8XlsQx4M+pJ9d7Wn1Rt8+XRSPG3MUt5GP+rIrz3zXl+XtSD86wYe7D+kXj0XadKevXy9wDsJbun38aQgfqWx3/v1i3x5diKF6sc/7Lh9+GdJfVTcaQ3ZE/rEv2/2IfBnzdPhP5Ni6YURHnOPTGQT+HdGlTzD17QO+4py7NMuyHQj/9CFyWz/+dy0iFw8gRvu1iIx9J/D/kK3t9yI8eCPCP5cgH02e62m0zrfZ9b5Ov+Hb4tHk3zwa9WGeTK5/fcPnfz3wGqQvnULuyHKUp5eVVxPBe5Wnt3qaneNp1eXp9lakvy0m/0Cf6sZf8+X5GCKTnutp/nRkvFI5dob//0ZEd77Q569zhMcifHEs0h+/iMisOb6sG5E21kWLueS6upb1HvIjKBoUeVgxgbTfbFPvhqfjqcjRJyp/xxAjyik+32ciPHw/cvzhBCIHzkD45wSf9hxfrlnkc7d+RE7bY6a2+/p2kxtU1/o8X+5pfYwPOxP5wPtSpJ0XIbp2F8IfL0XGTd3Zt8O//zxyVM1cil60W3w+R/k2mePj9pPPo8Z8fYdNubcgsms5+ZyyG2nr402YmQjPjSFHGX6aXJZt8eW3x4uoMfxzyMfjHaIr7AN+y4e9COG1v6N49MA4uQ7skPHgGMQJ6EU+7S3I2D3Xl3UU2cn1Kl/n/Z5uDyJ99VxknvfniM7lkLHnmT7PbQgfPNPTdQsi37+DjJ3vQsbZl/k6fsWX81b/bq6n16X+vuGc+68sy7YgY203wsu7/e/nkH75VIrHDU0g/ekURH5tR8bBxyI62pD/fxS5sVlprnOOBtLOuxH+Osrnkfl3qpdrX1Fj2QIfbjv5h7XxbbEX4ZvjyHfWzyd3TtPjlGYhfKL98nWIDH4X+RFfg758JxM/Ksbq7Gp803HE2j8WI/y0DtEz5iFjw5sQeayL1uuR8XQ3Mua8luKxG/uR3fWbkL51KuVHLqlRNWZ3G0cWbP8A6bu/idBoFiIDtyLjyZWIXFiH8KWOGVchfeqViDx6EtIGM5F20Q/kvtw5tw4gy7I3IIv4T/dhepDjHmOyUulWNQdSnaCB6LCvQHTuN5DbsYaQExVeRX682xjCn9/19X48+fx3P9I23eRH2wx4GugYcQbS1zYhO3PPIbczqV1Ax4sDiL63EdHHtyH8OROZu3yVfAw+F5F1GxBHkOciffjxiGF4L9IeT0IWz/SYqQMIX2vfwZd5P/ASn/dbESPyCxHd9yZED7M6wLk+D/3/BKStTqb6aD6Ftsd+ch64C7FtLfT0U9lrj7RSqK7ZLg+1kWmbTWWerHO5bcjOmUcjMm8xua55K9Luan9ahsgdlVO3Im11FcIbJ5l6jPhyWrvGBCJXZiJj5T4fZy65PmHLN4Hw30xEz1iNzKtOIHc2PR2h75OBb9apeOY9xhISEhISHoLIsuxvkYn+AvJthJAb7PuBDzrnPnh4SpiQkJCQkJCQkJCQkJCQkJCQAMkYn5CQkPCQR5ZlsxCPwjPJPaj2Iiu4Nzrnwg/LJCQkJCQkJCQkJCQkJCQkJCQcYiRjfEJCQsKvObIsmw0c55zbdLjLkpCQkJCQkJCQkJCQkJCQkPBwxcE6BzghISEh4cjBbyLnHyYkJCQkJCQkJCQkJCQkJCQkHCYkY3xCQkJCQkJCQkJCQkJCQkJCQkJCQkLCQUbsq84JCQkJCQ8BZFn2s5pBlxzUgiQkJCQkJCQkJCQkJCQkJCQktEUyxickJCQ8dPEs4B7grjbhZh+CsiQkJCQkJCQkJCQkJCQkJCQkVCAZ4xMSEhIeurgTWOuce1VVoCzLfhf42qEpUkJCQkJCQkJCQkJCQkJCQkJCDOnM+ISEhISHLn4JPKVGOAdkB7ksCQkJCQkJCQkJCQkJCQkJCQkVyJxzh7sMCQkJCQmTQJZlpwFnO+e+1ybcHOA459zGQ1OyhISEhISEhISEhISEhISEhIQQyRifkJCQkJCQkJCQkJCQkJCQkJCQkJCQcJCRjqlJSEhISEhISEhISEhISEhISEhISEhIOMhIxviEhISEhISEhISEhISEhISEhISEhISEg4xkjE9ISEhISEhISEhISEhISEhISEhISEg4yEjG+ISEhISEhISEhISEhISEhISEhISEhISDjP8Pnkp7RGhhtBwAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from tdsense.clustering import hierarchy_dendrogram, hierarchy_clustering\n", + "linked, labelList = hierarchy_dendrogram(dtw_matrix_loc, cluster_distance = 'ward')" + ] + }, + { + "cell_type": "markdown", + "id": "df0a3961-8cd1-43b8-9c11-9e229648d1eb", + "metadata": {}, + "source": [ + "

    The dendrogram is useful for visualizing the structure of the hierarchical clustering and identifying the optimal number of clusters to use for further analysis. The optimal number of clusters can be determined by examining the dendrogram to identify a level at which the clusters start to merge more slowly or by using a threshold for the maximum distance between clusters.

    \n", + "\n", + "

    The resulting dendrogram as above shows how the hierarchical clustering algorithm has merged the data points into clusters based on their pairwise distances using the Ward linkage criterion. The dendrogram is a summary of the distance matrix. The X axis has the WELDING_ID but not visible as we have more than 450k rows. Looking at the dendrogram, we see that we have about 6 clusters. When selected 6, here is what we have got.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "d2e168ff-626b-47b8-bc2b-ecfaac22a8f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    CURVE_IDclusterleaves_color_list
    67510#ff964f
    80520#ff964f
    47131#b2f396
    67040#ff964f
    83950#ff964f
    \n", + "
    " + ], + "text/plain": [ + " CURVE_ID cluster leaves_color_list\n", + "675 1 0 #ff964f\n", + "805 2 0 #ff964f\n", + "471 3 1 #b2f396\n", + "670 4 0 #ff964f\n", + "839 5 0 #ff964f" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAANOCAYAAADH54uVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAADIIUlEQVR4nOzde3RX1Z3//+dGLoIhdpAgqCByEYWCWsBLGRTwghaLogjWUtGZKRahWusPtOPXGeyIFdovWhUEa20q9VY7Fr8gTZUiKHIRECgN2AIqIkUUBQFFELJ/f3w+oUn4JCQh8OHY52OtrJNzzn7vs0+G1TUv99nnhBgjkiRJkiQlQa1sD0CSJEmSpMoyxEqSJEmSEsMQK0mSJElKDEOsJEmSJCkxDLGSJEmSpMQwxEqSJEmSEqN2tgegf2jcuHFs2bJltochSZIkSVmxePHiTTHGvIraGGIPIy1btmTRokXZHoYkSZIkZUUIYe3+2vg4sSRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMWpnewCSJEmSMisqKmLz5s1s376dzz//nKKiomwPSdqvWrVqceSRR5KTk8O//Mu/UKtWzc6dGmIlSZKkw9Du3btZt24dtWvXplGjRjRo0IBatWoRQsj20KRyxRgpKiris88+Y8uWLWzdupXmzZtTu3bNRU8fJ5YkSZIOQx9//DH16tXjhBNOoGHDhhxxxBEGWB32QggcccQRNGzYkBNOOIF69erx8ccf1+g1DLGSJEnSYeiTTz7hmGOOMbgqsUIIHHPMMXzyySc12q8hVpIkSToM7d69m7p162Z7GNIBqVu3Lrt3767RPg2xkiRJ0mHKWVgl3cH4N2yIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiQl3vTp0/nOd75DmzZtyMnJ2ft5oj59+jBx4kS2bdtWqv2oUaMIITBq1KjsDPgw9de//pX77ruPiy++mGbNmlGnTh2OPvpozjnnHO6//3527tyZ7SFSc1+clSRJkqRD7IMPPmDAgAHMnj0bgFNPPZWLLrqIunXr8t577zFjxgymT5/OnXfeyaJFizjxxBOzPOKUHj16MHv2bF5++WV69OiR7eHsdf7557N+/XqOPPJIunTpQo8ePdi4cSPz5s1j/vz5PP7448yYMYNGjRplbYyGWEmSJEmJtGXLFrp168bq1as555xzmDhxIp06dSrVZtu2bTz88MOMHj2azZs3HzYh9nDVrl07fvzjHzNgwABycnL2Hn/nnXe49NJLWbJkCbfccgu//vWvszZGHyeWJEmSlEjDhw9n9erVnHnmmcycOXOfAAvQsGFDRo4cyeLFizn22GOzMMpk+dOf/sS//du/lQqwAC1btmTixIkA/Pa3v2XXrl3ZGB5giJUkSZKUQGvWrOGpp54CYOLEiRx55JEVtm/Tpg3NmjXbb7/7Wyubn59PCIHrrrtun3NPP/00vXr1olGjRtSpU4fGjRvTsWNHhg0bxpo1awCYNWsWIYS9jz/37NmTEMLen1mzZpXqc926ddx88820a9eO+vXrk5ubS7du3cjPzyfGuM8YevTosbefV155hT59+tC4cWNq1arFlClT9nv/FTnjjDMA+Pzzz/noo48OqK8D4ePEkiRJkhJn2rRpFBUV0bFjx73hKptGjRrFXXfdRZ06dfj617/Occcdx5YtW3jnnXeYMGEC3bt3p3Xr1jRt2pTBgwdTUFDAxo0b6d27N02bNt3bT8nfX375Zfr168cnn3xCmzZtuPjii9m+fTvz58/n+uuvZ+bMmTz++OMZx/Pss88yceJE2rdvz4UXXsimTZuoU6fOAd3jqlWrAKhbt65rYiVJkiSpKhYvXgxA165dszwS2LlzJ2PHjiUnJ4fFixdz8sknlzq/atUqatdORa9TTjmF/Pz8vS9Muv322zO+2GnDhg1ceeWVbN++nfz8fK699lpCCEBqdrZv375MnjyZXr16ZZwVnjBhApMmTWLIkCE1dp/33nsvAJdeein16tWrsX6ryhArSZIkJVR+j2yPoGqum1VzfX344YcANGnSpOY6raatW7eyY8cOTjvttH0CLEDbtm2r3Of999/P5s2bGTlyJIMHDy51rnnz5vziF7+ga9euPPjggxlD7IUXXlijATY/P59nnnmGBg0acM8999RYv9XhmlhJkiRJOgB5eXm0bNmSZcuWceutt/Lmm28ecJ/Tp08H4Kqrrsp4vnPnzuTk5LB06VI+//zzfc5fccUVBzyGYn/605+44YYbCCEwadIk2rVrV2N9V4czsZIkSVJC1eTMZtLk5eUBqe/EHg4ef/xx+vfvz7hx4xg3bhx5eXmcffbZ9O7dm0GDBnH00UdXqb+33noLqNzj0h999BHHH398qWM19SmhOXPmcNlll7Fr1y4eeOABBg0aVCP9HghDrCRJkqTE6dy5M5MnT2bhwoWH9LpFRUUZj3fv3p23336badOmMWvWLObOncu0adOYOnUqo0aN4sUXX6zSC6j27NkDwMCBA/f75uVM61Pr169f6WuVZ+7cuXzjG9/g008/ZezYsXz/+98/4D5rgiFWkiRJUuL06dOHH/7whyxfvpwlS5bU2BuK69atC8D27dsznl+7dm25tQ0aNGDAgAEMGDAASL2c6ZZbbuGZZ55h2LBhzJ07t9LjaN68OatXr+bOO++kQ4cOVbiDmjF//nwuvvhitm3bxt13382IESMO+RjK45pYSZIkSYnTpk0bBg4cCMDQoUPZuXNnhe3XrFnDhg0b9ttv8WO5mda1xhgpKCio9BibNWvG6NGjAVi2bFmpc8Vheffu3RlrL7nkEiD1qZxD7fXXX6d3795s27aNUaNGcccddxzyMVTEECtJkiQpkR566CFatWrFggUL6NWrF8uXL9+nzaeffsq4cePo3LkzGzdu3G+fPXv2pFatWhQUFPDaa6/tPb5nzx7uuOMOXn/99X1q1q5dy6OPPsrWrVv3OTd16lRg3zWqxWF55cqVGccxYsQIcnNzueeeexg/fnzGsFtYWMhzzz2333uqikWLFnHRRRexdetW7rzzTv77v/+7RvuvCT5OLEmSJCmRGjVqxJw5cxgwYABz5syhU6dOtG/fnlNOOYW6deuyfv16Xn/9dXbu3Mmxxx5Lo0aN9ttnixYtGDp0KOPHj6dnz550796d3Nxc3njjDTZv3sxNN93EAw88UKpm8+bNfPe732XYsGGcfvrpnHTSSRQVFbFixQoKCwupU6cOY8eOLVXTr18/8vPzGTFiBC+99NLeTwWNGDGCdu3a0bx5c6ZMmUL//v0ZPnw4o0ePpkOHDjRp0oQtW7awfPly1q1bx8CBA2v0TcQXXXQRn3zyCV/5yld49913M36+B+BnP/sZjRs3rrHrVoUhVpIkSVJiNWvWjFdffZVp06bx1FNPMW/ePAoKCti9ezd5eXlccMEFXHbZZVxzzTUcddRRlerzgQceoEWLFjz22GPMmTOH3Nxcevbsyd13351xXWvr1q257777mDVrFoWFhRQWFlKrVi2OP/54hgwZws0330z79u1L1fTt25cJEyYwadIkZsyYwY4dOwAYNGjQ3k/Y9OzZk8LCQh588EFeeOEF5s+fzxdffEHTpk1p1aoVN954Y7mf4KmuzZs3A7BlyxZ+/etfl9tu1KhRWQuxIcaYlQtrX126dImLFi3K9jAkSZJ0GFi5ciWnnnpqtochHbCq/FsOISyOMXapqI0zsToknlzwLs8vXZ/tYUiSDpHLTj+ea85qke1hSJK+hHyxkw6J55euZ8WGfRe6S5K+fFZs2Op/uJQkHTTOxOqQad8sl2duOCfbw5AkHWQDJ83L9hAkSV9izsRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkhJv+vTpfOc736FNmzbk5ORQr149TjjhBPr06cPEiRPZtm1bqfajRo0ihMCoUaOyM+AE+ctf/kK9evUIIfDVr34128MxxEqSJElKrg8++IAePXrQp08ffvOb31C3bl0uuugi+vXrR8uWLZkxYwZDhw6lVatWrF27NtvD3atHjx6EEJg1a1a2h1Kh3bt3M3jwYL744otsD2UvQ6wkSZKkRNqyZQvdunVj9uzZnHPOOSxbtowVK1bw3HPP8fTTTzNnzhw2bdrEmDFj2LVrF5s3b872kBPnnnvu4Y033uDGG2/M9lD2MsRKkiRJSqThw4ezevVqzjzzTGbOnEmnTp32adOwYUNGjhzJ4sWLOfbYY7MwyuRatmwZd999N1dccQX9+/fP9nD2MsRKkiRJSpw1a9bw1FNPATBx4kSOPPLICtu3adOGZs2a7bff/a2Vzc/PJ4TAddddt8+5p59+ml69etGoUSPq1KlD48aN6dixI8OGDWPNmjUAzJo1ixACs2fPBqBnz56EEPb+lH28eN26ddx88820a9eO+vXrk5ubS7du3cjPzyfGuM8YSj6m/Morr9CnTx8aN25MrVq1mDJlyn7vv9gXX3zBddddR8OGDZkwYUKl6w6F2tkegCRJkiRV1bRp0ygqKqJjx46cccYZ2R4Oo0aN4q677qJOnTp8/etf57jjjmPLli288847TJgwge7du9O6dWuaNm3K4MGDKSgoYOPGjfTu3ZumTZvu7afk7y+//DL9+vXjk08+oU2bNlx88cVs376d+fPnc/311zNz5kwef/zxjON59tlnmThxIu3bt+fCCy9k06ZN1KlTp9L3c/fdd7N06VJ+/etfc+yxx7Jy5crq/3FqmCFWkiRJUuIsXrwYgK5du2Z5JLBz507Gjh1LTk4Oixcv5uSTTy51ftWqVdSunYpep5xyCvn5+fTo0YONGzdy++2306NHj3363LBhA1deeSXbt28nPz+fa6+9lhACkJqd7du3L5MnT6ZXr14ZZ4UnTJjApEmTGDJkSJXvZ8mSJdxzzz1ccsklXHvttVWuP9gMsZIkSVJCXfn8Z9keQpX872UNaqyvDz/8EIAmTZrUWJ/VtXXrVnbs2MFpp522T4AFaNu2bZX7vP/++9m8eTMjR45k8ODBpc41b96cX/ziF3Tt2pUHH3wwY4i98MILqxVgd+3axeDBg6lfvz6TJk2qcv2h4JpYSZIkSToAeXl5tGzZkmXLlnHrrbfy5ptvHnCf06dPB+Cqq67KeL5z587k5OSwdOlSPv/8833OX3HFFdW67o9//GOWL1/O2LFjad68ebX6ONiciZUkSZISqiZnNpMmLy8PSH0n9nDw+OOP079/f8aNG8e4cePIy8vj7LPPpnfv3gwaNIijjz66Sv299dZbQOUel/7oo484/vjjSx078cQTq3Q9SD2iPWbMGHr06MENN9xQ5fpDxRArSZIkKXE6d+7M5MmTWbhw4SG9blFRUcbj3bt35+2332batGnMmjWLuXPnMm3aNKZOncqoUaN48cUXq/QCqj179gAwcODA/b55uV69evscq1+/fqWvVWzq1Kns3r2bjRs30rNnz1LntmzZAsDbb7+9dw3vo48+Sps2bap8nQNVqRAbQqgDnAt8AzgPOBk4EvgQmAc8FGOcVUH9NcBQoBNwBPAm8Cvg4Rhj5n8FqbqLgR8CXdLXewt4CvhZjHFnBXVnAbcD3YBcYB3we2B0jPGTCuraAXcCvYBjgPeB6cCPY4wbKqg7Ll33DaAp8BHwJ+B/Yox/K69OkiRJUvX06dOHH/7whyxfvpwlS5bU2BuK69atC8D27dsznl+7dm25tQ0aNGDAgAEMGDAASL2c6ZZbbuGZZ55h2LBhzJ07t9LjaN68OatXr+bOO++kQ4cOVbiDA7dy5cpy30b82Wef7f08UHl/o4OtsmtizwNmkAqUxwOvkAqFHwNXAi+HEH6cqTCEMB54glQQfRV4iVQIfgj4XQgh4xhCCCOBP5AKlG8ALwBNgLuBWSGEjM9OhBC+BbwGXA78DXgeqAuMABaFEDKu/A4hnAcsAb4NbEjf32fA94BlIYR9V2in6k4F/pxu91m67n1gELAkhNAtU50kSZKk6mvTpg0DBw4EYOjQoezcWe4cF5D6ruyGDeXOS+1V/FhupnWtMUYKCgoqPcZmzZoxevRoAJYtW1bqXHFY3r17d8baSy65BEh9KudQGTVqFDHGjD8vv/wyAB06dNh77PTTTz9kYyupsiG2CPhf4NwYY7MY46UxxoExxo7A1cAe4M4QQqk55xDClcCNpEJdp3RdP6AtsBLoB3y/7MVCCF2Ae0mFwm4xxgtijFcBrUgF6LOB0RnqTgB+CQTg8hjjv8YYBwKtgWeANsA+r9gKIRwFPA3UB74fY+wcY7w6xngq8H+BPOCpUPxO63/U1UrXHUNqdvjUdN3XgJuABsBvywvckiRJkqrvoYceolWrVixYsIBevXqxfPnyfdp8+umnjBs3js6dO7Nx48b99tmzZ09q1apFQUEBr7322t7je/bs4Y477uD111/fp2bt2rU8+uijbN26dZ9zU6dOBfZdo1oclsub8RwxYgS5ubncc889jB8/PmPYLSws5LnnntvvPX3ZVCrExhhnxhj7xxhfzXDuGSA/vTuozOkfpbe3xRhXlajZSOrxYoDbM8zG3k4qiI6JMS4oUbcduJ5UqL4xhPCVMnU/IBVEfx1jfL5E3W5gCLAVuDyE0L5M3fWkHgN+Ocb4UJlztwFrgK8Bl5Q59w1Sj0ivTo95rxjjg8As4DjgOiRJkiTVqEaNGjFnzhz+9V//lblz59KpUyc6dOjAlVdeybe+9S3OPfdcjjnmGG699VaOPPJIGjVqtN8+W7RowdChQ9mzZw89e/bk/PPPp1+/frRq1YqHHnqIm266aZ+azZs3893vfpe8vDzOOussrr76agYMGMBXv/pVbrnlFurUqcPYsWNL1fTr1w9IhdW+ffvyH//xH/zHf/wHf/3rX4HU48RTpkyhYcOGDB8+nBYtWnDhhRfy7W9/mz59+tCiRQu++tWv8tvf/rYG/pLJUlOf2FmS3p5QfCA9K9oZ2AXsMwceY5wNrCcVHs8uUVeXf4TFJzLUvUVqHW5dUiGypMsrqNsKTC3TrjJ1e0jNtlZU93S6XVlPlGknSZIkqQY1a9aMV199lalTp3LNNdewY8cOCgoKeO6553jrrbe44IILeOSRR1izZg0tWrSoVJ8PPPAAY8aMoVWrVsyZM4c5c+Zw1llnsWjRooxrb1u3bs19993HJZdcwscff8y0adMoKChgz549DBkyhKVLl3LppZeWqunbty8TJkzglFNOYcaMGfzyl7/kl7/8ZalHnnv27ElhYSH/+Z//SZMmTZg/fz7/+7//S2FhIa1ateInP/nJ3seV/5mEGOOBdxLC/cDNpGZAr0sf+ybw/4Al6cdrM9X9nlTAGx5jHJ8+1pHUGtOPY4zHlFN3H6lZ15/FGEekj+UCxS9tOjodWsvW3QzcD/wu/Xhy8fGPgEbAaTHGP2eouwyYAiyKMXYtcXwxqRnay2KM/y9D3WnAUmBTjDEv072U1KVLl7ho0aL9NUukgZPmAfDMDedkeSSSpIPN/82XasbKlSs59dRTsz0M6YBV5d9yCGFxjLFLRW0OeCY2hNCUfzwu+78lTp2U3pb/+i54t0zbkr+/S/ky1bVMb7dkCrDl1aXDb/FzBeWNNdP1Su7vr65xCCGnnDaSJEmSpEo6oBAbQqgN/AY4GvhTjHFqidPFoe3TCroofidzw8OgrqLaTHWVuWbJd06XrZUkSZIkVdGBzsROBM4n9R3Wsi91UiWEEIaEEBaFEBZ9+OGH2R6OJEmSJB3Wqh1iQwg/B/6d1Odzzo8xvl+mSfEs5FEVdFM8k7ntMKirqDZTXWWuWXKWt2wtADHGR2KMXWKMXfLy9rtsVpIkSZL+qVUrxIYQ/i+p76B+SCrArsrQ7J309sQM54o1L9O25O8VvTosU13xutSvpNe5VqouvX52c3q3vLFmul7J/f3VfZT+PJAkSZIk6QBUOcSGEMYCPwQ+Ai6IMa4op2nxZ3c6hBDql9Oma5m2AG8CO4BGIYTW5dSdWbYuxvgJqe+5lux3v3VpbxziOkmSJElSNVQpxIYQ7gVGkJq5vDDT52iKxRjXkQp5dYGryp4PIZxH6ruy75P67mtx3S7gD+ndb2eoawWcQ+r7sy+UOf18BXW5wDfTu7+vQt0RwNX7qbs63a6s4v7K1kmSJEmSqqHSITaEcDdwG7CFVICtzOziT9LbMSGENiX6agJMSO/eG2MsKlN3LxCB20IIZ5aoywEeS497QoxxS5m6+0nN4g4OIfQtUVcbmATkAlMyzB7/ilSY7hlCGJZhLK1Jzab+ocy5F0h907ZNiXstvuZwoAfwdyAfSZIkSdIBq12ZRulAeEd6dzXw/RBCpqZvxhjvLd6JMf4uhPAwMBRYHkKYAXxB6o3GucAU4KGyncQYF4YQbgfGAHNDCDNJhefzgCbAghLjKVm3LoTw78BkYEoIYQ6pEHk2qXWrq4EbMtRtDyFcTSqkPhRCuB5YBZwGnApsAr4VY4xl6opCCN8CXgFGhBAuBZYBbYHOpAL1wBjjZ5n+WJIkSZKkqqlUiAUalfi9S/onk9mkZi73ijHemA6Tw0iF0CNIrXt9DHg4wyxscd3YEMKfgVtJrTk9EngLeAD4WYxxZzl1T4UQ3gJ+BHQDziL1CaCfAqPTa2cz1c0OIZwB/BepkN0R2EhqBveuGOOGcupWhBA6peu+AVwBfAw8Afw4xvi3THWSJEmSpKqrVIiNMeZzAI/ExhifBJ6sRl0BUFCNugXA5dWo+ysZ1sVWou7vwPeqWidJkiRJqppqfydWkiRJkqRDzRArSZIkSUoMQ6wkSZIkKTEMsZIkSZISb/r06XznO9+hTZs25OTkUK9ePU444QT69OnDxIkT2bZtW6n2o0aNIoTAqFGjsjPgw9TcuXMZOnQoZ511Fscddxz16tUjJyeHTp06cfvtt/Phhx9me4iGWEmSJEnJ9cEHH9CjRw/69OnDb37zG+rWrctFF11Ev379aNmyJTNmzGDo0KG0atWKtWvXZnu4e/Xo0YMQArNmzcr2UEqZPn06EydO5IMPPqB9+/ZcccUVdOvWjffee48xY8bw1a9+lZUrV2Z1jJX9xI4kSZIkHVa2bNlCt27dWL16Neeccw4TJ06kU6dOpdps27aNhx9+mNGjR7N582ZOPPHELI02GQYNGsSQIUNo0aJFqeOffvop//7v/84zzzzD9773PWbPnp2lEToTK0mSJCmhhg8fzurVqznzzDOZOXPmPgEWoGHDhowcOZLFixdz7LHHZmGUyXLKKafsE2ABjjrqKH76058C8Oqrr7Jz585DPbS9DLGSJEmSEmfNmjU89dRTAEycOJEjjzyywvZt2rShWbNm++13f2tl8/PzCSFw3XXX7XPu6aefplevXjRq1Ig6derQuHFjOnbsyLBhw1izZg0As2bNIoSwdyazZ8+ehBD2/pR9vHjdunXcfPPNtGvXjvr165Obm0u3bt3Iz88nxrjPGEo+pvzKK6/Qp08fGjduTK1atZgyZcp+778itWvX3rs94ogjDqivAxpH1q4sSZIkSdU0bdo0ioqK6NixI2eccUa2h8OoUaO46667qFOnDl//+tc57rjj2LJlC++88w4TJkyge/futG7dmqZNmzJ48GAKCgrYuHEjvXv3pmnTpnv7Kfn7yy+/TL9+/fjkk09o06YNF198Mdu3b2f+/Plcf/31zJw5k8cffzzjeJ599lkmTpxI+/btufDCC9m0aRN16tSp9v3t2rWLO++8E4BLLrlkb6DNBkOsJEmSpMRZvHgxAF27ds3ySGDnzp2MHTuWnJwcFi9ezMknn1zq/KpVq/aGvlNOOYX8/Hx69OjBxo0buf322+nRo8c+fW7YsIErr7yS7du3k5+fz7XXXksIAUjNzvbt25fJkyfTq1evjLPCEyZMYNKkSQwZMqRa97Rq1SpGjx4NwKZNm1i4cCEffPABXbt25eGHH65WnzXFECtJkiQl1H9+tirbQ6iSexq0rbG+ij/10qRJkxrrs7q2bt3Kjh07OO200/YJsABt21b9vu+//342b97MyJEjGTx4cKlzzZs35xe/+AVdu3blwQcfzBhiL7zwwmoHWICNGzfy61//utSx888/n0ceeYTjjjuu2v3WBNfESpIkSdIByMvLo2XLlixbtoxbb72VN99884D7nD59OgBXXXVVxvOdO3cmJyeHpUuX8vnnn+9z/oorrjig6//rv/4rMUb27NnDu+++y+TJk3nrrbf46le/yu9+97sD6vtAORMrSZIkJVRNzmwmTV5eHpD6Tuzh4PHHH6d///6MGzeOcePGkZeXx9lnn03v3r0ZNGgQRx99dJX6e+utt4DKPS790Ucfcfzxx5c6VlOfEqpVqxbNmzdn0KBBdOvWjdNPP53rr79+77rfbDDESpIkSUqczp07M3nyZBYuXHhIr1tUVJTxePfu3Xn77beZNm0as2bNYu7cuUybNo2pU6cyatQoXnzxxSq9gGrPnj0ADBw4cL9vXq5Xr94+x+rXr1/pa1XWSSedxLnnnsu0adP44x//yPXXX1/j16gMQ6wkSZKkxOnTpw8//OEPWb58OUuWLKmxNxTXrVsXgO3bt2c8v3bt2nJrGzRowIABAxgwYACQejnTLbfcwjPPPMOwYcOYO3dupcfRvHlzVq9ezZ133kmHDh2qcAcH1+EwA+6aWEmSJEmJ06ZNGwYOHAjA0KFD2blzZ4Xt16xZw4YNG/bbb/FjuZnWtcYYKSgoqPQYmzVrtvcNv8uWLSt1rjgs7969O2PtJZdcAqQ+lXO42L17N6+88gpQvZdV1RRDrCRJkqREeuihh2jVqhULFiygV69eLF++fJ82n376KePGjaNz585s3Lhxv3327NmTWrVqUVBQwGuvvbb3+J49e7jjjjt4/fXX96lZu3Ytjz76KFu3bt3n3NSpU4F916gWh+WVK1dmHMeIESPIzc3lnnvuYfz48RnDbmFhIc8999x+76kq7r33XjZt2rTP8Q8++IB/+7d/Y82aNTRv3pyLL764Rq9bFT5OLEmSJCmRGjVqxJw5cxgwYABz5syhU6dOtG/fnlNOOYW6deuyfv16Xn/9dXbu3Mmxxx5Lo0aN9ttnixYtGDp0KOPHj6dnz550796d3Nxc3njjDTZv3sxNN93EAw88UKpm8+bNfPe732XYsGGcfvrpnHTSSRQVFbFixQoKCwupU6cOY8eOLVXTr18/8vPzGTFiBC+99NLeTwWNGDGCdu3a0bx5c6ZMmUL//v0ZPnw4o0ePpkOHDjRp0oQtW7awfPly1q1bx8CBAw/4TcQl/ehHP+L//J//Q6dOnWjdujVHHHEE7733Hm+88QY7duzg2GOP5bnnnqNBgwY1ds2qMsRKkiRJSqxmzZrx6quvMm3aNJ566inmzZtHQUEBu3fvJi8vjwsuuIDLLruMa665hqOOOqpSfT7wwAO0aNGCxx57jDlz5pCbm0vPnj25++67M65rbd26Nffddx+zZs2isLCQwsJCatWqxfHHH8+QIUO4+eabad++famavn37MmHCBCZNmsSMGTPYsWMHAIMGDaJdu3ZAala4sLCQBx98kBdeeIH58+fzxRdf0LRpU1q1asWNN95Y7id4quuhhx7ilVdeYenSpbz00kt8+umnHH300Xzta1/j0ksv5Xvf+x5f+cpXavSaVRVijFkdgP6hS5cucdGiRdkexkExcNI8AJ654Zwsj0SSdLD5v/lSzVi5ciWnnnpqtochHbCq/FsOISyOMXapqI1rYiVJkiRJiWGIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiRJiWGIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiRJiWGIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiRJiWGIlSRJkiQlhiFWkiRJUuJNnz6d73znO7Rp04acnBzq1avHCSecQJ8+fZg4cSLbtm0r1X7UqFGEEBg1alR2BnyY+vTTT3niiSf4wQ9+QLdu3TjqqKMIIXDppZdme2h71c72ACRJkiSpuj744AMGDBjA7NmzATj11FO56KKLqFu3Lu+99x4zZsxg+vTp3HnnnSxatIgTTzwxyyNO6dGjB7Nnz+bll1+mR48e2R7OXqtWrWLQoEHZHkaFDLGSJEmSEmnLli1069aN1atXc8455zBx4kQ6depUqs22bdt4+OGHGT16NJs3bz5sQuzhqmHDhvzbv/0bXbp0oXPnzixZsoTvfe972R5WKYZYSZIkSYk0fPhwVq9ezZlnnsnMmTM58sgj92nTsGFDRo4cyRVXXMFRRx2VhVEmS+vWrfnlL3+5d3/FihVZHE1mromVJEmSlDhr1qzhqaeeAmDixIkZA2xJbdq0oVmzZvvtd39rZfPz8wkhcN111+1z7umnn6ZXr140atSIOnXq0LhxYzp27MiwYcNYs2YNALNmzSKEsPfx5549exJC2Psza9asUn2uW7eOm2++mXbt2lG/fn1yc3Pp1q0b+fn5xBj3GUOPHj329vPKK6/Qp08fGjduTK1atZgyZcp+7z8JnImVJEmSlDjTpk2jqKiIjh07csYZZ2R7OIwaNYq77rqLOnXq8PWvf53jjjuOLVu28M477zBhwgS6d+9O69atadq0KYMHD6agoICNGzfSu3dvmjZturefkr+//PLL9OvXj08++YQ2bdpw8cUXs337dubPn8/111/PzJkzefzxxzOO59lnn2XixIm0b9+eCy+8kE2bNlGnTp2D/nc4FAyxkiRJkhJn8eLFAHTt2jXLI4GdO3cyduxYcnJyWLx4MSeffHKp86tWraJ27VT0OuWUU8jPz6dHjx5s3LiR22+/PeOLnTZs2MCVV17J9u3byc/P59prryWEAKRmZ/v27cvkyZPp1atXxlnhCRMmMGnSJIYMGVLj95tthlhJkiQpoeZ+9ny2h1AlX29wWY319eGHHwLQpEmTGuuzurZu3cqOHTs47bTT9gmwAG3btq1yn/fffz+bN29m5MiRDB48uNS55s2b84tf/IKuXbvy4IMPZgyxF1544ZcywIJrYiVJkiTpgOTl5dGyZUuWLVvGrbfeyptvvnnAfU6fPh2Aq666KuP5zp07k5OTw9KlS/n888/3OX/FFVcc8BgOV87ESpIkSQlVkzObSZOXlwekvhN7OHj88cfp378/48aNY9y4ceTl5XH22WfTu3dvBg0axNFHH12l/t566y2gco9Lf/TRRxx//PGljn2ZPyVkiJUkSZKUOJ07d2by5MksXLjwkF63qKgo4/Hu3bvz9ttvM23aNGbNmsXcuXOZNm0aU6dOZdSoUbz44otVegHVnj17ABg4cOB+37xcr169fY7Vr1+/0tdKGkOsJEmSpMTp06cPP/zhD1m+fDlLliypsTcU161bF4Dt27dnPL927dpyaxs0aMCAAQMYMGAAkHo50y233MIzzzzDsGHDmDt3bqXH0bx5c1avXs2dd95Jhw4dqnAHX36uiZUkSZKUOG3atGHgwIEADB06lJ07d1bYfs2aNWzYsGG//RY/lptpXWuMkYKCgkqPsVmzZowePRqAZcuWlTpXHJZ3796dsfaSSy4BUp/KUWmGWEmSJEmJ9NBDD9GqVSsWLFhAr169WL58+T5tPv30U8aNG0fnzp3ZuHHjfvvs2bMntWrVoqCggNdee23v8T179nDHHXfw+uuv71Ozdu1aHn30UbZu3brPualTpwL7rlEtDssrV67MOI4RI0aQm5vLPffcw/jx4zOG3cLCQp577rn93tOXjY8TS5IkSUqkRo0aMWfOHAYMGMCcOXPo1KkT7du355RTTqFu3bqsX7+e119/nZ07d3LsscfSqFGj/fbZokULhg4dyvjx4+nZsyfdu3cnNzeXN954g82bN3PTTTfxwAMPlKrZvHkz3/3udxk2bBinn346J510EkVFRaxYsYLCwkLq1KnD2LFjS9X069eP/Px8RowYwUsvvbT3U0EjRoygXbt2NG/enClTptC/f3+GDx/O6NGj6dChA02aNGHLli0sX76cdevWMXDgwBp/E3G/fv32zloXf8rotdde4+yzz97b5s4776RPnz41et3KMsRKkiRJSqxmzZrx6quvMm3aNJ566inmzZtHQUEBu3fvJi8vjwsuuIDLLruMa665hqOOOqpSfT7wwAO0aNGCxx57jDlz5pCbm0vPnj25++67M65rbd26Nffddx+zZs2isLCQwsJCatWqxfHHH8+QIUO4+eabad++famavn37MmHCBCZNmsSMGTPYsWMHAIMGDaJdu3ZAala4sLCQBx98kBdeeIH58+fzxRdf0LRpU1q1asWNN95Y7id4DsSSJUv2Wfu7ZcsWFixYsHe/ONxmQ4gxZu3iKq1Lly5x0aJF2R7GQTFw0jwAnrnhnCyPRJJ0sPm/+VLNWLlyJaeeemq2hyEdsKr8Ww4hLI4xdqmojWtiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYtTO9gAkfbk8ueBdnl+6PtvDkJRFKzZsBWDgpHlZHomUbMPOqE/dD7dnexjV9pX6dTgmp162h6EvIWdiJdWo55eu3/v/wEr659S+WS7tm+VmexiSsujzL/awZccX2R6GvqSciZVU49o3y+WZG87J9jAkSUq0lStX0jovJ9vDqJY1WZhBnj59Ok899RTz5s3j/fff54svviAvL4/TTjuNb37zm3z729+mYcOGe9uPGjWKu+66i//+7/9m1KhRh3y8h7u//vWv/M///A8zZ87ko48+omnTpnzjG9/gv/7rv2jWrFlWx+ZMrCRJkqTE+uCDD+jRowd9+vThN7/5DXXr1uWiiy6iX79+tGzZkhkzZjB06FBatWrF2rVrsz3cvXr06EEIgVmzZmV7KPuYPXs2Z5xxBk888QTNmjWjX79+NGjQgIkTJ3Laaafxt7/9LavjM8RKkiRJSqQtW7bQrVs3Zs+ezTnnnMOyZctYsWIFzz33HE8//TRz5sxh06ZNjBkzhl27drF58+ZsD/mw9+mnn3L11VezY8cOHnzwQRYvXszTTz/NypUrufXWW/nwww/51re+RYwxa2M0xEqSJElKpOHDh7N69WrOPPNMZs6cSadOnfZp07BhQ0aOHMnixYs59thjszDKZPnVr37F+++/T8+ePRk+fHipc2PGjKF169a88cYb/OEPf8jSCA2xkiRJkhJozZo1PPXUUwBMnDiRI488ssL2bdq0qdRazlGjRhFCKHedbH5+PiEErrvuun3OPf300/Tq1YtGjRpRp04dGjduTMeOHRk2bBhr1qwBYNasWYQQmD17NgA9e/YkhLD3p+zjxevWrePmm2+mXbt21K9fn9zcXLp160Z+fn7G2dCSjym/8sor9OnTh8aNG1OrVi2mTJmy3/svbvPtb397n3NHHHEEV199dal22eCLnSRJkiQlzrRp0ygqKqJjx46cccYZ2R7O3hdF1alTh69//escd9xxbNmyhXfeeYcJEybQvXt3WrduTdOmTRk8eDAFBQVs3LiR3r1707Rp0739lPz95Zdfpl+/fnzyySe0adOGiy++mO3btzN//nyuv/56Zs6cyeOPP55xPM8++ywTJ06kffv2XHjhhWzatIk6ders9z6WLFkCQNeuXTOeLz5e3C4bDLGSJEmSEmfx4sVA+WHrUNq5cydjx44lJyeHxYsXc/LJJ5c6v2rVKmrXTkWvU045hfz8fHr06MHGjRu5/fbb6dGjxz59btiwgSuvvJLt27eTn5/PtddeSwgBSM3O9u3bl8mTJ9OrV6+Ms8ITJkxg0qRJDBkypNL3sXXrVj7++GMATjzxxIxtWrRoAcDbb79d6X5rmiFWkiRJSqrn78j2CDI6btee1C91jyh94rLRNXaNDz/8EIAmTZrUWJ/VtXXrVnbs2MFpp522T4AFaNu2bZX7vP/++9m8eTMjR45k8ODBpc41b96cX/ziF3Tt2pUHH3wwY4i98MILqxRgAbZv/8enkY466qiMbXJyUp992rZtW5X6rkmuiZUkSZKkA5CXl0fLli1ZtmwZt956K2+++eYB9zl9+nQArrrqqoznO3fuTE5ODkuXLuXzzz/f5/wVV1xxwGM4XDkTK0mSJCVVDc5s1qS/f5ia0Wudl3PQrpGXlwekvhN7OHj88cfp378/48aNY9y4ceTl5XH22WfTu3dvBg0axNFHH12l/t566y2gco9Lf/TRRxx//PGljpX3OHBFimdZIfWpnUxjLp6tbdiwYZX7rymGWEmSJEmJ07lzZyZPnszChQsP6XWLiooyHu/evTtvv/0206ZNY9asWcydO5dp06YxdepURo0axYsvvlilF1Dt2ZN6JHvgwIH7ffNyvXr19jlWv379Sl+rWG5uLv/yL//C5s2bWbt2bcZPFq1btw6Ali1bVrn/mlLpEBtCaAdcDHQFugAnAwG4Ksb4uwztewAvV7L7E2OM75aozQcGl9+cv8YYTylnnLWAocD1wCnAHuDPwIQY41MVDSKEcE26thNwBPAm8Cvg4Rhj5n+tqbqLgR+S+rscCbwFPAX8LMa4s6JrSpIkSaq6Pn368MMf/pDly5ezZMmSGntDcd26dYHS60NLWrt2bbm1DRo0YMCAAQwYMABIvZzplltu4ZlnnmHYsGHMnTu30uNo3rw5q1ev5s4776RDhw5VuIMD87WvfY0//elPLFy4MGOIff311wGy+kboqqyJHQrcD3wbaEcqwFbkfeDXFfysTLdbA6wrp4/Xyqn9fabGIYQj0uceAtoCLwJzSAXvJ0MIPy9vsCGE8cATpILoq8BLpIL6Q8Dv0uE4U91I4A9AL+AN4AWgCXA3MCuE0KC8a0qSJEmqnjZt2jBw4EAAhg4dys6dFc8drVmzhg0bNuy33+LHcjOta40xUlBQUOkxNmvWjNGjU498L1u2rNS54rC8e/fujLWXXHIJkPpUzqF02WWXAfDEE0/sc27Pnj08/fTTAPTr1++QjqukqoTYvwA/BQYCbYDZFTWOMb4ZY7yuvJ8STR+Lmb7Sm/JoOfU/Kqf9D4C+wArg5BjjFTHGPkBHYCNwUwjhsrJFIYQrgRtJBe9OMcZLY4z9SAXhlUA/4PsZ6roA9wKfAd1ijBfEGK8CWgGvAGcDh+dCBUmSJCnhHnroIVq1asWCBQvo1asXy5cv36fNp59+yrhx4+jcuTMbN27cb589e/akVq1aFBQU8Nprr+09vmfPHu644469M5ElrV27lkcffZStW7fuc27q1KnAvmtUi8PyypUr96kBGDFiBLm5udxzzz2MHz8+Y9gtLCzkueee2+89VcX1119P06ZNefnllxk/fnypc7fffjtr1qzhjDPO2Buys6HSjxPHGB8tuV/8jaLqCCGcA5xK6lHf/Gp3VLrPI4CR6d2hMca9/0JjjKtCCLelr3UH8HyZ8uJQfFuMcVWJuo0hhKHALOD2EMKDZR4rvp3UjPSYGOOCEnXbQwjXA6uAG0MId8UYt9TAbUqSJElKa9SoEXPmzGHAgAHMmTOHTp060b59e0455RTq1q3L+vXref3119m5cyfHHnssjRo12m+fLVq0YOjQoYwfP56ePXvSvXt3cnNzeeONN9i8eTM33XQTDzzwQKmazZs3893vfpdhw4Zx+umnc9JJJ1FUVMSKFSsoLCykTp06jB07tlRNv379yM/PZ8SIEbz00kt7PxU0YsQI2rVrR/PmzZkyZQr9+/dn+PDhjB49mg4dOtCkSRO2bNnC8uXLWbduHQMHDqzRNxHn5OTw9NNPc8kllzB8+HB+9atf0bZtW5YtW8bKlStp3LgxTz311AHlwQOVrU/s/Ft6WxBj/HsN9XkOqcd434sxvpLh/LPAF0DXEMLeV3eFEE4AOgO70m1KiTHOBtYDTUnNrBbX1QWK//PDPnPtMca3gHlAXeAb1bslSZIkSRVp1qwZr776KlOnTuWaa65hx44dFBQU8Nxzz/HWW29xwQUX8Mgjj7BmzRpatGhRqT4feOABxowZQ6tWrZgzZw5z5szhrLPOYtGiRRnXgrZu3Zr77ruPSy65hI8//php06ZRUFDAnj17GDJkCEuXLuXSSy8tVdO3b18mTJjAKaecwowZM/jlL3/JL3/5y1KPPPfs2ZPCwkL+8z//kyZNmjB//nz+93//l8LCQlq1asVPfvKTvY8r16TzzjuPJUuWcM011/Dee+/x3HPPsX37dm644Qb+/Oc/065duxq/ZlWE8p/k3U9hCLOA8yjnxU4V1DUg9dhuQ+CKGOM+61tLvNjpceAjIIfU48BzgJcyvWQphPB94AHg9zHGjP8pIoSwBDgduDTG+EL62DeB/wcsiTF+rZy63wOXA8NjjOPTxzqSemHUxzHGY8qpu4/UI84/izGOyNSmpC5dusRFixbtr1kiDZw0D4BnbjgnyyPRweb/rSVJqhkrV67k1FNPzfYwqmXNIfjEjpKjKv+WQwiLY4xdKmqTjU/sXEUqwH4ATNtP22szHFsRQrg6xlj2gfeT0tvyXxcG75IKsSeVOFbZupJtS/7+LuXLVCdJkiRJqqZsPE5c/Cjx4zHGL8ppsxS4CWhPahb2OOBSYFn62IySjwSnFf9nnk8ruHbxe7JLfpn3UNdJkiRJkqrpkM7EhhDaAOemdx8rr12M8f4yhz4FXgghvETqrchnk3oZ0/CDMMxDKoQwBBgCVPoZfUmSJEn6Z3WoZ2KLZ2HnxRgzv0u6AjHGXcBP0rtlX5ZUPOt5VAVdFM+ebstiXSkxxkdijF1ijF3y8vIq6EqSJEmSdMhCbPoTOMVrXH95AF0Vf3W47OPE76S3J1K+5mXa1kRdRdOnmeokSZIkSdV0KGdie5MKntuBZw6gn+I3AW8vc/yN9LZrpqL0W5G/mt5dUuJU8e8dQgj1y7lm1zJtIRWmdwCNQgity6k7M0OdJEmSJKmaDmWI/ff09rcxxrIBtCoGpLcLyxyfB3wInBBCOJd9XQXUARbGGNcXH4wxriMVgOum25QSQjgPOIHUZ4HmlajbBfwhvfvtDHWtSH27dhfwQmVuTJIkSZJUsUMSYkMIjYFvpncrfJQ4hHB6COHS9OPHJY/XDiHcSuqtxQD3lTwfY9wDjE3vPhxCaFKiti1wb3o309eAi9fZjkm/fKq4rgkwIb17b4bv094LROC2EMKZJepySL24qhYwIca4pYJbliRJkiRVUqXfThxC+Br/CHSQ+tQNwD0hhP+v+GCM8ewM5d8hNQv6Zoxx7n4u1RL4PfBxCOENUt+TPQboSOpTO0XAyBjjHzPU3kfq7cffBFaFEP6Uvu4FwJHAgzHG58sWxRh/F0J4GBgKLA8hzAC+AM4HcoEpwEMZ6haGEG4HxgBzQwgzgS3AeUATYAFwx37uV5IkSZJUSVX5xE4ucFaG420rUXt9elvuZ3VKWAb8nNR60vZAd1Kzne8BvwLGxxgXZyqMMe4JIVwO3Ji+Zm9gD7CY1Izok+VdNMZ4YwhhDjCMVAg9gtS618eAhzPMwhbXjQ0h/Bm4ldTa2SOBt4AHgJ/FGHdW4p4lSZIkSZVQ6RAbY5wFhOpcJMbYqQpt3wZ+UJ3rpOuLSM2a7jNzWonaJ4Fyg24FdQVAQVXrJEmSJElVc6i/EytJkiRJUrUZYiVJkiRJiWGIlSRJkiQlhiFWkiRJUuJNnz6d73znO7Rp04acnBzq1avHCSecQJ8+fZg4cSLbtm0r1X7UqFGEEBg1alR2BnyYmjVrFiGECn/mz5+f1TFW5e3EkiRJknRY+eCDDxgwYACzZ88G4NRTT+Wiiy6ibt26vPfee8yYMYPp06dz5513smjRIk488cQsjzilR48ezJ49m5dffpkePXpkezj7OPbYY7n44osznsvLyzvEoynNECtJkiQpkbZs2UK3bt1YvXo155xzDhMnTqRTp9IfRtm2bRsPP/wwo0ePZvPmzYdNiD3cnXLKKeTn52d7GBkZYiVJkiQl0vDhw1m9ejVnnnkmM2fO5Mgjj9ynTcOGDRk5ciRXXHEFRx11VBZGqZrmmlhJkiRJibNmzRqeeuopACZOnJgxwJbUpk0bmjVrtt9+97dWNj8/nxAC11133T7nnn76aXr16kWjRo2oU6cOjRs3pmPHjgwbNow1a9YA/1hzWvz4c8+ePUutN501a1apPtetW8fNN99Mu3btqF+/Prm5uXTr1o38/HxijPuMoUePHnv7eeWVV+jTpw+NGzemVq1aTJkyZb/3nwTOxEqSJElKnGnTplFUVETHjh0544wzsj0cRo0axV133UWdOnX4+te/znHHHceWLVt45513mDBhAt27d6d169Y0bdqUwYMHU1BQwMaNG+nduzdNmzbd20/J319++WX69evHJ598Qps2bbj44ovZvn078+fP5/rrr2fmzJk8/vjjGcfz7LPPMnHiRNq3b8+FF17Ipk2bqFOnTqXvZ+PGjdx1112sX7+eo446io4dO3LZZZdxzDHHVP+PVEMMsZIkSZISZ/HixQB07do1yyOBnTt3MnbsWHJycli8eDEnn3xyqfOrVq2idu1U9Cpea9qjRw82btzI7bffnvHFThs2bODKK69k+/bt5Ofnc+211xJCAFKzs3379mXy5Mn06tUr46zwhAkTmDRpEkOGDKnWPb355pv7zEZ///vf59577+X73/9+tfqsKYZYSZIkKakOw7faAhz3xZ7UL3WOKH2izKOyB+LDDz8EoEmTJjXWZ3Vt3bqVHTt2cNppp+0TYAHatm1b5T7vv/9+Nm/ezMiRIxk8eHCpc82bN+cXv/gFXbt25cEHH8wYYi+88MJqBdijjz6aW265hSuuuIK2bdty1FFHsWrVKiZMmMBjjz3GTTfdRP369fmP//iPKvddU1wTK0mSJEkHIC8vj5YtW7Js2TJuvfVW3nzzzQPuc/r06QBcddVVGc937tyZnJwcli5dyueff77P+SuuuKJa1z3jjDMYN24c//qv/8qxxx5LTk4OZ5xxBr/4xS+4//77AbjtttvYuXNntfqvCc7ESpIkSUlVgzObNenvH24HoHVezkG7RvG3Sj/44IODdo2qePzxx+nfvz/jxo1j3Lhx5OXlcfbZZ9O7d28GDRrE0UcfXaX+3nrrLaByj0t/9NFHHH/88aWOHYxPCQ0bNowf//jHbNq0iQULFnDuuefW+DUqwxArSZIkKXE6d+7M5MmTWbhw4SG9blFRUcbj3bt35+2332batGnMmjWLuXPnMm3aNKZOncqoUaN48cUXq/QCqj17Uo9kDxw4cL9vXq5Xr94+x+rXr1/pa1VWrVq1aNu2LZs2bWL9+vU13n9lGWIlSZIkJU6fPn344Q9/yPLly1myZEmNvaG4bt26AGzfvj3j+bVr15Zb26BBAwYMGMCAAQOA1MuZbrnlFp555hmGDRvG3LlzKz2O5s2bs3r1au688046dOhQhTs4uD766CMAcnIO3iz7/rgmVpIkSVLitGnThoEDBwIwdOjQ/a7RXLNmDRs2bNhvv8WP5WZa1xpjpKCgoNJjbNasGaNHjwZg2bJlpc4Vh+Xdu3dnrL3kkkuA1KdyDhfLli3jb3/7GyEEunTpkrVxGGIlSZIkJdJDDz1Eq1atWLBgAb169WL58uX7tPn0008ZN24cnTt3ZuPGjfvts2fPntSqVYuCggJee+21vcf37NnDHXfcweuvv75Pzdq1a3n00UfZunXrPuemTp0K7LtGtTgsr1y5MuM4RowYQW5uLvfccw/jx4/PGHYLCwt57rnn9ntPVfHAAw/snW0tad68efTv3x9IPeLcrFmzGr1uVfg4sSRJkqREatSoEXPmzGHAgAHMmTOHTp060b59e0455RTq1q3L+vXref3119m5cyfHHnssjRo12m+fLVq0YOjQoYwfP56ePXvSvXt3cnNzeeONN9i8eTM33XQTDzzwQKmazZs3893vfpdhw4Zx+umnc9JJJ1FUVMSKFSsoLCykTp06jB07tlRNv379yM/PZ8SIEbz00kt7PxU0YsQI2rVrR/PmzZkyZQr9+/dn+PDhjB49mg4dOtCkSRO2bNnC8uXLWbduHQMHDqz2m4gz+a//+i9uvfXWvfcRY2TVqlX8+c9/JsZIt27dmDRpUo1drzoMsZIkSZISq1mzZrz66qtMmzaNp556innz5lFQUMDu3bvJy8vjggsu4LLLLuOaa67hqKOOqlSfDzzwAC1atOCxxx5jzpw55Obm0rNnT+6+++6M61pbt27Nfffdx6xZsygsLKSwsJBatWpx/PHHM2TIEG6++Wbat29fqqZv375MmDCBSZMmMWPGDHbs2AHAoEGDaNeuHZCaFS4sLOTBBx/khRdeYP78+XzxxRc0bdqUVq1aceONN5b7CZ7quuOOO3j11VcpLCzkb3/7G5999hmNGjXiwgsv5Fvf+hbf+c53OOKII/bf0UEUYoxZHYD+oUuXLnHRokXZHsZBMXDSPACeueGcLI9EB5v/t5YkqWasXLmSU089NdvDqJY1h+ATO0qOqvxbDiEsjjFWuODWNbGSJEmSpMQwxEqSJEmSEsMQK0mSJElKDEOsJEmSJCkxDLGSJEmSpMQwxEqSJEmSEsMQK0mSJElKDEOsJEmSdJiKMWZ7CNIBORj/hg2xkiRJ0mGodu3a7Nq1K9vDkA7Irl27qF27do32aYiVJEmSDkNHH300H330kbOxSqwYIx999BFHH310jfZriJUkSZIOQ40aNWLnzp289957bNu2jT179hhoddiLMbJnzx62bdvGe++9x86dO2nUqFGNXqNm53UlSZIk1YjatWtz4oknsnnzZjZv3szf//53ioqKsj2sSvlw204Adm2ql+WRKBtq1apF/fr1Oeqoo/iXf/kXatWq2blTQ6wkSZJ0mKpVqxbHHHMMxxxzTLaHUiWjJs0D4JkbTs/uQPSl5OPEkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMSodYkMI7UIIN4cQfhNCeDOEUBRCiCGE/hXU5KfblPfzZgW1tUIIw0IIi0II20MIn4QQXg0hfKsSY70m3faTdO2idF8V3m8I4eIQwoshhI9DCJ+FEP4SQrgjhFBvP3VnhRB+H0L4IITweQhhVQhhbAjh6P2NVZIkSZJUebWr0HYocHM1r/MasDrD8Q2ZGocQjgCeA/oCW4EXgXrA+cCTIYSzY4wZxxJCGA/cCHwO/An4Il33EHB+CKF/jLEoQ91IYAywB5gFbAbOA+4GLg0hnB9j/CxD3beAycAR6ftcD5wNjAD6hRC6xRg/yDRWSZIkSVLVVCXE/gX4KbAIWAz8klTIq4xHY4z5VbjWD0gF2BVArxjjRoAQQlvgVeCmEMLMGOPzJYtCCFeSCrDvA+fGGFeljx8LvAz0A74P/LxMXRfgXuCz9PUWpI/nAC8A5wKjgVvK1J1A6u8QgMuLxxNCqA38BhgITEpfV5IkSZJ0gCr9OHGM8dEY48gY429jjGsO1oDSs7Aj07tDiwNsegyrgNvSu3dkKP9RentbcYBN120kNZMMcHuGx4pvJxVExxQH2HTdduB6oAi4MYTwlTJ1PwDqA78uGahjjLuBIaRmkS8PIbSv6J4lSZIkSZVzOL7Y6RygCfBejPGVDOefJfWIcNcQwvHFB9Ozop2BXek2pcQYZ5N61Lcpqcd9i+vqApekd5/IUPcWMA+oC3yjzOnLK6jbCkwt006SJEmSdAAOVYjtGUIYF0J4JITwPyGE3hW8ZOmM9HZhppPpdamF6d3TM9QVxhh3lNP3wjJtAdoBDYCPK5hh3qcuhJALtK5orOVcT5IkSZJUTVVZE3sgrs1wbEUI4eoY4/Iyx09Kb9dW0N+7pALsSSWOVbauZNuSv79L+TLVtUxvt6RnXStbJ0mSJEmqpoM9E7sUuAloD+QAxwGXAsvSx2aUfCQ4LSe9/bSCfrentw0TWFdKCGFI+hNAiz788MMKupIkSZIkHdQQG2O8P8b4YIxxZYzx0xjjhhjjC8CZwHxSa19/VHEvX24xxkdijF1ijF3y8vKyPRxJkiRJOqxl5cVOMcZdwE/Su2VfllQ8e3lUBV0Uz4JuS2CdJEmSJKmasvl24jfT27KPE7+T3p5YQW3zMm1roq5FFeuK195+Jf2Sp8rWSZIkSZKqKZsh9pj0dnuZ42+kt10zFYUQGgBfTe8uKXGq+PcOIYT65Vyza5m2kArTO4BGIYTW+5YAqcefS9XFGD8Bit9mnHGsmeokSZIkSdWXzRA7IL0t+3maecCHwAkhhHMz1F0F1AEWxhjXFx+MMa4jFYDrptuUEkI4DzgBeD99jeK6XcAf0rvfzlDXitS3a3cBL5Q5/XwFdbnAN9O7v89wH5IkSZKkKjpoITaEcHoI4dIQwhFljtcOIdxK6q3FAPeVPB9j3AOMTe8+HEJoUqK2LXBvend0hssWr7MdE0JoU6KuCTAhvXtvjLGoTN29QARuCyGcWaIuB3iM1N9pQoxxS5m6+0nN4g4OIfQteY/AJCAXmBJjXJFhrJIkSZKkKqr0d2JDCF/jH0EQUp/IAbgnhPD/FR+MMZ6d/rUlqRnIj0MIbwAfkHqEuCOpT+0UASNjjH/McLn7gHNJzWSuCiH8idTs6wXAkcCDMcbnyxbFGH8XQngYGAosDyHMAL4AzicdKIGHMtQtDCHcDowB5oYQZgJbgPNIvUF5AXBHhrp1IYR/ByYDU0IIc4C/A2eTWpu7Grghw/1JkiRJkqqh0iGWVAg8K8PxtuW0Xwb8nNS60PZAd1Kzne8BvwLGxxgXZyqMMe4JIVwO3AhcD/QG9gCLSc2IPlneIGOMN6bD5DBSIfQIUuteHwMezjALW1w3NoTwZ+BWUmtcjwTeAh4AfhZj3FlO3VMhhLdIfSqoG6m/0Trgp8Do9NpZSZIkSVINqHSIjTHOAkIV2r8N/KDqQ9pbX0Rq1nSfmdNK1D4JlBt0K6grAAqqUbcAuLyqdZIkSZKkqsnmi50kSZIkSaoSQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTFqZ3sAkiRJ0oF6csG7PL90fbaHobQVG7YCMHDSvCyPRMUuO/14rjmrRbaHUSOciZUkSVLiPb90/d7gpOxr3yyX9s1ysz0Mpa3YsPVL9R95nImVJEnSl0L7Zrk8c8M52R6GdNj5ss2IOxMrSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxKh0iA0htAsh3BxC+E0I4c0QQlEIIYYQ+pfTvk4I4fwQwv8NISwKIWwNIewKIawPIfwuhNCjgmvlp/su7+fNCmprhRCGpa+5PYTwSQjh1RDCtypxj9ek236Srl2U7qvCv1MI4eIQwoshhI9DCJ+FEP4SQrgjhFBvf9eUJEmSJFVe7Sq0HQrcXIX25wEvpX9/H3gF+BRoD1wJXBlC+J8Y439V0MdrwOoMxzdkahxCOAJ4DugLbAVeBOoB5wNPhhDOjjFmvIcQwnjgRuBz4E/AF+m6h4DzQwj9Y4xFGepGAmOAPcAsYHP63u8GLg0hnB9j/KyCe5QkSZIkVVJVQuxfgJ8Ci4DFwC9JhbXyFAH/C/w8xvhqyRMhhIHAE8CdIYSXY4wvl9PHozHG/CqM8QekAuwKoFeMcWP6em2BV4GbQggzY4zPlxnPlaQC7PvAuTHGVenjxwIvA/2A7wM/L1PXBbgX+Cx9vQXp4znAC8C5wGjglircgyRJkiSpHJV+nDjG+GiMcWSM8bcxxjWVaD8zxti/bIBNn3sGyE/vDqr0aCuQnoUdmd4dWhxg09dbBdyW3r0jQ/mP0tvbigNsum4jqRlogNszPFZ8OxCAMcUBNl23HbieVJC/MYTwlWrdlCRJkiSplGy+2GlJentCDfV3DtAEeC/G+EqG88+SekS4awjh+OKDIYQTgM7ArnSbUmKMs4H1QFPg7BJ1dYFL0rtPZKh7C5gH1AW+Ub1bkiRJkiSVlM0Q2za9zbi+Na1nCGFcCOGREML/hBB6V/CSpTPS24WZTqbXpRamd0/PUFcYY9xRTt8Ly7QFaAc0AD6uYGY6U50kSZIkqZqqsia2xoQQmgLXpXf/t4Km12Y4tiKEcHWMcXmZ4yelt2sr6O9dUgH2pBLHKltXsm3J39+lfJnqJEmSJEnVdMhnYkMItYHfAEcDf4oxTs3QbClwE6k3GecAxwGXAsvSx2aUfCQ4LSe9/bSCy29Pbxtmsa6UEMKQ9Kd8Fn344YcVdCVJkiRJysbjxBNJfbpmHeW81CnGeH+M8cEY48oY46cxxg0xxheAM4H5pNa+/ihTbdLEGB+JMXaJMXbJy8vL9nAkSZIk6bB2SENsCOHnwL+T+pTN+THG96tSH2PcBfwkvVv2ZUnFs55HVdBF8ezptizWSZIkSZKq6ZCF2BDC/yX1iPCHpALsqv2UlOfN9Lbs48TvpLcnVlDbvEzbmqhrUcU6SZIkSVI1HZIQG0IYC/wQ+Ai4IMa44gC6Oya93V7m+BvpbddyxtAA+Gp6d0mJU8W/dwgh1C/nml3LtIVUmN4BNAohtC6n7swMdZIkSZKkajroITaEcC8wAtgMXBhj/PMBdjkgvS37KZ15pGZ5TwghnJuh7iqgDrAwxri++GCMcR2pAFw33abs+M8j9S3b99PXKK7bBfwhvfvtDHWtSH27dhfwQmVuTJIkSZJUsYMaYkMIdwO3AVtIBdj9zkiGEE4PIVwaQjiizPHaIYRbST2SDHBfyfMxxj3A2PTuwyGEJiVq2wL3pndHZ7hs8TrbMSGENiXqmgAT0rv3xhiLytTdC0TgthDCmSXqcoDHSP19J8QYt1Rwy5IkSZKkSqr0d2JDCF/jH4EOUp+6AbgnhPD/FR+MMZ6dbt8XuCN9eDXw/RBCpq7fjDHeW2K/JfB74OMQwhvAB6QeIe5I6lM7RcDIGOMfM/R1H3Au8E1gVQjhT6RmXy8AjgQejDE+X7Yoxvi7EMLDwFBgeQhhBvAFqbco5wJTgIcy1C0MIdwOjAHmhhBmkgrs55F6g/KCEn8DSZIkSdIBqnSIJRXmzspwvG057RuV+L1L+ieT2fxjlhRS34L9Oan1pO2B7qRmO98DfgWMjzEuztRRjHFPCOFy4EbgeqA3sAdYTGpG9MlyxkCM8cYQwhxgGKkQegSpda+PAQ9nmIUtrhsbQvgzcCuptbNHAm8BDwA/izHuLO+akiRJkqSqqXSIjTHOAjJOpZbTPh/Ir+qAYoxvAz+oal2J+iJSs6b7zJxWovZJoNygW0FdAVBQ1TpJkiRJUtUc0u/ESpIkSZJ0IAyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSoxKh9gQQrsQws0hhN+EEN4MIRSFEGIIoX8laq8JIbwaQvgkhLA9hLAohDAshFDh9UMIF4cQXgwhfBxC+CyE8JcQwh0hhHr7qTsrhPD7EMIHIYTPQwirQghjQwhHV+IefxNC+HsIYWcIYW0I4eEQQrP91B2Xbrc2Xff3EMLkEMLJFdVJkiRJkqqmKjOxQ4H7gW8D7YBQmaIQwnjgCaAL8CrwEnAy8BDwu/KCbAhhJPAHoBfwBvAC0AS4G5gVQmhQTt23gNeAy4G/Ac8DdYERwKIQQpNy6s4DlqTvbwPwe+Az4HvAsvICaQjhVODP6XafpeveBwYBS0II3TL/ZSRJkiRJVVWVEPsX4KfAQKANMHt/BSGEK4EbSYW6TjHGS2OM/YC2wEqgH/D9DHVdgHtJhcJuMcYLYoxXAa2AV4CzgdEZ6k4AfkkqYF8eY/zXGONAoDXwTHrckzLUHQU8DdQHvh9j7BxjvDrGeCrwf4E84KkQQihTVytddwzwsxjjqem6rwE3AQ2A35YXuCVJkiRJVVPpEBtjfDTGODLG+NsY45pKlv0ovb0txriqRF8bSc3sAtyeYTb2dlJBdEyMcUGJuu3A9UARcGMI4Stl6n5AKoj+Osb4fIm63cAQYCtweQihfZm664GmwMsxxofKnLsNWAN8DbikzLlvAJ2A1ekx7xVjfBCYBRwHXIckSZIk6YAdtBc7pWdFOwO7gGfLno8xzgbWkwqPZ5eoq8s/wuITGereAuaRekT4G2VOX15B3VZgapl2lanbQ2q2taK6p9PtynqiTDtJkiRJ0gE4mG8nPiO9LYwx7iinzcIybSG13rYB8HEFM7771IUQckk9NlzyfGWuV3L/UNVJkiRJkqrhYIbYk9LbtRW0ebdM25K/v0v5MtW1TG+3pGddK1WXDr+N9jPWTNcrub+/usYhhJxy2kiSJEmSKulghtji0PZpBW22p7cND4O6imoz1VXmmttL/F62FoAQwpD0J4cWffjhh+V0I0mSJEmCgxtiVQkxxkdijF1ijF3y8vKyPRxJkiRJOqwdzBBbPAt5VAVtimcytx0GdRXVZqqrzDVLzvKWrZUkSZIkVdHBDLHvpLcnVtCmeZm2JX9vUcW64nWpX0mvc61UXXr97Ob0bnljzXS9kvv7q/so/XkgSZIkSdIBOJghdkl62yGEUL+cNl3LtAV4E9gBNAohtN63BIAzy9bFGD8h9T3Xkv3uty7tjUNcJ0mSJEmqhoMWYmOM60iFvLrAVWXPhxDOA04A3if13dfiul3AH9K7385Q1wo4h9T3Z18oc/r5CupygW+md39fhbojgKv3U3d1ul1Zxf2VrZMkSZIkVcPBfrHTT9LbMSGENsUHQwhNgAnp3XtjjEVl6u4FInBbCOHMEnU5wGOkxj0hxrilTN39pGZxB4cQ+paoqw1MAnKBKTHGFWXqfkUqTPcMIQzLMJbWpGZT/1Dm3AvAn4E2Je61+JrDgR7A34F8JEmSJEkHrHZlG4YQvsY/gidA+/T2nhDC/1d8MMZ4donffxdCeBgYCiwPIcwAvgDOJx0ogYfKXivGuDCEcDswBpgbQpgJbAHOA5oAC4A7MtStCyH8OzAZmBJCmEMqRJ5Nat3qauCGDHXbQwhXkwqpD4UQrgdWAacBpwKbgG/FGGOZuqIQwreAV4ARIYRLgWVAW6AzqUA9MMb4WdlrSpIkSZKqriozsbnAWSV+ir972rbM8VJijDeSeqz2DVIhtDepMDkcuDLGuCfTxWKMY4FLgJdJrTn9Jqkw+X+A88oLhjHGp4BuwP8jFUD7AbuBnwJdYowflFM3GzgDeJLUY85XkHq78CSgU4zxr+XUrQA6pdvlpOuOB54ATo8xzslUJ0mSJEmqukrPxMYYZwGhOheJMT5JKhxWta4AKKhG3QLg8mrU/ZUM62IrUfd34HtVrZMkSZIkVc3BXhMrSZIkSVKNMcRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhKjdrYHIP2zeHLBuzy/dH22h3HQrdiwFYCBk+ZleSQH32WnH881Z7XI9jAkSZL+qTgTKx0izy9dvzfgfZm1b5ZL+2a52R7GQbdiw9Z/iv8oIUmSdLhxJlY6hNo3y+WZG87J9jBUA/4ZZpolSZIOR87ESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEMsZIkSZKkxDDESpIkSZISwxArSZIkSUoMQ6wkSZIkKTEOaogNIfQIIcRK/rQoUZe/n7ZvVnDNWiGEYSGERSGE7SGET0IIr4YQvlWJ8V6TbvtJunZRuq8K/04hhItDCC+GED4OIXwWQvhLCOGOEEK9qv3FJEmSJEkVqX2Q+38f+HUF588ETgXWAOsynH8NWJ3h+IZMnYUQjgCeA/oCW4EXgXrA+cCTIYSzY4w3l1M7HrgR+Bz4E/BFuu4h4PwQQv8YY1GGupHAGGAPMAvYDJwH3A1cGkI4P8b4WaZrSpIkSZKq5qCG2Bjjm8B15Z0PIaxI//pYjDFmaPJojDG/Cpf8AakAuwLoFWPcmL5OW+BV4KYQwswY4/NlxnElqQD7PnBujHFV+vixwMtAP+D7wM/L1HUB7gU+S19vQfp4DvACcC4wGrilCvcgSZIkSSpH1tbEhhDOITULuwfIr4H+jgBGpneHFgdYgHQovS29e0eG8h+lt7cVB9h03UZgaHr39gyPFd8OBGBMcYBN120HrgeKgBtDCF+p1k1JkiRJkkrJ5oud/i29LYgx/r0G+jsHaAK8F2N8JcP5Z0k9Itw1hHB88cEQwglAZ2BXuk0pMcbZwHqgKXB2ibq6wCXp3Scy1L0FzAPqAt+o3i1JkiRJkkrKSogNITQABqZ3f1lB054hhHEhhEdCCP8TQuhdwUuWzkhvF2Y6mV6XWpjePT1DXWGMcUc5fS8s0xagHdAA+DjGuKYKdZIkSZKkajrYL3Yqz1VAQ+ADYFoF7a7NcGxFCOHqGOPyMsdPSm/XVtDfu6QC7EkljlW2rmTbkr+/S/ky1UmSJEmSqilbjxMXP0r8eIzxiwznlwI3Ae2BHOA44FJgWfrYjJKPBKflpLefVnDd7eltwyzWSZIkSZKq6ZDPxIYQ2pB6ay/AY5naxBjvL3PoU+CFEMJLwGxSa1N/BAw/SMM8ZEIIQ4AhAC1atNhPa0mSJEn655aNmdjiWdh5McaVVSmMMe4CfpLeLfuypOJZz6Mq6KJ49nRbFutKiTE+EmPsEmPskpeXV0FXkiRJkqRDGmLTn8EpXuda0QudKvJmelv2ceJ30tsTK6htXqZtTdRVNH2aqU6SJEmSVE2Heia2N6nwuR14ppp9HJPebi9z/I30tmumovQbkb+a3l1S4lTx7x1CCPXLuWbXMm0hFaZ3AI1CCK3LqTszQ50kSZIkqZoOdYj99/T2tzHGsiG0sgakt2U/pTMP+BA4IYRwLvu6CqgDLIwxri8+GGNcRyoA1023KSWEcB5wAvB++hrFdbuAP6R3v52hrhWpb9fuAl6ozI1JkiRJkip2yEJsCKEx8M30brmPEocQTg8hXJp+9Ljk8dohhFtJvbUY4L6S52OMe4Cx6d2HQwhNStS2Be5N747OcNnidbZj0i+eKq5rAkxI794bYywqU3cvEIHbQghnlqjLIfXSqlrAhBjjlvLuV5IkSZJUeYfy7cTfITUT+maMcW4F7VoCvwc+DiG8QepbsscAHUl9aqcIGBlj/GOG2vtIvfn4m8CqEMKf0te8ADgSeDDG+HzZohjj70IIDwNDgeUhhBnAF8D5QC4wBXgoQ93CEMLtwBhgbghhJrAFOA9oAiwA7qjgXiVJkiRJVXAoQ+z16W3Gz+qUsAz4Oan1pO2B7qRmO98DfgWMjzEuzlQYY9wTQrgcuDF9vd7AHmAxqRnRJ8u7aIzxxhDCHGAYqRB6BKl1r48BD2eYhS2uGxtC+DNwK6m1s0cCbwEPAD+LMe7cz/1KkiRJkirpkIXYGGOnSrZ7G/jBAVyniNSs6T4zp5WofRIoN+hWUFcAFFS1TpIkSZJUNdn4TqwkSZIkSdViiJUkSZIkJYYhVpIkSZKUGIZYSZIkSVJiGGIlSZIkSYlhiJUkSZIkJYYhVpIkSZKUGIZYSZIkSVJiGGIlSZIkSYlhiJUkSZIkJYYhVpIkSZKUGIZYSZIkSVJiGGIlSZIkSYlhiJUkSZIkJYYhVpIkSZKUGIZYSZIkSVJiGGIlSZIkSYlRO9sDkJQcTy54l+eXrs/2MA4LKzZsBWDgpHlZHsnh47LTj+eas1pkexiSJOlLzplYSZX2/NL1e8PbP7v2zXJp3yw328M4bKzYsNX/wCFJkg4JZ2IlVUn7Zrk8c8M52R6GDjPOSEuSpEPFmVhJkiRJUmI4EytJkiRJSfDII/Dkk1Wvaz8wte3xo+pd95prYMiQ6tUeBIZYSZIkSUqCJ5+EpUvh9NOrVPbMimeqf82lS1NbQ6wkSZIkqcpOPx1mzTp01+vR49Bdq5JcEytJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEqJ3tAUiSJCXaij/CqleyPQp91CG1fX5adsfxz67tudC+d7ZHoS85Q6wkSdKBWPUKbHobGp+U7ZH8U3umQ2G2h6BNb6e2hlgdZIZYSZKkA9X4JLhsdLZHIWXX83dkewT6J+GaWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJcdBDbAghP4QQK/h5s5y6WiGEYSGERSGE7SGET0IIr4YQvlWJa16TbvtJunZRuq8K7zeEcHEI4cUQwschhM9CCH8JIdwRQqi3n7qzQgi/DyF8EEL4PISwKoQwNoRw9P7GKkmSJEmqvNqH8FqvAaszHN9Q9kAI4QjgOaAvsBV4EagHnA88GUI4O8Z4c6aLhBDGAzcCnwN/Ar5I1z0EnB9C6B9jLMpQNxIYA+wBZgGbgfOAu4FLQwjnxxg/y1D3LWAycET6HtcDZwMjgH4hhG4xxg/K+ZtIkiRJkqrgUIbYR2OM+ZVs+wNSAXYF0CvGuBEghNAWeBW4KYQwM8b4fMmiEMKVpALs+8C5McZV6ePHAi8D/YDvAz8vU9cFuBf4LH29BenjOcALwLnAaOCWMnUnAL8EAnB58XhCCLWB3wADgUnp60qSJEmSDtBhtyY2PQs7Mr07tDjAAqRD6W3p3TsylP8ovb2tOMCm6zYCQ9O7t2d4rPh2UkF0THGATddtB64HioAbQwhfKVP3A6A+8OuSgTrGuBsYQmoW+fIQQvuK7lmSJEmSVDmHXYgFzgGaAO/FGF/JcP5ZUo8Idw0hHF98MD0r2hnYlW5TSoxxNqlHfZuSety3uK4ucEl694kMdW8B84C6wDfKnL68grqtwNQy7SRJkiRJB+BQhtieIYRxIYRHQgj/E0LoXc6Lls5Ibxdm6iS9LrUwvXt6hrrCGOOOcsawsExbgHZAA+DjGOOaytaFEHKB1hWNtZzrSZIkSZKq6VCuib02w7EVIYSrY4zLSxw7Kb1dW0Ff75IKsCeVOFbZupJtS/7+LuXLVNcyvd2SnnWtbJ0kSZIkqZoOxUzsUuAmoD2QAxwHXAosSx+bUfKx4HQbgE8r6HN7etswgXWSJEmSpGo66DOxMcb7yxz6FHghhPASMJvU+tQfAcMP9lgORyGEIaReAkWLFi2yPBpJB9vaL1aw/otV+2+YMFuLjgBg7mfP76dl8hxfpy0n1vH9fJIkHS4O5ePEpcQYd4UQfgI8T+kXJhXPXh5VQXnxLOi2BNaVEmN8BHgEoEuXLrGCviR9Caz/YhWfFG3i6FqNsz2UGnXn4D3ZHsJB8UnRJvgCQ6wkSYeRrIXYtDfT25KPE7+T3p5YQV3zMm1roq6iadBMdcVrb78SQsgtZ11spjpJ/+SOrtWYrze4LNvDUCV8GWeWJUlKumx/YueY9HZ7iWNvpLddMxWEEBoAX03vLilxqvj3DiGE+uVcr2uZtpAK0juARiGE1vuWAHBm2boY4ydA8duMM441U50kSZIkqfqyHWIHpLclP1EzD/gQOCGEcG6GmquAOsDCGOP64oMxxnWkAnDddJtSQgjnAScA76evUVy3C/hDevfbGepakfp27S7ghTKni/8Tfaa6XOCb6d3fZ7gPSZIkSVIVHdQQG0I4PYRwaQjhiDLHa4cQbiX11mKA+4rPxRj3AGPTuw+HEJqUqGsL3JveHZ3hkj9Jb8eEENqUqGsCTEjv3htjLCpTdy8QgdtCCGeWqMsBHiP1d5oQY9xSpu5+UrO4g0MIfUveHzAJyAWmxBhXZBirJEmSJKmKDvaa2JakZiE/DiG8AXxA6hHijqQ+tVMEjIwx/rFM3X3AuaRmMleFEP5Eavb1AuBI4MEY4z4LlWKMvwshPAwMBZaHEGYAXwDnkw6UwEMZ6haGEG4HxgBzQwgzgS3AeUATYAFwR4a6dSGEfwcmA1NCCHOAv5N64/KJwGrghsr8oSRJkiRJ+3ewHydeBvwc+Cupb8JeSSoYfgb8CjgzxvjTskXp2djLge+TCoK903WLgW/HGG8qW1Oi9kZSj/e+ka7pne5jOHBluu9MdWOBS4CXSa1x/SawCfg/wHkxxs/KqXsK6Ab8P+BUoB+wG/gp0CXG+EF5Y5UkSZIkVc1BnYmNMb4N/KCatUWkZk33mTmtRO2TwJPVqCsACqpRt4BU6JYkSZIkHUTZfrGTJEmSJEmVZoiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYhhiJUmSJEmJYYiVJEmSJCWGIVaSJEmSlBiGWEmSJElSYtTO9gAkSZIkVcOKP8KqV7I9in/Y9HZq+/wd2R1HWW3Phfa9sz0K1SBnYiVJkqQkWvXKP4Lj4aDxSamfw8mmtw+voK8a4UysJEmSlFSNT4LLRmd7FIevw21WWDXCmVhJkiRJUmIYYiVJkiRJiWGIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiRJieEndv7JLH4Elj956K/7fvvUNr/Hob92x2ug85BDf11JkiRJNc8Q+09m+ZPw/lJoevqhve71K845tBdMe39pamuIlSRJkr4cDLH/hJqeDtfNyvYoDo1szPxKkiRJOnhcEytJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhLDECtJkiRJSgxDrCRJkiQpMQyxkiRJkqTEMMRKkiRJkhKjdrYHIElSSWu/WMH6L1ZlexgAfFK0CYC5nz2f5ZGkHF+nLSfWaZ/tYUiSlFXOxEqSDivrv1i1Nzxm29G1GnN0rcbZHgaQCtSHS7iXJCmbnImVJB12jq7VmK83uCzbwzisHC6zwZIkZZszsZIkSZKkxDDESpIkSZISw8eJJUmSJB08K/4Iq17JzrU3vZ3aPn9Hdq7f9lxo3zs71/4ScyZWkiRJ0sGz6pV/hMlDrfFJqZ9s2PR29sL7l5wzsZIkSZIOrsYnwWWjsz2KQytbs7//BJyJlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmIYYiVJkiRJiWGIlSRJkiQlhiFWkiRJkpQYhlhJkiRJUmL4nVhJknR4WvFHWPVKtkexf5veTm2T8E3ItudC+97ZHoUkHRBnYiVJ0uFp1Sv/CIiHs8YnpX4Od5veTsZ/FJCk/XAmVpL+//bePE7O46z3/VbPPiNpJFm75N2yHTtO5DhO4iTYBickQCCEhM34QrjcE27CcuDwOU6AeziXJZAAIYQlAR8CBoLgAMEYCLHJZsvBTuw4lhfJi2zJWkcjzWhmpFm7p7vOH8/zTL3d6p7p2Wek56uPPj39dr21V731q6eqXsdxli7rLoV3fnixY3FusBwsxY7jOHXglljHcRzHcRzHcRxn2eAi1nEcx3Ecx3Ecx1k2uIh1HMdxHMdxHMdxlg0uYh3HcRzHcRzHcZxlg4tYx3Ecx3Ecx3EcZ9ngItZxHMdxHMdxHMdZNsyriA0hNIUQbgshfCyE8I0QwukQQj6EcDSE8I8hhFtr3Hd3CCFO8v+5ScLMhRB+SsMbDCEMhBAeCiH8cB3xvV3dDui931C/Js2nEMLbQwj/EUI4FUIYDiE8E0L45RBCy1RhOo7jOI7jOI7jOPUz3++JvQX4gv59HNgFDAHXAO8G3h1C+PUY46/UuP8/gRerXO+q5jiE0AD8E/A9wGngP4AW4DZgZwjhDTHG/1rj3j8GPgCMAl8CCnrfHwG3hRDeE2MsVbnvTuCjQBF4AOjTdP8G8I4Qwm0xxuEa6XMcx3Ecx3Ecx3GmwXyL2BLwWeATMcaHsj+EEH4Q+Bvgf4QQvhJj/EqV+/8sxnj3NML7OUTA7gW+LcbYrWFtBx4CfjaE8OUY470VcXk3ImCPAzfHGPfp9Y3AV4B3AT8DfKLivtcCHwGGNbyv6/UVwOeAm4EPAz8/jTQ4NXj8Lnh65/TuOb5bPu++dXr3XXc73PC+6d3jOI7jOI7jOM78M6/LiWOMX44xvqdSwOpv/xu4W7/eMduw1Ap7p359vwlYDWsf8EH9+stVbv9F/fygCVi9rxt4v379UJVlxR8CAvBRE7B63yDw44iI/0AIYfWMEuWU8fTOJErrZdMO+T8dju+evlh2HMdxHMdxHGdhmG9L7FQ8oZ/b5sCvm4ANwJEY464qv/8D8L+AG0MIW2OMRwFCCNuAG4C8uikjxvhgCOEosBV4A/Cw3tcMfIc6+5sq9+0PITwCvAn4TsBl0RywaQe894H5DWO6VlvHcRzHcRzHcRaOxT6deLt+Vt3jCnxrCOH3Qgh3hRB+PYTwtkkOWbpePx+r9qPuS92jX3dUuW9PjHGkht+PVbgFuApoB07FGF+axn2O4ziO4ziO4zjODFk0S2wIYRPwXv362RrOfrTKtb0hhB+KMT5dcf1S/Tw4SbCHEAF7aeZavfdl3Wb/PkRtqt3nnMN8Zm+Be/YVqv72fK+cC/bue6uf8/Wu7U3ccU3TvMXNcRzHcRzHcc4FFsUSG0JoBD4DdAJfijH+a4WT3cDPIqcYrwC2AO8AntRrXwwhbK24Z4V+Dk0S9KB+rlzE+5xzmHv2FdjTc9Yh1gBcde31XHVtdaP8np5STfHrOI7jOI7jOE5isSyxf4K8vuYwVQ51ijH+fsWlIeBzIYQvAA8ie1N/Efjp+Y3m/BNCeB/wPoCLLrpokWPjzAXXrsvx2Xe2T+ueWtZZx3Ecx3Ecx3HKWXBLbAjhE8BPIK+zuS3GeLzee2OMeeC39Ot3VvxsVs+OSbww6+mZRbyvjBjjXTHG18YYX7t+/fpJvHIcx3Ecx3Ecx3EWVMSGED6GLBM+iQjYfVPcUo3n9LNyOfHL+nnxJPdeWOF2Lu6bzHxa7T7HcRzHcRzHcRxnhiyYiA0h/Dbw34Be4C0xxr0z9OoC/RysuP5N/byxRvjtwCv16xOZn+zva0MIbTXCvLHCLYiYHgHWhhAur3Hf66rc5ziO4ziO4ziO48yQBRGxIYSPAP8d6APeGmN8ahbe/YB+Vr5K5xHEwrsthHBzlfu+H2gCHrN3xALEGA8jArhZ3VTG/RbkPbbHNQy7Lw98Xr/+SJX7LkPeXZsHPldPwhzHcRzHcRzHcZzJmXcRG0L4DeCDQD8iYCe1SoYQdoQQ3hFCaKi43hhC+AVkOTLAx7O/xxiLwG/r10+FEDZk7t0OfES/frhKsLbP9qMhhCsy920APqlfPxJjrDx29iNABD4YQnhd5r4VwJ8j+fvJGGP/JEl2HMdxHMdxHMdx6mReTycOIXwP8Mv69UXgZ0II1Zw+F2M0kXkJcA9wKoTwTeAEsoT4OuRVOyXgzhjj/VX8+ThwM/DdwL4QwpcQ6+tbgFbgD2OM91beFGP8xxDCp4D3A0+HEL4IFJATlFcB/wz8UZX7HgshfAj4KPBwCOHLiFi/BdgAfD2TfsdxHMdxHMdxHGeWzPcrdtZm/n6t/q/GgyRL6ZPAJ5D9pNcA34JYO48AfwH8cYzx8WqexBiLIYTvBT4A/DjwNqAIPI5YRHfWimiM8QMhhK8CP4WI0AZk3+ufA5+qYoW1+347hPAU8AvI3tlWYD/wB8DvxhjHaoU5Ux6/C56umZLJOb5bPu++debhX3c73PC+md/vOI7jOI7jOI4zU+ZVxMYY7wbunuY9B4Cfm0WYJcRqepbltI57dwLTlocxxvuA+6Z730x5eqeI0U07pn/vTO7JYiLYRazjOI7jOI7jOIvBfFtinXli0w547wMLH+5sLLiO4ziO4ziO4zizZUHfE+s4juM4juM4juM4s8FFrOM4juM4juM4jrNs8OXEjuM4juM4c8Xe+2HfrsWORXV6DsjnvUv4xQnbb4Zr3rbYsXAcZ4njlljHcRzHcZy5Yt+uJBaXGusulf9LlZ4DS3cCwHGcJYVbYh3HcRzHceaSdZfCOz+82LFYfixlC7HjOEsKt8Q6juM4juM4juM4ywYXsY7jOI7jOI7jOM6ywZcTO47jOI7jOI7jnE/cdRfs3Fmf29275fPWW6d2e/vt8L73zTRWdeOWWMdxHMdxHMdxnPOJnTuTOJ2KHTvk/1Ts3l2/MJ4lbol1HMdxHMdxHMc539ixAx54YO78q8dSO0e4JdZxHMdxHMdxHMdZNriIdRzHcRzHcRzHcZYNLmIdx3Ecx3Ecx3GcZYOLWMdxHMdxHMdxHGfZ4CLWcRzHcRzHcRzHWTa4iHUcx3Ecx3Ecx3GWDf6KHcc5T7iv0MOuQt+s/DhQGgHgl4b3zdiPm5vW8PamdbOKh+M4juM4jnP+4iLWcc4TdhX6OFAa4dJc24z9eMuPXTirOBwojUABF7GO4ziO4zjOjHER6zjnEZfm2vjN9u2LFv5sLLiO4ziO4ziOA74n1nEcx3Ecx3Ecx1lGuIh1HMdxHMdxHMdxlg2+nNhxHMdx5pCDhb0cLcz90vmBUg8ADw/fO6f+bm3azsVN18ypn47jOI4zn7iIdRxnRszktOP9pWFg+ntj/URjZzlxtLCPgVIPnbm5rbNz7R+oMC7gItZxHMdZVriIdRxnRszktOPLcu3TDmepn2g8XavbTKxpbilbfnTm1vHG9ncudjSmZK6tuo7jOI6zELiIdRxnxizEacdL/UTj6VrdpmtNc0uZ4ziO4zhOOS5infOex++Cp3em78d3y+fdt6Zr190ON7xvIWPlLCfm0+rmljLHcRzHcZxy/HRi57zn6Z1JuAJs2iH/jeO7y0Wu4ziO4ziO4ziLh1tiHQcRre99oPpvWYus4ziO4ziO4ziLi1tiHcdxHMdxHMdxnGWDi1jHcRzHcRzHcRxn2eAi1nEcx3Ecx3Ecx1k2uIh1HMdxHMdxHMdxlg1+sJMzQeWrZqpR7fUzlfjraBzHcRzHcRzHmS9cxDoT2Ktmsq+XqWSy3yCJ3JmI2KlEtAtox3Ecx3Ecx3FcxDplTPaqmXqYzetophLR8ymgHcdxHMdxFp2998O+XfW77zkgn/f+cn3ut98M17xt+vFynCWGi1hnSTEbEe3vc3Ucx1nGVBu81xqg+0B88ZiuyJoO0xVk02G51Jl9uyQf1l1an/t63UHK3+WQD44zBS5iHcdxHMdZfKoN3qsN0H0gvrhMV2RNh/nwE5ZfnVl3Kbzzw3Pv73xMDjjOIuEi1nEcx3GcpUE9g3cfiC8+8yWy5guvM85cU++KhOmsLlguqwWWCC5iHWeB+czeAvfsK5Rd29NTAuDd9w5PXHvX9ibuuKZpQePmOI7jOI7jTEG9KxLqXV2w3FYLLAFcxDrOAnPPvgJ7ekpcuy69pjn7N5ioLbiIdRzHcRxnaTGTfdEz3e+8lK2Tc7kiYTmtFrjrLthZ43Uiu3fL5623Vv/99tvhfXNzAquLWMdZBK5dl+Oz72yv+XvWIus4juM4jrNkmMm+6Jnsd3br5NJk504Rqzt2nP1btWuGCVwXsY7jOI7jOI7jLDgLsS96OVknzzd27IAHHpjePbWsszPERazjLAEq98lW2yMLvk/WcRxnwZjpq2Rm85qYpbx00nEcZwnhItZxlgCV+2Qr98iC75N1lg8HC3s5Wtg34/sHSj0APDx874zu39q0nYubrplx+MuVmeT7TPP6vMjjmb5KZqavifGlk47jOHXjItZxlgi+T/b8ox7RMR2RsVSExdHCPgZKPXTm1s3o/pneB5pfBZZEPiw0M8n3meT1eZXHC/kqGV866ThOLbKHKVUenjSHhyUtJ1zEOo7jLBL1iI56RcZSExaduXW8sf2dCx7uTK235woLke/nex47juMsONnDlLKHJ83xYUnLCRexjuM4i8hciQ4XFo7jOI5zDlPtMKU5PixpOeEi1nHmADuYqfJAJj+IyXEcx3Ecx3HmFhexjjMHVB7MBH4Qk+M4juM4juPMBy5iHWeOqDyYyQ9ichzHcRzHcRad7MFQRuUBUcYyOSjKRewS5vG74OmdZ18/vls+77717N+uux1uWPr1zjmPua/Qw65CX93u95dkMuCXhut/dcjNTWt4e9PMT7h1HMdxnGVNtfcc13qHsb+f+NwnezCUkf3bWEYHRbmIXcI8vVME66Yd5dcrvxsmbl3EOkuZXYU+DpRGuDTXVpf7y3K1XztUjQOlESjgItZxHMc5f6n2nuNq7zD29xOfP1Q7GKqSZXRQlIvYJc6mHfDeB+pzW80y6zhLkUtzbfxm+/Z58Xs6FlvHmQsq3/db692+S+U9vo7jnCfU855jfz/x4mIW86yV3C3jdeEi1nEcx3FmQeX7fqu923epvcfXcRzHWQJUWszdMl43LmIdpwrZ/cjZPci+59hxnGpM9b5ff4+v48wh1fZ7TkatvaCT4dYwZ6HIWszdMl43LmKdWVF5+FStQ6eWm/jL7ke2Pci+59hZLCqXq1aj1hLWSpb7ktap8uJ8yQfHOa+ptt9zMup1Z7g1bH6pdxJiOpMPPukw/9gJx5WnGtc6zbjyRORqpyHP4iRkF7HOrKg8fKraoVPzKf5qWUyN2Yjnyv3IvufYWSwql6tWY7LfjHNhSetUeXG+5IPjzCuTiYx6hMVCCIp69nvOlPmyhtUj3uoVbstZtNU7CVHv5MN8TDpMVVZLpR0sJNVOOJ7sNONK95WnIc/yJGQXsc6smerwqfkUf9UspoZbTp1ziamWq9bDubKkdbZ5ca7kg+PMG5OJjKmEhVsxa1OPeKtHuJ0LeTyXkxDzMekwVVmdr+2g8oTjqU4znuxE5FmehOwidhlTz1Le5baMdybUEtFuOT03meo9s/W+V3Ym75KttpR1suWrvmT1/MVPLHaWPTMVGb6nb3LmQrx5Hi8MsykrL6N5x0XsMmaqpbxuiXTORaZ6z2w975Wd6btkqy1lrbV81Zesnt/4icWO45wzVC6trVxKe64tm3WWBS5ilzmTLeV1S6RzrjLb98zO5l2y9S5lPVeXrPohU/XjJxY7jnNOULm0NruU9lxdNusseVzEnsdMtRz5fFiKXA+WT/W8auczewvcs68AwJ6eEgDvvneYd21v4o5rmhYmwo4zj/ghU+c2PkkxT8zlgT7gli9n4am1tNaXzTqLhIvY85jJliOfD0uR6xWnlfk0Wd7cs6/Anp4S167Lce26HGBitjArEfuZvYUJUfyZvbPzyzl/mGpf5kxFhh8yde7ikxTzxFwd6ANu+XIcx8FF7HnPYh6KtNgHU01HnGbzaaq8uXZdjs++M+3LfPe9w7OKJzBh3bW/a4nYyQ49qufAo5kcduQsXSbbl+kiw6nFkpukqLYfrzgOn7693F1WBE7HUlnLSlrLMjpTK+hcncbqli9nLrB67/tbnZlQ7Z2xs3jn60xwEessGkvhYKrpiNPFxiy7kzHZoUdTHXg008OOnOmRtY5mLaPztfSyliBxS6izbKi2H6/nABRGoan1bPfTtVTWspJWs4y6FdQ5V6hW75dL/Z7qoClwMT7fVL4DdpbvfJ0JLmKXGFnr5GK8MqfaEtuZhlvp1+N3ne2HH0w198z00KPZHHbk1E/WOmqWUbeKOs4UVFoxbbA6V3v06rWSuhXUOZeo1a6WOpMdNAXLR4wvBPVaTGdiWc2+A3aW73ydCS5ilxhZ6+RiWCYrraOzCTfr1/Hd8n2+99jWmgRYqodU2UFQy2W/a3a5cuXyZF+KXL+VtdI66lbRuWWqw4nqOZhoKR9KVCt9/s5ix3HOGyabeJqOGJ/udgKobeXN+pW9v16r8N770317758bEV6vxXQJWFani4vYJchi7lOtFn61cOs9FMn8Wqi4V5sEqFeEn+mCoW5J21xQKVDtlOIs2YOg9vSUJt3vuhTILlfOLk9eykuRq+0TrrU/eLZCfC6trLUEsbFcRMliCK6pDiea6mCipW4Zr5U+f2fxPFDPskWYu6WLc3WKsS+lrJ9qeT4TAeMsT6aznQAmt/Jm/bL7p2MVztbDfbvmrp7VazFdZMvqdHER68yI6RyKtNDUK8IrBfjKzXDqBXj4d2HoRHI3FXZy8Lq2wMaOMHE9K1AhnVJciR0ENRcHQNVLvcKumqirtlx5KS9FrrZPOCvAT8UC/bHAMCX2jw2zq9B3VrpNiJnwOljYW1MQzJWVtZogNpaTKJlLwXWwsLeuMjD/6zmcaDKRXVl2S2niYDqHL7mlfxZMtWwR5nbp4lycYuxLKadHtTyfiYBZKviBTdNnOoeuTWXlne0S7XpPKXdcxJ5rTLandq6X1M7HoUj1LgeuZQmuFwvDljpnMQGbdTcZ9+wrcDoP164LZ/2WPal4IUXqVEwl7GBurKuzEcu1/JjJMubJ9gn/0vA+BuI4r8ytAKqnOyvEBko9HC3sq0vMTEd0VWOxD2WqJvBmYhWeK8GVjUu9ZTAV1UR2NYE924mDucpLZxGYaoA71/sI6x1QT2a17Tkwf9bihWAqi/RU1ujppnW+9kTPtSW/mkCtvHcmBzZV+jtXS1mzfmeZ7xUNztxSuV/2rjlasjhLXMSeY9TaU7uULKWTkY1/x0ZZ3nvwwbSn1sRsLUvwdNi0Q/w7vluWEq/cXP5bJfUcVFUP3UORnpHIZ/aebZVdSKY6AGourKu1xPKpWJgQo1kLKJwtSiv9mI9lzNm8qJVuE2LTEZD1iC4Tui3h7BOl54NKq/Jk74ytR+AttFW4nneUzsTPqUT2bCcOlmJezhVzItDnYy/YYlNrfxzMzWD9XD5VeSqL9GTWqqWU1rm25Ff6V+ve6VoDs/72HJjbpaz1WrqXUrlVMpO9rvVMOCwXTMBu3AgvvAB33il/b9485a3ziYvYZcB0xVPWQlpp2ZyPQ46yS3NnKuyyZPfRDnXDxbfI9Uohbu4s/EohWg9P74SxgeqitZpbE84HH4Qv3Kk/bJxemBs7AvsHYtm7X89lai0/HojjZ70KqJYorSW4F3oZc9ayWnlgU7XfYGrRdbSwj3HydIZ1E/5UW7o82R7ZSnFQTaiam2piajLxVE3gVYqW7NLb6VoSq/mVTVuln6NxiLE4UpY388Vcvw5pKrE8lxb2euI+V9bhORHoc7EXbDqDxvkWmHD2/rihPvmeH05CYbZhzZUFcaavLJlPK9tsLNJLyRI915b8rH+zWQUw1Acj/ZJ/WX/r9XM67a2eslzKJyPPZK9rvRMOywU78Km7O33ORMSaVRfKT0KGab9n1kXsMqDaKb9Qn3CcbO9q9iCjWvdX2zta6fbpnVDMw/hIRthVxK8yrGrCt/Ia1Ldk2YQowFg/jI9V9zO75PjooxLnNZdX99PiC2IRNnFs8fnDq2T/7BfuhDO/Jb9V2xdr1No3W/m7/V3tcCez4Fa6mezEYJjZYUX3FXom/Lqv0DPlUt9suPWGlxWm5k8ksr80PGmYi4kN+G1ZsQ3KDxb2snfsEcbJ00gzvaVjDIz1kKOBEkVKFMnRUFPoVoZRbelyrT2y1cRBpaiodDPbfbuVcRmNQwyUehgnz8CYxLleoVcZ16nEjwlYu7de8Z6l3gmBqQ7qmmyvtF1bLOo5ZGwurcNzMtkx271g0xk0VhuUTnXPTKgUHCP9sOXa+QmrGvXuj5zpK0uWgpVtofctz5apJgwWSmx3rIGBY+Vxya6ImMpyOBcibSEmk6YKu970zmSv60wnHLITDJPlwV13Te+VOHNB5enFteJV63U92VOQza+sfy5ilyfDJ+H4i/J3pbCsPOXXhOzYQBKOtYSoLZvNit/H70oHGdmrb6oJy1p7RyvFZkNzis/DHyu3iFaLazXhm91/WrkXtZrAzdLSKf4X26r72bExLUvu2Chhx2ISqnbdsOtjA5AfLL/++F3yGRr02glYtQ1O5wEiGzvCWaLU9s1CnPArK2qzVtlaJxSbgK10U+3E4HoOK5qMXYU+AmHi71r3WdgW7kyX92b9OVAamTRMqE88V3MDtUX9VH6aBTBHAwOlHoqM01s6xucHP01LaGOcPDkaGCdPM23kGZkQsQAlilVFcJasyN3atJ3RvIjDb45+kb5SNyVKE25NAA+M9dBX6j5LsJmoOFjYy8BYDwOlHg4W9p4VXi0RNpnVOeu//T4WR7ggtwVgQsTXopqIzKarmuU5G/eW0MZIHKS31DWplbmaAMtOOHSEzrNE+Kmx4xwt7KM111EWt2x+W3wsvJbQxlAcYO/YIxMCfpx81TyuJuKmEt9TWatrTRjUM1lRyzpcmf8zsbRPZ+JlzpjOoLGadWgmr+awQfDOD4gwqGcgbGKh58D0lk9PNuiH2e2PnOkrS2rdV02sTSVQZnoo0XzuW55roVVNdGet9N374JG/TL9PlldTCbBsfhbH4dO3i7/bb5YwQT471qS4AbSthmN75Ld6830meTzXk0nTqT8LZSmdybLi7ATDZO7Morljx9QicDrvgb3rLnj0Ucjn69v/mhXT2XBqva4newqyMYPTkF3ELiFGTgEN5WIPRGAV8/CHV8LpIyIYG1vkt7VXihC97+dEsB1+GJrak9Azcfbwx8RdxwYRXV+4M4k2E7VZYfnwx8qX7dre0eO7oefZZPm87+dSPBua5d7Th+W/xdPiT07u+/L/gOKY3NPSKZ9ZsTnULZZQEH/uvhWOPgbjei7Swx+Tz/4D8JHV5eKzMpz8GbkWAjS2yfVCxflKJoCzFPMSf8tfS4+Vjf0+EaYyVBBx2j2ULv7J7jw9I5HWhiR07e98MU5YZu0U40pMEOeLcP3GHHt7SuztKZ0lukxw3Vfo4e6xowxTYkuQivJMaZBTeVFMds84kR8afHJCgFaKu8qlvrUwi+p9hR72jw1PaUmtZeU1f7JW5KzbrKjMit5TscAzpcGzxHqlwD4VCxyLYxPuLsg10VtKe3NP5QsMxPGqgnw0DjEUTwORRponBAogf+v8gonWPKNl3w0Toq25DvpK3fSWumgkTVi8lN894fdTY7voCKsYJ0/X+P4Jf86U+sgzQu+Y3CuW3hK9pWP0jnWxP/8kw/EMJUoTQsSswc+NPco4+bLfKkWYUWlZ7h3rmhB3lo6Hh+8t+w4q9goiZPeOPUIkUmS8zPKc9dv2AveWuoA4EY5NGmTj1hLaKFGcKAu5TwRzb/FY2QQAJIH/ucG7yNHANS03leXxUBygNXRkamcgEuktHSNXkrJrpo3e0jHOjPVRojhx70v53bSGjglxNhZHqk5OZAUzUGaxBsrEd0toYyyOlE0CVBPnM7F+Vx4yZnGB6pMU2TArw7J4Zf0tUeTzg5+mM7eu6mSKua0UxlOK4mp7ZacavNugsXsflMbPHsjW2n9bzd/JqDYIHjiWfu85AIVR+Nf/CZe/MQmJe39ZxEFxXB4gu++deuCcTVMxD83tIjQ61iSrTX4Yup5Ny5QtDpZ2i7Ndr0c81xqAm1+18rgyf2otp57snmw+wtwvMa/3MKOZLgufrO4Wx1PaQURrfhg6t0hZFkYlnIFjSUhW+lcpOLuehWN7U5l88eOw/xGpL+ZvfiSJ05F+jWiUexoaoaFiAj273HiqfK63TVXL+8rrUL2OTiUIp1t/TNBnw6xHZNYzgdDzcnkcrO4c21M7TlYubavLr09mcTVBOJUInM57YHfuFAFbLMrfXV2yfDi7DzafFz/uuAP+7d9gQAfStl92AV7X4yJ2CZEfgnyuXJiCCMPGNji1D0JOvpvF0RgfEUtjUBGcvReS0BvuTWKumE9/Z4UlQN9L8E93yLLbhuZy4VpUbZMVfyZG7VplPEODCMmIhDM2INdaVsry3+O7RfAO94qF1MS2pSvLULekp1Q4W3xCeTiW/tF+idv4iIj8avdNlMNgEqyGifuJ9DWk/DUxCxBjEqcmOA+ejhQjrGqGUdUzhWRQm7DIAhwbjBRK6Z2yd1zTNGHFXaXhDORh3fYB7h7rYZgSnTQywDh3jx1lT3GQx8YHGFZB0ROT2OqPBf5mrIsBxmkmME4kT5wQd3vHBifE3f7SME3kGKHIOJGPjb5Mb6nAC6UhAH5o8ElubOycEMM/PPiU5H3GegtM/P6ewd00Enhvy9YJK+8QRe4eO1qzHO4r9PBnY0fIE+mkkWdKg+wdG+Rf8ic4EfM0Ergg18SecTGVN5GbEOv/Od7PntIgtnD7glwTL4wPlblrKEERJvJvPOa5MtfBzU1r2FXoo0CJvaVB7iv0sCp0MBTLK02lmC0n1rhaAiLd4wcnRKn5cfbhTnFi6WzWAptEcZwQgiWKE/EZjP1aDpG9Y4+okC5N3GtxeGbsq0T9l4sNE3HJiufyNIq4C6Wc+kGZ2LPvfWPd5GiYsEqjcckusc5arcdjgY6wKpNnGg45IhEiE25LsZiZGAg00iR+kOfY+IviHjJiPU0glCiyd+yRsmsW50AgkMtMChTPmpBIAjZMxLWvlNIKTAj6rAXXwhuLIxN+W74+PfYQRwv76C+dpMg4uVhuyX9qLHV+1ayqZv0ejUNnWb8rrevZyQyrF+PkaaBpotyeGfsqORrY2Hhx2YTA0cI+RuJgWbz3jj3CxsaL6R4/OJEvJYoTEx7Hxl+amIgw0Vwp6MXtMY4W9vGa0jCtufazl9Ht25XE3iN/KYmrHLzbgNCwgWxDowzmTQyYu6yfu/5Uvnesg4OPJSFhA32zUGWptG5BsmyZsOk7In8DHHlSBIbNfh7bIw/Jpla5NtIvguPgY8m/T9+e0tixRvwbGYCcPnzywyJ0NmxPgirk5CE0IVIGUhx2/Sm0rpRrbZ3yuetPRfQM9dQWICaumttF4GTzxcRSLKU8NiF18DF5uMeY8mffrrSculIIGtVETdZibeU31Aenj0seFkYh1yiW8JH+JEys/tSytk11mFEtoZVdFp4VJVkxm807gAf/BJ78VzhzorwemHg0dyP9Kc+MkX7425+G/qNM9JOP/GWqKyZGYwlefEjvj1IGJXVz+jis2pTqzkh/5n4dEFq8inn5rbld3O7+Z3FTWT+yVGunlsdwdlutlfd2vW211Kevfrp8UiYr9uHs9m9/d6yTeg0Sr65ny63QWbfW59QSmdmJBxOstSzWQ30w2CPu8jLmmGgn22+GR/4qlcGjO6tPBFldsDjuvX96FtfJmI6wXLEiCdPNm+VAJ8P2xQ4MiIDN6zihra38HkgCfHAQ3vrW6mFVWnLrTFuIlY3FmREhhNuB9wOvAhqA54C/AD4VYyxNdq+xNbw2vo9vlInD0CCiLiuest8rrYgmJrPistJd9lp+8Gz/Kq9l75nMT6NaPE302bWsO7PgNmaE+WTpqxbPrH/Vwpkq3pPl0VTp+Y//f5jebSVO56EhQDFCawM0T1hehVXNTIjRoQITwjYrUIcKUJJxO4Fy4Zr186q3HuGCTaPkiTTAxLC8mUCeSDs5VocmjkWZmWgnxzCliU9jS2ihJ+bJZ0SX+ZFD4hEz9wPkgFLGnX1m/WvMiGRzb34DtNFAgRLDlGgmUFT5cU1uBYdLo5xhnDYaGKFIqSL8LNnr1dJociMbx2weDVMqS08jgSZyDDA+cb2dHHeEfcR4EkjiNSvwql3LXq/83ogUbO37Jebl35m4Nvm9lLmpdj17f3k8Q9Uwpopjpduz/QQbfJXnSWU6p87fFFaYsGLXDjt9z96Xzcta907uR3kYJngrLe/V4pJ1nyjPh+w9HaGTkTg44f/ahs1sabx8QpC3hRUTv1t4JlYNE7pZIZ2dDEg9TpyITyDoZEWgmVbyjGau1Y63Wc4r8zIbp0p3ALf983/SPlYSoTQyIAPoi29Mwq5B59zbOmGwV763rU4DeBuADurAtbkNigV1M5AGlCEng/nBnvJlNDZ4t98HjkHnZgmrWJB4NTRKnF58SARDQ3MScc3tOogvSD6afxNZlUvubJDaLKs+JkRifpiy9hJyMitbKib/svdn423Y71l3lWGb2M3G04QtQfLuph+TQXZW9FbmkVl/Qw6a2qAwcnYajbZOsQJaHtqEgbltaC4Xc9nyz6ajScvV8jnXIPkD5X/b/fsfEbdbroHxPJx8KcXRJgi235yE100/JiL8xYe0GErleXrTjyUBY4cgZUVXyMHNPyluju05Oy+q1YNsuVW6sfqRpVr+Zt1W3l8YLf9ey12taxN1O5/yAGQSJASxQDQ0wegZmUxoaJTy7libBNpEuakfMcokxxXfkqzFDc3iT1tnap9Wpm2dcr+lu3IpnJVn5X0NzWe3ycp7cw0Sn84tMHwqk7cBVm8tn3go5lO/UBpPfUW1+jpVmWfjUxqXCZlqed65Be6SicAyi6v93dUlgtFE4I4d5ZbaSrH6wAMiFO+8U77/9m+L20p/d+8WQdrZmU4l7tRBs10fGICGhiR47VpnZxLMV11VLoBvuSWFY1h4Fv8HHiCE8HiM8bVMglti54AQwh8DHwBGgS8hi8luA/4IuC2E8J56hGzIqhGlecXkVsP5ptpS27nGRKx9ngtUCtipyBfFOtuUk3tN5A5kxyYVfjaqGGvJiLZGFWLDlCBWbLisQn8sTIg7E21ZP0zIQhKJVpEtfPvM+pcVxSYEgUw8S1UF5zOlQZoJlIAhilVFauXfWSqvt+l3E9WWvsr4WXokTuXxHqZEfyyQmac5h8gKl/mlumBsmsSaPffhzVcY1irKLdC142ICsp44jsWRCeFYokhP8Qinil0TQrRSMGb9C9nl0WqRz2lbLBfSZ09IxMz94i5O1JTJJjmy1anaZMDEfRPuJOxC+wo4c1yFm26tsAFhyCVROtibrEZmgYMkJGxgWswIokpxMNKfLFQTIqoxCVITxiMDaQBsYR58TNxA+QDa4hmCDIgbGsvFZVPr2YPbqsQkMmMJtLzO8s/SUnk9G59qYVcKWbt/9MxEWZAfLrf0FQspDpV5ZP7lh84W6FlRZAKmmE+TACGX3NtvE/4NJ3eQBvwWjqW5sSX5YX+bH9n7zfpt3/PDkr7Tx2XZZ9aKWBxP7gjlfn710ykvvvhxEbwgdc/83/WnItqqMVk9qCZOlwIFWY1CQ3OqGw1NktaYyZ/sMHewFwa6Up5kyy1bL7LWYqsD1t4gWaVNwFoe2WQKpGvZ/sDqQjEzcdnQCCvWpSX/dp+57T9Sfp0o10JFGzzdndI60n92favW/uDssjX/SuMp3tbmIOVLtdUgWbq75X+1ZcJm4ax8Hc7HPla+/LeSri6xnGYtq7UoFs++duYMPPQQrF4tYddD9pCnOnERO0tCCO9GBOxx4OYY4z69vhH4CvAu4GeATyxaJJ0lT3ODLjUuyd8dui1lOkJ4ptQShAvpXw5ozQjO/AIJK8dZDjRUiP2YEc1Zi2ulYGzIWKrTSdn1t83KcOeCuiYXsgM6GxCOnkkDRLPYxVJGtFbxczIxVy/NbeWD7oWg1qB3vsgKThNf9n0+wrF8rFUeWXfZSYZqFufJqGXNrPSzmsCasJ61ld+brW8HH2NiNmakv7zczPJ/LjAxkdBYnkdwdv6UMhbbrGXdqFZu1epBLWvzVJMzpfGz3dvE0kzbU2X8avUDM+0frB+zfKvWl02FWT1NtO7enQ5YMhHa1QVDQ+XC0iynv/u7cOQIEwc5dXeLOG1uhpGMdWlwUKyuU1HSvKgmgO3AqFtvFYuxXWtuhpYW6O2tvey4Ahexs+cX9fODJmABYozdIYT3Aw8AHwoh/GG9y4odx3EcpxbzIS6XFNmBcD0sVQuWs7yotx6dz/VtuaZ9uca7ksq9o5XY3lkQYXriRLKmNjSIuKwmLE+cYOIgpzvvTHtcK6lmda1GdolxJeb3gw+KeAURyiMjIqqLRfjiF+sKZo6n2c4vQgjbgBuAPPAPlb/HGB8EjgKbgDcsbOwcx3Ecx3Ecx1m23P+ECNeurnRq8MCALAnOkl06HALs3y/umpuTm4aG6mEMDoo7s8zWErFzQXOzCNwrrywXrzPALbGz43r93BNjrLWb8zFgq7p9eEFi5TiO4ziO4zjO8mbXnmTRtCW/IEukbWnus8+KBdXcTbWPtRJbOrwQNDdPP341cBE7O/TMdg5O4uZQhVvHcRzHcRzHcZypMQtplhMn0n7V3l4RotXcncP4K3ZmQQjhl4APA38TY7yjhpsPA78E3BVj/Mkqv78P0HOwuQp4fp6i6ziO4ziO4ziOs9S5OMa4fjIHboldZGKMdwFVdmc7juM4juM4juM4lfjBTrNjUD87JnFjZ1Gfmee4OI7jOI7jOI7jnPO4iJ0dL+vnxZO4ubDCreM4juM4juM4jjNDXMTOjif089oQQlsNNzdWuHUcx3Ecx3Ecx3FmiIvYWRBjPAx8E2gGvr/y9xDCLcA24DjwyMLGznEcx3Ecx3Ec59zDRezs+S39/GgI4Qq7GELYAHxSv34kxlha8Jg5juM4juM4juOcY/grduaAEMIngfcDo8AXgQJwG7AK+GfgPTHG4qJF0HEcx3Ecx3Ec5xzBRewcEUK4Hfgp4DqgAXgO+HPgU26FdRzHcRzHcRzHmRtcxC4RQgirgDMxxhhCuBoYAG4F9gNPA98BHI4xPhpC2AJsUTcfAB5Qd2PIEvFjyCt93gg8BawHhoAfAF6DWIrvBb6MnKy8BtgNXAGcAq7V//vUzQ8AB4EjMcZ9Gt/Vel+fJqEEvBJ4H/CfGt44cH+McUDdrwACEPXegzHG0yGES4C8Xi/GGE+EEALwo5qmazX8ryOvM9qr4eU0nZ3I5EFB/78AXA60Ac8ikwqnNG9XA68HetXvfv0/iFjPh4HHgHcCh4FHgbcAJ4E9McaCxg0Nt6j+twBDMcbBEMIFwIj68TJwBGhHLPU3AieAA3r9jfpbJ/AfmkcbNO/2aHm9oGkZ0u9oXn8BWKdxt3c+F5C6cLHG6zhwWv37EaBV4/Yi8Ga9vx04CvyJ/nZhjHG/1rMh4MfUz26N3zeBbwNeATyOnMD9tP7/Ab2G5vGQllOr/taD1KnjwGqkHu9XNzfqvZcg9SMPvEnL8PPA92je3Qh06f//C6kXj2p+fouWxXOaJ5cDLwEXAY/HGI+GEK5F6q3l8wGk7l0EbM34+WXNl61adgAnY4zDWgferPE+hdTP1ZreVwPPxhi7ALQ9HwWi1o9VpHr788i++WGkPX9c8+Qg0ITUL7QsR5H2M6Rpuwk5MO5yTUcJqbOXaFn1A7fobw9E7exDCFtijMdCCGvUzSuRVSM5zatOzdu3IO3tBeCpGONQCGGFpuFapO70xhifCSFcifQ7DRrHZqBP20sT0BJjHNTwLf1Wt5s1Di9ovXi1pvllTX+bfrYgdTlqfr0aGNfwA7AS2K7+FDPl1Kn+XaJ+HVH/htXdmUybtjiNar69BnhB3TRpXq/X+D+PtN8R4MUY4wlN3zrges3DC5C+45j614z0VYeROtiP1Ou9McZ9Go+b1e2TpDb/AvAO4DLgE1r2XwRuADYBn0Pqn5Wn1Z9TWrb/BenvntX8eEnz8xDwWs33l5B2WtRwhzQul6s/BzT/x4Bv1fJ5WMvhKs2PfVpPtsQYj2l+NGmeDSN1owW4VOP+PPBMpq1s1rh0ann2Iv3/8/qs2IL0d5Y2NI4tWiZfAzYjfXwEnkH6nOv0916knX0X8A1NY3uM8UVtD3mN/9X6Wy/w3cBDwECMcUjDRN03I/3IQaRvbNfwShpeu/p3oZZNY6aMTiH17A16f9DPM5qn40hdvVzTd1rr+jagO/MsejX6rIsx9ocQOoH3aPyPAP0xxmc0ztdqPLdpeT+p+bxS43KZlskZ4F2aV4/r5zVaLoeQdl5E+tv9wHci/cd6pD3sAdYi9ekg8I+avlcjfcmZEMJWddOM1O8b1I+TSH8ZNIw3AK/S+B5S/5/X+xo0zF5SW16tabRXIBYz7bdF8wUybVvzZitSvweR+n1CwytputdpHhTV/1NIHTuCjGV6tGya1P24/l8NDFoZaFiWF2tijF8JIVwdY3xO61S75ksH0of0a/4GpJ2PI/1cG9KvoHlmfdOpGONurcMva9laXC5Bnq2bNQ+ftOdClhDC25DxyA9pmezR/BjR+Lweef49hvQ/r9C8O4T0Ey9ouDnS+Mv62c36vwXpxw5rfncAf488y/NIWxnX+8eBt2ve92kZPYX0De8h9dmPkPqOxzVP+pExypuROnSv5tM7kXr+jzHGsUyZvEbjsAHpI16t6XoVUtb7NF0r9Dl6AfJ8s7KwdrYXqS/Dmu99SFu5nvSss7Hrce3/VyN161JkTD6u+dSu/y9H+rRbNX7DGp9vatvv0P6mifSsKWjePq/RG9ay6NRyuAipR0HT+CAy9v4cUvc3af6N6DVrR5tJ4+cx9buR1FZWI+3rsOZRI3AiMw4vapgB0R6Hdey/JZuXU+EidpEJIXwKGSS3Aa9DGmwDUnnySIUZQTqj65AK04ZUUBvQdiIdiHWcA/obGXcjyGDmeWTAkVN3q5COcrO6j0jl6lH/WjUezRqn/Ugja0UqcpuG3U4SojaY3YBU7lbS4LZD3ZzSOI2qfxeQOrxBpCPcjHS4/eqmpP5F0vt3ezQdTcBGjVOeJC6LGuYA0pg71e2Yfp5AGmnU8HMafknv69d7TpDe9btN82OfxrtN3YaMG3uIdiAPmCa91qP32EB/lCRWTOAX1M8C8nBuQDrlJr3WQKoXKzUtlg+bNA9aM3GH9FAoaFiNGf+aSYOrvPqRR+pSIZMe8yNPqjOtGTfPIg/XBnVjghkN42WkwxxB6ktB09ui1xr173H9u0HjZPeXNL0nkQ7SruU1n6wDtfw5ob9bfS1pOEW9vw8pry16rZ00cLVBt/k5qL+XkIfjSg3nCr3Wr7+3kjrmPqT8cyQRNqxxa9C4nFC/ItIW7YHdo9dNxJmItXo/lInzCU1Pm+bFYaTdtGfydZXGZ1R/M0HRShLquUyeFvW/tf2o965D6tlK/Q3138qxgJTzFZnfixrOmF6z+t2r/lm76STV5Qs0rVHzY4zUpttJg5nTWn7Wblv0P5k4/xWwAxmcrCDV/32kfqVNy2UY6bcG1c8hddOgfjZrno6r+yHN+0Yth26kf7V2ckr9XqnXhtWfJlL/Pqa/d2fy2uqSxWMUGUhdTKrzG9U/6wPy6keH5utpddusf6/P5HXQdGXTY20yp3E4qWUSNe6W72c0TTbAPKbpvEbjbPVjlPQsi5n8tXIdUnelini1IAO8DeqfTdCMkfrVIY1D0E/zt0H9PqP5sVn/HiI9syw+7cjz8EpSv2ris0HLdRypZ53IwNbOvVhNaiuWTkh17wSpT7qE1M/2Z9I8pO5Xab4+p/5sybhB42plj6Y5G09rx2Oab5s1r0uZ9B5FBs4bkYGw1b+s0OrT+Fo/fIZU9y7Q71HDtPGG9YPD+v8F5BmQ0/Rcrmlbq9de1PRl222/hn9I3Y8gZWzPn5Uan0b1y573qyjvax9FJgdsAtTatfW7fVoWJ0ltyPqfIkkwWD/TpGGt1nSPkcYnVt6r9Po4Up5R/2/QdFh7DuqmX9N5jfqzldSebJLSxgN9mhbrx2yM0kp5ewqZa9bv2JivRJrwX6FxHcuEtVrDX6/pGVW3lnfDmTR3ksYo1vZtLLdO49xUkQ6Lhz0/m0njApsMuYw07rE+tUPTYWO4Hr3nsky4MVMWrRpuO9IGNpLGDx0a32OaB22aB/ZsH0Lq42pkXLONNK4Z13A71f/WTL536Kc9r7oQsWf1aFTjtyLj1vqmC9Rd0HSu1Li2ksYLgdQ2GjLXQfqXFfq/SeO/R3+7kTTRfYY0HmzS+Ayr+8tJEwVBy+NC/dvCMo1gQjGQ6oKNLWy8Fygfxx3STxuLjOpvo0g9sD6oRfNui5ZLAP4Mmez6C6bAD3ZafE4hsy6bSZXgINIwxpABYQ4ZGB1BCt86/gJJZP4DUjl6EYvYSqSy5dWfY8iDbBMyyN2r4Qdk9nqcZJ0wi+6o/n9Jw2vSe21WxTplG9DZYHMz0vBs8GoDlH7SwK5IGny1IZ3ms0gHNI50JOOkmfMmUifdqnE/onlwGdIJ2wC5R8O0tJxBGr1NEBQ0Xac1bBtQ9SAPDhMvh0gWzh7kAbgx4/cGpPO2B1gRmdm22dsGDb8lE/+1mXw2sVbQ+008dOv3BqQDsAH/CGlSICKdVreG14E8GP8zE2d7eHyTNAA4ofk0QhroRb3+iF5/QvPcBmhdSP05oWX3MlKPTDh062+XapwtLwNSX8wCv0V/fxmpxy1InWjQ+PXopz08xzJlZHUy6v02YBhQP4YzZXFCv5vAMIuG1fFDmu4eZBDRpffY4Hi9pv0Lmfz634h4HURmnS8i1dEhkgAY1e8vAZ/VND6j/owjdfxRzccSUr6rSJMvVg9s0qJRv48j7fckMvDu0Ov24F9BqoNXkurdikw+231B/16lv6/ScJr1/n7K65oN9m3lglmlT2Xybr+m+Rt675Dm32GN5wvqplk/m0iDi1H9u0H9G9C/XyRhD+VWjctpvW4iC6RtrVA/T2s8AnA70keYleclpO6f1ntWIXXMhOwppL2Z5XQAaVcjGr+9pAk3EyYvaxzX6qfVpw6kPx7U/Duk9/YgddQs+SaA7VVtA3rPMaT8BpD204rUq3akr+rV8B/VtG4jrRCxvGwmTYjYZIBNyHRruo5n0lEg9YFmxbGVAnuQemp9rT1Trtb8+LrGPwf8KkkYniBZwKw+t2mYT2h+2ID9BPKMMZF4XPPNROsZdbtW42gD2T5SG9mv7vuQ51u2HZkQ70Xav1mXniUNhMdJljzrvzYgdcUEyqiW3TdI4u5Rjf9azRNrW12ZfLFBd3sm3kUtu4s1XOu7h5E2tFrdnMyU2WH1v1n9z4oHE2lmYW9EVlZcQlrNYBO8JqJXahnZs9z+t2V+tzrfmcnPLsQiV1L/1yICdgdp1YJNcq0mTRCgZWDp7UDq59dIE+RoPtnk+ABJsFtf26Vh36xhW3/SitSbAkm4jgB/SKrbJaRO28TWSXXfp/lnFr4XSJYpE3GtGqdnkXaTfV4fJLWrg6TnGchYLmo+HtWwxkgipEASwNaOIYnxk5oPNsEyoPnYh7Sjr5PEp02SWd9mE6stJPE+qp9vRyb2IjKOsWdov7o/ShoH2gSnTYZZGvKkvmNY455t67YqbJhkUHhB03dS/XgcqTM9em0caTdmbOgH/kDdNJL6tNFM/vST+hv0/guQepcjjXusTlg/vJo0KTFCEtcF0hilH/hXzfP/QOonpImlIZKxICJtwdpyEWlvw6Q+18baf0ISemagakPq11H16zAynjDDifVjecTC20kaE4xrvCweNqZbj9TJfr3/uF5fq27GSEafFSSdmNfrQyShewwpU5sEfIw0lrAJYhOuJ9SffpIYP6m/rUSe9z1If3UJsvp0StwSu8iEEH4WKUBbavk0aXC8E6mMzyGD5mHE3P9dyFKD9YjwOIJYLn8b6UQPIVbbg0hleg1SUR5Clh6vQypSs/7/e3VvFoMbkQr158hyjZuRgeMa4H6N258hYvVfkIfVUWT55ZeR5aePa5pakOVAp5BO5CCyDO5LSMd3M9JxXKDpeAKZDXocWQrZi3TKb0dmjjYhjeY20qDhCWRZyl7kAf9vwI8jD5kLkUbxKNLobyBZzvqRAT9I4/t/gI8gHcV/A35H8/x3gL9V9xdr+k8iywD/XcvEOhGzjD2BPKxe1nseQTqM6zU+fcis8QkNa1jzvBHpKC4nPei+hHQY20kD+T6N688AH0WW91yOLJW5CelAnkGWEX4cWa7zHmRZ7hP6298hS3IgPUBuRcp1rZbZF/R/Hqkjo8jSsNvU3RhpYN+GdKK9wPdqPu5Clh4fQQbhNsiMpJnAp5ClPSeRur5d/bsMqX+vUL8sbx4jiaBLkTpog+AOzffDpFncb0Xq7xOI0N8LvFvz+0ktg+vVr0GNA3r9dUh7eTvy8PlN9eOzwE8jbfXzmua3IZ25LbU5htSvceB/aT58GanXh5A2fAgZXP4eMhi+Tj+/QmpX65Hy/gpSf/8FuEOv79R8f7PG8xRpKXwT0p5XIBYkE/cPIQ+utXrPHi3Xq7W8Ltf09Orfq4EPavq2IfX4R5G6+VWk/m/Vctupfx/WNDUhy1WvRuqRWQXeo/G/SPPqi0gd+1Wk7nwcqTOrkPq+Gxlg/bHm8Ss13f+KLPe6CJlg6gTuQR60l2tefp/GuaTxaSOt8BjW6y8B70X60ddpmNeRlqWdRtqyTWD1If3SmzXeu7WsjiDt/bsQ4XurpsEm5FB/f13z4VuQPnAv8Blk6eotGv4OzbMe4Fe0rH4SKf8WpM+8AhFV/6T5v1v9fAdpNcJ/kCZKrd59n4b5eUTkv6BpHwf+Blkm/Fnk2WEDyTchfU2D5tUZ5HT+70P6n6PA7yODj59E6sj3aP6+AinvXydZxC/TeD2G9I9v0Ly5V8tgBOmnViHPrcs0nE1aDruR/uA2kvD+AlIXvgR8u5bPV5C6+1WSwLT03ojUpT1aHq9A+pkrgb9Wt69H6tkhzQN7Vl2i5fmMfn+D/r9N8/WfkOfdG/X/m4D7NB0PIe3kNFL3ntM8+W699h6Now2iP6HpeQBpg6uRNrZW43EJ0p/dpeX5ZmQFwlqkrt6nfgwi9WiVxm8PUl9WkNrzryLt5kmNxzDSd28nWXxakUMrX0XaHnQcefZ+h6bvB5EB+B9pmv8LIgSf1vz9QaTOQ1oFtUHz49tIE7pXa97fh9SLL5K2flxDskr+i8bnAqSOXqt58nmkL74YeFeM8X+GEH4GqdP7NN7vQOrBryDtb7umoQlpn7aS5Wua95uR+vdqvX6PuvkVLa/Paj4f0XT9JKk/2YOMuUyAX6hlsF5/fwNp69Qw0jbej2w9uULz5mLNqwJS55/RtJzRcr0Z6ZfWIM+2a5G6fz/Sfi7XvFqPtIF8Jo+e0fBfp587SYaL59XNa5C2dz9SJ1Zq/l2P9Dct6m+j5tH/p/nxBPLctAnSw0h7GUD6zINa1m9FnpU5pN/9FFKHjpEmxtZpOgaQ9jWO9CcDmu9/jyyJ79B03IYslf26xvk1pOfzZg3rrZrnv4a014eQPnwr0ufYWOQjyPj2Ob02hPSnNsbciPSNt6n/mzQd34X0iY9quW1E2lqHxu19pKX+f6G/r0GeAbdomf8WUgf/K0mIDiHjqOe03I5o/m7Q+B1C2tJJpK/4uvrxeqSu70LGrjbRsRGp6zdovq9CDGWv1bzo0PAu0/jZc/3rSF1+AqkztpJoh8ahT/PhzaTJ5DUI/4aMsw7qEvu3xRjvZwpcxC4yIYRfRCpdL7JnsQEZiLaSlkjlSLMqNpN8EmkYZqUKpCXAttTAZlhthtPcrUAGHKv1WjtpeanNcJ5Q/1dk3JgF+KtIxdsD/DBpKWQBGRhsUXfrNH6H9doR0vKnDerfaaQiWzirSdYZs2Su0HQ8hXS6p5EO0wSHPbjypJmdi0gDgGbSDOEoaSneCNIJf7fGoRtp0ObePm1WyyyGqD8jGt8BzeNDGv71pBnj0xp/m2leoffb0g5bJmKz3rZMJZAeKsf0t05Np820HdZrLaQl0/3IQ9EsejYj30Fa2mSzyWNIndlGmmVrQQY+kGY3G0kP1DxpaWyDurNla/2aJrMyrCYtT7JZxTF1Y9aMVZpH9vB6LeX11ixw3Ujn20NaYttOWmlgS5XGSDPq40g5W/lZ/V2p/tkM/wq9brP4jaQlVcOk1QQ2m96gbm1mtJM0MLOJILM+2YD7qJbdCS2/bSSLwjBp+c0m9buXZFU5Rdp/0oXU92F136x58hrSsv4cUp/NcmIW7I8i77Pu1HLrJA0IXiYNys1CaNaWLmRg8gAyILXlS2OkWeVVJAvWQdI+3TzJEm79yTipv4oka18z8vC7VuPfTqpLx5B6PUayQn9Tw70kExdr35bmHHA30h/cpuHaKhILA9LytX7SgL5P4zaCtI2LSPX5DGlJVE79tdlrC2ONfu7SPGon7fs7gfSPDaQJh68hfZGt2rA6vJk0MXadpv15ZODWRGrXRf1uVpkuZABj+Vgi7aNbR1ppsYJkJRgmLTfv0jTb86RIWsrXQXqGDCLtrJ3yfnE/aRmprUY5SbKGjJHqUptes5U0vwb8Aml7QiQttRskLYPcpW6snTVr+C2aPvP7UaTdrCbVtbFMnoyS+p0iInzMcmMTisY40l7aSdt8zF+zxjRrHoPUiyeRycWAtOcO0p5esxpa+ZlVqBMRFK8iDfbypC0HVubmRwlpZ53qtqjf92v6Xk1axWPP22zf2UtafhtJ5fkoMnC1lR22oqdX4zaq+fBK0vL500g9u1bdr1H31ibHkDIza7eVgbUpe3aPk/axniH1V1lrYinjpp1kYbQJqlWkCSwQYTuCCJ5IqntmkbqA1Cas384jZTyi/hwkrRZYrfeuIS2NXJGJ7wWaHzYZYBYxy8uAtNegcbHnjVm6LlJ3hUz+9WXK8QBpj6xZ8Fq1LGz8g7rdo2VWIi0DbUQEk01m5BCBYX1VK+m536Z/Wz9o44IVpDFTj+Z5P9K3Xah+rCY9T+w5tV/jfpIkJK3/WqfpWUlqE9af5EjL2G0cuVavHUTawBFEZFl9sH66kPlu4zkbT60i1a0cafWKjaEL+ndPJu3PadqGNbw20tjrmMbF4nYSWQlwMyKSbQwD0r9foXFA82+Npq1J3Vp77Sdty7B+eZ/mdSOpDtgzzMadZl3tJW1xsfHnHqQft/Ff0LK6RNPbQnoWbiI9d8Y1PkHj2oWMgbtJhqKSfl+vcVir/vVpvn0F2ffdqXF/Icb4JuogV48jZ165F6nEbyQtWzuAdIAF/ezSzxFk4BqQBt9L2ssxhgyMi0hHuQaZjbblAZ9EGsnLyOzSPerXCtJygENIR7EGebgMkixL3fr7MWRG+Hqk0jUhHX0X0jj7NF4v6f+jpCUPNoCxzuc40gHYUpcO0lLEcY2niZY/Rh6IlyAPy1bSrHpB02WzQe16bY/+j8BvIAO/dUhDOaP3vp0k0q4lLZVD496g+XOaNBi3B9Ix0nKbbmSw8wrN83Wkh+wKDfMFTcsxzdvH1c8XSEtwrPOLSIcyqHmzjTRQttnJC5GOZIjUydgDc5S0v2cDUge6SUvujmqZWNn8kebpAf3tLvWzCekcTUyaKO8g7Vc1Ad6q8bTBz5jGs580OWLLpOzBfVrDWUuaGR7TOJWQOnBYw/96pqyKpCVVVt7Pa3ijSH20znwQeVieQsSmCVgbIBVJB1C9SLLQ5fXePtIDaD0yc2ptc73mx5tJ+2hN/L6sfhzQMmhD6o+1rzHE4tWlnx3Ig+UbpOVpDyIPDBDLyuWkpXGbkDryGtJemyZN392a3sdIWwl+mLQUrANpP11IPbyUVBeD5kEPaW/ue5E6Yvc1kCyMLeruedIM+3EN57SmdT3SBr6macmRHq4vkw6vuJLUXvpID7kB0hLiXVpeV2l8bBlZv8bBBsD96u+PIALWJnSGNA1FjVsPaRnbqMb9Zc2b/YjFpRupf0c0LFtqFklnENjkm01k5NX9DUif+UaS1QhN72mkr7gImRXPITP0gTTJ0azpeQtS3ocQC1Qzqa2bgB5Cynob8ozoQOrTAFIPxpDnwFimHCMy8IO0JNX8MGv8ZtK+6yJpSamV2VG9t4ckNtuQet9CGvQWSIM8G5yWKN/7dxXS/1xD2odnz4yCltnLmqa3a55AmoR9kbRPvkXjalahoPc/o/c0kpZIF5HVA0eQQeZrSG2vl2SBzCPPocsQYWp1yMJfqX49gfSdT6v7UaRdmkV+P2mC0epvP1K+XXrNnicmHJ5B6l5e8wDSpEZExg/WN34KGQuYhWw16SyMk6QJxG7NX2v7z2s4pxExfyFS/jbZ14iI2utJA9JLSJMxX0Ta+6s0rQ+R9qs3kyaOTiNtzSaPRtT9V0lLb79GEmIrSVZWS/cBzasiMsaxfvm3NC6tpAldy9cWpF41k1brHCP1qUeQvvNBTUdR47yPtGfzStKSVJu4GiJNJDZpmkqarv2kJbY7SdtHDpC2hdmze0TD7tYysv5qUK/vJS2HtsnKsUw+d5MOn7L2M6h+bNO4HQA+rOE9h/QtXaR99KsRo0Ee6YO7NV59mTJrROp9F2lLhNXTopblDtL+yYOkiZMmpJ3u1fQ/g1hen9LfryAZPKKG8ZJes3HLiKYD0jjsuPqXJx2Y2KTxPE7ah24CvkPz5jhpld2/axzMunqIdGDoYf37z0kTKq9D+sjLkP7usObBatKWkkFNbytSN68mLcsd1bi/AekHT5K2ng2QhKaNGexve073afou0nyKSF1qRdquTWxaHR/PlOEAslqipP7ZRN6LSF1YQ9piRsadCdQRLbMV6nYTIs47kT5jO2ni7Er1/1AmDqNaTreSzgb5PLAhhPBr1IFbYpcAIYQfRZYYvJI0o3sBaQ/BZUjFHUYq4zDlB9hYRz2GDCbWkZamXkyaDQxIA21DZmW3qJsRUudrQtBm7k1EtZFOBQVpaGbtGEUa3BhSMa9Rf09pPMzicQBZ2rmaZGEpIIPD11O+p+c0aZbSBp+dJOuOWcECabbNRHAeaSzW0UI65MDSZtaYkyQhbIMvm23NWrHMklokWTFPkfYfrUIadiPysLuFNKPcjnQyo+qHidVG0jKlbk3PSqThr0Y6mDXILH4ReSDYwNsGZPYwtFk3m0lvJNUFi3O7pmNE/e0mzZz2a5jPIA+QTaQH4ShpBs1m+LKzoVY3T2l45r+JyY2Un+I8QDqQwCycNqPXQbJotJIeHgPIQHRYy+wK0t5Jm2XsI7ULs7zb5EiJdACVPRQKJJFgA5XszPUJLZ/jJPF7KzKQuASpNzZ7fg/Sxm5WP7pIp0N/DmkT34VM9LwdGQQ2IQ+WW5EByB8gltKXtUx+DhlgbCUtjT1DmtCwQZ8JvlUazkqknd9AEtn/oP7/iKZzi5bFlcgAyx58NglmD9bVpP2qh/Q3s4R0IW3aBkY24/0UItisnY2Q9sf3aN62IoMSq8M5ZMCwUdPfBvxTjPFzIYS/QwTET2gae5GBpk2K7UKWV1v9Xo3UmUtIA/+1pEPFbNDXjfQzF2i6Hsyka5Om86eRbQbNpJPEX0nar72RNLBaSWqDJnbyyEB8g4YPaW/bukyenNbf9yP1egPpkKSrNbznScvC9yHtwWbVR0nWyD1IXzKmfrYjE3Q2mD2GTFp0kVZ99CH9DsiseI+m1ybB+jU/nkH6tqDl9ASyesL6F+uHmxHL/ZtJ7XRMw7lS49Gv19ZrGIE0MTmEDGrfTNrz3ajhN2ueWBsfrwj3FKkutJP2iq8jrWKx55hZZc26bBPDL2mcNpMG012kCRkTZS8iQraPJBDNCrgJqWPbkHbSpmk7TDqVfT3y/LI+r4C05+fUn82kfsmsTja5YRPOI/r7BkQAvok0qWX98BmkXewjbbuwlUEtSD/1GPJ8Hif1YRci9SUi7X+73jOg6TpMOhPDVi+YFexS0t7MizQvDiCW6zGk3R3Sz3bSM8DKwvr+C0jC09J1Rsv1Es2PLmRlxk3q7lnS6rBWktXzRfWvg3Ry+FrS5KMJoK0a9gvIZH0jad/6Zv1vFr2C5sPVGq9T6nevpmcd6Y0E25EJy5tIk0I28feclsEPa7zuQdrgatIY7lHSpNDXSGO4b9U8trIzi6OJjqDxWUE6dG03kIsxviWE8D9Ih/hYfO4gTRyMI/VsLUkAbSGtCjDLpln1YiaeVq42udOA1JMjSB16Qv26BhnrPIMsSbdJFrO0NiJtqkCafCDj/wotB7Pm2zjoIOlQqJUkI0meVP/PkCYzr1Z/zeJtfeuLyHjaBPgV6q5AEv8bSJZTMzqsJ60QgjTpdLGm29JwmiR4zQDSgrS/DaR+FKQ+bSEdjPQiaaVQUdPZpu4HSLrCymiUdHCYjbWOaZ7bxIdN5GctvvZMM0OEWZttVYJZ+HOkQ7XsOdZMOsjUJnDXa3pOUn7AaBfwxzHGv2UKXMQuAUII/x3ZszOGNOQSaTnHYdLDD6Sxvai/WcMxa2qO9PBbjXSC70eWivw0slfiKqSyH0Eq1reQKncLacnGYxqGdYg9SAWzeIwiD4obkU7oUtIAqkn93I50Ss8hs9qtGvY6DcesF6tIwqEfaVhdJCHdgHRC9t2E5VG9/lrSnrfV6scqUmdp10AaaK7iejW31dxVXhtXP1cgVu83IR3weqRRd2ta+5BO6AgiRoYoX5r8KNIhrkH2Gb0deeCtID007IFsotUa7jbSg3icJIYv1Xu+gQwEbfBe0Li+FRHFn9N4fB15sL4D2Vv0h4j1aDtSfm9EOqSXSce995NOtbxY42wPmeeRgbPNRK9FBiytlC+lW0OqX2jeZS1cLyEPnwKyV++DpFcWmVXKJgu2IA+sBtIhT2ZF3UKaBDqE1JlmkvXAJo5KGrcNpEkOa5P2ALHlU9mHQj4TD0jLkGyZXFvGHSSLqFmofhcRsDbzv4Y0eB4nTbrYvRaO+Wmzwi9pOr4GvCLGeFUI4SktmweQ/eo247xC/f8y0v/0kwajX0EGRmdIA4YzJOvbN0knmpsF22aIr9C4bCHVvycQqxKkB/ZzSP16QsNqIS072oiU819pnPeqP4NIHWslnYRo+VEknbhtD3ezlIySTpi0QY5NctnACs2XAZLV/K+Qfec9iPjKZdwVSBNS1iedoHyrxAXqz0Wav1H9tomoPtLhQtn61EN52+9E2urbSa9KsHo5or/3k/pAswQWEYtZv96ziXRCvU2A9GoYZ0hL7DpIKzeuJq3sCEjZv57UH9ngxvpnW7UxjJTjcdJka9TfNyMibitpsGQWWpsQ26BpOUr50tNWpAyPkJalNpOWtY0h4usppJ1/GXmWmejrQCalXoG0k1tJA0WQMreJJrNW2+C3Vd1Yesf073ZSe7X69BRijRzUMlqHCIfrNU/W6W8XkFZQdJNeY9OiabqSJNJ79e+1pFd4PEeylJ/SPD9Jmnx6CmmL9ixape4uIR3UeIS0RcKeWzaJ97eIoPl79LUwmgebNd+uRqyg36/58EfA/4v0Rc1I3be6YpOc+zX8bP15Tv2PJEtTkTQxaau0Tuq1bSTLqk1am2XfRMxxje8Z0imrReQ5djlp+4nVrVUa7klSu2whLYVs0HhuQ9rohaSVO1uR5/+16lc/6cDDvyPtBdyPvMatgXQA4h6N51ZNxxfUn61IPftbZH/nMWR/9nfHGL8thPAvGtYK0jYTEx32jG1AxmpvIFlun9FwGtSfnwc2xBh/Ucej48jrGwdJJ/raBP8g8kw+SppAulD9fhqp3zYxXCIdQrpO49dGWiH4JXVvk/IPkbaHrSEdumeCvUnz/iBSX59AxpbHSRPa1v7WaDhm/DCRdUjz9Vmk7vaQttg1I+XcpN8vQ55tl2lcb1L3DchzdIBkyLFJFpu8vgjZhnMT0haPaVoO6L39pAmsbB7ZeMGu2XNsBdJ+15NOYA6aB28iTTatJI3pXk9aUbaR9Codm7C2CVibdFlDGt+eVr/MOAFpNZ61qXHSdhdbWTNA2v72lMZhiHTSv/XDJZIwL2h+PY5MEj8P/HuM8deZAhexS4AQwhuRJQlrSLNgNyEFeh0iFJ9BlumMIZX6dUjlfDNpf9hlSAN7kiSctpL2xz6LLDG6GXlYrCI9iF6NVJx/QGbBViAD0FciAqYRqbR/Rnowbkc62k8is/PDGq8rkIfLpxEhdBGyaXuP+rdOw/5uRLRdiXREHyUdVrINach/jTwYvzPz3RrUC3rvRcgBETdrfPbotcNIo7Zr1Lg+02vPk/a4/A1yIMYJLaM7SMttDiLWohs1nYeRzvo69fNP1E0R6Yy+HfhLDecO5DCUH9T0Zx/0IB35RtLgxmaIn1P3W5El65ciHfNqkrX7ONLpPKJx+lmNVwkRuDbrf0rvHyO9WuJl0us+IjJhsgGZFLHO7K/1vteR6uOAhnWF+neStBQLpKxXkvbMPKxxehsy6HhY89GsNRuQB+uTSN25nPRKqnFksH6GtKfSRMhh5GGwiTSoskGWWR3HkfJ9GLHSRdL7MK/SvP0yUlePZH4D6ehX6bXPI23T3KHXv4Ysc309ckhDC2Jt/DN1/xZN4yNIXXk6c6+FY36+hSQ0T+n/m/S++zQNWzTNJ5AH80b161HkMJgNGueVyETGLZoHL+m9TyAD/jYN5wFkILqJs0/BzU64dGj+rtI8A3moPqlx+H0N/1qkzzAR+3iM8akQwvcih8Jcob8HpN/r1/y3/LgaKf9jJIHzFmSw/52krRRo3I4gA6gn1M93IRN9jyOix8L/cY3/qzX+Zk17o+bFnyOTP/1aRu/XPH0QqfuXkSwgJ/Tv/SQx8jhiIb+PNJj6T6ROPI0c1NUdY3xdCOFD6nfUvP8W0smba5DBbhMyKfAXiBhr08+XtFwu1jw2C7EJyas0/X+NHBL4DVKfMowIwi8gA/AnNV+bNY6vR/rz41oWo5r/r0LqyTipn7qVtJqoU+N5CWlP3CHk8LgPaRzuRw5UezLG+AE9lOcHkL7jIc2/n0Pq9m7N7y5N51rkQJwPafrfSDqlfhXSDk6RtkF0I9bKTi27o6SDTn5Hy/kEaaLmaUS8/QPp/cYDiEC2vPhxpJ5uJ1kuLyENzAcRgWGD+3HEojqocVyLvktS82cPUj93IW30GFLuHyYdOGUisJ10iNV1SH/+NfV/C3KoYF4nu27RfOxD+vOfR9rJx5Dnz0nS/tm85t2F6s/nSMuWn0bK/iZkIH2GdIbFq5G+8UvIs+EI0vb7kH7yZWRV2lbkMLxnkXr9ZuQAMVtZMaJumhFR9wNI+zGr+2PIhOcnSYcegtThLqROvkrzeq+Wz41IPSion69DDlEaUL+bkPemNqi7nwX+by2T9ZrOOxHx9wbkMKOfQOrKV0gTQ48h7f0S0iqHw0i9a1O//w4ZO+wgbbu4BRkDtmn6n0PGPD1IPf0+kvi2CXKQvqJH73kFaf/kYWB9jPF7Qgjfp+neTHo1zGuRfuRCpHxfQdqa8+2kU7f7NW2vUr8f1/y8Fak/uzNxeTXS3n4PKbOXkPb9CdL7rvciZX4F0pZH9LtZSI+TXiM1pP7Z+PQbmsevR+rgYdIbEd6kfo4g7eogUn82A2Mxxhu0DdxJeovEoxqH1fr3tyFjvcc1/q9B+oOPIxPRL2v4l2rav4mMXU6SltzuQ/qLA8iYd7wij7Yg9WK3ujfDz3rSmQYntTyeR/riN5BOB75Nw35S87SfNJ42y+4LSP+4jXSmi4lMa98FpH1ejZT71/V7l5bjMb33rZqXo6R9xa9F+vhtmgedyPOlQDozYAPp3IIXSQeVPaXp+c0Y478zBS5iHcdxHMdxHMdxnGVDbmonjuM4juM4juM4jrM0cBHrOI7jOI7jOI7jLBtcxDqO4ziO4ziO4zjLBhexjuM4juM4juM4zrLBRazjOI7jOI7jOI6zbPg/SQ45Gwr0KU8AAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cluster = hierarchy_clustering(linked, labelList, n_clusters=6)\n", + "cluster.head()" + ] + }, + { + "cell_type": "markdown", + "id": "48b62135-409c-45a9-b604-6e98ccf059fd", + "metadata": {}, + "source": [ + "

    The above dendogram is for only 6 clusters with the colors representing the different clusters. Now, we plot the Resistance curves for each cluster.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "d31bafdc-9f43-4083-9677-ef7d94c18eb1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAJGCAYAAAADCWNxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZRc53nY+X/vWnv13tjBnSIpiot2y5Y3LY5jQ4biRIntcSZO4nF6ZjL5TSL/ongcw5Cd83Mij2PneNSJYyu2x7JsS5YhQaZ27jvBDST2rdH7Unvd/b7L749qggAJUgQFEBT5fs7BQdetulW3qqvvc+9zn/d5La01hmEYhmEYhmEYhmEYxuVnX+4NMAzDMAzDMAzDMAzDMAZMosYwDMMwDMMwDMMwDON1wiRqDMMwDMMwDMMwDMMwXidMosYwDMMwDMMwDMMwDON1wiRqDMMwDMMwDMMwDMMwXidMosYwDMMwDMMwDMMwDON1wr3cG2C8wU3v/HUgYGrPb1/gesPAzzK159OXYKtgeqcF/B7wd4EI+CdM7XnikryWYRiG8ZL2BtO/DgQ7qlMXFCf2BtPDwM/uqE5dkjixN5i+AfgfwNuB/+tCt88wDMO4OHZb/DoQ7NJc0H54t8Uw8LO7NJckTuy2+Dng3wIW0AemdmmevhSvZbz5mIoa4/VqGPhfL2iN6Z0W0ztf6Xf6x4Hr1v/9L8D0Bb2WYRiGcbkNc4FxYm8wbe0Npl9pnGgB/wdc2ImBYRiG8boxzAXGid0W1m7rFZ8jnwJ+aJfmbcBvAH9wYZtnGC/NVNQYF8/0zn8MfBzQwH6m9vz8C+6/G/g4U3v2Mb1zHNjH1J4rmd75VgZXLX0GycOfZrCzu4bpnU8B32Rqzy8zvfOXgY8BBeBvmNqzi+mdVwJfBx4B3sGgQub0K9janwL+lKk9GniY6Z3DTO/cxNSepe/qMzAMwzBe0t5g+pw4saM69fMvuP9u4OM7qlP79gbT48C+HdWpK/cG0y8ZJ/YG008B39xRnfrlvcH0OXFiR3Vq195g+kpeRZzYUZ1aBVb3BtM/8d2/c8MwDOOV2G1xTpzYpfn5F9x/N/DxXZp9uy3GgX27NFfutnjJOLHb4ingm7s0v7zb4pw4sUuza7fFlbyKOLFL8+BZNx8Gtr7qN24YL2ASNcbFMUi2/CrwPqb2NJjeOXoBa/8L4PeY2vNZpnf6gAN8AriZqT23rT//hxlUv7ybQXnhl5ne+YPA7Pry/5mpPQ+fZ7s+ySAh9OUX3LMFmDvr9vz6MpOoMQzDuATWky2/CrxvR3WqsTeYvuA4saM69dm9wfQ5cWJHdeq29ed/UZzYG0yfEyd2VKdeFCf2BtOfZJAQemGcMAzDMF5D68mWXwXet0vT2G1xwXFil+azuy3OiRO7NLetP/+L4sRui3PixC7Ni+LEbotPMkgIvVyc+GfAVy9gew3jZZlEjXGx/Cjweab2NACY2tO6gHUfAv4vpnduBb7I1J5jTO984WM+vP7vyfXbVQY71Fng9HmTNIPt+LUL2A7DMAzj0vlR4PM7qlMNgB3VqQuOE3uD6a3AF3dUp47tDV40YvVl48T5kjTr22HihGEYxuvDjwKf36VpAOzSXHCc2G2xFfjiLs2x3daLHvOyceJ8SZr17XjZOLHb4kcYJGp+4AK21zBelknUGK8lwfN9kYpnlk7t+XOmdz4C/ARwB9M7fwk4+YJ1LeD/x9Se/3bO0sHQp/BVbMsCsO2s21vXlxmGYRiXz3njxI7q1J/vDabPxIm9wfRLxokd1alz4sT60KdXEycMwzCM15/zxoldmj/fbXEmTuy2eMk4sUtzTpxYH/r0quLEbotbgD8EfnyXpvlqnsMwzsc0EzYuljuBf8D0zjGAlxj6NMNg3CfA3z+zdHrn1cBJpvb8F+BLwC0MOqfXzlr368A/ZXpndX2dLUzvnPwutvfLwD9eb0D8XqBr+tMYhmFcUncC/2BvMD0G8BJDn2Y4T5zYG0xfDZzcUZ36jnFibzBdXV9ny95g+ruJE4ZhGMZr607gH+y2GAN4iaFPM5wnTuy2uBo4uUvzHePEbovq+jpbdlu86jix22I78EXg53dpjr7a5zGM8zGJGuPimNpzAPgPwD1M73wa+J3zPOq3gSmmdz4JjJ+1/GPAs+uNg29m0OS3CTzA9M5nmd75Kab2fAP4c+Ahpnc+A3yBc3e85ze985NM7/zIee65g0GW/Tjw37nQGaYMwzCMC7KjOnUmTuwNpl82TuwNps8bJ9YbB98M/OmO6lQTeGBvMP3s3mD6UzuqU2fixN5g+hXHib3B9Cf3BtMvihN7g+mNe4PpeeBfA7+6N5ie3xtM1y/kPRuGYRiv3C7NmTix2+Jl48Rui/PGifXGwTcDf7pe4fLAbotnd1t8apfmTJzYbfGK48Rui0/utjjf+cSvAWPAp3dbPLXbYt8rfrOG8R1YWuvLvQ2GYRiGYRiGYRiGYRgGpqLGMAzDMAzDMAzDMAzjdcMkagzDMAzDMAzDMAzDMF4nTKLGMAzDMAzDMAzDMAzjdcJMz21cGtM7i8C9QIHB9+wLTO3ZtX7fjzJoBOYDjwP/jKk9gumdFvB7wN8FIuCfMLXniVf4elcCX2Fqz80X940YhmEYl8LeYHob8KfABkADf7CjOvV76/f9OvCLwNr6w39lR3Xqjr3BtA/8N+CdgAL+1Y7q1N0X8JozwDt3VKcaF+ltGIZhGJfQbovPAD8JrO7S3HzW8t8AfopBLFgF/skuzeJui58D/i2Dqbj7wNQuzdMX8HrBLj2YFcowLidTUWNcKinwo0ztuRW4Dfg7TO98L9M7beBPgH+0nlQ5DfzP6+v8OHDd+r//BZh+zbfaMAzDeK0I4N/sqE7dBLwX+N/2BtM3nXX/f95Rnbpt/d8d68t+EWBHdeptwIeA/3tvMG2OZQzDMN64/hj4O+dZ/qldmlt2aW4DvsJgBiaAU8AP7dK8DfgN4A9ei400jIvNVNQYl8bUHg0E67e89X+awRR2GVN7jq7f903g3wF/xCAr/qfr6z7M9M5hpnduYmrP0jnPPb3zXwP/dP3WHzK153fXf3aZ3vlZ4O3AAeAfM7UnYnrnbwEfYXBS8A2m9nz8or9fwzAM44LsqE4tAUvrP/f3BtOHgC3AwZdZ7SbgzvV1VvcG0x0G1TWPnv2gvcH0BxhUbrrAY8DUjupUun73/3dvMP3jQAz87I7q1PG9wfQ/AHYBEujuqE794MV5l4ZhGMZ3Y5fm3t0WV55nee+smxUG5xns0jx41vKHga3ne97dFj8D/AqDypu/3aX5t2fd95+BDwPLwD/apVnbbfF/AP+CwfnEwV2af/TdvC/D+E7MVSjj0pne6TC98ykG5YjfZGrPI0CDQULlneuP+vvAtvWftwBzZz3D/Pqys5/zHcAvAO9hcAX2F5neefv6vW8BPs3UnhuBHvC/Mr1zDPgo8Fam9twC/OZFfY+GYRjGd21vMH0lcDvwyFmL//e9wfT+vcH0Z/YG0yPry54GPrI3mHb3BtNXAe/g+Rjy3HMVGVyB/YfrlTcuMHXWQ7rry38f+N31Zb8G/NiO6tStDBL7hmEYxuvcbov/sNtiDvg5nq+oOds/A756nvU2A/8R+FEGlf/v2m2xc/3uCrBvl+atwD0MkvgAnwBu36W5hUHCxjAuKZOoMS6dqT2SqT23Mchkv5vpnTevV8v8I+A/M73zUQZjR+UFPOsPAH/D1J6QqT0B8EXg/ev3zTG154H1n/9s/bFdIAH+iOmdf49B7xvDMAzjdWJvMF0F/hr4/+yoTj13hXQauIbBAfQS8H+vL/8MgyT+PgZJlgd5cQx5C3BqR3XqucrNPwHOrpD53Fn/f9/6zw8Af7w3mP5FwPmu35RhGIZxye3S/F+7NNuAzwL/+9n37bb4EQaJmn97nlXfBdy9S7O2SyPW138uTijgL9d/fu58AmA/8NndFv8Tg6oaw7ikTKLGuPSm9nSAu3hufOnUnoeY2vN+pva8m0HD4ecOphc498ro1vVlr5R+0e2pPQJ4N/AFBo3Ivnahm28YhmFcGnuDaY9BkuazO6pTX3xu+Y7q1MqO6pTcUZ1SwH9nsB9nR3VK7KhO/Z/rfWt+Chjm+RjySukX/ryjOvUvgF9lEIMe3xtMj73a92QYhmG85j4L/PRzN3Zb3AL8IfBTuzTN7/K5n4sZPwH8PwxaLDy22zItRIxLyyRqjEtjeucE0zuH138uMWj6eHj99uT6/wUGWe7/ur7Wl4F/zPROi+md7wW6L+pPA/cBO5neWWZ6Z4XBsKb71u/bzvTO566O/ixwP9M7q8AQU3vuAP5P4NaL/E4NwzCMV2FvMG0x6E92aEd16ndecN+ms25+FHh2fXl5bzBdWf/5Q4DYUZ16YU+bI8CVe4Ppa9dv/zyD8vXn/MOz/n9o/bmu2VGdemRHderXGMw0dc5wKsMwDOP1ZbfFdWfd/CnWzzN2W2xnUHH/87v0SybyHwV+aLfF+G4LB/gZno8TNoPWDLB+PrHbwga27dLcxeDcZQjMzFDGpWUygcalsgn4E6Z3Ogx2eH/F1J6vrN/3y0zv/Mn15dNM7blzffkdDKbmPs5giNIvvOhZp/Y8wfTOP+b5xpF/yNSeJ9en5z4C/G9M7/wMg2aU0wx2pF9any7cAv41ANM7PwK8k6k95xvPahiGYVx6388gifLM3mD6qfVlv7I+w9N/2htM38bgSuYM8Evr908CX98bTCsGFZc//8In3VGdSvYG078AfH5vMP1cM+H/etZDRvYG0/sZzE74M+vLPrU3mL6OQZz4NvD03mB6M/CHO6pTf/civV/DMAzjAu22+Bzww8D4bot5YNcuzR8Bv7Xb4i0Mhiqd5vm+Mb/GYPKST++2ABC7NO88+zl3aZZ2W3yCQcX/c82Ev7R+dwi8e7fFrzLos/kPGQyJ/bPdFkPrj/8vuzSd3RbvBP7FLs0/vzTv3ngzs7R+4WgRwzAMwzAMwzAMwzAM43IwQ58MwzAMwzAMwzAMwzBeJ0yixjAMwzAMwzAMwzAM43XCJGoMwzAMwzAMwzAMwzBeJ0yixjAMwzAMwzAMwzAM43XiO836ZDoNG4ZhvDTrcm/A64CJE4ZhGC/NxAkTJwzDMF7OeeOEmZ7buGS01iil0Fpj2zaWZZ1ZBmBZFrZtn1nmOM6Z9c5+rG0PCr+eWw8483wvvP+5n597jrPXO/u1zn6O5x5nGIZhvLZMnDAMwzBejokTxpuVSdQYl4yUko9//ONEUcTExAS//Mu/zIEDB/j93/996vU673rXu9i5cye/+7u/S7vd5gd+4Af4iZ/4CT7zmc/wz//5P+f3fu/3WFhY4LbbbmPTpk3s3buX5eVlNm7cyEc/+lFGR0f5/Oc/z3/4D/8Bx3H4V//qX/FzP/dz3H777fy3//bf+Jf/8l9y55138pWvfAWlFDt37mRhYYFvf/vbFItFPvrRj/JjP/Zjl/tjMgzDeNMyccIwDMN4OSZOGG9WJlFjXDJaa+I4ZteuXfzO7/wOx48fp91u86EPfYiPfvSjFAoF7rnnHoaHh/k3/+bfkGUZUkpOnjzJoUOHiKKI3/zN3yTLMkZHR3n/+9/PJz7xCf7Tf/pPFItF/uN//I/0+32OHz/O9ddfT7PZ5Itf/CI33HADJ0+eZGFhgS984Qv8+3//76nVagghePLJJ/nFX/xFbr75Zkql0uX+iAzDMN7UTJwwDMMwXo6JE8ablWkmbFxSi4uLfOITn+D06dNcd911AHzuc5/jE5/4BHv37uW2226j2Wzy27/92zz99NNnSgyvvfZaXNflU5/6FA8++CC2bVMsFnEch0KhQLvdptVq8TM/8zN861vfQmvN5OQk11xzDQ8++CAAx48f5+abb2bLli0MDQ0xOjpKnuf83u/9Hp/4xCd4/PHHTZmiYRjGZWbihGEYhvFyTJww3oxMRY1xSW3dupXf+q3f4tOf/jSHDx8G4Bd+4Rf42Mc+dmbc6K//+q+zsrLCrl27uP766wGo1Wr8yq/8Cp1Oh1/91V/l3e9+N+Pj42ee99577+XgwYNYlsXBgwf5+Z//eQB27NjBpz71KZIkYePGjdxxxx2kaYrv+0gp8TyPf/fv/h233HLLmfGnhmEYxuVj4oRhGIbxckycMN6MTKLGuGQsy6JarVIsFvnpn/5pvvCFL3D77bfzN3/zNzz99NPccMMN3HrrrXzuc58jyzK2bNlCpVKhXC4zMzPDf//v/50sy6hUKgwPD2NZFpVKBSklTzzxBJ/85CeZnJzkL/7iLzh06BDlcpmJiQluvfVWvvGNb3Dttdeyfft2Pv7xj1MqlfihH/ohXNfl05/+NGNjY/zwD/8wf+fv/B2TBTcMw7hMTJwwDMMwXo6JE8ablaX1y86YZ6bTM141rTXdbpehoSG01vR6vTNlhgCFQoHh4WE6nQ5CCEZGRnBdl36/T61Wo9PpkGUZw8PDFAoFALrdLvV6nV6vR71ex7IskiRBa02e59TrdfI8p9/vMzo6itaadrt95vnTNKXf7wNQrVap1Wpmx2p8N8yXx8QJ47tg4oTxJmC+PCZOGN8FEyeMN4HzfnlMosYwDOPVM1HZxAnDMIyXY+KEiROGYRgv57xxwgyqMwzDMAzDMAzDMAzDeJ14zXrUfIfKHcMwjO8ppsT1lXuubPnw4cOMj49z7Ngx3vGOd7C8vEwYhrzrXe/CcZzLvZmGYRgXlYkTF585nzAM443k5eLEa5aoUUrxla98BaXUa/WShmEYF12apnz4wx9mdHT0cm/K9wwpJffddx8nTpzglltuYWVlhU6nw+OPP87IyAizs7PYts0TTzxBp9NhZGTkcm+yYRjGq2bixKVjzicMw3gjeCVx4jVN1ARBwM6dO1+rlzQMw7joHnnkETqdjjkAvwBLS0ucPHmShYUFPvaxjzE2NsaDDz6IZVk4joNSiu3btzM6OsqXvvQlPvzhD1/uTTYMw3jVTJy4dMz5hGEYbwSvJE68Zokay7JwXZdyuWxKQQ3D+J5VLBbNPuwCbdmyhV/6pV/i0KFDSClZXl7mx37sx1hcXCQMQ6644ooz8cH3fRMnDMP4nmbixKVjzicMw3gjeCVx4jVL1BiGYRhvTrZtUywWuf322wHYtm0bAJs2bbqcm2UYhmEYhmEYr0tm1ifDMAzDMAzDMAzDMIzXCZOoMQzDMAzDMAzDMAzDeJ0wiRrDMAzDMAzDMAzDMIzXCZOoMQzDMAzDMAzDMAzDeJ0wiRrDMAzDMAzDMAzDMIzXCZOoMYyzaK2RQqG1vtybYhiG8T3D7DsNwzAM4/JQUqGVib9vNBclUaO1RgiB1posywYHbFKS57k5aDO+p2gNT35jljQSl3tTDMMwvmeITLHvqzMoaWK+YRiGYbxWtNYcfXSF5mJAnkpz7v0G4n63T6C15uDBg9x777285z3vYf/+/Vx77bXMz8+TZRk7d+6kVCoRBAFSyouxzYZxyWitWT3dI0s2UKx4L7oPDVhgWdbl2UDDMIzXoSwRrJzsIXOF45piXcMwDMN4rfQaMY5nc/ihZb7vo9fguOY85Y3guz6a6vV6PP300wghOHjwIB/84Ad54oknEEKwbds25ufnWVxc5O6776bT6VyETTaMiytLBGq9XFAJTRzkiEy96HFawzP3zJMnJuFoGIZxtjQSRL0UKV687zQMwzAM49LJU0nYSVk+1SWNzaiAN4rvOlEjhKBardJoNBgdHeX+++/nqquuIs9zZmZmmJiYYPv27fzkT/4kY2NjF2ObDeOi0Vrz+FdnaMz1mT3QRGSSNMoR2YuTMWmYc/TRFZIoRylN3M/OJHheyesoqU05omEYb0hZJIj7OSJ/caJGCsXRx5ZZPNZhZaZn9oOGYRjGm5pSOUFwDK1f+cWNJMwR+XkuFuv1RE03JWynRN3sIm6pcTl910OfRkdH2bFjBx/4wAcoFAq0221GRkZIkgQhBENDQ1iWZYaKGK9LUmjWZvuU6wVOPLnKj/xPN5zJSkcjKaWaP/juauiuxoSdlCyWnJxZZf9d83zwF26iPlb6jq8jUsmB+xe55Ue3Yf4UDMN4o4nDHMezyV5wJU9rjcgVT3x9FrRm07XDVIZ8lNLURot0ViPqY6VzhkuJTCIyRaHiYlnWmcSOOY4wDMMw3gjyvM3s7B9yww2/iWV957oJrTX775pn242jbLpm6Jy4qBkkarJU4hYcuqsRY1sqJma+AXzXFTXPJWEqlQqu6zIxMYHrulSrVYaHh82XxHjd0Fqj1blVLTKX9JoJq7M94iCnuRAAsHC0w8EHlp5fD01jIWBkY5m4nzF3qM3IxsqZIVJa65dt4JUlkuWTXbRptGkYxhtQ3M8YniyRRvmL7stmewyPFnjXT1xFEubc87mj7PviCZafXOObnzlIrxGTJeLM/nNtPuDww0tn1g+7Gf1W8pq9F8MwDMN4jtYarS9uk14h+mTZGoPml+d/TSkUSg7OM5TSNOb6xP3BpD29tZigk555fJ5Jok7K2OYKvUZ80bbTuLxMxz/jTSPqZRx8YBF4bqerSSOBX3RZmw3YdsMoS8e7lIcKNOb7JP1B6WCvEXPgvkWSMGd4Y4XV0z2KFZfaWPHMECmt4eE9J+iunX/nmCWCLJaveKiUYRjG9wqtNXE/Z2hDmTQS5x7MaogfX6FW8bjqtglu/9B2vm/n1XhxzuxXT1EouazN9Xn8a6fPHK+KVBL1ni/dXjre4dRTa2f224ZhGIbxWpEyYm7uT4CL14MtyxoIGfJSiRqA44+vsni8M6hMTSXd1ZgkHFwMOfb4Kisnu4MHapCZot9OqY2VXtHMtVprlDIx9fXOJGqMN40kyFk81kFJzdKJLlksaS2GjG+tkiWCTdcM0VgIqI0UaC6EZIkEDUcfXWHhaBuZKypDPssne4xsrOAVHESuzlTqtJZCTj/bREU5av3q8HM7wCyR51wxNgzDeD1RKkPK6CXvP1M1+BLJ5jTKGZ54/gDxzP5Pa2Qvw3MsLGDyijr1iRKea2MJRX2iRGc5Ym22j1rfP0qhnj/Q1JAnku5axMF770Jk6Xlf3zAMwzAuBaVSur2n0PriNOnVWpNla0gZnXNeoLVEKUHcz2gvRywcbRP3c6Jexn1/dQyv6JwZXtxaXD9PGayJZtBLszpSIEu/86QncT/n6W/NvlyeyHgdMIka400jjQY7OykUj/3tKfbfNcd9nz/K2JYq5ZrPyKYyUS+jPFRAZJI8leSZpDEXYNsWIpdUhnwa833q4yVczybqZSwe76CUxi86rM32CZ9tEB1uMX+4zXM9wvJEkMXiJU9yDMMwLqdebz9Ly3tecND4/HBRrWHfHafOXM07m5KaLMgpLIXkiRjMkHf3As2FAC01OhGUyh6sj4S2bRvft3GB+niJ5mJI2EkR6weXUqgzB6MaTZ5Jeo2YmaefJE/MECjDMAzjtaO1QIg+Sl+8WV/TbA2lMs7OlLTaD7G68jUe2XuK+/7yKEvHu0ihiPsZjfk+G68ZIksGPdx6jZg8ee7CCNiOhes7VIYLyFzxnXoUp1HOiSfXyBIzQ9TrmUnUGG8aSShIwpw8kcT9nCOPLPP+j13PVbeOs/n6YaojRQpll8qQT7nuD04QEonr27i+g8gkodiL48W4jQjdiOmuRuz72xmyWOB4NpYFMhSsHmrxyJdPkqeDHWAaCUQmUeeZEcUwDONyEyIgTVfRGrpr8SBho6B/7zw6U8hcsTLTJz/PjHhZLFCJoLAWka7FZK2EuYNN9t81Tx7k6FRSqXlnHm/ZUCg4lMsuQ+Ml2sshjmufqaIRmRokZ9ZipBhU8gTthCQMkfLiHSgbhmEYxnfyXKJGq4uX1MjzLq5bRSlBYz4gSwSdzmP0eodBazZfN0wcZCipSQLBje/bzM3v3zK48JsIlNRIMUjyKKVxfQe/6FCqeoNzEfHy5xuDuJq+ZMuG5yipBhddzIiAy8Ikaow3tLOvCCfhYNrtoJMyvrXKNW+fZNuNo9TGirxnx9UUSi71sRKV4QJDk2Vc1yHqZZTqPpYFIhMk6j6GNjfQp3vQSYn7OZ2ViNZSeKaxtkoFK4daWLZFng52lGkkqADpM43L+4EYhmGch1IJadQj7mfsu+PU4CBPa+LTPU7uWyGNBWEnPXNgeLagnVL0HaxMIWZ6dO+bp1Dx0Eoz90yDLMgpFhyQGr2erC5XPYoFh+qQT9zPGdlYPtOXRuSDisZH9p4aDImSCtu1iLoRSpirf4ZhGMZrR2mBFMGLhj4Nqk3VK0piaK0R4vmER5q0SVY3oaRg/51zrMy0CcNjJMkaWHDduzZwy49sRUlNHGSUh3wKFffMzLT18SJiPZ4qqfF8G7/oUih7WLb1HRM1IpMMTZbOTKLyUrJE8thXTp2ZPOV878v0j7t0TKLGeENrLYYcf3wVGFz1LZQ9wnbK8IYy79lxFbYzSK54BQcs8K9OKW+yefuHt2M7FkE7oTpUWJ9iNsdyYja9ZRm9FmNrTRJkDG8os3a6j2VbYIFKJPWKx/Bk6czV5zQWDFVcdPvilO2bHaNhGBeTlBEnHtPMH27TbyWDsmkNIsg59eQqQSshS8SgpFrrMzM1yVwNptiueqgoR8c58ZE2vmdj2RZBI8Z2bQquTXy4RXy4CUC56uMHOU4npVB2Gd1cIVjfP4psMPSp30pYONJCCU25XiDuJ0iRo+SLZ9/QSpFGodknGoZhGBeVVjlKpUj1wuoTxdLSXyNl+LLrJ0FOEgacOvVfUCoGNEnQonHEQYrBBeSFYwuAtR7fFNWRIluuH0HJwdCncs3H9Ry0HkyOUh0ZTGiitR5czHBsSkM+XsE5k6hJY8Hisc5542KeKoYmSsT9/EzlztmyRJxZ3lmNSOPzXyTpNxNOPrV2AZ+mcSFMosZ4Q1uZ6bF0okNrMRz0n6n5dBsx5ZqPZVsvmj7+0cq3aBYX2XTNMLZj0WsmVEeLKAVKCVyvRsGfw7IVDhD1c2qjRZIgx3UsLAtUIigXbMo1f71fgyaLBRMTJfR5hg28WsceWyF/BQ3DDMMwXo7WGilzeksTNOb7pKF4vhoxk8S9jM5KRLHsnrlKd+D+RZaOd3j0KyfprUQMVT3IFC7gVzzG6j4jVQ9vOcSueuh2QvDAArKdggbfs9GZws4l9fHS4ICxm6GVRuaKLBF4BYfOSkSWSoYmymBVWDt9iiMP3fei99BdW+XOP/4DU3FjGIZhXFRaC5TOkCJ8wXJJo3kXed552fWP7Vvh9IFl+sFhlMrPNA2WuULJHMe1aC428N1J0A5a59i2hePayFyRhDnFiodlg21bRL3sTC+aPJUsHGljuxYbrqxTKLm4nk2eSk4/02D/3fPn9qvRGoJV8iimOlIkjXIe+Pxxjj++ck5CZ+l4l6OPriAySRIKwpe40LxwtMPsgdar/WiN78Akaow3LK01a7N9kiDnia+fZmWmR3nIp70WUB72z0nS6FyRrgWc6JygnbbJZRN3+AHyfp+h8SJaaZQSeF4dlaU4Ix4ODLLcQz5ZnLOxl6IjgZaaYtGlOlwgCXJ6zYReM6Ze9tDrO1Ulzy0h1EqjshdfJX7pNwezB1tnGm4ahmG8WlksmTvYQiSTNOYGfWiU0KA0CEUeDcbQj2ysINdLreN+Rr+ZcPrZJoWlgOJahOPbFF2b0tVDjFVcJoZ8KksBynfQvQyxGhM8uky+GuHYFlpIRChAayo1H+vxZfLlcLB/1OD6NlgWeSIY21JDU6O3tkpzYW59uwUrMz201iwcOcjqqeOEnfbl/CgNwzCMNxitBUrl56mc0eRZizxvn/XYc6vdtdZ012I6ay3yrInWg0QNFLC9d5GlOcWqj+sVQQ9jUcay1CAp49qI9fMGr+hg2xaWDWE3pVzz0FoTdlL23zmPbVvc9sFtFCouhbJL3M85faCJVpqwm5JG+Znt0o/+AdnKDJX185Q8k4NZa88a2hx2UqJuRp4NenX2Wy+ecVEpzdLxjjkXuYRMosZ4w1BasRwun9kRPdcpXWvoNRJ6jZjKSIEHk7vIxjuDlbQmkxl5K2L520dYDVdoJ22S5DSq/FnqvUcZKruDK8tKYOcuWknsqovNoJyxMlQgDXL8MEd2U6TUWI5FseQShzkH7l0ADUUbEIp9f3uKR/aeOidZk6+EhA8vvfL3qjQileftF2EYhvFKaa1Zm+vRnHUoVjwa811EJIiOtdFSIS2LdL2Z4PDGMnmQMXf/AkvHOnRWY+J+TroQIJZCLM+m6FjkdR83zKlUPWwFqW2h+hk6l8hOQu9UF600lmOzeKiJ6GbotYg6rCdq9GAGC8/GcSCLQ4Y3lCiUJ4m6XfJkUH7eWAh49p55tNasnjzOVbe9k8b8rBkWahiGYbyIUoI4nrvg+KCUwHFKCBmds1xrjZABafb80J8kzDm2b/X5pIgeJFY6q2sI0UeqdFBRIx3i/hBZrPCLDn6xBKqOzSiu7wDguIMhTCJV+EUXy7bwii69tYRizUfrwQWLzmq0/ngby7IolD2iXoZtWbi+zbP3LHDvXxxFZAqlFMcaN9DvWZSqHlkq8Xxn0GNT6TPvK+ylxEGGSCWjmyr0m/GLPrc8lWTJYDIVM6vtpWESNcYbgtaaE50T/MbDv0EqB6X13bWYYmUwJazlQLHiUZ8ockw9S4/OYL3Vg/y/D/wGc0szNNdWqXt1+lmfPOrgyY2opAO5AgtELiCysLCxRxxsC5RQlId8kiCHWOBnijwWJEJR8GziXkaeSt7309fiWYOGX3E/o7UYnLkyDaATSd58+c7r57xfNZiy9js1CzMMw3ihQc+tQa8ZKRRPfH2WoOXj1+fQWlAoOsw9uMjCwSZ5Lkniwb6mMlwgXQrp3bNA0s9oLYVsuqqOLwdDpJTSuFrT7OdEqxGO0nTKHmuRQLTiQXLGs5l5ZJmsl6EB0c243rNoPtskqPpEiwGN+YBixadY8XD9kN7qQ5SqNo5bJex2ydan6G4vhwTtlDzJyNOEK265nebcLKefaZ6ZQSrqdhBZdhk/bcMwDOP1IM/bnJ79A7S+gAp2BhU1rjt0ztCnLGuRJPMolZKlq2cuEES9jPlDLZ57+ueG84a9LlKlSBEOXl+WyZMSSX/QBLhUreDo7bj2ZryCD4DjDIY+CaFw/UESpjLk01oKKFW99YlSBGkszhklUCi5JGGGvZ64ifsZSmn6rYTlk332PT3K6qpDoeIiMoXtWDi+fabnDUDcywYz5aaDpsPPNfs/W9hOqAwVcD37RT1ujIvDJGqMN4yvn/o67bBDJjO01hzft8p179qAFIpyzefGdw6x+cY62USXMB/sbPWpezh04qucXjzJcr7C9aNvIcgDsqSLl48gdYzOJI5jo2QOKdgUseqDPx7HsynVfEQisRyLqj1owBWEAt+xiBsxnlAUCg4ileRiUNLvF12k0Of0gVBB/orfq1KDKWuVSdQY3yOEELRaLfI8Z3FxkSzL6Ha7NBoNU/3wGhOZ5PGvzqCURiuIeinICYojs5SHXAo1n34jZubpNUQmwbIY3VShWncQK09QRVMuuvTWYq6+osZI0QHHQhUcLKHpthJEJFCJpOXbtDOJ6OfYvsAugh3liERgORYekhKadDmkpzTBQki/kVAZ8inVfMp1C8uKgRTLcchiicwBDe3lCKU0cT/C8XxKtTppHHHk0WUa84PZNZ655zCN+ZcfP59GId3V5dfkszcMwzAuD61z0mSFfv9Z4nj2gtbzvGGkfH6GpHb7IVZWv4rr1sjyQZP8mWea9JsJSZCfqTCRQuH6Dq5fwXM3IWWARpInLiJ1CFrgl1yqI2VUNoljTeB6g4oay7EQucKywLIstNZUhgqEnXRwIVpDGuV4voPrPX9K7xUd0lCcmSEq7KZMbKvRa8a0FvtsHFqlvZZRLHuIXOIVBlN7zx5ssf+uefJUkmcKLTVpLCjXC4hcvSgZ01mNGd5YHkykogYXfvqtxBzTXUQmUWO87kktaSWtl/3DVyjW+i0q6RBJnp4Z9jSxvYaFRcHLuVn/KYlq05ODRI3WGhm16DoOM60Z+vWULbVN9LM+R7vHcYI6FAUqlfhFB89VkAwSNdQ0rm1x/XiRctmlWHTwJ8vUig5KaaJI4DkWejlka9HBZtAHIssklgVewUHkEjQEDy4iOik6EYOeEK+AXk/UmIoa43uB1pqHH36Yz3zmM9x777088MAD3HHHHXzhC1/gK1/5Cmtra3Q6HQ4dOkQURd/5CY3visgVq6d7iFQNkr6JJO4WqY4KKsMuru8wPF4iDTJSqbBciyveNkZ9SJK4D2LlCkcOxs0v7W/gll20bZFYgzJtbykkizIeenYFy3PAttCA5WQoW+DkgiQKsX0HRwQ4WU6t4NBLJDKXqFTgl1yKVQ/XcRiqD6Nkhs08UfBWOo23sTrbJ08k5brP0cdaOIW34Hg+MheE3YSZ/bOIPKMxn5OE1pmZqp67KqikRK43Hm7MnebQfXdftt+HYRiGcekpLcjzNo3mXbTaD77ihILSAs8bQqz3qNFak6arZOkKvj+ByLvIXHHg3gVaSyFJOEjU9JsxSZBTKLuUSmMU3CsRIkQrQRIIbDuls5LgFiLKNQcR1UDVOTFzgm6zgW0xaDisAtrtBwBNeagwqDYtDGaASiPB8MbCoKfbOq/oEAc5WSLoNWLyVDK2tUp3JSINM8bso8hcUSi7eAWX8pCPV3CZPdjk1NNrtJcjtNK4BYc0EpRqHkrqcxI1aZSzMtNjbEt18BlJTdxLefKrx80wqIvIJGqM14zWijy98ExrO2nzB/v/AKnloCxvfQfQXAhIwnz9uTVRFFG2qizPtwel87bGdW2KVQ+vKHkmmKHRm2UoT2gfnEdnEhE3yV2HuXyOZLNGdO/maOMJ/vjkV7GjOsrJ0ZlkU83jqpIgTxQWPlZF4SjN1kyyeOowrdIc/kiRStXD0pBKTbnksu3KOpX1MabzSU4SS+phjiMHQw+QmuRoC9lNUalES43OJdlS8LKfk1asJ2qef4ySiqiXmUy28bqzurrKs88+S5ZlzM/P8973vpfZ2VkKhQLbt2+n0WgghCCOY5Qyycfvltaaxlx/sI85DyX14CAuFohMYrs2UiiyNGX7zUMoIdAblti2sYrwXWzXpj5RwkoTfOqEQNHJwVJk7QSdKbTSBJlCWRYn+zlNwIkFlmuDYyNcTeqmKBsKJUg6bUTBwVYpViopoImzFbqdPlau0GgsS7PyjOSG4u2gNGlik4QKkSywcqqLZUG57nPyySbzRwo8e88yeZqj8pSVU2vEvT7tpSbxenLm1NMNVk51AZg7sJ+TTzyK1po8SYh6XbPvNIzLTGuNEINZ5/I8X5+RTp5ZZhgXSsqIIDgCaLTKEbJPmiwRBkfOPCZNV5Fy0H5g0HcmOmd4lFaCgj9JljXPLMvyNbKsie+PIWRIEg6GAwethCTMkULx2N/O0F2LKVU9iuUhPPtKWq37aTbvJg0lttVl4ViLdvgXSPsUUV+CqtFYXeLBL3wOrdWgmbBYY/mZ34JT91Cu+1SGC3i+jWVBHKQ4pYO43vNVN57vEPcytBpUuvgll/p4iaCdkoYpQ8485dIg9hcrLpWhAl7Bod9M2HDlEP1mAnpwUfm5GadsxyJPB+dgWSJ45u55om7K6MYKtmWhpEJkkrD94l42xqtnEjXGa0JrzcqJ49z72T++4D/gOI9ZCpZQSvPkN2bprg16HTz1rVmWTgwOuoUSKK0ZrtV56I5n2H/nDNbIl4nXHqMe7+eks8hviiX2zt3JTcqlN7+GChKyNKDk+4QjAeFoynD7JO3uLK0sw46GUVaOTiXhUIdV5zhrOiDHRns5ViaJXZu7jtzFKftZ3OECfsFBCYU/UkCnknrVQwc5vSjnj/OYLJd4qxF2MpiWL+4kiHaKDHJUJkEqZDcjfGgJNIOMzHk+L6U0IlPnVNQEnZQnvn76u/o9GcalUKvV+P7v/34mJyd561vfyp133sm73/1uisUii4uLbNu2jfHxcd7+9rdTrVYv9+Z+T9Jao+R635lc8fCXThJ1XzxLAwwq8rTUNBb6tJdCimWXQiUiTxXVET3Y5xVPMpZlaA/CKOcv/vwg33xgBqnqRBaMjwikpyg4FirMUULT7WXgWmRWl1Rl1LVFLhS2ZZF4gsiVaGxs10YFLm2hcKwiyrHJo4TW8t0E1YeplHJ8J2Lh0KMkqwFuR0MKjruRPPwGUe8grcUAr+hQqvkkYQclurSXFVHPwXZStMpYPNZApIp+e3AAHvXSM7NTNBfm6TcaAORJQhIOStqlEETdDnp9NguRSZS8sH4GhmFcOK01hw4d4g//8A956qmn+OxnP8uDDz7IF77wBf78z/+cfr9PnucEQYCU8nJvrvE9IkmWWFj4c7QGpRKkjMjyFnE8i9YC0MzN/ynd7pPra2jmTv8POo8fQiu53ntGUCxtI8saaD0Ye5ulDbKsgWNXQCtayz38okPS7FPvnyaNBf1WQtTLEPo0FJ8hak+ytnSE9koblQ+RRbOMbHSpTi5ieXMsnzrN/KGEKO7TbzWBwXAipRPc7hKsHKJU89h24yiO62A7FlE/YUPZZoNrD+J/N0PO9Ij6GejBuUK57lOu+aTtFnlzgYpeoFKIcRyLct2nVPcplF2SIGdsa5X2cojr2zieTRoJvIIzuD/M6axG3PdXx+g3E77vo9dSqAyqcPNUkUUJaSzPd9pivEomUWO8JrRSPHv3t+isLF1wY8cwD+llPbRWtFcilk91EZmksxrTmOsPShBlSsH1Ga6VGbnhIMXew3wxuI+jT/8aEyt/wVP9b/Mz/ZC15gk+6NbJvIS8HxLZGsdzkcUeHd3m2q7HRJpS8+oIt4zyJSoMWIzu4smhA4wvr2K3c6QKsRybng0nJ5aJrT7Pxim5ZyMyxUOupBHn6ESiYkEQZnSVRCqNKxX2+s5zZt8qWTdDdFNyqdFCI6McGeagFDz1OUh75/k8BztvkT9/sCIyRdAeZMEN4/WkXC5z880380//6T/lHe94Bz/3cz/He97zHv7e3/t7/MzP/IxJzlwESmr2ffU0IleE3ZTGfMDi8c5ZM0/os4ZMSvI059CDS5x8ugGWZOSaJ0A7HN/3TYhDkjgkb4W4IuS6IZft7YzHlyRhMkF1xKfsxVhCUS65OKNFcjTCgjRXDF3zLSqjaxSFRiSSgtYIXxG5mrR6GuX2sCjQTxWOKpD5LrG2KY+/nWT73zJx9cNsX5Nkyz0sV3Far5Dd38JVLsLN8IsOa7N9yjWf2mgRmS9QqmZc+87NJPE4ti2Ju4/z1DcPIXKI++uNhXsZWTI48A5aDbJkMMwuS2KyKEIrRWdliW/94afprq3xzL2zLB47yRN3fOmy/V4N482i3+/z1FNPkec5Bw4c4IMf/CCPP/44eZ6zdetW5ufnWVxc5M4776TT6VzuzTW+R0iVrCdYBFImSBmjVILtlBBicA4Rx3MEwRGUGiRh4v48vSdOsDT/12itmT/g4tmbsSybPO+ipCIXvfWhUEWS1nW0l/vUNrTRvRZj84+ydKxD1MuIehn9+EFqk13aCxat2WHmnx1F9Eto5njr+3OU7CDtI9zwQwELR7o4LogkBkuvTzySUbSHIY/QNLnlRzZj2eD6DnE/ZpTNFPqDCxKylyJne4OKGj2otq8OF/AKNlqkpN0eJavHzTf2cH2Hq2+bYGxLlWLFo1TzGJ4oDeLrkI/rOcT9DK/gUKz6hJ2U+cNtlk90SSJBseJiWRZe0SFPBHmUkiaD3ndn08rMxPhqmUSN8ZpQSqKkoFwfQqTJBa3byTpEeYRan6Fk6XiXsJdRHy8SdjO0GiRqXMtjuDJEeaPg+vH7OJas0HYt8vpmfNXlg1adX8oFQpykU17mc6c+S5w28XQKqslKuMBwmPD3iyU2+Q4PVma5V0eka8eQJz5Hp9jBiTN0UyNEgFVyGX5rjY7V5pST8MkD86xqzcEhi29aKc1egpYKu+DQbUREatCIy7MsHA15KpD9DLfsIropqZBoIVGRQEXriZpTd0PSXS/BfH7PJ4XC9da7wWcSkQ+SNkkoTOd143XJsixsezADgeu6Z247jnPObAXGqyMyxfLJQRK7tRhSGfI59tgKUmiaC3ME7YD7/+ooX/+DZ3jia3eTpSFrs316azG5JbH9JZASe3gf49ualE/fCqUiZQfC5GkmbIvt2kMkdQp+Ttkp8I6aT823ySuab/gZ7tWnSaTAKa4ACX6uyBPBllSwmnqkmUuvci/x6H04QwWiWGBph0BCz3Ow3EkKzmaoHWehF+DFw5RHYKa2hlV2GPJAbbiZ6miVoBPTXAxxw4zrhmvURkaoDBfQqoZla4p2zgZ7iGJ1nDwdDM2KehlZOhhCEbSbZPHgwDaLI7IkJo1COstLNOdn+Zv/9ElWT83TazR45q5vEnW7l/cXbBhvcHmeU6lUWFtbY2RkhAceeIArr7ySLMuYnZ1lYmKC7du3s2PHDsbGxi735hrfK4REh86ZRA1YSBFRKGwgy9bI8w5KxjRb93Bq5v9BqRyR9FBxTmvtQaTIWTxsg6pSKm4l6J/iiW+cQEnwkw0Qj7Hw6I20D/dwKkcRUUwaZ5x4cpUkium2TuH4MVde/wFUNk7S3kZ/NSXvFbDIiJ5Zwl0cwY46bO0dZdtNQ3gFC5nnWAyO963Io2JvQKVtTp76XYTsAFAZLtBa6uNnJWSYDCrwhcJKJGk8iHWV4QJbbxgdHHvVR8i9cTw74YqNLWzHYmJ7jUrVo1h2qY+VKNU8WkshE9tqFEouYSfFKzhMbKty5OEl5g61uOH7NjK2uYJlD47dvIJDlkqyVJFng3O1PH2+EjV6ahXZNbMvvhru5d4A401Ca7AsipUqSRBQHhp++YevV4y4vkM36ZLKlFzm+EWHOMxZmumx4Yo67eWItdk+2ViKq12qfpGkuUIvmaFbsWm4Hrn7E1yZ302+MSN0D6KKBRatJQ6uneTGTFD3bbDgQHeWStzjloLL3dUSp71jLNurNLI/4QbboicbWKmPJVyEDChVPNyrNePzEyz7CVeMlVnJBSeGHOY7gjgRIMEuu7QX+0RKoy1wtcZVmujxFcqLAc5YkXQhQPnPYDclKrwWFQm0lFhxh6jd5+SRu9n6liFK/o3MHzrAyOa3Uii7iFxx4qk1XM+mXPfJohwpFbZroYTAdgd/4haDoVFJmDO+pTZYYBjGG4bIJVE3JQqaLJ6aZdN1JWb2Bxx9dJnlo3cwedXtpPMOQ0rx7MH7sJx3g+XRWQs57EW8LWqh1nLGb1miaD3B8NqPs1xpUwgDVjrzFMduZZvlUaGIUD3spMxICmmasa+oOFEMuGn7N5Gtn8erdEkXQ8ZzhdIWQkrmYsnNI1V0AfqlY9hxF1G3IPJoSMU37Ih3lhNyUUE5kkQ+Rc1/JxYpk+lGZlablInZUtmIo08TdAWnn22yMUzYaA/R8kfxfAdNkaivcCLFaMFmreSRJyl5KsliSZ5ItFJE3S6F8qCSK41j/L7HY//j82SVlHf91E+zePQ4s4dy4m6f4Q0bOfXUY7z1hz5okoqGcYmMjo7ykY98hA984AMUi0VarRYjIyOkaUqe5wwPD2NZlvkbNC6IE41QOfEO1DtyFo4u47kjYNmUS1fQbN1PFJ3CcSvEwSzdzj7U1oRy8ybstEgSLpMlPbLYwrIKVGs30Wk+y9LJa7liU42hpR/Bdq6k35SoQszQtj7dLEAKzdpsn9FqQqfzOGNXOJTKQ1SqE6ye3kKpKpC5j8gi5JJgS1pEZQUK8glu/KGd7J/rIrsZ+UpA1ssopyW8Tgt5W4047CFFRJquUJtM0cLGURZaDiYo0bmCJMcZTBxFoeQweUUN0NRKCT1LY1s55BEWgyL83t1zFLdU2TRSoFDxqA4VGK56qI1lDj+8hOs7bN4YM/mRUYQ/huPa5/TAG1TUSLIUlJDkqWT/nXPc/INbKNV98sUAb2MFhguX4yvwPc1U1BiviefK7mtj4wSdl58qFaDfSnj623NorelmXYQS5CrHdi2SqsUf3XeS8e01bvnAVg4+sEQQtvHsmKIlCFYP0k2u5Bp/K62uZHVFsy2zOFk5Tr9ax6pvp50JVrIuh6plyrpKRUfkMsUr1CmnElsFtMQCO0eGSG1N11JEKqVSE1T9h+kmyzjvHCKuZUxUJ9gw5HPr5grLUtEo2USZJEjFoKKm5tOe75N7FsMby7hA1YJyIlDVPnLUQuYKWxzCWnsKFeUorUHkiDzh2KMHeeJv20T9HmGnzaH77yZPcgplD5krOssR7eVocCKyPhNUniQ89uW/Zm22S2c5gFP30JztMHuwhTZjowzjDUVrTRYLklDQWH2cxZl99NPPI0Sbx+89zszSCRaPnqBog9VLyOOQYr1FsR6Sxh3mooREaPKFLViHPozOI06Nd/mbE/eyoBpkeUKsFUPaoaAloeyT9W0S2yEV8GCScXXpBMrqskyEtJsIlQ5Kyq2Q3sYu2VBIFiuU7ZJ3rqVRfZhwvIF2LAIrY6W4iLhqFnQFbRXxx8DXAZUkYyyssjTfwtcZ220fx3HwHUnBCUlXmjTzedzKt7AabYZqLllfIBOJpy1kphiyIItyHG/QNFlkAtsZOnPCJ7KU0cImyvMF5p55hk3XvoVN190AuITdHje+/0eYP3SQJOiTBC/f6N0wjFfnuSRMtVrFdV0mJyfxPI9qtcrIyIhJ0LzJaS0HMya9gv3voK+MRqkUUgtiCylS2itt/MIknjdCqbSNVvNe2u2H0Mrmqu3/lqxxDVKkFOevw0oKJGGXU4ePkcUamzrVyvUEwQmytIvrVPHTTeiwTBQJWpYmLoOlM7RXIIlStCqgkmHcosRxS4xtGScPx0G7IBy0VKimjRcNYx+9kbQ5hlgM0VIi4pTg3nmyTooTWbDSQUarbJsPsOIu3d7TOIXDTA7n+OUilu2ABpUp6Kzh5+31KbMHlS1hluJ1D6FlgrIUWiaDswGpEcshhVCwUUhcz+Yd796A3LfCFTeN8NZrlrH0Mhz/Nt783ZRqPn7JpVyxsNYr/f2CO5jSO8koOBEiFfSaCWK9j6bOFFqaiSJeDZOoMV6153aEr2SnqeRgWura+ARB6+Wn2obBdHO95mCIVC/tUVIVMpXxaPVbfMn5c9ZUyvBkiaGJMo5rsTZ3GJXeTdJ/lDDtEHXexruyW5BP/CzS8qkIRTG5hg1H307UvoWeSNlaKvGUFRPorRRVTtEpERU24ukSJW3RUhKZW/SFpuUUiJVmcSKnoWp8+egXuOcvP0n3W79NxSkwVClw1fYqR3sJszY4StPtJGBbVN6xgWiihFAaPBvdOUgxD7CGPeY23cV+9xi5Z1H22ujWceIw51iukXHC6U01Du4/TMHx6C9vJQ0jglaTNEoolF3yTNJvJQStZH0GF4USGikFq6dPMbN/ldXjK7DvM2T9Plk06NWglEbkpkGmYbxR9I60QWvCbg+ZW+CukgYeveYqS+02i8dP4jkWjpDYdk51YpahLQtoK6ZkFxluvouwF7I5ei9jzR/EFSU8EbIgQrBzumVNybOwCGnrgMiyOC0UrarDe0ohW1yF0B0iejhOilPSSA3acVkIfOJam8zNyC2B27gVWTzMctgjlpLA7fL2bCPeyRK2GkJYGrfmUS9B3S7hA9Kp4dlFZJzhSZu3jbjcVnGw7DalbcNQfpLo+AG21xe5um7hYOMIh1LBY1NXcmDPQaolG61g+VQIzq1IKVlaWiJPU2oj4wxXN1ArjVAeGsYvVcFyCVo9hjdsZGhykpn9T/Lolz5/3gbvhmEYxqUTx/PMzf0PXkkjRiE6RNEJTs/+EWnQwBIeeRYgZUKhMInvjVIobCQIj6K1ZPlERNK8hpUDGSoXEDko6VD0ruCpZ79BpxWidQHPG8WyNV51jqhdYXXRRfYdLEdyXMMJt47tOVAfojrap9eDPBnFsvs4TonxrTVcL0YJC61tKtUhbFEg969B6C10WjsJnu6ihERGKSJIsACvUMAZqiDCJSpLS/hrp5AixM7neJ/7XymULSzHRguFziRIi4Kr0FIMGiIrzcq3T5AuryDSBGVbaLE+y5VUyFAgoxwVCyygHufoXopjS271Psfaid9BR6sQrA3W0Rr9zBfQK8+i9WAa7zwV5GFIyYvJM0kWC7TUZ6p8dK5Io9ycd1wgk6gxXj2tefobd9BanD/nDy+LI4L2uVUzUghsx2VociON2VPol5mCV2s9+INPBFppwjSiKCukIqVTXEWU2thjCrfkEHVTaqNFVuZblPISUfsRYn+YwN/GhmQbIyMdRm47ROSPQLaVuH87/dURxhjmlmKN41mKZw1T9CYZtV2ErtBlDL/2o7gqZogcoS2axVEiZfMnBZd97juZiyTpvn00Tp9kqXOCQComh3yOOZK2rflwNIuz3MAmwh0rkW2tUi265BOzxN070CtLEBwn1zN8a2WBtqOoVQVz+X7arVlOrwUsf/nzNPJ5MmUxsmmGmWc6PPGNJcJ2l7QfUKh4iHTQAyJPJVkicQs2Qii0UsT9Hu3lANHvQbBGFsak6zOetJdDDty7eGm+F4ZhvOaC+T7V0SL9ZohbiBHxJKWyZMvYDDdMvAU1uo0GglLRwrIETvkoG25+CLeouNUrUO8MY1Wq9F2JIzbSbq0ylCdo0afvCB7zYoqeBU6fdlmw5NrMVAV/7WY4bUkB0FYPu9DBtoaxCiBdm9z1SWOBU+7hTiyRYqHSMQpoTocRfSdn8upHGdPguTFZ7hBGCukWcISNW8hJrnwY/BLIAr0sRfchVzmydT/ieklxUw1dSlgW8zyR7mdcQ606jC01fiHGSXPGl3KuKTooKTn51ApKFcnTlEceeYQ4DClXh5Ce5Kp3fwC/VMYrlEHbhN0+hUqV+vgkcwf201lZPqdfmGEYhnHxaa3ONPsFkComSRZ4JYmaIDjKysrfEoZHSYM1yC3ytI/SKcXCJJ4/iu+PUyxupl59N64zztKJNkkQIKIESj7HcanWb0VbXdA2WrpYlkO9/lZweiSdIjOdebJAUxsRJFWXrHQFllNGu2Wu3uywteaTderUepNYlsvY1io3fX+dLLHIM0mpUEe6ilQMoYWHEkXkWoqjNEor7KqNDTiOg+05JCcEck1inXoYKUPyVgs/S3BqZZSdIoMIneagbfyiB0kfRwp0KqkeD0nDOnmSoR0fLQYXw7XQg0r+cDABihYa2U6xKx46zbDCBrJ/GhU10FFjMJPUakT6yD5Ub43FYx3c9YlUZJpR9DNEpshigVIatEblkqCRsO+Omed/fVqbix6vgEnUGK+a1prTzz7Fvr1fRCtF0G6RpykLhw9y4O5vnfNYKXIc12Vi+5VorVk7feoln/PEvkfot3pkiSSVim4c4Ocl4jTB8Ww21SdY4jHuX7iPR79yktpYEfv4FYwd+SfkS99P6g7RSh2c/ijeUImWP8OiN4wqbiN0riPv+/zgiY9yY3ALG12XUj7BiKryXicjEy7fGvlBZv1rGROSuuhS9BykuAIpbVZURkCJdlahFlg0Q5duFrMUZFRKEJRsrunMs/Ppb1Etz1FTfwYogiRnQ9VnpfIo0cQyutnBCg9hucukOqTvKmzXoVsuEfYb1Ksppw6tkVsBfqVOsXqa1uoBlk8mqCwjPHj3many/NKgMWsaCcr1wnqCS5H0AzorIXnQhahBHkakkQANQTultRS8Bt8SwzAuthdWMmqliTPF0ESJ/moBxwErv4GNN6ySjywzbFfIu1WW+ym+o7EdiyzOCBJBbXiYmxyHnisYK03SiLv00jW67cM4cYrMujgMyqELQBKP0QuKLPRjtOOQFHp003G0W8F2PAr1FjIdwxnpIT3ItIVXCZmo9ylc8U1SJcmyAqWkwsZh0JWE0vjDOFYHnB46r+EkG3E3PYqaPIUsBmSjR8mkAHuIlholGyqRODnuyjxx1KE4VkHaAQ2nyROFRRzPourWcQCiAMu38ErQD1s0G0ssHT+FnyQU8zJpK2Bjup1CsUIiYr7eqCO0heuX0NpCCo1XKDJiT7Jy5Bhxv4dSijQKX/aCg2EYhvHq5XmHo8d+czB8CVAyGgx9Ut/55D4XXbK8SZ53yPtttNBkaQ+vICiXr2GofiueN8zmsY/hLN/E5itvpDnfJQ0T8qCLokBH2ZTKb8NzN4J2UMJB5hnxyjtpnXwL3QWb1d4C3TBnrGBR3OCReZsQykd6Zeq2zZBnodqC3p1rrJw4ju3auFvrpKJCmGcMj2yiFzdIYh/b64NtsdY/QcmK0Fqh8gxLKlzLwi7V0adjxJqHXJkhz3qIZzYSi7fjjFXRVo5oNFFJimULCp4DURudJKwd6yDCnKR4A7blovwhkCmylZDNdFFRRjZ7mn4nGcwem/awZBedZRC3sZM+eVJBZGNoJcgXVslXc/Ig4Jm7F7As1ic2gVIhp9dISKPB5Ca9RkK/mRA0Y/qt5PmZKNMeeukZU2HzHZhEjfGqKSXx/AIiz5FC8NTXv8LCkYO0lhbot5rn/PHJfNDY1nZdJq+6hu7q8vmfU0qOPHQfncUlskTwucUG+5stSqpCY61LrAVLcoTQe4TjzWP0mz1Kw5A7NuPvOoYV/BSryQi9zCFq+wTlIXreFqJAEtXeiiqViFoTCMunM/s+3tf8h4zNv5Xw4N/l9gSWl67kPuv9rFqjjBc2YtkZjns1W2feyXXtYUQkqIxkjBXGGFdlnB6M5ZK4K2gELYStuOnIk0zMHEX5KcdTmyTocF3127yrup/e4v2IaoztRTjZQbxCRNnpUfL3IbKI2JIkScCmkafpV0bJHRe/WMYt9bnuB2bZduM4I5uvojdzkGLZJQ4y/KKLX3IIOymVIZ8slighSOOMJMwQnVV0FpKFMdl6RU3YSQdJG8MwLhutB1fNLvRApddImD/cPrPe7JEGx463qdY8wsYIo9yGlV7NprctslJOCPLt2GmdDZYDWY7rVYiWh1g5/BaGR8eQWnNCpYwUJgnSDv21JiJtgiXI0zZKCrRj4+aKJBuj3RwhcHtYbYHjJxTGVpG6i+VMUtjcIukME5SWka5Ap5qgN0qxeJCksIrAIc01pXwj100cJB49Te5KvNoM2uogRQWZVBA8Tn/To4hiiLRbIDLapZxmIBDb7qZWPYwOeoStNbIsR6iQsNLltDWPRDFW34JXctnoV4hlTG5nLMSLtPp9+s4CW3NBQW7C7zuMynFcPISVkfVj0tVVXL+I4zlYto/jurizYK1PWKiEZPWbh8jDC5vB0DAMw3hlpAzodB5dr6IBKSPUHKTHOuc8TmtNlvbptdsIMbgAmWfrSZq8TRZ0saVLlrSxbEGlfD0TEx8GPCZKP4Fz5CY2bfkJ0DlpkCLaKUkqiYTGtbZgMwHKQgqLY48+xJN37MezR2gvgO2ltCJBIXcQRUkjapJLiSpU8DsORZnhqpT2/AKduSWO3jfL9GKLXEpOXnMt1S030vMzMpGTD7WROmexdxhXdnAdm368gnRienKOoHgdHXEleTdH9UMIurjBJiL9TpJ6Aa1S5L5vIbpN0gpcEe6nnK8iOn1OP7JMs7pEjkOpYKPcUYTeRrYUED6xik4D+l/7CxZWAxYPLYNKsUQPnSRIayPuSp0kuoLe8ruhOYt+8I/RTo08CIj7KRbrM9BKm1K9yBNfm6HfThCZYOF4h5XFkLCVkIbizNTd/XbGoUdbnFMh9VyVjUnenGESNcarJtIUx/PwfB8lBFGvy/zBZ2ktzJGGwTl/aFLkOJ4HQGl95qfnDBp+DU5WlJQEzTV6Bx8iTyVHeiGbVm+gpKqsrrSIlKIVD9NTp2lGbaIg5RvHT1JRx7hrbpTlsTGctSvJrJR+YHE0Oc7xeJVIZqyMTpJXPaSskqIoXW3jNLbhyyLt/ijz8e2s9bdy63yTm+dLbNu8hX5RE8pN5PlW3vfQZv7u4R9GeGuE9ihxbTNb5xzefWeLn3x6hWCtxVDeZaK3ioPCajZYeKjFtz7/Xwm69/OWiTup12PUBpfgxmdxakuozOJDhYTb0v8XuTxPGs2TEJNXjzPhLyC674XMx3YS1uYeJYsa1GrD9ENYnTlCby2kUHEplD2CdkJlqECW5MjOPBZFSrUiurtCbtfJo4QsEWgN/WYymDrvFVyZMAzj0rln7h5Odc9fYXg+WmtaiwGPfuUUeSIBWFvtUiwE+EFKf61MPSuR9rqIxKFf6BNJC6RNNdMoJXDtIsFSzMJCSly2EX5KMwuxyhOEuk+oQ5KojVUskCU9bBvSXKEzRV6OOToeoh1o64iis0r9qgfJszap3IBVWESpEdqiT1MnRDqluSEm9lp0UMQS4nKETscoDz2Js/leAnUtpa1z+GMhUXuUuFMm7o/QSDpkhWWk1aFQbNJNu3T9LjPFZVS9i46b2MNHSVshSqX0/QaJnRKSULWHcXyHamrRlqfJsgbCg1wmKFfi1+ospkMUgzraion7p7HrRerNBq0/+VMcx6dY8XHcEo7toiPF8NhGyvU6Ikpx5jUkpqLGMAzjUhAixHGq9HpPDW7LCN1yEGvJuReCZcyzT/02d3/hj1ld/ToAed5FiN7g/6CHpT3StI0iBzzQFgfunSFqJpT9AqVKFb8EKrGQqy7CkuS5Jl21cbo1bFsTH++T9PsknYQiPkk/wS1oojDHxaOvNUG0glXr0vJX0ZGLXQ4pqpg07PH40WXmnlllXoG0BEG9hOOP0C1a5EWbtOIgsoww6mHLCLdYYa5xkMxeZLb7JPPZlTTCLUi3hgqb1A88hichyob4YnuR1LmLcKVCvLCC5cfYM7MoaZGR01vo8+3yQWJfUSy59A85NI69nZOPrZCvhNglheo3SDybdHUZsNDljai1RTrhPyS7z0MmNrITIGaOoloNND55EBKvNbAf+X3yKEJkivJQiaiXgpTIzgpZmCJcm97qoHfNc7+7JNQsrVVfnJM5+CVIey/+QmgN849BHl/8L9vrmEnUGK9anqZ4hSK26yLyDCUlyyeO0W81wQJ1Vlm4FAJnfaroamEEO3/+q6eV4qmvf4U8SVBSEHbadLsZIpP0o5xrl6+jVqzSy3sIAWm/zIi3jX6ckEaadP4UZW+Z+abmR+1HeK94J5NDDiev8ZmzVjmcNBGuzeORpKEk1WEPVMITtk0nL9GPUgpuxkJ+BYkYYnwpYsNMne2Vt5BTgvo1PP2WITYud9kSbeRgv009q5F6RRa2X0lx/Fp+mJzsxDI1L0KN1MD3cZaX8I/PEPWf5Nn07RTH3krZATZv4Ki4lrlNEVHLY4Mtyb1tpArwIfUzknKHyY2H6Jz+Ppx4FHSKEgleR1DOe/SdjZx68iGaix3GNlepjhTorESDKbrbTfRdv02x8i6uunWUPIp4tPcxUlnAti2kVES9bP13ZBI1hnE5Pdt8lrV47SXvf+EwpzQMOb7vcZRUNOYDOqtdVhfmiYurxEsRNja1vmI8C8kCSNwmjcaDaE5QyBXSVwzZJYrFGlEUs/+Zu7BKKwz7OQ2rRE9lhFaI6xew8dBaYftF8kQgLItux8XLAlzVRvsFthUSbO8EXjWgFYzgqFlSldK3cvbla2SeYs3rocqbcdhIKooEvua+YILlwz+D4AStbDtWKcApxdiyRBZMEucfpVfbSmY3mLES5mrHsGotrK1tGtkIqtBHpZowv55CApblEegG72tsxIm72IkFLiQyxNq3F+/JO8mSlKor0JZmwbfZoF1G/SL7C6fJ0wBVq7DFEtDpYOEwVnApVevYlouOJG//0Eco1YbIuiGql8N5ihK11gTt1jnxzzAMw7gwUobUqjcRx4M+mFLGOGkVFebnPE7rjCSdRdnLpOnS+mNDsqwJ2kKlEosCMsxQMgPlooRk9plv0ltepeDauK6FX9BoqUhPhkhpIyzo7G9RbZbwihnxTB+Va3ynRNEOqY6AZUviUFCwHWwRs+G+Q2iVk8gGR7L9NNURrrRbyFKBodM92rYmdl28gkuj6BAnmqLOsdycOHewPJetY29Bpx5FXxOLFK0T0qyPkgVqlsCauB6tbcpdB21lhDXFsfZxqo0vAcs8s1zBtppknZxeZYxDkxuJCprj1TVECTzfoX8kJu5LFo92UL0cu5Sh85hYatLTB0jbAdlsgJw5jEiKqGZAlELuJOiFwyhnBGWVyIKANFGQ9sl7XZQUjNYjrntbCSyL+FSTNEjINYTtBK00ndUIgDRKCQN9TkHN2nxA/5EvQe88PTS1gif/DOL2JfzWvf6YRI3xquVpglcs4rgeIs/x/AKTV12NkhLXG1TZSCkGlTIix3EGiZpCw2e8vQEtNSoRpJ2AE48/QhZHpFGEBsLUI5cZYSCx+ppqsUg77bCldZitbUEx+knavRCRQbkdUKy5dLIqavYu3GaM9mPuu8GmV7cp2SmW53JnM+CZbsRQWaOLEatpCaSLYwksOyGKr6GSt1GBQ9DJOTi3jNO7Gi8ZIyxLinGbKorlXpe3riikK9n79oiVoe2oK8usHTvKDcxwk3cYZdnUWj3cPMYdj1lTWwnWRsmXN5KFPr216xB6kqhRRtrwND/G4vD34zsj5HaGLiqikQW2b3mMbdc9he1YuK5HMbYY0222btvC5BVb8HyLkY0l6mNFol5C3F8lPfYIstsgzxOqQxGZN0Ez30Ka+3gFB5FKlFR4BeeciposFsjcnFwYxmupm3bJVf6S90uhOPboEmGng1CCOOgxf+QoQxuKdNci7vyTfcwd2k+31MR3JX4xJrP6jLpl4lZI1cvRdg8tj+P4CaGbUnIr3HDVj7DBcrC6i6SFJlU7Z144zEqHtWQZXd+IpcrYThG8Eq5Q5JbFKWyunY3xVh/CSVvU0x5uqYVXa9MMRpBpQLC0TCUrUXY8jiuLNatH4kySRZtIsjJrjsXXEodeYwN5vJEjjQlsEeGphOuo4joj3HToNrbGNbJCi4Opy/LQHMM3fQ5v05MEwiWz1rC1JFqLCE7PgFUldEK2H+vjd1eRRET1Z1hTCyjHJtMpcR6jRExGxqoSTGgLS2c08oji0CTFpMOmvAdJTFEorokFGyY2YklQYc7IxCb8Uom0HaBTRdaL6DcbL+gXpHjo839O0j/PFUHDMAzjFREioFjaSi56gEbJGE+MI8N80KBWpWcSOFIvU5lokOdtQJOLLmm6wvDiD1KUW3GjIQqr12LnBdKFjN598/Qbi/RXe5APpo6Wbh9pZSRyFbupiKsu/VZClTJOIUREOSIROAWHXng/ECJFTJzleCrhbUvzDDVWcKyALO3QSZaYn5+j2l0gs6DjCJaTZ3GAWqVIy7Po9hKCtM3X6j2eFQ53lR021a7l5uKHmCiViNMAyFAqQ8YWpTxFe8NIv0ghKbAkrqRjlViUkspaA500iJSFky9jVYepFSqD+JW2mWzWGcksdBaQ9iCPBQXfBltj2RFaZ8RSEmejHAp9hLaRcyfQwoJ+yOmmZqZRRLRW6VdvJ3eHiBo2luMiNn8feZxiac24P8uNN4SARTjrkXRTcq3JbQvbsZh5polWmjyVKGwa8wFZMrjqcfrZJqtzMUTNF38htII0AJG+Zt/B14PvOlGT5zl33nknX/va19i3bx9/+Zd/yeLiIt/+9rf58pe/TJIkr3gKZ+N7SxoGFMoVHNdF5hkAb//xj/CBX/glLMvmia/t5Z4//SNWT52kcfr0maFPMs1J5rqsHGoQH23TemSGXmON1nKPY4/NUh+fJKeElAkjrRjbSik2TvCsalFQCaMiYWNXkwc5+Bl9ZzvPDNeJVJmeP0HJbhP6NXpWmcgeIhUZWg9mQvJyxdENRaKiz8dCl5KTU6wU0E5GYd4nHhX0CqMoyyIrWETdOsPziq6TkFkpVppylbyOkaUqSaGGW/SwMgvCHmPzs9wWH6NgrSHqI1TW1ihXJZVKiY/PfAbv3m9z7Im30lr5YbKwQvvwOEHkoRxJr11lVm/AjXyyVODZwywVbJygDeVFsDRDIxPUvQqrydVkgeTKbYL6BKTJPvL0SWwrZfaZu+k0Ffn2DyFFQp5GCG+ESAyRpPb6FHqD4RKe76DkelMvrTny6DKrp83JhWG8lnppj1S+9IGHyBRPffswD37+L/izA3/Gifg0c8Mpx+RB+q2EqCfxaePoNuVyRHFiH3OtQ2CX0CsRW+w6rizBhquYz56lZ2f0Kxl5YYSNVsqYWOPBFYe2LHC/nbHf304/l/jeGJoKjlvCtn3KWhC6msdLCVYhxvE3U88iRrwE7XsknQpJ4mOpKl7m47dz4vgo5duOcOumA8TxMKncjNBljpYeJlQakZRYWvxhov5WtCighcSNbCYnFVYJfDVEVg05nWXkQyfI8psI3IN0O11UFGJrSXVoFW6coRfbpNqmGOVkVoiotOhGn4WVx7F8j8CWtGXK0OyTiKDDkVaAkBZNq8+R4hx3+8fxvrWXoeYChBHyVIesqhmr1AdTlro2OlV4hSLhQhNREiwfOMKd/+O/IvP8rN9XRmdliSx5c5VnG4ZhXExSBhT8cbQWaC2QIsaRVVSSk+dtTp36fUCTpqso1aHg98iyNoefOk7SC5BZhN/Yii82YPkOKhaMzbwfueoRPLZE3Gyz2u5zbMTl8P33MnPsKWy3wGJ4gp5cw3I7RGhKlLDcBhmapeIo7WqFIO+QBl2EytGuxvZjKp0WTG5nghEsEeKolPKQR6xbZFrxZF2SnXiMa1fm2VwoklZdYl8h85ynnIwjssidScawvxEtYci6mSSNkHmC5bucahxg1eqS5S4n1PvpZkXCXpNKJLCsOh19DYldQ2kLJwf/uuuZpEIhB+0VuKpzE+PFJVprZaRbQ+bgaIU7HJAvdxDY2C60nDGagSRPMkTooywbhKbT8+iqAt1eiWdXRknsUfrRFqqlnNyfREoLSxaw3CJusoLtQNZLyBpdUsCpF/CKLlEv4+CDi/Q7ijyRPP7VGfqtQb+3NMrpywnoL734C6EVZCGIN1dvuO86UeM4Dps2beLgwYOkaUocxywuLrKwsEChUOD06dOcPHmSv/zLv2R1dfVibLNxGZzdR+Y5cb9PuT6E47qINENrjVcoMLxxM0pJlo4dxiuWOPy5b5Ee7uD6PgAqE6QkPPi3T/PAsfuZOxAgsgKd5S4H7zuJW50kqm5GOpKRpQ75SA8VuyzoDpalyF0YLmpsa5SoFHKaCt+sXY9WHmvl91KqBTR9m5vtKrp8M65zGzJXlLRmLF1hZniZdGQT3bZLd7zGyaEK7WIR7IRmXSKKFnJYs1zZiuWFqG5Gz3bJrr6Woqf4vtXtXLH/CUKvyrbye6kkDn40xHDSx8p9OjNFMqeC1WiiN2lG9rdI7885LreSO9fSOHk9RZnSnonpxx5KdKmkFpms4B+30cJnQtxO6ZlJGs0KuRdiWQ6+7VPyXeaCG7np+oCJ+iJjN/0VreX7yZoPUrA62PTJytvol26lNFQkT2OEVSbJfJLExis4JGGO49o4rn3O0Ke4lxEHL31l3zCMi0uhCEVI+oIrRLGI2b+2f3CRQ2miXsbMoWf4xvGvciw6SVKwmEuepdsK8IZC7CKINML2m1iVB4mdiMgXbLG+j6EcHFWlU99CU4dEIqNTDzkpIhy7gAx7DFsrSG3RsWza1Qqd0R/Grg5h1crYbgkXj+3xYQ77h/mJm+/Ac7oUaxvp2T2op6SL30f75PdTqXXJ8zLF2jYcOyOL21w9epgbK4/jt+t0T70VuhtZdY4TKoXleMSta6hQwso8fKeAZ4FdWCWu2Dj9Ml23g++UEWqCJ5rX0Quv5LqjXayTCVrk1IvDzJbWCKRPrgpUU8FiusDXxh9G93NkNEvHEmhXUSprxk8dpZhE3HpNlTUd07E7TMwd5UT/EGLuJKV2k7TZpzffZ6GwRlG5qDDHGS6gMolXLJI1Qqxxj2C5QXtpkZWTx8/ExjxLBzMgJm+ug0nDMIyLSYgAzx9Da4FSAikTLByUSsmSDr3VA2QrPZJkASvTTDbeR3su5cmHHqC4/1aKnRH85hAr/SVwYenUcawwQ7QVzoiLjENO5zGfraY8+e1v4rdjLKfKWrNBv7hCofkgqadQroXjhxys2zyTV4kdmyjpkycRtq2xXYEux0gRktfGWc0rpJkkE2DXVgmchNx1yBxJWCpz/dwpXNtiOM+4speTuUN8X+9ZPB9WlCJMOxxs3oNnl8jSkCyNqFYL9PMGwRVlvlXcQiMssiK2UejNU8lyqonLX3sf5nRcxUot0pXthCTYyqWMhcx8RmWBbeFf41tlVH0cZXnYSqA3xNij16AmrsJxoSv6xEmCCNfIuJFTukrsDOGUR7GGS3Qmf5J+bnGiNcFctJFywScVNXRus1VYYPmwegTX1YhUIwNJboFdcgbnIEHO7IEWnUZG3M9ZPd1HZoPzyyyW9JMaujv/4obCWkEemYqaCyWEQAiBbdts3ryZG2+8kSNHjpBlGe12m1KpxNVXX83HPvYxJicnL8Y2G5dBv7nGgbu/eea21pq436VUH8ItFMmSCK01tu2sP8LCth1u/uEPMmlvRbYSXN9HoxFZjvY1S3KOO5t30+5oauPXEnUDkqjPYjdFFCuk1QLbg5R4pEcqhvG9EN9WJLZF8rbb6bnXkhYjOp7NTL6BcSvm2HKVxhh062VuPBxTTLewyrvRAn7opMKzHJYKJfaNbeGksFjcUOboZAldrXLb5mU2j8xz8+m/YlN4hHTeozma0Bp2oejS2bqJiupSnU8onz6GN1TGk1uwnBrLpRoVnZI3rqUylyOtEtrxSMcdVFfRq02wYSVjLAi40V5i1I2Zv2YLRbuOzrvIWJOtDKEOlLBUlWAGSkuCbiclkqsoCTIWFL2c64fbVPMipUID7T1Nv30Y2TzBeGUG0V+i1D/M8lKF6kgVkcYI5aEU2OEqXvsQYSelVPOxXRspzhr6lMoz5YeGYVx6UkmiPCKRz5/Ua61Zi9b4yyN/iUajpEZJB0ZqLHXmObB2kIrl886RnCBeZOzWPyZTS0yslMFOkJlDqiPEUIqvhxFBCcuuc6UqYwlFkiZ0s41UvXGULqK0x3ivQsnq4VSX8Eptckbo1Koc29pA20Vs6VGM18i7jzNeepRqsY30SnTkAlovETTeQxYVWLGb9KMSoV1F+glaBFRkB1cFVE77+LpCp6tIrR5Fx6ZQLKFkDemukjCMUxzG9hR2WXDcXmF59SoW4iJD+ThZWmOf/Qh9VWWy63JqNUGi2J+tcX/Y4m4rJKJEJRYoO+Te4n6ybkZluU1eLJAogZ8EVIOQYcdHyEVmKifJnIAffGCVK4+eJqsPk+ZLxI0e7cUedwzdw+riCr275nCHC8gkR2qIllu4G8pknZCrbn8nC0cOnvn95XFE3O+RmUSNYRjGBdFCIcMcrTVChvjeKBY2SsVYuYe2IFc9nr33CNlSSPxEgyRewHHKOHITK89YpEvLFIJJPHcUSxYIoh6tfIXDJx4ljpvkrQxrWwlBTtCPaWcZvbUVdBbieRWCqENY6pPnXSIrI3Wgal1F27IItMVEGmLFPWSaUFYZJSshyxXSVohijb9WEolN1S2Rjo7TKdjYlSqblSbyaszISSxi3vfMA4xGsFK9nlHLwhExQico+060auJYGiUkIovZaLd49/VvRwxZnPQVoTvE0WgjdnUcD5sbej2sWNPvttFC8nR9G/+eLRz2XIbKPknB5xo1REUlTBRBj21FWg6W1GSyD8NVlq75ENHoGm7qkyeQ9E8SRhVW0xKdybdSHq5T21xlcRVCndNXitWWopAX6Z3WiI6L201RqYNeegbHAVkAT7sozyEMBZYNcT8j6qZ0liOyRBIHOWK97UKeCiJ3K7p/nsIOU1HzKp/AtrEsi5/8yZ+kXq/jeR4f+chH+NCHPsRtt93G1q1bsSwL2zbtcL6Xxf0+sweeOSfD2V1bpTY2jl8sksURWissZ5CoKVarDG3YSL02zujIFlSqcP0Cx9vHuTO8H+UpOsUlIjsiFRLLrhN2+zQnenx5+7dJ3RRZLBKlDsVSh1ROkrqjRJPvRuYl5mMHWw/jlz3iYY+ugg1Wi7V6kVPVCWJRoXoq4kPtCMtx8JTH2KJFvzJGuzBBRVuoTBJqRehadCpV1qwQn9MQHmd2cY4kqRB7Gd0bS9SdjJbUNPJ58rBLPnklRYb5kRMP4o+sEG86gV3sUqiuIt4d4b61h7yhhNhaIUt9qpXbmWj7BLWE6sYhCipmWSnKzjBWfZhs41Z0ZZh5/wcpb9pPSUmKtkun2SEXg5lalLAojRW4WgeIVhkdn8R1PJS/Rl4s4NZtPEdSESHzpyXVsmTu4NP0+znlisbLV/BW99FvJZRqHp4/6FfznDyRZ6bvNgzj0hNKDBI14uxEDcwebtAMWwgl1g9gXEbecxtXF68gf/o045nDcLlFEs+ikyp+EmFHEqkkOq+RZAGLpx+ll7Xod2sId4Sb2wWGUtA6IlJjdHo2rvaoVsbQeUwiO2wpttno9yn6sFJsEQiNt/WteFYRaWXkNRdhu1S32CR2yni8QCnrUwt8ZPYUT/ePMzN/FVZepoBDJUuo9RUqegtxKWPBmyUvSLSVcKOn8XLwrZSj9btp+0N43TL7i3OcdBe4s3ofy3mRQ906w60baeseHXeFLh02J3VkP4FKkYVwlrks5lgc0s4ySsJCqBAlJLILtWZE4ltkFpT6fXAdtmrB8JP3s+HAg2zorxFNbGJzu8rytncSJAvEvuREDU7JJU5vgGRjmXSsSGNplWeOHMPVHu5oEUvAlutvpLu6PJjCXGuiXpdipUoWR+u/T33OP7HeUNEwDMM4l2jEBA8soBOJyPq4bhXXrZGFbfxHr8fCQpLSWV7FUSVEI2H56Rgn30jed4iaLqUkw83LOE4doTSN7jydaJWx8XFi2UWHOe08BQustYBalJJ4Dj3RpFgu0w9adJuryLgLMiMnppRM4vd7bFhawvMi7EIB1/LwigWcYpMnD9xFrBJ0sUSoHSrDWxnyr+RLyz/IytgEbqHA9jwhkx5HZIWWXKXW6+HlDlnu0lQVemnCuFgjzA7hOwLPzinXR3A9hWNFuMVD3OW9l9zbzBa5gXagscolNBHvPPkALM2Sa0214jHj2eRekZUwZyMW222LonJJ7WF8L6c/sgFd9HEs6K4FhB2NliErhXsg8xCWz6I8zfHyEomyWd7wXsZGq4y4bRbm+1gFC1G0yYWi5EjCbkTVB4Si27EQUYBrOaz2YahcRFnWYHYszyHqJiRhTns5xEJRKLlIodAKLDS6uhGVxKAG5yPPx8//P3t/FmtZdt95ft+11h7PfM+dYx4yIyNHZiaTkySKGqpUpS5VNVQltGF56HrxAPvJgGH4pV8Mow3DDT9UN8rdLrTggmyxqiy5ShNJSRxFZjIHJnOKzIw54s7Tmc/Z45r8EBQpNaWqbpUkFsn7AS4C2PcgcBCx9t7n/PZ//f9/EtRUP1YjvP+905MgCHjmmWd47LHHWF5e5sUXX6TdbnPx4kWuX79+GtD8iLBasxgNMd/Zi2+NYTEa0lldI0wSqjwHz3f/vxudLsvnLqD3M6LzbeI4JYhihuWQbXUAiWDU2KMWhrK2eN8gn8+ZLM1ppz08Gu8LsrLEBCVSp4xcmzs8CUGXYxSJ7HCpPsCGFWfDgis9RzuN+GB8nas3Jar2vOsadNKE2DVQTjKOI+ZO8OzWXZJCo5RhEAkORJPJpE1rOuTrTxjeuXKV56sV+iJio5ojRwtmSz0mfkwSzdm99kvknMM9+YB444DGuROCJU28dh9zwWOuHbH4FYFfj0hMQP3Rbaqrz9KOGniv8L5mUyf0ZYLDUaYlrteiWNkkXnqX1IQE3lGXJbbYRLkUkAzdhLo4j6nb5MSYokkpTqhshZgZmqki8SHlomY5OCaVBdlC0+kJ4lAThzWj/YxGJyaM5Xf71eBBl4a6sJz2kzp16m+G8Yba1dS2/u4xZx33vzkmyx8FOEZbvJfs1EM+3nqO3rZBTO7QdH3sIuL4rX+EMGtMu4oi7yHqDtoWjE92mcg5o6Hk4doqH0SeIlWU+RGJa2IqixchtFaofUFFztpY8FNVRRIYjtKHNEjwaYQ3EuMqxstrFPkmYTuHviRpCIRw1NURQs95tn6K1MQ0fINs+2fZuGKJdcDB6x+Hwz6zsqAKDMaXrMmcgArnp2g/ITUbLGZ9tupj5nXKwB9QOc1kltCfn2FYjTDUnLgpnTpktU4IWorE1Dw3/jRr1RXm1QLR6wCWX/m6IjI9TDNm1NfQ79AbHpFd2iQc7NC7c5Ol4Qnzw/d574lr/PNfvEjWXqU5rdGJ5+bqlExmzNSUr3QFr3nN4OCEsNVjafMccb+J9Iru+gYqjB7dH49zZt/aY/nseaosA8A7y82Xv4ozBhzMv7KDOw3ET5069WPIe4/znkGtOam/f6u9zTR2XDH9o4eUeyco1SIIu5SDY+rDjFyNcMIgmdFKnqbanbP/zRP0PIBsjq8VLUKElghijLTk1YyammYUkX2n2fDX739IFDXoNT0XtgYsNs9RVQIXKYJIUWUDqAusKxjP3qYOx6jhQ8KbbxHWkmBpkzBsgHOQ36ARNChVgCGkQBE115kGLe7qkFlWoLQmGB0xCfrUKsUs3uDD9uPkgaJSMUPfptaWp5RlFCREoUBFIVeWnuP86jVo9hEm5pDrPO7bNGr16PuYbDOphmR+AxFswJkLXO1EzKxjNYrR1tExnkva4wn51uI/QnqLbkh8qIiigLdcSi72aZQ5dTbBakucRESqTzh+gAwEmU3ohROS975KUGe0I4UIodGEVjjA1Z5m6Mg7EW+8KynCZwiQGCloJwH4R82Dw8CST0usNljjaDYMZx5rYrTDO0+gLDJOMbUG+2h9eO2o7k7AOcb2HNZ62HkNtl/9G127PyinKcqp/16+G9TUj/YG5pMxYZwQJSlhnFIu5kilEN8Jai6/8BIXnn6O6v6ExlMrxFGTKE4oTUkWlqy9+CSLtCIIGthUoRtNvhG+TTtucTa5hGHOsf8AqwoqF9KoOnwkeYx79Rl00OByIRCEpM2cdjLkKbPPs+mYj0nFauEJMkMUOfxRRSOQRLQI+5J7VcWGsXTzmiivWR3vUYUCVXv2k7McZpfY3uggZIswUwS+wYWdBcF9y79Z+QjHFy4QN0aIRsjG5hDfHDCPDpA8juo1CNQ2finC9wKs6+BsQVAKFv0dytYmZ+jjiZBNxUUep2FXsJl7lEqjCIIUBSidMpqvEoiQZnmB0LZRYciJPsZHEXqRkAc9shMLOkDbnHWp6DIBtUq3I+mJmqc764CjvRTTjjNWejm7N0c0exEqEJTZoyf5ntOtT6dO/U2zzhLJCOMfVWMYbakLi8lhXmZ84eEXuDO4Czjuj7a52rpKp72CkDHp7jP4cpV8kqB8QukVizolqNsIIVjUFYPsgOE8ojYRJ6qkp7bIZgOU71CGnm2VMKRFXU0wsSfNu/z0YkbkagIsL1x/yPLabXAKbSyq5clu5IRyxsXNd1FPOUqhOdz9KjYfcPlOxlJRoYsJVbbK2nP7BCqgmi+Bjkm8RcQeLwypKyimOVU8pGLE5jzgZLTMefU4tZtSqQKtDT8ZniVUIbGP2fRn0CICI+jVEa4teCK9wJnZJs+4ZwgqzbGrUTri6oFA6JhxL+BuOmS2scLGrdu8tTnFHTykOZ/TPjlBHR2RNbsUyqE6PaRQiMRzmN7Cxp58vMfRtOTW3i7GGJSMaSz1CFoJYZgQp03OP/UM73/tS2z98ZukWzGXL75AlT8KaozW3PjqlyizxaNJJbnG1/bfvjBOnTp16kdQ5Tz/bOeEr4zmfHkwwPvvXQu999hZhR4VlHfG2FmNUilh2KPY3edk6VU+HL+GkyVKzTG+x1H1kDyb4I4l6v13uJSushQugQPpWmhvyeqco6ogjVqYsMaamuNWhPYt5h3oLaY8WFqnbC9RNRukvRW8rQl7y1Su4MQsGC4b3GIfUS6w4Qi/tIpLmtRKooucc2d+gvnlF7hU96hFRL5xjZvNHtI7Ls0dyy6kMp5ZY42WkhTFjIFRzPWQvHac0ENXnvOm5CjaQMmIiVljI75MIp4gap2lKDtkIsLlITZQKOkQTtLsWPABcbdFgCVSgkwIVh4V4xIrQeBraqbMilWE6EB8gpECpEI7w4p+h26zjzuZU7s9ms2Qu1dikkXFUDjUGce3pEFufcj1cEiqJaLMub6uWY8/h7aWtCmZAOPFCgP3GQLjIFQExhEJQbHIWRxugRB02gGNVsByc8jZMxpnHc55hDfEqqSu1XfHcLuFZvalbWxW827x98ldD44/hKP3fxBL+G/caVBz6s/13Uld36musKZ+ND57sXjUQ2HrAcvnziOkJEoSivn8u1OdcJ6V8xdpNpawuSHcaNLodEmbHTKTUYQVpqXoBut4FeIjwdgaBtE7PDVMae5fQfsKE1h8XLOY5Axdg9L1aek/opFOeO5eiReOk0s/hwoSusWChnNkEtZLh+pLso2IqjBYq8EE2LZFZobLM01qFCAYFRl9B4MG/F434Y34OufCj9KRfQqr+EPzC9gHKb8YHVDWnsH6WSpboNZ2WGl+jkBMaYYTJlvPUK8bpJWU0+uMs59kVL3Eybf+IaJqUiuNSSqaazBXNVlRUI7XmUwvMPvwBTa6BzQLga0tyoXYpEvRv06zuUY8u0Qwv4RSBcHlPyBYGSMbMU5qLsygKztEzYClRoOmHeOF5NmlE+KZxk/6YEr6vZIX03/F6lJO0gxotEOcLSkOtx/t9/Rgtftehc13mNpycG9yWmVz6tRf0qMniH/+2PvKVjTCBlVVsPXuW9x/65gH755AKQl9xOcefI5bJ3fwcca4OqEcaNJsA1ldYTjJiIIUW71O6lJk7agQ+CwgidpMmusMR3sc+T4rXqHFEed5D9/bRPoAYkehuvTrBsoo1vkMy/UZMnGWQsNHRlfo25xW722ihqcWIc1oQcs/wbI9Tzd4lbVzRwhaOAzOWerZguJkzL4RVFWD2HWoRZOws4kwBZvVIVcb+whpCELwxESdmvPz64zqBS3XZXrY4CCfkducWmu6dZsphpZo0S/7hN+pLmzpgGLtLIn4eVS+SiNvc7aI0JWmNapoDguq+YKTvqTRaTBjgo8Dxu2U9klB3pIEwGNZl2HaRimPiRQ6jsjWVjmyI1pyifzD+/zx+4cc7d2mJKNaFAyVZyEsUZQSxglr6gL+Zsn44S4Td0zDtqjyBfPRkGw8YjEaUsxneOdxlcXr718P3nvsvD7dFnXq1KkfCa6yuP/OZ8rKOb45XXBYabYOPkeW3f3e6+uKxVs7DA62GCf7JO4sUkaEQQ99NKdKRmTjAhfkJEnGbLxgZ3KTsszxWRtVV5w7nLDiO1RSouplam2oTEFpS5rhCtZYSmuZC4sTLU5CQ+4XTPtrvP5zv8z0zCbIFQaXX0JduIinxMwX3FclhBmqobBiH9dZ5njlMXaaTfKgyTsbSxyvnOWZRYAlYHtlmVG3xYVEcfD4JznvV9iMHsfRouE0W26DExMyGW2RVXN2WEOEfbY2NjgQKzyx5KhMSMO0kFYx9c+RiWtk3jNKPD4MSVvLCOcoRUoUnqUVr5DWj6o4deBpW08YCrqJ5bOR5kak0T7A1RJDh9ve4z1c84cc2wbdVsRZdYZYCjrdAIJlxNnnGeKp1jNen4yoTw7p+opMKagzLokdmvoQHXsqqRgualqNhHHwkCDwCGHwlSGJ5aMqIVeSNGPOWkESSaztcXxbM62maJ3hbU0iZ5RqBeb7wHf6Fk0r6ocjKpNQ2wiywaMgx9lHf/4If0c5DWpO/bmK+Yy7r38Tz6PFb+qaRm+J4z/8EHOcc3DvNhuPPYEQgjBJKOYzVBjiMs30Dx6C9ejDjHAlRUSSuN0iSVqP+jEEGisCrm19Gmc8o2TE159tUDd61LrHUnGGfD0mkhW4JUz4NCowTLIIUx5hyjuEC0McOU72NHlmEA9GvGMvMBSCsnL8ztJXWQ+nrCvLuh6CExiZE+WWcnL/0QjsZsiaD3jx0OKcZ15a9jevUJuP0HUhioqpbSCQ9GTGGnPGjaeQlzfYSloM12osJXU9xWTr5BcWBFuKbP9xhvc/gTleY5Jf4ubKr1BlF8njPcrNr7Ivjzi+mpDljkxJpiTUV3+bvXgPO5midIiMPOvC8WL7YyTFGuyug7Ho6ANc459SrNzDe2gOLGnRJFR9atEgiVJ81GHp4lMEmQHdQApP2opoJTlxI+CTf3eFxr1/ST45YPGtP8Cd3KMqNEKI7wR0f2odLDQ3v3n4o3wNPHXqr9Wt8S2+vvv1715L/7Tc5PTiHtlNx7tf+hLD/TmzkwJfSc4k5/hw+CEPDu5SN8coPIsji6tSsMuMqglhMsXbkk7jk8TaQwrUAQ3VYS9ex4R9zNKzLFtPGoxZarc5iZ4hCktWrv4uzXaX5aUl2uc/Tjx7DDy8zAWyKKRRNXFWE6Vz2ht7FAREIsOan0JvX6Z8+SJ/fPM/4jj/O4gzH8WqgDQSVNqgtAUbIe/1OR5ewOo7SCVIq5KrdhsvLE5Ykoaip0M+uvWLVHWb2lt8EjLH0vSbBEHALO+TmZpz9RrLi2X+fvY4641LBMMJhYgpZhvg2mzMUv7nn7cQRIjawHzBmIz5p65wYVVzOH+X2lQ8N0gQKuDu5QTpPOFwSpa2iUXNIj5g3u2ys7KJtBMSnxLUFlXVNF1G8tYXsFnOvzYz/vMbv4FLFYGKsFsF1y58gkuPPU94rkVeK44ePOD3/8n/jbtvvIqpKqbHR+A9vrL42n7vYcifcJ7ZV3Zw+enkvVOnTv1w895T3h5RvD/4M8dL55loy6A2TMtjZsUJtnjUPLieTzAnOdPqhP36FbrxS4g6RsxTfCkxgULnCh9AnGgW5U0W+QjnDP6ohagsMi8ppOLXribIqs1cGVQgERTEtk/gYyYqI6tzVNqlQlMHGe20R9leYrvVYuG7vHLxY/TTAVlQYG3OvSLHJwrZEajwEC1b5OpxvPe8nFzm66sJXtR4WWKE4H5LII2jJSR/cO1pRJDQDvqsEvDxsMNOlTLSgqlb4MspE51iZY/KbDC0z9NuXKLyHuUU91ue4XyVtLqEFp5FoFBBQpRcI5CKO7MVZnaDpeIS55pX0MJROU1DeNaloGkkjyvJRpyjncNrh1ZrbFUGgSNylu34Ckkz4JOtf8BqukkYWJb2rtOWFwhiwXC8xHxQYyOYyJBb3uHqjNAcEZARWIeoFGjoyJCy8AShR1JhrEdUjlYzQboV4mYIpSUIJda2KE7g8/e+wNH4fYyZkrpjqugsdu/eowpU4whWUur9CdpIdGkhP4FiBNkJvPxPHjUa/hF1GtSc+j7ee2585Y+48bUvfvfpnqlruqvrTG/tk++PmQ/HNLureO9RKqLOM5JxTL09p3h/iJ1WlPenTAQ460m6LeKogdY11Rzu3TvGjUNMpRmKXe4FCxa+wdw2aeRtXttYZdWOWagGDy6fI+k4nJV0bMjS2BMYR2tPUmURnXLB2YcFdhzzUFkKLGG8z9qsoFFDt67xsWW/HrIaBdT2BGshaMC5aZcrHy74ifINkqKkpWLuVjHLC+j7bS5zk3ippqM3Wc4izu00yVcb9AiY5udZiHMIWkg6hPuXCb9R49QZolZF3CzZLN9nrbxHNV/BBxm6uU/VnuPiIxA5V/mAdfuHaHXAIdvEZU7n5CJeaPIHd7HlMcoG5DIgmF4lyK/wYGXAsPsGttDIsseZgwaqTrC2JnEWIRQiCRB+CSGWaXX6RM0EehdBBWwEt9j61tcYbb/CnZN1Dvccr/32fWQgcNbzp79PmvrRdqjTippTp/5y9uZ7vLz/8p97DuU6ZzlZRj7sk01K5sOC49EQqx0rwRqpCTma7KN7h3yEJ+hPFMvrMd1eQp5VLOYZQoWEPiWIIioxAxkQiz6uu8TS8qdJkhbrcUTqR4Qo2sESjWhK0rxB98oNitY+mg2Ks0dMNgpeFxFZIkhkSDP2KFHT2HgfHQTEQjOdhRwVlgd7AW+cXMTtXWVPdjDGsNrUuN4mcZ6jhGc6WqV8+z6+BqsTzLzBNNskEk1KY9BiAMUKUSyYzWKsO2GRTHAortxfplOOmMzPIqY5n7pRc2nR5qdGzxHH55EI4DzFNMXVAWv7Axo/tUFxMcBKiV7tk68vk7lPEIw+w9xXNBaGjxzt4c6ssf38S2QRiGaTKm1y+dDgyhPGm6tUQkE1Yn2sCUzFsrMkOifevk9QV6wOHzIcfEAZOmxtsc6xAKRVXPjZT/BrF1rc397izOPXmR4f0VpeYXZyDI7vVtTsvP8uJ1sPvrcYPLh5DacVNadOnfoR4BYaMyqxtvzu/a9wjomxnGhN4QN+/dYWh1+4D86zGN4FIdBBSeWnKN1BH+SY9x3SJ5TGonVI7S2BF1RlQWbnxJ2UusjAaYrQcNyEG4kgfBizcBmtVh9rMpRJaYQtDjnGFBlOtrCuRoaWn5i/g/UFb/Y2uPczH2PUSoGM+82SSViwomc0k4JmckCUe8b1CTr0CF2Q15aptoh6D13WGA9NralLgdQBpik5bpYQR7TVnCcslKtP0I4jsrOryLhBYCTtzHM9By1a7LHBv4ws+23JN2vNjQAiBM0kwGhBgKcRJ7zfEJxowdHUgIqRZYOjhUd7SxwKFsaBsHyimLHBCOM8UgnmokkF6EAzKtpMdRusoFm0CRLL1Jyg3aNQ5GekQtchZZGw9OLP4TsrnJSGgAXSnqB8RlDX6PzRZNo2mlyfJRWSUOZ45XHW0fASrVOiUOK0IwwDRBziInBFhZpILrY7NMweRXyJxbdmHH59j3peIxshvizRWpJNFvjFAMoZ6AKme6dBzakfL1Zrjh7cJYqT715cTV3T29iE2rP/5vvoqsW9t8b42lG9MkBWkpXhGvk7JwSrKeW9KbOHU9779gm3v3WET0KyN444eXeLaTln7+4EHJCn1MqhVUJLbFJ4h85hSspaXLPopQxJWOktsyQFLZ+wyeMEokTWNdFJzuXJnCRZpaojZkKzIT0pIyILoVOorKBWFYe+JAgEylQEQYzxC1yV4loFF+0Dlpzh4t4ukdB0A4HTjmeqIWE8JfDwrItJZhHZZB1bSyr2yO0aXrTxosCchIjc48IYHwi8bxBHBak7plz0CSJPle5QrT/ggfiALmN6995HrFUIEnxUkkpovHsOV05onOwzC2dMuvDhZo/6DY/citFhhdHH+HlOcvYCiVxDZAo3G6HiJwmjCKssTp1FBhFNGkgfw5kXwAvGbwpe+UBxvH0XYw95703D0cMZQSgfBTV/KqnRlX20HepH9xp46tRfG4+nMAX3J/cxzvyZ4957cp3Tj5ZJfZuqMMyGGe8u3qQSBYPZiGviPKv6Ip1yg2vVVerFjObKIauXt0hSz/VPnidMFNJ7po0uxWIfHyhGS0/jm4qJX3DNRkRSEMYL9i93OSc9nfiEKBrRaD0k6IxQdkb38S9zXEzJjaG1POHMM7+PDARYhUrmJJ2UGI9xMQtfk527QF82uVtGFLFFeI+uNUnrDM6BiiyT8AoL2cA0XsD5BBVd4pCrhKJHbjXHS/dYHLZJV2oC1SLP90gHX6RXCs4dD2mN77OsKzaNpLezzZNylUaZQpBAGFLYVWKr0YXH+Zr1xj0qVVOXJbc3V5iufZLgYJP51rMs2T4qSeltDHjv8U0erv4Uh08+z6LdoU4Snv2woOEjfv+TP0ulYlqF4adf3kdlYy61bhCpAVFZUkZHaJNxIfwM+27Gf/mtf8NbTnM3q7g7v8dr5kPupxG9x5/myosfYzY8oX/mLOODPUxd4yuLqww3vvpFjh/c+1OL5TvbosxpUHPq1Kkffi7X2FnBgwf/BGsf9ewqrWNuLMeVoSbmper3MMcDyuEc/WAEFmq5QMV9fOVwlUUuWkhiisURUeLRziI0GA2lntNMupRBwPjseX7vYzlvXvBMI0l1ZCjKBc1mn7LIGMuYRi+AasglbSllg7ouOer2aIkTClfhAsX99pwsMQzCJsuuJMHwj2efp5vsIN0YkwXcbr/BZOkButqh6woGuefZ6oTSKIx3/L3ZPUzpSbwk95r3m/sYIYlsxLlGygFLXGooBktLBI0Wq1JxLgl5OjAE7pDbPMaWEPxLZ1ACxt6yiCWroaLUDuslRaD4I6MZNCSbaxqXOP6ZrBmEAiVAac8gNJRVDd5yoiXGg1c1ugroxCEH+TEZGzS0pFq0EF4yWpmx1xhQ1g5lJUtWMGqXVKqBCV7EtyDDEgcVNs2QbkEcegYOdjuStfg+dgFxKGiYIXG2hwgliRJY5wlzjVOCwHqEACsNJqswN9+h6wRpYsnqsxT5s9z5+h7j3QWyEeDKklrD/s1bmHz2aCqUqaCc/GAX+l+z06Dm1Pepy4I4bSKUIpuMqYsCo2v6m+dotfssdgZsPv48+azGFZpgLkmLJsnFJertGc3n1yg/HLKY1Tz/dy9x/HDGrZOSe2+fcMSMXM5x+ZSVbsxV8wyFcAjVQbo2eWipegIfpdzeOEd2JiIEpJH0cuiUXUINRQzSetLU0B9nCJUQSE+vruhEBgJB0zc4JxSb84QAg08gCgQhFUiPNjl6rinKPRr1Br/gQlrFEk1vaDY83sYs5ROCaIpXUz6aTmh6Sz09i60DkrRA3/sk5fQlZDTAxz1oh8iwximosy5Bx+OTAbq8RBB5ZNgiau1zNzmhfz5m0WlSrgbobJNeS5GoEOdvUzBFBo6lh7cwN/9/3K3vcHJyD7WX0P18G6sm2GzOnthndtiAUuESgwn+FlGcUpqcuu6SqZrIAX4J/+n/PV6E2KFD+QYeWAoecnj7mLq0qODR5cDZR18idfVoXLeuTidBnTr1l+KhMAXH+TG5fjSu2XnHrJrx6x/8OruLXWZ7c1whMbWgKius1Cy3AtqmySfLp7gmrrLUex8fbjFr3ETGmluzBCErWss1URKCd9xpXWC4cwuZ9lFuztNqyFzM+WgpCUpHHA2ZNzPCyNPqbhHJgFa8IF2bkHQKWvEhZV0wNYZ2/JAwvk928hiMl0njlJW1iMhEuDCiyjXGaj6KotmULAc1QRgyo0ewePTErI4DjourHK2/yMLt0l12BOI8w6LBsl7lec4yS04QMqMRxFgRUFeaejbE51d4bfUX0KFnqZ4RZTkBgmHpEPUCGUl0a51R2GL/QgzO88HaFdR0jjiW6G6HhZQsL9q0XIuElOeipzh66mfQK08gK8v/9N1jvnrhcbYvX+PqKKQ7s7zSWyWIA0yjybWtDTrRKtYWXH/n8zTMEXF3iVocsnK8zfn7B3jtObjxkHd7ivsi58vZ67w2fo+T2iA3L3F//5DZdMbapSs0ul3uf+sNvHHkwwmjvV3K7/R8g+9MG60t3pym4qdOnfrh4L2nKgdYW33f72xuMLOcbHEfawvgUUVNbh0HlcaIJkpljCZ3eeO//CzujRgMaFcSx5dQssmiGDOYH+DRmLom7Qis7ZKPY1wdEHcCUtchDzs8bD7BvpqxlVQoVeMuPEVZlwRhh6oqea+AvWqdQVEyzGPUUoeGqbhx9jLbcZsSwbp1hHbCOTNm1lhifXLEamhZtscYJRhwlkk+YZjMubk2pqoznpdDntl6yN97700qpRACej5GAZcjybn6mKX+BpVQxCKhSwDSczZQDKo+SiWsKcW68ig7YSlccNessuoDxpElSQI6YcCJgr4FJwR3lOCL1jC1nvdDy3tNQ64Mb5UVixCaYUyZewau4HVhsYFkb65BeBAVLxnFZ4IA40KEbGJ1iLMSkQRkpsFhsIIVoIDIOo5yRxVYPIp2MOFnWjFrLYuMB+ArEjVnkFU8861/Q5d3+fj654nTCjPJqA+3kMKSxscY45B5jZXy0TZga9C1ZkWvUo4nqNKQpDC7M8PVj8KcYlRilcSVFVZ78lmFQ4IQoHOo5/DnbC3/UXEa1PwY+r698f8ddVEQpSlBGHHjK3/Iw3ffwtQ1neVVkm6H9c0rJM1ldGVxhUFpyfrGZcILLWQzJLrQRkSK4cIQNQJ05di6O+HdecmWOUarDN8oWEHSH29gA4Ejoqk2EYnE9gOsCni/8wzl7BZnp3+I9jVubOkOlsn8EBdpuirkXj9BVzFWNrEUXJ1PiHzJJ+ULtHxKffYujYOUjxdnuJaukHhNP3g0NYTAIIRlue/Ith+jIUqUC1lSHuVByi74hKQ1xbqKWTSkszGkmrXwXhEGGeXhMoPdFymic+xUP8sbP/e/pnQxnZUdimmMu1hTX9PYWZtAnqBUzDozPnU7JHYB9iN/l7DdYW27IG4sCM2YZnmHqL6JuL5MNJ+weeMG//Hv/j7ntx8QjEr25y2sHTOXnn/JiOL4gCBuYbvHzC69QhAm1K5E24ChmNOOT9B39rn32+/y/r05PtNcWulx9twaTQ55+soR3c6jjutKeuz++1jt+Pq/us1gZ/GdoOZvcIGeOvUjpLQlK+kKJ8UJAK8fvM5/9vJ/xucefI4PBh+Q7WagJWGygmo4rNQ8YVPimUM+XEZoT/PMDXSxjjQxVdXilekKvij47Fc+pBPkhKngRhXzcPVTXAqeQYU55+OSKIKWBIthqZ2hxZTNxm16nYdE4gyNyIDaJkiGJMEJttOglIpueEztDOVwlWDUR4mAo0aCrTvo2ONtSEs7+tbTX5R09Zw4Tskyg7UplXTctp42ir6aUo9exvghlauICs+Lb9VcrhvkPcHB1Rts2QGOEq9nNDpdkipiWTY4DhPW/ft4v6DC0S1HhMLihOPh1f+YUWPI6xdbOOE515KkwuGd4PjCRaZhQMsakhCCRogpmtx/YpOx/BVsGdDfu8P4zFkKPJcfjJhe+DjZ2lWu1VOSJKGtJTMpsDGY60/wkbcO8EVOu/Csv/MK6XTKoVqgRlMeprBrdtnxx9ydD1mfnmCPxwz2pkwMpO0OF59+gWIwASkY3H/Imc5jdNTy9xbKnwQ1+nQi1KlTp35YeN798u8xPT7Ae8NBWTPRj6pHvXbYusLUU5x7FOQU1pNIwWGtEfFZUIK5HDNdHINtAAGmDpiVOQbPaLLH1s77WFti/AqddIPp/h633jugWgiidk6TJbx2TKsZE5ezevsbvPThq1QCUA7rYrJWxI1nmkjdZxw1GSXrNFoNAl1RNPtMwyViGdOcHJKagKeyO2TNJWQxpS1KYp+z68/zyvwqabqgIQtiM8Uby7odI3TNsLdGlUgaAVRFxEq44Ckx4h8Pf4vywvMMoxaRCgi95LKAFRocFAHg+HthzEU7ZcGURKQcVoYlJMPSE4aKtpLMC01bSmQk2VGCHeuJwoB7uuZWpclFzcw79r2l6QIKBLM05g8CgU9XUWqVW21PJGfsFoa75V0qI5Hlgkl1jA1BhJKw0BxNezQ7AbkSlJHElSFlVOOEpaMFH1GKs3FEJ7+FkCHtyW1Ua5/g4BZ+8ZBNDqjVBKM9ZbkgVBWhPUA7h0JgsFAZhAPtBFeLyzi7hs9rokThpIBA0Egk2aDgYHeOK78T9s0LnAgBAdUcdPloTPpftEK9J5tOcPaH8956GtT8GJoPB8yHJ9933FlLXRTk0wlpp0sQhUyODjnZuv+oZNtGWAABdWbRpcVOa6ih19tEdSOaP3WWXHsaP3mGUSCpK422NYtcU1MzY4RSMcd5SDewXI9TXFo9akqcbdJ3jiW3zc/er1m512MRSkb6dd7qzGgbWF2cJ0vmtJwn9YqTXpPj4DJH9B+dp1VJt0r46PxJlAUfjQhFRMfFbFhIiym9ukcRZZTMsbHDL4NxEUlvxv1eRafTIYocNpCU1RJRPAGRsCg6JGv3kLFGBBFSBHgTUakGHxxtsjdb5SvXnmJQrnJn9jTZNMZuzHCPraBLgwqHGG3pOskn3w0IFinNytHMS9KB4aT5BmLyMlkd4vd3sJd6+EBAWTK4fBabRBS24MtXClTuOW7F3AtzjNKEEvTSmFn369hoSqXnWGGZLFWE5yrswynJUcSRv0hZBjzWdnzyQoaXgqfXXsfMH6KqIcrM0V//rzl+MOLgzoTZsMCcVtSc+vfkvWcwGDCdTlksFmxvb1MUBbPZjOFw+CO9vmpbc659jkExwOO5N73HP7j6D/iFi7/AG7tvEFcJ0gUgukzqIQJHjCSqI4xrkQQFUVzh6hRpEuiWBELRdC3yec6yPCJpeCovuak2EdbxMCrZrTrUOiTQjjPdnHDdYYIW663bSDlH2R4Sg3KGKBmTqDYX2xmXEocQGS5/6tE1f7qMOLjOtTDB2y7HHTA+B7PMyuototmYaPcuQZBgtEOsLjE1cFRq2tLwnLjFanOVerFKoz9kRT6kUaWUekIlSubRda76ZSIXISzIIOXy8B3WK81ieR1X1UhZUVhNtKhRusKUM3Szjz68iar3CYojujYHBSpOcKFCeoeLIkzpyEPPl689Q9VdwdZNijLjkBGTUGBXlokX23TH21w72Sa9fZPAaGJvmFuNCFv8zmO/gCoCZNLjI/IztI6mtIB5PWUjy9nLMvqiJEpDtucDnti9zwoJ/ZMY7z1xs0WnXmK5XEcowWR3n9X2BYJCfW/tO4/Xjxo9euf/VKWNR5/kp02GT5069R8c72GwdcxkcJ+d3V/nt4/HvDXLv/tLEYCpM6oiY3Ryn9HimHNhiMAT5AG29CzCOZk8wYjboDwOy2uDEfesYbJ9wHwyRNscbeB8+Bw7Dz+gMhXFvCLqt8jTBnEzwItdclch003SwrI3eps4WhBKRz+NKWKPa4aM2+vMRIcHhWOatLlS50ySdR4vPJcOD5mXORsseLP9BF9/6jN0UqjaPb648Rl2e22ubO6zYku0nYNxNIKMf9z6Bp+tPsbIWqLIM50kfEJ9hfXoHg0z5WV9kftaIgJJVXl+gZinnUDEEgJ4zMASE6DCZDET5WkqhS4dcW1oVpZBJGgajxeCrdpwYi3Kwv+oZelJTyUiLrQEN4WjUwvSQDJTEbvGsagVjdYqd6Rjt9XmMNdk4wHTKmEojhGzr2FUhTOW57MOv1QEdOKAd5Vjp+FpCkmsFNZ7pGmzEwjqugmmplbPsJoomuJVRv0etzcaBHVBuvMu3jrqWCDrnMCP0UYTBhIXmEfFPSgMMcIEeJ0yKyr+VfMJllNF0FNEypAfTihqh7eg4hBTewgTvJD4ao63NTj9nbLU700r/t4adXzzNz/LfDT4vvX7w+A0qPkx471n+8Y7bL/3zvcdP7p/l8//0/87Rw/u0u4vI1VAPp0y3NlGVyXj/YrZeM5iNiI7zDG1xUwrRKQQThIut+Fih2/9wRauE1MCg5MR9/dvcbARMQ8rpKzoeIUqoNOqmHUecrh0lwDBKJmxHd+gvVew4gzdhacRt5nLjINgwoW5IZp2yOUI6QzSe6pAAA0qI4lFF19HJGFEVAs8js68jxWeGDhThygs8WyJO0tvUfqc49Yev3ZU8+H6AB1ssScUWrfxWqBCicnP0AgnWNmkOGmiuw9RjSFg8aaHNwqrLHJiCOYGFpqpDXltGKGNZ6QNJ1UXIWuCMCDb+Vm0zZGdFWRvTrD0API58qCiEWlcUGOnAUG+TN2qcMJhhac9GVClCrvI0LqCkeH9tmXaEMzLAUF1zOFmCx9Ipu7LFCffAmmwRc7ynTtIX1FZw1J/DReHhKpN7BY4lZDv32YynxINvs1ma4e78xcZ701ZvdhmPiox2pFPa+rS/Dkr6tSpfzetNXfv3uU3fuM3+MpXvsKXvvQlhsMhv/mbv8nv/u7vcnJywmQy4datWxRF8YN+u3+lKltxtnWWQTEAD9NqyoXOBa70rpAXOWeWzhBEkr3egtdXv0hVVwTA2flTBPIcjagmkBZfvk+80WbR2WKJiF7jPCtmgncaqR3npCQNpjTO/39YXnoF72qeCY/J8KhAUogMLTdIxIdoFLICqeYkrQQVjzHmDJcaH/DJlQkNDNXkAs4mvL36Seb7/4gXiFE65JXHUmZyRDs4pr98DyVjkk6fII6RUjFoBxw0lng+eEg7KbhAyFLzCZw1pJ0PUcERYfMxfF3QkA3OHB1zeSJZ9jlS19TFBGEq+nHKsLXOHTenKsboTo+6blAvpgxNiZGOsFrQyUYUvS6imFPIFcK4hfQe5xxVaOmJAqk8H6z26L77TbLdr6KtZrfb56n9++iNC1T6Lo3BLo9v36OaZ+i6xuiKha5Jow5nRYsbL1zHRTErRxq3tkmCh+Eeqs4QpsCLEmVKOtN9+uUCLwTNoztsTMYkrRb64X22BvcZNyXKKtpJH5vX+O88CfTW4e2jsKa8NaJ6MP3uGsrfOqY+yH5AK/jUqVOnHvm+inzvKecL5uMtJsNvMViUzK3F6kfTklQzQU/h67/xOV793D/nwc2v8j97e85P6pLum99k648iqnJOlo+Z6Q+wyuONwdQVWVMx2dqltgXan8eWfaR0nL+6wtULT4HzHFy9zr94YZNRuEyVbdPSMVmdMm6uspPdxesDlpIpP7VyQmUzXLdk2l5lZjxVNeCVp3+Cc9URw6DHRjll473XcUbjD6asDUdMGm3akWaneYYhPXKREIuS1JSEvgChUCrnRXXEhp+wayesuRlZnRLYCWljRqucc3u74H6pEQZK4/loM+Oaf1R1VAOxc4Sqx6jsU5su48ATWsfFZsyy9nQs3IlgPVAktmYmF5TOISrLc9URQpfcc5L1YsaNvAIDMZaFtWQefl1qHtiIUsF7Scq8L5FBh8pHzExFs9/iq2tfJw9KkrSFUZ6WyXmjKrnpCl4IQn5VJ1jh0VmD28wxUQPnEwp1BiEbPKtuY1c6zBsJPrTY6gSPwq032Vr3ODXDGU8UCWwUIrQF/ej+F6uC8/lXmYmI3wrOMjOW4GJEJHNsKaisx4oWTiQkjRWC1gp1+DGyGxqcAKsf9at5/Z89Gtn9p9ar1YbB9kPqH9LPlqdBzY+hYjalzBbfd3z3wxusnL/IO3/0OVr9ZaRS9MU6bbtEMZ9jjSSIUzrXz9AbFWwGgvwwI7OOd/iQ3/jmHzLcz5gNCurKYGpLNlmQLdfsXm+StQ2dIKClK2J9RMt8gHSgyoielxyJkBN/jllwlvub77DTd6yVAamP+Z/sRLR0CakhSRSVKBDe83dGliXgsO0ZtXp8qFZQUchy3sGGjtGswzteouoJvVwgvGNkO5wkGeOm4nhlSqgk+zLnSBccVJaDYYW2NXGo6LkzREHOPC9xSrL0wYTwzF0QJbpuIozEZ4oVK0k8LM0rKgR7pcHHkpvFVd48PoNX8Fr6af4wfAkXtciuNahahxTL74E2ZOkaLxhN+FjIWz/3POO/rdFphisW2PU+/eMCYQzptKJTeKKsyZEuSFSDY1tiJ0ccyYzG7FnG7fepz30dt7RAlznFO+/xpn2XYzPFTCaYZsnxmbcR1QjpExaTOeXimDCNudj+gFHWZTGp6a01WIwrVCC5+c0DDu5Ov38xnTr130MYhjSbTRaLBc8//zxnz57lG9/4BnEcc+HCBQaDAVpr5vM5xvxoBYLG1pxrbXy3oqYwBc2wyfn2ec4E51jvnsHHNaHpchyc0KTJyO7i5w10aRkdPMSWKXk2QDY91ifERpC6Ft3yiNL9DGUW8EKUsSaOid03aMQTzi5NOSMfsN/5NndGD7FuQRRESHtEbSMEYCgQQU7cOeR4cZazm69zLX7IeqOmtX4XqyWHRQtlJH7UpVicY5QodABrwfs0zQyIcFagQoGKEuY+YkJIe/Yu++NvclQ8Tyu4hGokVEdz6rnA6CW0K7ClYn50H5VXdGe74A1CKLw1bIQJJ7XARE1sZ5M6bmKKD6inhxxnAqsLokjSHx2TNdroXPLt2S+jVAdhHXEcEY/2udrs0MxhZTYlPtzBZiOEgnKxQ29wiK3BtzqMfEWyfR+XZ0idUxqBR5AIycW7b8OahkaEL+cslrq4RYbNS4gEm2aEyQaorUNwFU5XnPiSvYO36eUZcdqkfniH28M7fMl9QFMuEw4kshRoW+Nqi1s8GkPqtUPvLTBHf/JUGuysxmWnFTWnTp36wcqyOwyHX/0zFX/lIiebHaO3C4J3hmTGUS+GGDsnXGojh+vsffAOq9njXL2f8fhowf9y5y2uVa+iRIqZSBARxbNt8kiAF7SExKxVjINb+GXJvbvfJN8+4db8XfrdhJWjBWHc4zkWXGAH7bvYuoKiprQ1naRF4SyBy5lPb7AkhqyLksfUZ2nFJbmZs5l9m/VEcGb+kLGzBGIKxZwYxYOq5v/4xq+TyICHzYvc61zDaEtbSpa14j+dZzytS+KgibMC7T/F2eEdKI44f/AW87ZFuRwvhyQ6p9cLOYwkfq4pnWHYmDHG879Qkmf09NHQoqJL4VaJVJOTWhMWjmtCcpaARAremeZc1NATjgOtudyM6ApBWu4SBDWzRNKtBHhNkA8JlCC3jvUk4PNVwYMgoHSehzPDgc1YbW+SdBTJbMxqsc2WuMtIjsmDHOSMRqB5Sh+wKUZcCwKeJMBJsB4iuYMOCuZqBROcwclluosa004IvEMEHvHcRS5tbuBjKJcWxCyw1hMGDk1AHIzw3iGdx7uMIDhh4hs0sw2OPAxbITIOaDdCZrOc2iU4IkLVRq4+SZ49z+LDFOeajxoL13N48FWw9XfX62hvh/e/9iWyyZjqz/ne+8PgNKj5MZRPJ1R59mdS8XIxZ7i3wwt/9+/z0t/7ZZY2zqDCkGgWcZHr2KxCIPE0aT91mZYUNMcl9d6CYDllf3TA/uKQB+9usZhUVJlBl7vMjw/YLo85jmCj42lLSWJLgn6ETiyxi0glrLgJKupRZWe5fz7jVv4HROFNMI5L7jzPFavYpGLeH/KwukRpLaIwPDmxdJVCNgIOc8VDF1IFBWEhyZOaTHaZRQI/3+VAl5R1ybcLyerOFd4szvEgu8qaW2ctbLGI1ilcwsxYXJHTCSuuTgOU7VDokvbShN63Bwyir6IiC2YNYQKSRUUooNW2XN1ztJTk6SjGRwmv2U9S5JcwUYteVeBdh4HaoH5iiE0zFmvvo6KUgW6RfivkG889x78KXmTUL8gbGQiLbSYMYsW/+UyPuIZrWYfGFzVPfDtiY5pya+MSR/cqEj8hOd4g0X2qIONh8w6zeorLRiTDh5Q6JzGCzAyZdo5wRcay+hST8hKImmh5A3X4JkpPWEw03dWUYlYTpYrFpGI2+OFMo0/94JVlyf7+PhsbG8xmMyaTCZcuXSKKIvb29jh//jyrq6u89NJLtNvtH/Tb/SvVZ0zP3GdSTbDOUtuaRCWcTTf5T9JfhZM+Q3lCz/R5wTxHP1/j4eLbdDaPWL3+BtnsgPngLGW1ggw1dd2kYR1pS8KipG+b+KrmXL3Hsh3gEkmcaIoTQxDu4DtfQqtdpMrQhSNrL1GrBgf0sVQokxF2tjAqYzf8KI3+lDCa4KN7WKNoFJK4tpRDWBwe8xN330DKgDK+TlY8hRQSUxpUUBC3IrppTRC3MLrAliOaQRtbe5IkoLt2AVEnRGmLRTHnYtamVc2ofUUwPsBaC3IFgDaaVTzW1pyoPnXUwNiceyvrvHb2BdIOeOFZz2YkYgdbW1o3XkXJFJylmTbIG5Lp/JgVo/nMu6/h+ussLl8janUpixxfFoztBJGm6HabpvBQ1ywFAggJZILM5zQGuzw9n9FuKxwF49YlhE/pNVvYKGRlep+NwYimifA4sBo7Pyaxmkvnr8C7H1Ld32b9YItCT0kurBD2Gqg84L95679h+s5NFq/cwAtPpUvMuMTOarTWHB0eYafVo61PP8JbBE+dOvUfvqLcYTp7mz9p3mq1pi5K8tkxwXyZTm6ZFprF1w/RjRPCZyJaJx/H5DnBQjB86yZZMyPVHqxEdCPwjqjjSbMzNFsCBDRUQGUm7DRmqAvvsRQ8IMSxyHN84HEi4X7/Io3RAevFlIaLaAY94trzTPyAfiQok4ixVhwXAe/zGLvVgqkQKD9FoxCm5rnFAetiRmU1VV2j211WFjX6XJeV1TFX6pyXzePEk4gnsyFn4zmJ1lx1iratiaOEipCsXGJcH2LKMUExYSvMiMhJOSIWBnqKfW8Jpadu1rytJvwTV5E3DefjHjhQoaMlp3SVJAACZ/mYcLxUC/L2EOkcK7aiGRoOS8X1KGI1kvTTZ1BijbnzLEcdNiLL48GYXluQacezbsw/6owYBg7tIM8EebXgMm3aHWgJQy8puFJeJ9IKXU4QXiNkl6Y39N2CVQtJ5iGSuKjixeBthtEU7zYwtoV3CWK4YNHqERiLFAEbxUW6jS5rrT5/O3ubsM7AGUKfU5eORN0Br5HCM6uavFv9HWpTsjoTNK+0ufnOIaUPSZQgr3MKLfBOYojJW1exucKZECdajypqyhnk40fboL5jdrjL3Zf/EKNrisX8B3HK/Hs7DWp+7Hjy2ZQqz793xDm+/fnf4epHP07a7vD0z/wtWssrREmDNG3R2ljGzmukExSFZTCtudcLuR94tgNF+3KHus6RHcvOrW3wnvkop5y/zfToIZkMqLOMsJgQAYlKKDshfxgYWqZB4Y+pq9/HS402krI9JdIzTP0q3XLCWt0lrCBnwcPzN9k3KXOT4StPVGpqXzJcGA4LzcI4YhHiDeSxZsc6SlUx8jm/lht0w2N8gTrpEGcGUwg6ZYO1SmHYZFWlJC3FE23LWVGDUIyPX4JGRX/zj4iPFlxbXCRQAl9cxZkAJwJmASxNdolmhvbMcb2SpF7wwuFDPvPBh3RdxYV9z/n3DSN7nqCZE62MkaqJygXTVo/FqOYLKx/noGxilcIlCuKIGji68gkOWhYfRJw/tohBybVtyVOHYHoh6XBKyw7Ad/A3P8How01KcYf+7kO8zrnyznt0j7YRnY9Q+wwnDV57GrTJeIpm17P6xBnk5CHKFRS5o9mLQQiSRkg+rZkOih/pXiKn/vokScLP//zP86u/+qs8+eST/PIv/zKf+MQn+If/8B/yq7/6q7RarR/0W/xLK0zBh8MP/8Jzw+ohkZ1RmhJt9aOgJkiopjPG3z4hn1jyaIFRJb84/glWixUqPWV16SHtc1/GVEfc2p4TrYZEy7doyZJfam7R6MwJZcz+Sspx8pBOfYN1f4JOQqQsaYuMIJ3gbE7YOEShcaMJo6CBcY6FEQgREMwfx82vc6m5xZ7cJOju4VWF8B6rYX2Q0YokykPo3+ba4T2aRjARP83R+BxJQ1DnGqUU/aWPs3oE54I2pTF4o9H1MToY0Q4yOskFWmqJJBVUOK4NE1JbUncM4foFaq3xMgMpGE/f4ifUFFfN6TabxGnCpNfk8Nxl4nabePdD4mSJTj5n+eCrtHZeZaY0gTOoIicyQDnFFXuc0fucOdmhTlLGoWI56ZPKgNh7uuUIb0riqqZeu0QcN1lrX0CpBJWsUCeXqUYDsjxjvhZjqgV5+hiufZYgkIgkxsw9596/SVwrfvpByNP3HuDvvE2iK4LRlJP/9r9l/95beK1pdS/hk0cfvap5Qf7eB9z7jX/K+M2vMGTIf/Xg/8ndwRZ2UbOYL3jj9dcxixqXmx/huRanTp36q2S9Z2b+avsLeu+pihHHx19gOH0P7z13pjMyX5FNDwkXy6S1Z1pqquMRJ0u/TR7cZnHlXZqNZU4GB9RBya7cJjYhpVxh3uhQ+gVRy+IHIVV4jyoSxDJg9RsZ08rTMEMeX+1zZfV50vkAOXjI5194llc/+lO0qxP6piDKp3RszKdMzH9i3uLcdI88zBmmAQsX8a47T5G2ub0ds1WFOCS1gencsarHpBjmGczPXeHv3/kCf69+SOk17eMjbuo1dsolzs+OuX54D+k9RfAJKrdGI0jQdpO5dzQ6Ea16RGAqBqVFmYy03CfF8CsLT4Wn2YpxJuTDSvHQOT4s97i8+yFfv5JytGQZdmasqpC+CuiHGUd+SCU89+MbXAihHZY0cYDipzU8JaGtAohqBoWhoyf8LbFLVC/QakGhLeFC0csjdooai8eFEhcKEueIY02vE9NcXeGF7HkSHSN0QjGXCDzKOaQzdLVHeMVYTpmqBU5kvJ3OcP48mhChaoS1TBstGt5hRZsgz1BhjnOrdBeAk0hRE7r80fQnNYOoJLKO+SJlv1ilYEZnYnDRjKGxDEpHZA1Bw2G8xDsoTMT+kcblFmcCKtfFTjLcZATFCO8MxhiccywxYGP+Jr21DarFaUXNqR8C3j+qntFV+d2nc9YY8tmUC898BCHEd3/itEGStlC9BGUDXO1YvtBm786Ek3rMw2pAHkjCVkRFBU2DKZZorcDu/W/i6gnB4FXs8hqL/ISB3iYTCbP0HAuf0R1eJ6kiahtS2QlGj8CD8GOu2lWMKLCLEd16iXE4wwhHqlMKLam8phnUNKyGaMHMGEbKMjeG11TG/yXRfJDWDJoL6mDOdhoxkE2m647HF9v4JKXpNUvGE9eWT+Qd5lmLCzLkfD5hbehp3c/JpUTUHcLyGlkukVGD9ijES8/9B08jlaLQnjJyiMWMRuKxteGdWEMseenwAcN4g9W7r8HRFZY0JLvLBEGA1oZy62NwUkG0zLx7hbFbw9YCJxwiAZumGGsZx2cwkeLW5TWWFgLf73Gl6PDsBzMGbk7gJLGeIxZjzMIj3QZri4dceviQqBEgl3s0syEku8yjuzhRIawhClMCdZ7eeovWmTZEKXErocwsjW5MGEniZkixqMmn1aPyzFOn/gcSQhAEAUoppJSEYYgQAqUUSimEED/ot/iXNiyG/Obt38T9OSeH9ZZIGGJhyPIFD1/7AOsssYrRtaYuQsq5YTVK8bKmyhrUZUlRzKiOG+hsGaliqiNDZDIiuY3QM5aUJzHvE6uYk+SEauOLDKchVxKopELi0YVn1OnhbRNdH6H8KlGxylgaMhdy1GgiREjn6AVUcZ2ieJZr4gHC30O6lMCcw+mQwMSE8lE5+srVA6LxFlHtsaZBPWnjfIVUEXbRRFTnsGNDswwebeOxMNIH5NxDiSnF9hFeelphQK49i+ERAsFx9pAH04c0e6vYYoKQMaOjdzHju8RCcC0/JMaSVzXzY0WjtOjJFNQKFAGXpnOy0GI6y5wrU3ye0RwOqaucw37E3SRncuYypdFkONI8p2UcLWNgsWD94JAo7LKn2kTdPmIwp6USWssfQ8sVyiLnhCafu9QgFxUajwibuNLRtI/T3x+gG8vEpeDZ2w5JjdWa0NSUW/ew21uEixEGxZVyGZ8b3kvucFS+zc//q1vEr36bB7u3uJUe8P7sJm9VdzDWUFc1+WRBZQpM8b1y7n/X5MZTp079eNsra/6rraO/VLhrvad27vuuMcVsyrd/74sUxT7/xb1bHNeGe9MFMvHosiQyZ2kYw7zUmMwzPp6zyG7jUlhNL3A4vU96dolxPUS6kIoOZWgpqpxZ7xL1XDIpdskC950eJp4s8DSrOc4eEuQRrixYHG1xVP02//Dws0R5RacaYfyHyEDzlMz4IH6Bc7s3udzdZ9TRNFopTWW4vjihHk0Z5J5QKUSjydg6loZ7tHxFy1SMGi2kFazvj9Da0vY5Ly2VjAqLyMeMdcorzZ/nOG+xe/w8sQywoWC7cY9IKMJqSuhqFk4S+ZJGdkDiDBfGOVEgUY0aZxWRyvDK8WCcEw22+cay5A0p0UKilKHtJEQ1t4KHlMoyih7w/Mo2cTjjynCPtnIs1TMa1YiYexRqwNAawvgunza/h6VmHBwDmtTdpZrc57AoSSJB5R0ybRFJSaMuuLS0DFGLtGqjfAsRdsC2SZxDG0nhHHML9zXsywGv1Deo6hkP1BFTcQYnYhQDXG8duXsTJyzHcQ/hcpQZkM9bqCpFqIiAgsBM0NYi1Yy6WxMKSSu1BMpgVMCGhu1vv8c3LsRMhEdKcDLAEWANGA3Tkym2MOysplTiWfK3D6lubT2qqnGGN998k9FwiJ4e0lQl61ceo1jMfyjvm6dBzY8Zby0eEIjvLlhrNN45gij6M69N213ipEm01iSVTWTuWDrXopjXHC9OGBdjvPfIRkBJhW/UxE1HsDxgZ3YfL2omuWba6hEt9WkWz7CjnuLd5BIn83v0RIIUijpqMlfrmPweLSe4MM7Z0KtYr1FI1l2fW+lDVpdD1ieb1FVAHMSEzmKcZydt0+8pSqmJA7hta9JQ8cdVyjw4RCdT3o5TVKC4LSacme3yafkq/6u3fwsxHhFmRygqRoWiXTh++f0/hMUJZud98srQO84oRk3evPUs6uI13Bb46hxyLlGpIHFjnuyOCTZimmZExw1oyH2i8pjm4IRFawUdtoi9pt9TZN8eUM4jitxiP98guOloV9fI136Wj05m/G/vfpnAB2gcttEiEgFVEkGacmQL5LzEN1IIIiIZUZEhphlSQ7D1kKUs49vnPkm5ZIh7lnS9Sd1cw7CgXnqDuruDEyXKTzABdJfP0VvbRFsBzTM0V3qoAOKGIkoDwliiK42zjxp0eu/Zuz2mPO2ZcOoUhSmYVBP8n/OR2DpDQzoUmtKX/J/2/684HNJ79IM3UEGbOjd8avIYTwTrHBQz+u1DnLeMy1XMIqa9ntLKJGuJJPVtTN1BWUfT3aPXW+LQTJDhNlmuuegtJuoQq5TxyYy5CmGhqLIKFh/lUv0zyI7isLnKMOxgXYBcrJNvgwrfpykqlPHsv9HkW3ufwhYtnJaPMn0RoLiALT1OBzif4EyGqYcgYqxbELYLiLq0Tf1o6pIT1LZAFgXl4C6j0QOsLki8wAcxw9kuUdTgeHQXIfsI1cNqQxCfQ0hFUQ0JvSIeDji7f8T6fM5aWNB3lqq9TBy26LTOcdRp8fKzzyOblzh0K2hriBYV7XSFkTccHL7JIhtjlaVwFeGiIFn5SQKV4mdzoqjB4VOfpDRDRKNJuX+HhowxxTm8T4gaXRZyGWdjjhswH+9Qlw690CTBJmtHAwYrTxJmFRJ4+bIFXSG9RedzrBJIXdANPEvWcTIb8i/t53l49Dn+xc8pZs88R0vEHKsFEz9lVE8Y5zOqoqSY5xR6jsnLP9ltwOLLX8aOx3+j6/zUqVM/PHZLzYOi+h8c1Hjv+cLJlP/DrR1G+s+OMy4XCwb3Z1jX48Oqw3G5gLyg2QhR9RJYx3owg+mY8XDM8c2QwcnLONfBn2lxfuUJRHiWykZkQZvSN3DNDiUBW/1rzMsJNz/YofAlpXMMw5o8qOiIiKI1YpIMMUGLWfMiq5ni29N73D/ucb6cQznBoTFhi3fLCzQ6ll/kFucqS2Oph0s6PDndRWhNv8hpBgKVxEhX0Yk1fZsTFCWbowHTcI2TXcPUddC15h80PqAbGFZExoFc4g/q51gkM5xuEskOWiW8advMOn1q5wmlwBpHs5miTEFZC3yxRS8OGLsBtfWcp8l66MmIKesRFTNmVYlwM8rmkBBLmWxxu3WXg+6CcXxC2tgmtPfoP/wWsSuo4gZuJSasd+nf3mbeC2Hd0TM7mNCyZe+AKEn8IV7fJQwczdgzdQ5LEy8kuWxxk6cR8jKxC1AyoG4ecXZtQaIkkVAIWXBoPDPnGTcrJtWIwFYcySNOgi6oHrYZMGuuYhYjduWEL4oTZGhQMYREeBuBD5ChhMRgTEnoSiZ1Tiglz619SENleBNiI8fQPs6QGOEDymZJ5SoCQpyDOI6Y7h6SVTX/9LGIgTuLW1S4kwO8CsFqRqMRZVlSDA648tQ1rrz40mkz4VP/4bPGsPXe2wRhhPffS8urPCOME6QK/szr251lknYb1U3omD79nYKoFfCTHx+RPD8l03MQDpUGlNTk7oTW6kM+uPs73BZjXCthtqhpiYpIBWSmSUc+zppVvH7tMb7weMIfXL1LkLSIVIdFdkjm4enFRdqsEZOQ+pRG0eK46UlkRiFiAhvzrLkEyjBoen5/VNNyIRsu5loQM6ojfsLD3nHIs1i6keS9uM/jbsZ8kbAWetbSi5ytJ3R9QUOOuRPdJQ4rEm2QiwG7bow+vsNCGdpHY5oeRnqTg83rmP6L5HWDxEMy3mMj2+fx/Q8pVUjR6RCYil9551/TGt/h4eYLuKRBIdv4vCBqF9hqzk51hhv2RazsEsguoQ8YLp3h4698kUu791BGYbMWxfU+tc+wrRjrFcZ56jjAIjCpJE4EPlaAQtYCe3JMuRghBhXtt1MWn5yTp00K0cGGJXn7AbLRxEuNFyFZXSHDkHZvmTIvKeOfpZGGTA7ucXDnAxrdGBUIhHw0BUtXFu88N/54j9mgwBr36NgPYUp96tRfhYVesNCL73/6aApqp/E2w9uC/92l/w0fHV9ncXTC8cPbDCavgAhRChJCGisTnmjco92b0V7q4v0EsZAcRZsEaZuueo5k+hGqRZugLrBBzWr/PM1uTdwUJKmgoQ4xaolYSgJKhFmQzg11FVDUFwmrHhGClaMTnr3RB9dHln3cYcHhjWUObBdvQ+bDJiezJlJApMCLGhGELI7XSNpLNJcuEzcCbPUaMESKBEST0fg1BoFAVhVxGKLCiLKcUGbbzOoFZSDI6hHSW2TYQSUxIozBO8bzuziXIEREkDxOe+XjlPMRTl6gWTliU5NIha0LTK0ogyYrXnNGNtl3NX/0wk9zuHSeYXgGJwJU2mWpsYadbxMGFlPNkWGArnN0uIprPocRLSIbsr/6aR72+8zzY0o8mZ4hVUQQGpo2I0hbpLLJtXKTgapRQYHTYI1HpCEm6qDDgDQIydMGbdMkQGCFoOx1GF+9wsmFSwQhtG9/gZHZZeFGSK15a73m5St9WqVgI7eULqff7XFYDinynHJRMFucUB5vgTV471l842XM8fEPZsGfOvXX5E8qxf5tP6f+3bz33CtKMuv+rUHNn/dvmlvHl4Yz1uOQd+f5n3lNVWQUE40vNsmqJje2/t80x2OSNMDPVzl0x7RVydKrn2Mnu001VxT5DmZHIDq7XDh7hkB2MEHKv15qULgY37jC3Ah2Rcq4OmYyOaEoC4wQTNpzTKgJG2eYSsugsY9vL3GUnGOtWic1HUaFYml0gq1L6KQcBWeYC4FLJxwklzlfWOj0eDtfwo2nJJsbLJcLQmq0lzR0Du2AJ4odqAquFhOcVszXn2Sw9nG0SvmN8TV02EMID50WHsGWXGVmLFQpYRXSms0pui2iZpuo02a5HjF3feqgwWF8mXF2REsJZGDIS8PZxXVCLNpDsHOH5Q/fpYhApyEftl/hqLnL1objIDnh7vxDxm5IqzzE8S2cHdPtfYPcLuhVFYHep3V0TJwKarMgcjl3uzscLlco4UEu02jEtFNA5wxETVkZ7kSQzQSvFgGD6jzSeVzkyQNHszakTnCl20XGFbPYUSeaHXnMnbUVjhZdMibsBMeYOmHca7NfrdIMPfNqxkm4yjAUFJEnFeCsRKddiEJ87zZWVwgVE+gpgYQ2O7hKU85r/uDao0bC2imEUJSrHxB1bjMx4Jwn9Yo0bLOQFYcCHtYpzirMaESufgm0oSxKtDGUo0M6rYju6hqmrv5Mn7e6yFmMR38NZ+BfrdOg5sdIXRZ8/Tf+Xzhrcc7Bdy7A+XRKo9MFvtPBPdPoymLyiNHAcrCzYClYByFQoaN559epmgcIJVBBACFUQcWs3KV54Y+x2YRyVpKub5LGIR08zbHH1CHSL3F1f8qz07fZSr/Gv5b/X5ayNs+JFi3anFhLV57loj1PxzR5Wm6SFhsUdUpYe2aVYCkRdEVCohT7icZKSBRsJJJNGXCcWTr1kF9YKnjORjxZO/62PeDC/h2S+gxray8waaxz55fOs7IZEsclU5fxvLCcVTXkY7amxxhqHpoho40rhKklaC/zG60nuCceZ7/yNBueZHzImPNslW2qNGC7Y3m7s87Jz6TcfnGd6epTtKMQ3VnGVZawLECU3Ng/z970LFo14MwGq+f/Na1b30RVlsPmGhx12R2n7D8zZNH3TIMZUZkgZIDrdhDO4+OCWOScHwNhE1mHmKri2DW5fPsW6d2AerXH7LKlWA9Y/Mwuxmt8UOClokyvM5lNyCYDkrRFMV8wn32GQPZoJ5754JDLz60ANSoQJM3wu2tjtJ9R5YbD+1NufvPgB7quT536QVrUCzKdUeY15jujJr33/NqNX2N7to2zC6wrWSqb/Nz4E1w56nLvjW8wcjXdyJGIGsKCqPE7dCcGfxDT6DYR4RFlXvBmdpH5vECfTGF4nUCvIjxMgya3T97msviAqBnS6K6RhfvMF5ZyXrO0kRIKi8pqnGtxEKxT1hEnYplwYghOuqisgYosy5t9nG/h6gXCXEXxGR5f7KJCQSIdJpgSphHF0ZQg+iid8Cz91CGY48yUC0sf5Xzv4+jFHJt6cBUyUKggRNcLSr0gaV2ispqimlNXE2zrLGl/jWI+pKoqfAh1neJ8iNEdhDhHo/s0svFRfCmpxaMgxNZzlNTYSKFdRBpvsOZTlFDM2stYlVLToLr8Ann0DH5Wc7azThD18aKJdJpc9smWh8THd7F2lbLa4DhuQNyEdp8yjDBBSH5mjyDfJ0pbBMYyzXKKTpsoEQgVoFQTEYON22ibkzS6TM+s05pFyDRl3moxX1rhrStw++Lmo/vunTfh3a+w7hOyVNKJ+3TSHqZYcO3VN1jOHN1zS7xX3mf/+BBtNDI/pvi9f4oZDMA57HyGyf/t++2997jS4M3pftVTPxy01nzpS1/id37nd3j11Vf57Gc/y/7+Pl/4whf4rd/6LcqyfDRu19p/91/2Y8p7z0hbbi5KKuf4i5MaT5bdpq4HABjvMd7z7VnO1WbMR9oNDirN18ZzHOC854PhmLABHDRYmQcMa0M2HxOpMaPZNjcefICzEdH4hJ3RDbyXHJunKQ6bdLykTI8xsSMNIwYeAt/A2yViU9PymokboLodnBBEjZg03iVsRjjVoFYJQpTIOGJaS3Sec65oYGpD7TVaCYooZNevUjRqpqR82X6aRupJ3AIrQ2ZZzdvBY2inoM6pZcj5fIasDT0EnVaTCA8FDMMVDnUDE3X5sOiRSIdothDtJeJGizKvyWqDSNoENFgu9tic3qXZiWm0Yhr5iN1FhzrsUsozFLMp/aWEKUforuZGK8fZEtkKSS4oHtu+z6Lnef3qOV5X7zALJ3yr22cqR6AEbWe5KAYEwQxlclRyh6+2KmonmYk5LQlRMOOtFUfUCtm6YCjjFBkYxq0hIghoxJLAa0oEczyftQXTSPJQwa9lfaZKUMoF0kPqEryHREb4PMenOcfxjLeDBxx0NpnaCGMLbh6+w39R13zNGeL4MhsrZxnIkMp1+Xb/IqM0JLQG7xVlbxXnIuzgGO/BJn16doKSnghJrAuUUJRK4pXHW1jYgr7eJkhKBpUlCCSBcdjMsmhm9HJLPo2os4AqvkhRPkV26wj3YEFV5PhqQX2ikIVAV4+uH5XWWOc4enCfmy9/7W/ozPzLOw1qfow4rbHW0Oh0kFJircEOS8Zvb9Ho9h69yMO7X95h5+aI9790wnRquXtjSCBTDlebBBca+GrGpBjSSkK0LdDhDJNmTKqC37v3UWQeENchhQh5/vwvUNNlObPEXnGpbvMCj6ODMWf1a5xNLvPY3Yu8dNLh6fIpMinYThr0dZf/8cHzrOZNTgrPerbBYLHBu1mTpipxEczCmFfcHj/TTLkcas527rIWSgpruZ+OuRBMWA87/O1JwPXpPdLRMYsiRtkxD+Qhr1wouNzpEJohTjt+utT8dF0hyznnimMOz11l++ge9ugmdSpYTRYMfEJdKShyVmNPGIORIUedK/jOkA9aY965GlGcG9FevE83O0AWe0zbS5Rph5Fs4qOE5bu3uPruV6gJqaMKWyyIBsdgoOgsUe/k3NsfsDABlDW5GnGhvoQwHldpgrJCiimhsPz8qxmqsuSuyx9/8m+zaK7z/MEuVBq5G1Ff20H+9AGiymjuLJG0JkjZZz7bpPYldTHH33lAdnTIoNpBLBo80WliihnXP7WGLifgauJUku0OOPnq65SLjCrXLEYV09NpUKd+jC30glzn3Hh5j52Hxzjv0E7z4fBDZvUUYRWz3SvM3ttiya/y6fBTGP02Vd7hnNCkZNycvMJIL7incoqiYHBwTKVChlkDG7ZZbW+wb45Qvsel80fk8QoP/GMcz2siNSOIBGGry/56g8X+NSAhWQuwaZ9Z1KYRnGGu+zgtGaizmFKiiwA576PTQ9rdFoks6dmc8YNncbpJy3RJ0ph+QzHTO8gQvPWY+gzLssGKrHGmIG16ChcgZAdXF7yoahqtGqNrvAfnLFGjR9Bq4r0iaLQZuRmiVNSLOXGjS9DowIXrtHoxjUYTY0ARgF+lHVUYG5BGPeLKkTZzbP0a2u9ztAgJrCZ2iudzhU27rOU3kUowsn2y2YSnK8OGDzizcQ1kTIBk3t3g5pKE5bOEnWdIkxhvWgThEk/cvIecT6lrwQO9g4s1UnRwowEuXYKgAd5RMSaOztGcHBP6JtYMMK1lFq0+LVZoxMuQRgwvXsXUVwmrnHiWEUarrOaSswcROyuSyDVYj5YR0hEc7HFxAOlGk8KWHO0cYKWjVY6QUR8zHOKspZqOsX9qIMBfZP7Hu9R7P5wNFE/9+AmCgM3NTe7evYuUEq0129vbDAYDut0uW1tb3L9/n9/8zd/k+LSi7C/0/9g55mujOU2l/sKcxnsYDr9Glt0B4I9Hc742mvO18ZxP25D2zQkPspJ/cf+QojbsbW/xh/e3SJYzdBbwnFwwLATVh2+xHj6JFBGN/gY6M3RFg35/jaTZ5mvVP2DXp0RVk3l7QuUtTQGhq1mfrNA5qmnVGU/rHU5iyfK5NZJWm1624KXxF/k4ivhwhpzVpFlFKmqysqYyFlv2aC4tsyBCW0NZlxTaYXxFHnQIM8l8+SplmKIduLTNXngGn7ZJlafwIddGx3yj/Bjvz6/Q8jXTsI2ZZWR5zcki4K5bZ6ID2oEgDANMbZmSMtEBmVPYXocyfoH2tXWsCLnaGrAeTJC64CSTjIIVPl9fpbIVUTegrA3zpYc85u/SzCc08BRph0t72wSTLXaDEY+NGjwjKz6Zj1lXCS/03uQ/n8zYcDO8ejQsJRCWo47l/7z6z/lKq8GSrUjMDvO4gw0ku3FFrdoQ1IzUA1oupHk+Ra5JtFSMEsm2qdg2J9yra25UNdNIUMmSplU07KMdFoGBab7MzuoRhozCF0RCU3lYrptExwZ1ZsBrXtPornBB/SIHzU/xZH6V7SZkEaiwYpCusds6T5RYGq0cEUjy5DItcQ4O3yM7eRGl2mxGXdbLkDgCJyD3IXL8AOlXWBSGKJakkWItucxx1OXyxKGrADOXZHmXyd6X2D76fZI6oMxzhK3IR4/DDKw2WK35r9+7yd3xFD0fUv7JyG5noc7/g5yseBrU/BgxRnPuyWd54e/8fYIgwtQ19XFGfntAa6kPQHFjQH5jwOQwRy80PpC4QJILWAQC0Qp5O3kMlwtarkWpB5wMHqJ2Jmi5wcSPULmlx6PyxiLZILNdOqVBWTg/jzijO0x8zcQ6/tP5L/FM8zrRwRma+Qo+kuy3IoajkJ5Y4h0/YZxsEyxi9quITycN1pQmd4bPV5Y3qognTM5q/JBx+A4xJalwWHPCavAqDatYtS0GWBoBLIym2HuZyhoqs8wnTnI+Iia89N6H9G58k4gCryRrxztMOn2SckpVZMybkmU5ZFOVdGXJJVtiXEkSGDbMPZaqGWlnBy9KtJ7SSgwvuyco5zcZlA94W0p2kx6vn48JZYNeOUFVA8qkwaFb5t7+WbqzGYn3FGc3yYeST77rePL2Oq2BZlUp1ufLpFGMMwZRFHiboXyDcFGiO32ybI3XzpxhtjIkOTomEAHdP9b0f7eHa9wjfm2JxnshQgxB9KiqABtoPBb59vvsffWLvPHWZ5nsHhOLmPrmFzGHN5kc7lCXU4QsmLx/nwe/8wphNKMqDItJSTF/1OTS1RZ9Ohnq1I8R7///7P1Z0KTZfd/5fc+zL7lnvvtSe1d39Qp0A91ogABBkBJXyaIkemSPJ8aOmBl7Yrxc+MI3Ds+V7xwey6MIhzQakRIpjShpaO4kSAAE2Gh0A71Wd+3bu2+557Mv5xxfFMkhRcmiRFIEqfpEvFFLvvlGVsRzTmb9n9/5/zVJlVDKkkwd8t/d/Ns82j8kr3MOogOKOqM6eI2DD7Y5u1EyLyRBtkw6/jR68gzN9hixvkdaTJFZl7N6lyyYoUpJXdQkeRdXCHQrpLVyQKkAd4d9v8GHyRexXQ1WiW0GtNYm1PM2+4VHZvqYSzYni5JRuMYV+2WeXwQ0lGavfpXcHFCXDvbsOcbNCCqNxYJw0SY+WsJ2ErxiDUO7hMJgLvcRlibwB1xutgmVjVkmaC1R+YLanjBaJI+n/1knyGAECJTWGKaD01gizqaYlovQkiSZoSpNEse0muvopcuIRUq7XdAfrKC7itAOsYw27vw+47XPMdv4HgQmUX5MnT+kKsdUyiI4uY6v4eLHOY1I0z17F9cT0Ewp1sY09u9g37pOsnwVaVfoXHNnq8ftlWWMNOPi3q9hlVM2RxrHexZD+aiNc0SZgV8NwO/iVpdp5Tn1ySlWuIxSJmpxh460WHvn61iZJk+m1LTQewWaJbQKsD2LUbNLs9qkSHIoagxvibB5nmduppS9dQx63LdOiMs5Rcvh8sRB+ILhxpD92T6GZVCWc+TyKvv33kNVJdViDlnx///arBTF/Rkqr/+9rIUnnvjjqqqKqqqwLIt+v8/FixfZ3d2lKArOzs5oNptcvHiRn/iJn2B5efnP+uV+V9I8bgb8f7m4Rtc2kb/v85jWmlyq3/s7qTKkenyjbScreJgWzGvJeipZ+dYp/ZOIL/36lzn4F9/ky//t/4PuwQPCjk9ZlrzICSuzA5qnLsvF03jnPot+5grZcJ9m7fFK/y8T+E9z9Y37uPkZVTrgROUUwkKTY+YxSjVI4xJQDC2DaWcVOgOylTWcomLoPMX3ni44HXvURYBbVfSsCCwLYZk48xlGs0tcCZSSCDSWadGXIePah7riUK8wViF5rTGbHWrHxXckDUdQ2x6+XXC96KNPz/DKgtzwKAyfynQoDI93Zi5KGMyZotFYssDOYsaqgTJsalvgvvQO2JpcO+i6pCUjNqmp0oyTssnXy02kbWLWBZ2kwUrjmF5wBydNcdOUBS3cVogfRRS55ovfGvH67JS/Mvt1XsxXsdQtMsfHUCnpwkAuJHZZY8kRCVP2VYPzR7d4bXgX/CW+sbbF3DCInBamVbE1jGnO5oz4pxzr96kNwUwoTsuC03JIkxLDEMwdSWoWuBW4ykCjcS2XSGzQXY5oKYlfNahkToRBPwrxVnrU5TeJw0N+ef5zGM0ZnyyuYXiSQ+vXqW2FYcbccNf52F8jFTllwwHHpBKrNMrzGEgwWhiDx5MYtysQDoRaktQmx8kl7CwkziS2ZYAhaCxMToWFH0lKw0ZGoO/cITu+TVrtYEsDVWqa9mco1RVEDaZtMTzc51v7R5yN9rHe+tuoxSmUMcz24O3/D5rvviOWTwo1/wHI44j58Iwqy2h0uzTyFs7UYn52ws2vfAVVSMJOF5Qm+fAMLy4ZHUQYSuO1HbY+5zIc2CySnLiu+GnrjCJW1LlCiWOGjx7iJoJh8CrjwQl1v4ddamoz5l3zHgU5g0xiKc1mClWWsKb6vJ5v0nu0xEHXYuxopGFg2SbvFgXrjQ5GGmHXBpURkZoRU7/gs4shyyrnyJMkVkmZdPGpiKoJS6rNWXUPn5LzwzNmUcBgd4R9ekioMjqeiS1LNBIhDTb0AGMcMalnOGVFrVIUEdnqMqqsMIHn7BxbCGZiSll2CWuLgTpGZiGTxOfQdWhab7MavI/Z2wOZY5UxBZsM8wZpskNWRVRehiYlOp2hapeW02PguZS+zQlfoFOs0nEdwkpyY32FeWKwcrKgs2PhLyQXT97jfHILWh4zW3EaVgjLRZRQb28wfOo80e0VRFRy8frXyLt9EruHGWeYQ4Pi9meRUR8rAqEUiibV2nma144wVzQyTYjmMyynC2mJqaCYDEl2P2IxPKJMZ8hqysmZJj3/EmFrTJFWJLOCMq0fxxgnOclbR3/Wl/sTT/x7lVQJgRVA9zc5lW/x5m/dYJxNiKqIKM6wFy+x9fJ1TGoSLTkaSQp3RLK/jGEKGqFPkc2Ro4B5NCLNFliGgy3AViHPeTZ1d0F46YCmnKMZM1RnGGXF5S8eYrcLFsJltH6IaOe0zXMsJS/gNB5hTFyC2qRltdmclGBWPC0P6K7l+A0LOznPzWaD/CygHIdEt5/CMEaPe6kEFzG0iytgJnNO5JB+c5ltbdIyTHRRYpgGeR6xYu6wwiFSlviVgskZjuejTAOpDCqzST7fR5gSXUu0donNJjvPvEJVzNBGhXv2gFneJ3dewnQM5qlHrWK8fEhau4wqn7nfZHTtFQbLzyOLGUGrRZxMKZWFP5fYpzEe4Fo+sR2zG1q8/bkvMO70+NsXO9zvdjlo2Ix7I4ooYnN4SuvkPm7yNt2zGOVs8e6114nPvYLVXMKre7iGol3W9EyXfL6HjNbwzHO43ifJ/Q77r34So7eK5TZRtY+qDqibIdK0mbdbVNpC6IKGrmgkEbI/YL75DKnv8PK3M4K8w6mOKF2Xk0sDWouKOBpzap8S6wU9A4p0zjCU3PnFn2H6L/4ZKk3Q/4ZEjZwXyLhCV0+OPj3x54NlWYRhyI//+I8zGAzo9/v8lb/yV/iRH/kRXn/9ddbW1n5vKukT/xOtHxdnfq8Ao+GFpo8tBPXvtDj43cf++8MRD9PHRd4yMqnzx8fIZrVkUtUIwKw1cqngyp0R6Wifvbv3UUurtE/3CRoBdVmyKh/Sn9ymGXQxSx+/+RxzNSIRc4wSXDPENjYw5znZ7ISoMjk6C3jYtJm4C5wix7Ij7HwOlsPYaiO6PW40A84l+xQoPohX+fpOn51inUfDPml7k4ZI8VwXw/Owy5Rxa8B1uYUZNkjjGMe2sQrJuLCQSqGUIio0kfKopEFSaBJtE9qCUpvkdcWpscyZsYzwOlRBh1trr3BLr1GaHtt6wjPugokWjLTPlltQ5imHziUUglmjycOuhy8XlIZPrQ1802RNlAzsjK+4rzEVAbU22S7PsM0BYTUiT0e0LYGjJXPtc7K0QlVBb9djM2vx/N4Rq/mQ52UPy7+E4wcsVIdo3kXkFc+5Lhf0Dp+PmoSzE6Ck3fEo3A4/5ZZMhUEiHDrNgguHOS33ECxNq/NJhC2oLYEyDCq3xWtezqcDlwUmiZmRKZNSWFS6Bs+iDHpI44xe7bJuXSVTI1IjR6aaUcchyCt6rQm5VjxsCbaTHm8Gu1xP7rOXTRDmmK6qOTI1rbIHk7+Bj0VjNsKrFGJpGzccEuLjGhXn8oqxCReLmlnX4qF4HjN1QIAlYG4KTooFsWtwToLjmCghkGmM3FhFejF5M6RMNBQvoWhCrbFdj0cff8hYCybvHWHPDwn3vgx7b6OzGXp2wMm9O+Rx9GexjP+1nhRq/gNw8uAe7/7yz1GkKY4fIKMKnUgO79xi8nAfCxuOJPUo53QyxPEUk/0I25U4TZsbd6/z8fAhx+N9bt65xVjGVAUoXWEa+8zf/iXC0mRgepwa9/nws6/gCBMdlwjDQnLIJyPNUqOmuahZMlZ4lmu0xldpWQW10vjn98FUOLbgKCmpMkH08CZDrah1jlHeYCIWtMqUc8LjQxmzZo1ZshQBNf7BiK09TVNUXAhgJc8wUsHtFsjFKReqMzqBQZMaUwhC22e18nhns81tp4Ue9Cl1SSwlo/U1CsvmoOGznE4QyuDp6BQ7cnkqL2gcvsuVg18gWeRk/SbR0xEt8x0elD20JZglDrvxZ5iUDspsYGgJ9QL75E0GOzcx7YBGvcosWMc0YmQNx84mpw0XXVXUhkRnKabtMt/ZwXEMLt19hDg9YtGqmQ18jvoCI+yiDYhFRBE0GUmBFPCLP/Aib15+joO1V4iaDepScHzyCaQKEbnGyBV21UEZNVX/mKxzxr1Nl5bhcrF5iW5g4FQJZW1z9xtfZts7pdFtEo/3OToVLIsTZLWgSArKXCJMgaoVulLIeQnqu6sa/cQTf5ryOqfpNMmrMxyjZqKH7M/3WQlWmIwiyMZU6QNCXzHXEulIltbfZf3ibeyyzUrWpy4SsqnGt3sEog0oorMDrhh9Xh0XKCsFZ46lR9QiISl9us0DHLuDQlHlEsOaYbckg7BNd/HS44JsdA7iAkuZOAuNtGsuZrfJD/sMegrTOiGIb2HgEZYrDMqXuNzZZtmHVe3RcWyaLgytc3x0doBTwsJPKOwFthNg2R51VfLLnRa/tBagDYgWR7jaxQ2aBBa4WrC2/wBdjqjyM8xmH9N9HkMZZP1NfvHTn2dCzXqs6B2kKCPEKjyW+i5PJXu0zvY4P32L4Og6Zl7w0nv3aB8cY9QlWT/k1D7Hov0KXrvEyiJsJbDxuLm+xYPeEv/wtS/x8dVnuFBmPNq8wsHTn6Q7+YjnDm/RmI6wbIu8HmILjeflHDXXEWdNDLPCM7s4iYnPBJZXMGyw3TZ96xJecIXM7zJdWWLe0YSdZaTnsHS1jdfwKE2HSW8DU7vIIkHaCvm0SxU2SYIGh8tLSKVZryHqtsiabQ4HDUpTM757g2k1wcwWXH7vHeos4uudR2x+PGTx9rdReU4dLZBSUtd/ODFTliU779/D2Wqiyyf9PJ7488E0Ta5cucLW1hadTodr164RBAFra2tcuHABw/iL/V+Wf9emyRrN/2v3lP9m55RaayqtcAwDUwik1iTTnL+3e4bUMB1nzLIK0BxfV8SnjyfAzqvHhRoAo1bcCnZpHg4p65y8zvmo0UP7Pr7lQ+Vipw5PzwsavoeQJu35kK3WW8R6jOHYCEdQxi28zhZVFrGf3GEyq5gbNrnt008TssVd7PiEMmhxSgtXZKwc3H7cNL1MUKXEtgDHIc4lleVStNaxLQu/2SHtnSNVNqkV0mx5CMej8FyCvGQhbQzLRErNQrnkWFRKExUwVSEtsySt4aAIcYwGhnApKxNdC6bNZU51m9xpcUGdsZ0+oJZrPKp6LIsIx9AcVw0aNuzZJh84F+nJOcrxqC0X5TWwvJpGw+J+vcFGs2JouKzF3+HW1gDDkpxUm7Rt8KuMW0tPcbByDh0EZAuTo+0LuGZEuyj5cvUs3+h9H5HZZX/uk2UdTBSXDM35w31eG4V4UmL7JsVGRqoNJlVO07KpgY3lfTYl1EoirBaeWKblGNiOQauliXC5VI64ksFcGyyIqeuS1KvR1CRmRuG4tOoWK6ywbF1EmrPHU3aVy5mT4hcWsdZIHD6WOe2sw6GTURk29/UOaeMMRwpOiGg6cNc7ZmA6mLqB7YOzPMDmFk0kfX+X1ShnbBtcPKu52zY4DZbI6xDbMxF2zlQqDuM5qazZLCRKaJKWje4vE620Kd2Yn7vQZ38mqXMXK0igrgk9g/HwDgvfYjE2EWIVXyeQDJG5w/Twi9z68tcYHx58V6Vq/mLvek8AkEULju7cIplNcPwAXUocy+P2t34bO+gReC2KGwuK04RJGVObNfWiQIoEr+fgejaXroVoq+JkdESiUkRjjeN+Fy+cUuDg2x5+ccQV2SZVu7iGiZIVZrukVD9H5R/iORluKmnUTWzZQudbBK5mBYOT2WWkMLEFFKVknBc41RjfnVGrnMHwJqLS+FlCKMbsZJqeXvAlf46rawrTglqzKQs+ZyZY9YKXbn+buR1TxkP2Fz4frq2zZdVsnEw5p22GU4s9PaY53cJabZCKnLk15k5/jbwZ4g4auONTdFExmM5AQnM+o/ZtzPNLmKpgaSmiPViB45A39j/NFVnz+nSP+8crYAjK9rO4CrRt0k9OuTC9h+gEjBrniBrnyJMZTnULx45YxBNmvkErneBbDvMLq/iLM/SFJpxYlNOc2MvRvRaTi+cZh+soy8LMUko7RqURhm2ShiU7z15jZ+OEX/tMSCkMPtr+CO1qmCwwMoGIAwQpysoxjVOuZatcOvcCq0mEbZZYYkZlNxhNErbtQ1a2N8imZ/h2Rq+4RZVHZFGOACzbfDy6u5LIqKQ6Sp7E7Z/4D0YhC5pOg6wcc7V7jg+rb/NP7/5TXlt6huN7j7BUgcpBUNBdmTEoBerROcbDXahc6kWCHzaJi4Ll8y02O3cI/Ir15gVWW08zMyuCMKOwa6I+SKNGmOC2HpIdfprpzmVUlNGlANtAVguMRcDewX9GMv0swmhSK4XUUNAmH73M4sjFKxXTmY28+wkwOqw2LrItPFbiFXzHwBWwZQnMUpH7bfJixjQ/5OPhl/l4/i00BqbjEQQdro3mnDMtLMdmlp5iGQqpzuMkFZ4fcoRHhUbJkntrT6GDAUFgItvrnHRXUYZBozKQ0qLONUIL+lVJ7/ge5uSYxvQBRjlF9bexGudx4yNsKdlv1Zy1nqUWIanYx2+mnLRjZn7Bw0ab3Avo5xG/fvEifpRw0B3wffJDtg9P+eS9ryE8h7zZJHGbRL2QVjahG0vM+IxS3uP+4NvU9ZBO8TF7YYhYOce80SDv2AzUiLo2qP0OZVewvHKN/OkEYy3BkjXKMpguYlrdAVoWYIeUX9zC95aolEMlFdNmi6CQZK5iutxjf2uZqNdB3rzDLBtiCYm/t0fk5Dy6uMTZxfOM5keUQlIkEe+++y7Xr1//vWtRVxW6ronjmPcffIRzuY0unyRqnnjizwMN/MpwTiL/7dZspTX3k5x7aU6lNZUCRwhMIaikYvyVXd48nJIqxeU7KXJaoJVmdjSiTEs0MK8lw7LGEiCqgiNzyM3OnFzmlHXGpa1tyl4fy7FRTpdkf5O1dIaznlPbFaaY0DTnpPkOlmtQuYJC2QRmE9NrkOUpWivW799A1D6NfIG0M3QxY9wZMJQmVxqHbJ/tEtUOy24Chond7lFjUNaKWHmMG8+R2Q6F2+HL4WfItIuwHBo+aNtmEgYkyuOGcwWz2abGYFo51MIEoUmlYFYaGGZJbTrMpcVCGGhV0dIpbhZRCoN+YDDVLqHn4Bkmiyogr0DJioZrMS81HUdyJTrmP138PIIa01BE9jL/zHqdsddk5FzBLOGcPOXMX+K3Hq5glGPedZ/mrflThLamQ8XPOpfZrQO2zQVxLUjOb6GaTaZyidv5CveKFX5q8j/jgtNFblZoQ+Knko1JQHNc4SiB3e3g1o84K2OW7R7LjsDXBo0owm1XpLLCFC6B0vRNjeUYNNoWUS1QszM82+CQgofNIYapGLoZkZly3T5GtzWNskXHgiILuFwvs2a/ToBH1ahonGaEezEKg0gsiOwS2zPpBVd45B/zsT4ik4JVcYA2Y46LA1p2RWx0qPSYtfIUHT3gpAo49rdYTRO0K6hOFZMVTe5o4sTENTKENyIvJOPWGmZhs6wkmIr3lmys/gbdpXPMHMWDhmBvUaMrjekX7Nw4YePwVxHhMaVrEHsdcvNv4IgS0jE6l1RjTf0o5f133qcsyz/6utWa8cHe/9Tv5k/Yk0LNfwDyJEYYJsP9XRzfR5eKSy+9ysZzL+E0+vh+G0pBMc0x8KiwcITGsQUfFO+xW95FOz+PtgsOT4+YlwvGZsDdczWqdURp+gw6m5Cc8fTJEuRHzLqCeukCv9yNWA4/R7fu0McncE1EXbM6XcemQeW4bNUab2ogAVeByiUHZob2bM78L6N9Se73sRNwyDDULrPaZMmtWZUxyq7JXBfLcrHiCGWUZAg+5jy2PaEUCwayYl0n/K0HXyHIc1IJ1iTnajbjmeQYaZdMWhvEU8Wj9oBFs0XhOuhogfZClk53aOcpM6tPVORUW+DUEaa5yzz6BCpdIzq12Hz7Ozw12eXjmcVWOMe2HLq+xec23sYIpqhqQlLkpMGALA9pbX2Ec+09zhoV2rZQ3Q6t6YQ67HF/dYmy3eF44yK7q8tI08CxBW5gcPMLP8A3y5CZYeMlOfPWDtQpHVnipjMOOg2m9SGPGgnz1QYq/5hg/yY6LzFlQLE3RDYLrFLhujMMoyATPUSWUE4TdKUpKrCKCS1rxkqvhW3B8yu3CbuHyColXeRgCCzbQMrHiRqVVETfOKCe5H/Wl/0TT/yJyuqMqPzDkdhc5rScJkU95XK4zV5wm//0uf8Vn/fHbGYpvg4IglWQ4NqnnPAGx4clJ8djYuOEUf9rtDt96jrDWcpwrQXN0MZSYJYNIpXiOQXS9DkNc5TuYLcniOYJju4wumUgY58qa1NX4DsmSphko23G59tYzjmyKiFVGXGRsjTcomEMcArBvN4kjpY5aThUdYWFC8JjqehxpsBIK6ShUHmFL2EcHVAbBYvkmLgaIvOCpcFV/CTh0jjFtGyms2MW8QTNgMzqYTZ75P0ugesSLG/iSoErcwxfUicun7p7ihUleHFEhc3MqNB+Su4PyXua619o4xYnlEHJ/oVP0u1vc9hNcRybNe8QzzrDXPuQ7+l/k/7GW8ybOWN/znPFA5p2xvbomL2VbZpViV8+4lL0ASuFRUt2EM0GJ/0+pWewtyIIkiGdSFP6gnsbmyQtxXh5TrXziG899Qn+0Wd+kG9eafLlpzy++XQfvV3xqL3Bl9e2GG0s81b7E8wan8OzHKSlCN2AfpljBxLTalJbLXJdc3xcodwmUXeAH69R1bu8d8Hk7uoy46UB1+5kfOYwoOGZWIsFMzvlcPVL/L3/6H9OVEQo12U+POPGjRvMZrPfuws/+7mfI3nrLcqiJHNqRNtGV08SNU888eeBBn5zvHg89vnfQqU0phA4QlArjUJjGwJTQC01zAqoFKmUpEnFUVxQlQWL0Zhbk5i7SU4iJdO84upozMH0J5kx5RdX5xjUOK7kx/pruKZN2DlP1dniNL6Pz5S6+4A7qiDrptijCj0FS9hUdkLEmHotw1xaQmpNv23TjCOoLebLS0hXUOQTBqFD6oZIIbCDkKTQLAcFqbD5uPUiuAGGH5LUBqeJS9xf5l7iseHmnFgrSNMiaDhEwTJnwQZ3xRJ7RQNpuSgBBdbjZDsSJQyyWuMYOVgOF9cU68NDVs+OCIVBWCRkdUnLzJmWBh2r4pxMiUoTVyi00tgoMm1iuBYPTgT3bz3Fe9Z5buqL3BTb3CnbKNfnxF4ikTbblEwaq9xyt7l0/JCv72/wdrpKJkwCXVOZFhNcOskxqTJYDV5A++cY06TRdRhGLqeTBs2buzScMzAFTh4RZgmNUYZRmdy/8gwhBcvylDh4nc9WAZ9fHLM6WsDKMxjSokFF0x3T0wVu36BumORpQT8+ou0qdrwzdronCMti6mliFvxqOcPNazaiFSyp8JImzwxfwKsGtGqbwi7x3afoHucITMb1MfPmA77vNOKV3ec4djb4bxs/hjAkP7YY4zcSFskxRjXjzE+ZT4840TlnTvR4FLfR4KIes2qdcbFZ8n0qQTUlZjXhvP8erjilLCRzKSCuCI2KJjXfasKdpR6m6XFoXOBTqcNBO6Q2BIZVsP9oCmmN2TboGR55YGAIG0dIdDZDlQpb7NILltg6aSOqP5yo0Voj6xqlFLKu/0Dq5s5bbxBPxn/MHeBf7Umh5i8oJWuUfJxqKJKE9aee5uT+Xdzfl6h56Qd+hMANcSwPSpBxhe1WSCOi1bLZ2lzlQXWb+8V1Sv8jxr2bnMVjoiJlVtQo12Vyb41G+BpqaQM3T+lEXQbe9zCKQ0R8iabe4TP1KU4Z0JI+biAofcUzwyZXPY8PjTlxluJkFbXUGLXCouJwesjCWcVSYLtNfq7zGrbyEEFNaK/RMyo6usKoUkqrQFgOpqnx5hNEPGHx9DY/deWLGJZF7lm0XZMVPyAY7kKWMp9kbIwnPH3wJn19wh3RZ2pvEKsLDAcrJL0eJV3K5gZZs02UzmlMDmk2F9gepN37+CyYLQz+3vE2p1aL//zR1zHymIYtsRyDH7v5Dq36jEuDXZZX32D/i5+k/aktOkdHGEmKqV1aGwtam2c41phlq4GMzyitgLfaT7Hv9DjuXuRgtkXsWNSNkIEbIjyN51a4hsWxClCGRLgL7FYXM0mQ6Qw7j3DKjObCIAdevJ1iT+ZI38OuVwlOzygbMWZcUVqPGL/4JrkMwA5QtUWd2ijZpe8V9M0z1o0S3zYpo4e8M25BXTM7WTDNhxyVByTTAlVIVFZT7kdP4vZP/IXz7eNv8+s7v/4H3pw1mqIuaLktKj3Djy22OM82baaTU+IHhzTwaFtLaFuRHkqOFvdw+gIlKsbJMWk1xjF8tIDpaMZopGiaKVU5Jqk0aVYQugWO7lLoY6TqkfRzXBtUauEZmuLkU4x++1mm7wxwbZ/UB0cqhlslnnsO5eeciRnzaJ9B7NMPz4Phcuc8hCs7fLtXc5ru8531nA97Dn7d5LBSfKQq7mcfYaqSFbtNYDao84xM1TzKPySNp6SdDQoLVJFgGQ7G70zGqAqbthVyvvEZ2q2LqLJiSfT57I1DguSUsVdjasXGyGC9bGDaPqUVsnp6hnvyIb/W/nkCpnx4Ked0e4vIT+hWPq7Z4P5nfojRVgttF7z7mW/y0fmHXE7ewOo/ol4yGK/4/G+O/wk/OvoVNs8OcKuaa6Mx/8df/E0uJcf0DEE3lLS9E/a7PSrf4dA8Zid7gDEv2HnmafY7y9zpfpbdwTlGXoDqaYRlMWzA/ZbJNzYGvLE+IAESNLsdn6OgzYH1DI4yqFxFUK4z22ujqdAYZMcX2FEPkPJ9fNNkCQs7cinrhMiM6FU503DAN37o01w5EdR5hmy1mYUmjrPE6srT+LQwnYDx/iGtToeqqkBrdJ4z/4VfpD4bUpYFcRYjDflkL37iiT9HIimp/i2PXVRaYxkCyxCUWiMAQ4ApBLVUiLTGrBSJVMRpxXFaki0WKB3z5eMZ//eHx1RK88lHEc99631S9YjCyHlanGLIChxJfmtKlVaYjXXsZp+82sHWBcP9GxweHXFvlLHX/GH2Ny5iCJ9xQ1J5MYkZc7y+DQK2W6DLHFkUuFWBtiy0rFhqhVSNFolo4PkutgltJ2NqNXm/XmbWGGAuryOBUT5jr9FnqFu8aB2S2wHSNLGNmllzjaQM2W+dZ9nMmOcmhuWiDRvHBMMwaLoGpqxpFyXKcJlaPVyRYrR9osTDz3NA0nHmjGuHcFqydvSAtDYIhEJI6DZKLAGhafOBtcEePU7iNY5yk6nZYa5cKtvhwBvwXPkIv4zYjqcM6hLfLnCVIDQkPhEtEj7dmKGkgYxqmo7BTm7y095r3PGusm7HjCKTRWlQFzWNIqH2fdZPQ9azA5xZTBBJFsLi/MzgM48WvBzHvDj8Dv/lmz/Np88W7NuboF3G8+t0x7t879H72H3JC4f7uFrhl0MaImco9rGNOZZhEocmzcmQtRsRR3NF66SFMmA5d1mxA57yXJxC08o2cYqXacoGrumQWKfci9/BS3Pa+y0C5ZDKmroI2N55Hs8pcPKIj+pTfq7zNRblHl/x3uSBZxHYFa5hoE2bL2W/SdD+iPOLhF1vH4cp5coRVTvCqCRCQiOVuCLD1zVPRwXjrsdMdRiJl3n5tCCxNZElqMcRcVHzDwceU7tm2VSkJpiGRaPVIj7dZ++DDzCchF64QjsP0fHi8ThvpZifnaKVQmcz3vn5f8rh7Rvc+PpX/sAaLLMM2/P+xPaB3+9JoeYvqJ0P3+fRB+897vKeJgzOXWB8sIft+ahSokuFlAqhDKpKQV6zOJsi/Du4m3dptDSuazIsh5T+BMdMkcvHLPpzMARVS2HPEspZixVrgxN3jsgK/Px52izjsErTqXlRWVx1jlHCpETjCU3iwcRT+FOLO3bODb1HR2XUlUJWGlPmnLV6/Hfrn2LP+RKq7HJTNpF2gLm5RjN9npUipZGWGPGIREcESmFNp2wd7HP5m2/w1dbrPBKrjMVTaEtQFiadewfw4gDlVoTjmKXJAnucYmKQbzcYtpdImlvo5R76hzy8vE1mL1O7HvNBj1V7lxei38JwMnQrYW3+LofJFplZ886z38ut81coLMGgSvke65Bn9+4yOHlIf3aftF4mWCtpr99hbXLEoJrQtUxsz6aKNH51RmW/RNx+BWrFyGyC4fCPL36B2CjIbJfcsnFkD5k87nTeER7d2mTvwhpB7ZAMVmksxgxil/Nnx7z+4QkbxzAPA55+UBKvD3CqJu0HP4A5MzHUIdasZvDNF7Cbm6wGXaz+0+hsipAKz27QsXJSfPToLn6xxzSfczaOMbUgn2e44wkPp/f4yk/dYvZghrAMZFRSzAr2Php9V53zfOKJf1daaw7iA8bZ+Pf+DKC0otY1fa+HaRTIs5LX3v9LDP/+30aPWpRRjkhTrAczpB+xSMaUiaJrrlDlJWfJKUXRYzQ/otaCQvWIc82+WObYsZhZGZDgumBmHsiPqfOQg7BEWCbTZJXSW6XOAqgHPOf/MKHoELsT1t2ci+GX8ZwRRqPmUb7A7kuUp/HtgNR1+DDMKPN97pgFiY74hXbKr3QUqaN464LD+ysF908/oLQM2mGP9tJFPLdLtnEexwmxnZC5DsHWzLIjglYXy7SxgjZuq0PoXcQoGxj6HLa3TV6uEW09z0S1GRoFPzxK6bQG1MVVqnBA5TdInB7BIqVzeIRTHeFa8O7FC2ROiSsdvBrublzgNz/R4Va3xyzIKcWCOvQ4dnN2rihON5vstc7RlBnnqoJPzUasH97i6r2b9NIxjWKIa0056a2zWGohu0uoPKdwGlBLHro2n7r1PpfPThm5axxdvcp/svv3eSV7RCZqRobGqWCOwaljsC5MJmnMXJg8vTjDEjm5BXJyh1ofUusCw9U82G9xUmcIUeBHkqe6L2BWUxbpDOVrvGTCQG7Sn11iM2nTGr/I7Oo1poMGS5VL0/Ax3TbackinMx7ZIWVeMP25n6O4exe5yFBJSllVpFnG7Ou/Sn2292QffuKJPweUhkQqqn+pz99JUXEv+denlONa0jQf96QpqhpTawx+5+hTKRGFxCgVi0pSF5LTtGQ6HmE3F3xvVNKR0B0XXLr7Pm/tfIWszhBlTRkdIwRUdUaVZ1RKcLo7AtulEVigPcw0BOuMUmfsxp+mbrZIxZzIOWbBKUVcc9DZxO722Rp9Gy+bE0Qp5mKO4Tg4lvH4WKxhMDKWaJtzBoHEM2Pm2iEtKpw8QXkBrmUhLIuJ46NMCwpFVGsQgrrMWEhFezHDkJp23+GosFFWgxILy7apDIe2KxCqJoo0tbTY0WskDZfKrJibHUSS4grBcpgyLAyipIZnDBbKINA1rmGz1ruFbVboquIsNzG8mq5lMzZqprJJWpvMpcnCcDEdQaEVf/PsDX5i/h12VJ+Gitm2Ir5g/jZtMeYCx6BhLM5x1Z+wV2oelRbXgxdZsyLmlU1tWVTawi0zSj9AmgGp4eMZLj2alEpw7hsZn/nGXf6jX3gTY9VAdfssHWUMW22k0UMq4OSIZ/Y+RNQl5z/+iFAoGhqaeYElm6Slx1u+ybvBgvfKX6dS8AiJqjQEFe1C8mzWoFPZFNJlZX6VJIzo28sIZTE3hzhVjK4UugQhTewqQ9YmJ/WYf+bMcWuY5zGpVbNb3kEsDji0XDzLQBgGM6fJxfHbzGqfQZzzSL9Hp3dIZRyTiymOLgiFYKmu0bWk1ibW+D6n/Xd4tL/MWXGeFTWkmytGDZPKuUSlHWx/hVyt0q1PyQBTG3iOJhkeYtUl2kgwa4mV1Zz94/8zN7/yS5RpxLf++T+mLgt48//N7P1f42znIWc7D/7AGqyKHMf1/xR2hSeFmr+wFqMh87MTtFIsspzTJMcwTGzXQ5eSuqiQVQVKUFWKItxjMZ6ijJJxIyfoKBzbRPs5Y73A8i5RiRLp1gROAMYp/TxFuW3MyuG6eZdO53kM1aU58hmYTQJmOGVBJSOkgAfelKFI+Wae8jNWxIfdCbdrxaQ+ZcmpqaSCWmAaFn95cYsLQUkeNzgSbZbcksDViChm5k55Tp+xOj8lzGNmsxGNLMUdT3HTnLjdJH5wSDNwcKqcJWtGoDXt+7eQlyWyKVijpK1dNKsUmWJz8AbtUNFKTnklifGCe7iJoDY9EJqz7SWMF/ZpnZ6QioLKDXEmu2S1z6ftU96rPUzTQjoenSzlhQ+/Sjgb0z4+REddIv8q/WQHxz2ib8/Y/OQ3aDiS3DCpigDPXJAKG9EPkLbgXHMbZ5Fy5gdI2yENB8xMj+882MTaibj89X167pzB8QFj3WXxoMN+x6Z3+JCLpzZXdg9wS0U3Mtnrw8/+9Yt8sC0x/Taz3hWGvfNUYp+6uQZjB6ta5qyVoa0lVDQCpdgOL9Pqfp5CfYni+q8TpHsMowxfD1j311lqLLikW7RcGzewOHt/iNnzMBo2yVnGnbcev/k88cRfBCfJCZOjhxTzCbcnt5FKUsgCU5gs+V18K6SqSsy8TdbLMPe6mKLFtCxo3IdCjDnJHuAHIX7WQUiTSNaMxysYzS6lYTPOllnoNrXb4thwWXCG4SzQwiEabxJ2bLKDjCune7DYoCodpv0LLNqbmOYaXrSON+sQl0OWiwlhMiRVC0SYY3tdpvI6R52b2FJQ+gbDsEFRmiS6IMsjSmEyalW839jhobNHZ+dXaTQa9Bd3eXtrhXtWirXs0VEeeZ5iWCFqCBNbMJrto1yB4/h4nQ1Cv8mguUWnnNMuxmjjGiQZy+zhN4bUbZutBeiBouwoCquJ0bSoLJOdFwZ87mONH7b4G9O/zmWadJorhIYNShLngpqMW67HsXOBKQ4Hyx5VPGNdKS5nQ7TVYGqZLHdX+d+9s8Pax+/znS88ywfdNZY9F3/VZ3F5Hb8dEwVtDv3z3F59FeGZXK7u8+riLi/ef49WnvHuZ1/n6uI+l5IjFhj4NTDOOZtmzKqKrtIYJ6eYwuBi/BtUzTEqTymSQwrrLsoosEzwhUWZ29jrF1Bhj2G2hqhSlo1VIhYEiza90UXMUQOyBk66QvrCS3z8VI/NwqJtWeTNJqUQNPOU5978NvmjI8b/+J9QHhwi7Db1OKLMC3zPY/LNN5DTP5049hNPPPEnq9aaVKo/lKj5OEr5peHsX/u8WS3p2haWEOx++B6DvfuPEzVAldeIWuNWinFRQ62Ii5rJeETR7dCZZ7TiiuZZhpickK5cJUskHWUSxzO8MCRLzqizmlpBMlOUeYnlCBKxhqzmmE6BayqOyxmbToej2V3kosSwLaShOW330N0Bj2ZN2o4kTHLivEYbBg1XE+UZLVFxVvrMK2iJxeOpRU6LVJoIwyCpJC0HKqDhGMRa4OFQ5QWiLJjpgLHRxc5GiDLhuGky1k2k06aWYFkmheHRtBWx8HjQuIzCYiYbLIUeV80Fi7yiLAt8WbNWRRRSY0QxhG1mpiLMF3iGjWdGeGaNpQsqpZFmzbBtkSA4zUxsQ5DhEuUSw1SYpoFXxiwPD7lVbdD2NK8052yYJ8hlBy00otPgrHS5Uj9izxAMtclMrXCxOGBdzHE8kxltZmVI3WxTLF9j6mpafZ9QOBQKnJnB+tEebupg7T5L+sjCOBOMTUGtLSxMmvGIoDjhrxs/x6Y1ITQ1A2nQnBwwn6xyNPoMv6UE17MafxJhtBsoJ2EUzNDehEBUiEZF5Zm4BFjKYLSyg6k6GEqQ6BStbcpigC4hrU1klSMMSZKOiGKHWptooyQJn+JgyaBXKA6WVzBMgxrFkd3la6tfpFW0aKYKqQ7oLP8G7TpC6wIhavBNzHCXIkyJCxPz9JCIOVnqUpUWX+/9c/zqPnf7FqW1hMLhshhQsURHHZCjmFUBj+Q2QRDQ67RRKiXXUwpXIGqJef2foB7+NvOzU+oiR5xcJyiPmR4fEo1Hj8et8fgEi1YK07b/VPaFP3ahRkrJe++9x/Xr15lOp3z9619nNBpx8+ZN3nnnHaSU/05dzJ/4Y9CaMksfRxulJEkS4qKgvbKK7XnoQnK0d8hkPAWtUaJmvv0b2I2CODV5GLu4zpy6GGE7NVgdppPzTGYZucxYcQZsJRYvZg3WjHXMXNNxn+e8fB3PCljNcipO2VcPKdNt9OQqVQ0zq+A3Y5N/Fpu8kRv8bPsDtDXFFTlfUZK5VIhC0qHgfHzI8/aCT6C4n5k860Q0nAOKe7cY6xGvJHusTHYJxidUhk3TXSU0TbQdEF56lUsnD/H7LqU5hG6J/9yX8F56Af90htFeYrUaUnkNsrpLMWhh2xMadoLhDtk4GeOpHKs2qF7YQrmawdYMs7VBNgHbd6iKFlVriR80G6ypKd/vHnLOD6iaSzi54Hn/Gv7KFqvjY7KzBhfGPXrulMJfwe7OcVp7rLo2U9Umdi7hDyJWnvuYpy79Elc2JK81jujkNk+7cyztkxsuEyOgk8Q4AzCPH3LmOVCWWBJE3iTtXGH35e/H9FsUximHay5px2P1YMqws8XJmo/q9Th1m+ykAUakKQuPtEgx5k104xSwUekEKTROa4W6+HFQF9DDh/gyYbjQrDSW6OsWrjpgvp7SWMq49peWiQGzY+Geb1PGJXlUoeW/2xSDJ574bqCVRiuN0oqz9IzRB29z8OGb/Ndv/tf83et/l7eP30aXNepgiGd2EAaYpiRZMamjJqa/RVkuKJ11Ej3E9MEJXYpK0G4MqIs59mLG+uAqtmNDFrHIoO/UDJxl8rqiCm0Ms0kWvUrj/n+O7b5CwID5w+9BCBtXXGXUXqel2ljawqpqHrqXyGqBe+TSVYLcUphujvBjjsUYs5pS2oqF46JcE1MVj6PEjQEnoc2ZXbM5PSazLbaXniVXNW+ttpnqiEb5CHOyS5bMWArPoyuHk84qyrKYFyWWchjYL1CmGuoaL15gj/dZlzkb07fJKp/K/ib9eI+gXGDKCi9IUG1Jo3mKKWoeDc6oDRPT3yBWPk/nfUpvnSB0KETGhSTHQrGSfos1RzCz2rzvfC9DK2S1LPGKMzp1n159mQuVgW4N6DzT5u0lwd9Z6XGy/qP85FKbeWZwjjnToM9nzIdcDBMaruS/PPlHXMwecr6csZ0NeanY56PecywVE4xas5LWrFLRSCUb1Fh1ynSwTDfRzKozdGiQBSFFMmEgZ7iWg1OZrDT2EbgkSOZLLY5zgalN+vIcyIDB7ApifULS7TN5+lVq5SN7c5Su2d69jzh4xLyqSIXGHg3ZePsN2juP0JMJcjJGeSHVLCaPMvrNNvXR4eNGxk+23yee+K4ntSb7VxRqMqU5yEu01ihV/qHPU/Na0rZMXEMwPDmmlUYIDY7UPJqlCN9iQ5gc5SXUGlUpJpMJ7zVepUDz+o05jVJS2+C212FykReT57k2P0fQ7lDHgjrXSCXJ5inpNMLxTSbVOpQ+VZ6zbkxZLsc4xRTjwicZH0os30P7DoXrUDgux+5FQk9gUIAwCRoubsNj1lyhIyMKv8uhd4nn+ZjYbjLLKtZCkMKgrGs6rkFpObSKCUUtaaUxdZJCmnBmrOK5Lqnq4ZclP3rjTS7VxxzHNkZZ0xUVGS5dy8E0TR4ULvViQZ2WPHV0yKduvcGiSChbAUEW0Tm5RcPR9HVOLAYYoqQpFnjaouGBb9Y4uqTvatJ6ma8er2MZAeNcs9msKK0Grpvg2ROWZE3c6uOXNYtMkfSahO4BreqELEtwqFkxF2SGTbdvcFAXYJjIhcm5xXV+jHv0fBhZHof5Raz1S/j2i3R0idnTHG55FF2ftz/1Mj/7t55iumWx+LjCOKiYd/someLrGUFZ0EuH2NmCS/o7BN0KzwRKA+vdf8ZT/h2E9pkXGv+swsWmHAR0rRnv2t9GujG+pYj9HGVa2Aw4cR9x5NxHGF22zBnLvkW1+F7SkytoKbBEg6YTYxgxMyND5AapaWH1JjinGzTLDkFlMjdmPMzPyGvNyLL52H2WjhugFyXmYsHCatNzBCs6pnY0J10L4e0hwwSJwDUdMhkgFKzMz5gbe3iLER8PjvmtS9eZOgaBjjDynLCekrox6eYOD8vPM60vYuYJwiixG28xsseYWHjRQ9T8iCxakM/OoEzouQXj/V2KOH7cp+Z3+tUIYSDMP53syx/7p2qt8TyPr371q3z5y1/G8zx+/ud/nm9961vs7e2xt7fH/v4+v/zLv8x4/OTOzr8PGiizlHQxQ8maWkrysuTcC5/AdgJkLamKEvUoQckaaRZIa8Zh+IBvq4+YjTU/s5BMswe4pkQon58efcwoW2DIjM+Zl/lf736Gp0rBKl2s2qFlf5LveSjwEXhZxbG9w9g/pRc/jf/o+0hzTVXG1M0FXdPCt2028nNcGm0Seld5MzOIaw2lomHk5I0GExlx1cv4L3a+zgvZGc/WHlGZkloadzxFpRWhlNiux7K9TqM0cPwea401nlJjBqHm6o27zJ+HOrRptfdx7wFNG/vkPseui9OVNJcNbEpqR7Hz1IA0cZBJH68hqVc6DNwzPp9/FSvaRk5mWNOU4f1tJhdfoW92UXXNe6sht0mJvC64Ce0qwtl8lrwZstAW89LDsWMm1RXEVR+sPk0JYt/Dq9o012PsS29hN/c5v31Aa/VrGMaAZ9NHGLJJjocQDufKEQdPvcppbwtVeFi1JpAKN4rR9hI761c5skMsXWEGTZp4NKKac7M2Zx2PYbtJruC01SP8Clg3x2Q6Qe/ewbbPQFfIeIx2bLKOgTRB2xbO6jq+5YDpstRwaYQ+lUj5OLjP0tjDJCUzBIvRkGqzQbEoKZIKVUnS73wHnT9pLvzEny9aa/I7E8rdBVJL0jpFCtg7uUMbn195/6f5+PR94sMThr/9bULdp5y8RNAssBQk8xrRXSGvp9ys5gyrU4KOxLOnJMWCduDjuS3apk8rCFgNUqwioayhZRh80lgijzPipfN4eYPNpI81H1CfZBSJRxp5OK7is1KyOp/TsQ1S08DMJfcHLlHQY224zZq3yXDepy4z3EAzjif4hmTiQGUaxKvLNKgoZUWGIDADbmxfxIgXHF59ifLwY/Ze2OCTOze4ChhFwd7GFmWeEto9VGlwuvYUp09/gp2ty2yFT7MsG5xzIlrZEOkIqk7FFddGFBZJ0aU5nvGDRxXNYsr33LnDBjNa1zRd95sY1ZRHaofx9/wnyPYP8rC3w/HApjHYIik0D12bz56e0kxnJPI2f119mUvFmLfnmxx5TXrpGYWUhIvvYX12gbnjcxzOWV6f0vZTtsQKSjZ4qDSLqKBdzzgSIa/n7/AJ4zamWbIrtwhcyWeN7xDIBV8aPuKdzifwqwltrbh2sqA7PuNiIvnro5pQ2oxaHS5ninY1ZeSZ3Ni4DIZJVoFpetgyJIg/xnFDbKHYX15hvurT8nyaxRqrOyan5teZMEK4Hsn6M0jHohApfeMSi2KI+egmwjTIw5BqacCtZ19g+d4t7GdfoB6PGXcMTsZHzMYTlppNrPkCnWe/d+fviSee+O5Va02hHn/9fplUnJY1RR2zt/f30foPTtWcVY8TNZ4hmM1nhKpGRwWXPpxyf5KgmjbbhslevEDVCqvWnMymvFLeYNk9Yzz6Fp2sQlia7VWDIjEZqAHPxOcJ2h1kVT8e9uG7WIVLmZVoBJFeRxaCCs1AnrKsRyh/yq2Ni8yTUxRQGZJIw0LDIqzwfAuVTXFtk8Aq6Wz3+OfbL+GXESkGS86CYWcD02uT+m28pklVKyzD4Lq4wP3gMteiYzyh8Y8O0VLhWCY7Yo2L1hkLZWPKGi/J6OoF9SKlGSUE1GR2jLQ9Wp7G1TWqqgldm8vlXYLpkMIxuO2ssR1o/HjGwNVcDmoWdZPAsuh0fVwNjmlhC4UjM1bMhFw3mMUNwhREXbPeOWRWgedmdPya5nDMO2sXmK4M6Jg5ekVzdGETS1Y4SuPUOZuL28y8FrKf0fVqLlkwrCr0csmr4lusiYSiFyDVZUqzjV0GOKrJ7fYa7domtpv8j+tf4q53kanXwhxOUalEGpKeV9CtXTq1pFXnGHYDJQKcLU1oV9SmgbWY8mzrG5Q19GuXtbzNo81nqBoeAzVm3nEpRUYQ1GjzFMvQSAaMWwc0Gpqy0MgYvqSexzWWEbjYlsu1conXkwNOxW1umTYqyZkbJVFdkEym9OycIK956laKYYJSCm2nrGUF2sywdM222KBffommmXF5cRsVaKaewguh9uc07QzdXUXqVTqNimuLhFwukLZB6Ur2/Cm1UqALRDLCFSmlnzPKfTqioJI2OovxGg4t6y6ZyHCUpG2lqPkxRRJTjA5QzQ2agcXi7Bjb94kmI779C/+cKs8QhoFhfJcWaoQQmKaJUoo8z2k0GlRVhWmauK5LXdesrq7y+c9/nk6n8yfwkp/4oyizjHQxp64qqrIiS3Ouff4H+eArZxRZiUAg35tRmJrKLKmNBVNzl6ouaJc5d6sGiT1nzY1YslxmRkISKLJacc9+GSvzCXODnmqBV/FD0xjfkjhK80zeZW6NKL0x69ESLROypTF1lVM6JV6psYVBUF3gENhLelz04eVggWcILKGIl1aIZMw4G3Fh9wZtz+eszLg/6KBkgRPNKQoXt1AIQ9CiQeKuYfptKrPPsm/wH3/zXzB9LuXofI+fet7n7FyIXCw48FdJhcWldkbnhXsMq6dI8teIVMhBu0lVGxTDT3PRfJPl8gFb9gPMzOW4iBC2Zn3TRVchDwafAO2CFlBmNOKIiQ5pPJXTCL6NaJ5j6WqDte4Yf1jwzO6Yi7OKtcYCoZ+mrQVOZvD86ZsEwYLEvoIcfQJpfYiwJkh/iXz/PogOibRpFRlds+K+eQFPeyztjNCmhW42UWnCyuwUyzQ4bYas72cYYYfWIgfXpXGWc2Zp3gtCFrbBfrePfbPCu50xXLkMR2cIImJ/QbW6ThlYGKWiqBJqIfA2PExnQNPt0jaaOHVGqcacmWP6xwazW3eRGvb34IM3j0lGGXUhqWYLhv/P/4Zyb//3rk2tNbp+3D3/d9M2v/v7J574blJPcrJJzE/e+ElKWWL6Pjund/iR5DL/2zdt9mYPkIcj1GyBW3aITlfxV49pVF1yKcktm5k95WCxS5oJbF/jURGXM9pehRKC1V6PJXPBQJ9iVRm269KRMSuOoBl0mHX6NOJz2IkJsYKFpox7iPqUhnvIIK7ZTCuaFiycgjJNORMzvnK5wZ3tLzG1YmaTDkL6RCfbNHiGwOowMy0cw2RsuCwlM6TnPz6Gk1c8CgM8WTEMmuSTR5zmb9MeHpLmMXmmOH9eY3g+tS+wypIv7I7ZufI5PiWvsrRylbZT0q5OcOYjLGpiS6D9AZNnLyOtW6xGHm2jT20HGO4ma1xFNLr49TGBewdXSS7QQDQnaD5i4RWs1dv8jFNx1A4xvSab2uOFoENHlaxUY3ZkxNB8PLdwoDd52JWMmstkdoPUq5FWj4EY0ipeoFmGNIVJ5jvcs1NaXsZSus8l/SFLwducHEWITkBTT2jogqo65aDo0CbFNzWX7o8ZPHzASi0wxlPU2GZou1yIE7bLmDE1T0UT3HabOCs4a/Ux7SYnqYPCw7Uk2gvwNyw62mVNLnGh7tGYzHAMH9+AY8sjsCL2D67Sjb6PRdhAyYpifYOR4/L179vmvS98gZO/9teYFT47jz7goBkzjUZ8Jf4ag46H3+uiipyqrFgsFk/22Cee+C5Wa02pFfm/NJ47kZJhWVHIkiS5z2lRcDvOkL+znqdVTdc2cYXBdD7DkwX7D/8BnZMJ/mjGKBCo8S4nswOoFKJUzEYzvpTOMet98vku3TJH0GVATT6pSPMFlV/hByHCranDmmajRcdaQ6oKqyrJ3DXKU3yHQQABAABJREFU2kY5Pl0R4eQLhNflVrOJXlrFtwrcakSCIDctFtkhzUaAVUeYWkEtOfP7XC5OuDgdow2DtN3hqHkZc1SS+y12m0ukSYmQNR+ULYaVy9LtA2rHwalKXGFiuB5nIuDz1oeMcTFNxRzNoGGSFgWmVrgyY6YN7s0KfENzWY1p1AVL9pzz6j2meg3LHbCz0sfs3KaR2/R0TasqqWWDwAoIGj3szhRh1CxRsy5PeDk8YVFalEoQDie0VcbAvUekTVwr5XwQ0p0l6KomW2tzrZ2yah/g5pLa3aTf8TCkpCUjJpaLb815xst5CotJXqKMANM+ZVkdkT23wLYCRG0idIktbcZJRTbOsCpFPRW8cvoZWv7zDOo5SbdLx53RX7/H0O9yBZdzEwmBw131CcLLC3588QaVrFGuYHN5RpSnKAo+F9/m7eXXMAyLgbvgpPDRboRZSnw1xhUxttuitBcElqasNcMyoLq7hlALbLeBYdosjUy60wPG+Q4nwqBZRix5XerCp6wDMEMmwRJl5GNZbYr6EWn9Ia9Vmok6wtI518ynKLNLSKBXnvJ8+y7/VfR32GweU4shztl9JmKTWvZo2QvC1KDSJqq9wNQNVL2FrSQilUjVxjUkJppk6iDKlLHVYnf1A4xQ8n7zIrOwhaU0bSulmh6htSY7vkcZbmA5LoFn4Tea3Hnzt7n71jcp0hTDMBCG+aeyL/yxCzV1XXN8fMwrr7zC93//9/Pw4UN++Id/mGeeeQbP8zh37hyO49BqtTDNP51/xBN/0O+OEKvyjGyxQGrNYO6T7ybs35yQxiWe7VJgsdeQ7FUPifOUhXdAnReIeIxCkdUxhj3j2caE0shJzZJMmdyyVzlpKUpRYcQ1qlmxPIU6MAksgyVp0LMN3KJNEDnMVj8m3/oORmhTCIcmYBsSLQuOZME9LTFFTk+e4JmgqpSp59NpuHjCJwiWcc2Qyp5z0O/S1mfYXTAsDy8tWX84JNEGX1u6TBW0yQ2PopNy2sn4p6su38k+gWOMeWf4Beotj5EVUi13CS7eZ7buMTH7nJSvomSbTSPjSmdEvH+Vpn5IcvQuobXDx/7T7B8eIUPBtn+XruPxKdPARmBZNk8dPuDZ9lP8tdYxc/NLWGsNxsuC5YuC7cYpl+Ov4CU1wWJOs4rppWu4mIhcohZz0C7hkUfwqEFddahMn0HgEQYdtNmg325xvlwQ1DW3qy4HzzzLynBE3OlhJRmTjfNc2LuLWc2ItzfITYsb7fOEeU7VDNhaRCyWN/jmyy+QBzFRs41cu4rhNaGcoQ9HmCLjsNxnb2mFWEi8XJAXEapWCC1J6wZLhUDQR9cuWtWEtk8r7LN75wa6qsl9i/nxGdNZTl0p8vt7aN2muD9F/85dIhWVLH5jl/T9M6qDCDktSN45+bNdNE/8xac1yPLxr7/79W96Si45m+zyxsE3WA1WMZstdstjtjOfpdOc3ekO/TzE80JUFFBGivPOt2hEV6kczZI/x1tSeEGTeFzgtT1coyapZvSNiHw+YpmSfnKbHBshakw/4FbnGWzhYpgdlgtwpudxAwPPMbGUh4wHrHUKrFmJsh3OGV0SFGXriNiziR34VkPy02vwi8mCo9gH4SPEOR60niGxbaQpCRen+A8/Ynl4hG53ePHWtzj/4G0u3PsQ5fp4dkBj+zMYVAS1TZ4qsnyFF6bXcBsukTmmGVRcnXd4dWxxbeRyZiomNtANqV2HSuVsx1MM7XCyepH7HQ83DxBmh6TZpnZDjNRgzBmWHbFa/BJPV6tU6gjt/iZhco+xP2EaVlw1v8r3pv+E9fYj/gtxm9ekSbMOGQjNy9rHNEJs5xKvp6+z8K6T1HMatSCxcvbbz3LS7uPtbxIUPr2qz5vnT7jeSPh0/pNc0RHnyo85t/YbOE0Ho2djNky6coQu5zx9c49mltM0S+pOiFtL2nHKdHKfxC6JTM1afExYxFyZHLISz7D6PQwkd3rLVE7IDA/RWaBUQlrmRJ7CdQK26piuMlCmQOYSS5U07v4y7bMPsc56mDMb3ViiU+TkGy3qZwe836/Q5QNGWw3mgSI52uO4lVKaMe9W7/Hx3lfJlwbIJOXk+IQ33njjSaHmiSf+hKg/4SPdSS0ZljWl0mTqDxZqCqXJpaKQNZVM+YdHI/6v9w64n+Z8FKVMK0nXsnANwWw+x61ioumHNM526Xz4HW4YBfLGb/PFbx8TxAuMsqacJrRyF5WcoJMZT5s1sYjp7H/EoPky948jZrVgo23z+kpMrRQPe+tI18OyKxZ6mbm5TqwHmM0+Ra6RlWCxUMTCZLb1Mv/k0mvc7p6jFga5MHGjkkZ1yvPbGqPKSWqHe8YKz8XHGMMFoaO41ehy1zvPUA6IFOSuRZKVIAwKLHwk1skMQ8BJsyT1Am5cWmXsuRwNzpGbAoTCiEbYFmTNNoXl4BQ5M7VNVlZccOGH8jt4qqKsMhyzwNGKLwzf4oeMX2LqHtOch7wU7yDmE9JU4lUuFw48Nk/vYqUL/urRtwncmHY44zRTnGtKlrshXkOzGhxjuAkNxmxUDiuDjO87vk6aKb7fOOLze++ylYwQ4mlCF5QEyzzPBAebBc/KU67YGksAIifbCMhDD+Xl+H4T0zEYX/o1lCG42X6BSWcD29TESUZeGiyX+2xdXHD33DaJ06NtQu+LJWvNgs6sorC6jLMtpDlhKTvGqEtkw8e0cjBTVJ2ydXIDo7YReY3vKVLVJ3d3WK5CFkWCMCscv4llKUI64NnQcEjMNlV6gumFYFjYJxNIM4rKRLoO/fSEs+aYpJ5jY1CToqsZOqtJS0lamHjGCkHcZGyOMS3F03qFol5i4nyRycZf4ln5D/EGJd8qr/NQTbCSE5yVI6T0mFgL4txC6YDE3EVJTZn08WWGGWmKDHbyECUVlRTkBIydGtn1ScMRP9/5JEfdNvPmC+x3XqNcTGj0BxS7tyka14grk6Wug9/qsHfjOt3VdfI4xrRthBB/YvvB7/fHLtS4rsv3fu/38vnPf56NjQ1+7Md+jO3tbV599VW+9KUv4TjOn8TrfOKP4Pd6gfzOm4dlu48bCqMZ2G2SoxTHNdHCILECpOHQ6PvcP7xBFgXk3gxKBVnMX730C9CaI8o+dTVDGAHCDFGWQ1U/4P3BHjNrAkaNbtWoSYPJTNDwLerA4Hy6TFOu0gktDrMRb8y7nNaSvBZ02wohBFlW4tkh8xLyLEKZkoat8IVikc3pJJILapX91/4apgwxlSCwmqyWCZUSlEKwWL7A+Rtv43z4M/zV2TfAsAhIML40Yfi6xVPVZRqV4LXFHqRNxtc2GFQbJOc/zXw55vRonXQomcVdmirnpbNbvLj4WRrWMS13SFoqYluwI9pMgxZV4GGohLapSeUeqZ3iGSDrijc3DZb8U9LERBh9pH2X40ZIs18waEkKu4WdZGhvi+5xgKkEVZSRlwJZBawljwiUZnT9P4aqS+3ZmGufQwctWttd1pYLijTjNJZMlrq08wln2ysMWinvfPJzXNm7z1MP7jIN+1R1TXc8xsOARpfR8hqv72uee++r3FY/T7Iimb72V3EbG6wspoxWt4GCMvC5N75OqmqaZRNlC8rCZiE/D/e7bN+/i3JMDN/HFW2+/3oLVwsGaRvbMYhlTahPmdYghCK5rXGf/V+QP7LRlUJJSXmakn48IrsxohrlyEVBubP4M107T/zFoLUmnk7QWv3hB5Mh/Mb/Deocdr8Ji8N/489Tec39R9/kh2ub/8P5H8PwfZK1Ds2oxk4VYh6xmvt02itEsy7CrBiMp5jWHlK4+LbL+tIlLlx4hWSSYPo2aesCLaNFqxUwCAe0dRujHHHbWGfzs3s0zg85bC5TGyG1YbGcFKBcLF/jOOC6fWSm2G526ImQnSWbORln9lvgnzJvhcwwuTA9ZaHhVPuUNuTC5eZyyNw+IrYK7Ju/ypWzfV4wN1jKBGWzTXCyx+DmOzx9930eXXqRnzh2We68TMNu8VL4HFe2nyWwPdrDJqJ0EW5JK8wRBFzMNNOg5mZUczaXNKYRpyt9Pr5ygV7lM21aRL1zdFe/QLN7BQObLMhJ9ATr6BvE5k20r1iy4dlsm8IfcrNsgzT5Df+bnFN/hx/wr3NR3sIVR7hmynPTLn75MuvuC/zAcJuVcgmRfpFCPuTXxdvYGI/v/IoZMsipxYQGPtKSXFDL6DJlqfNJboiEpjlFWwZx2KFcf57CriiCJTbcmLqueO7bH9KZSL442eOTrWO23QXPmu+x7b/NQ20jZEVzdB9T5/SiOb69zN7WBWzfpgibTJo2+XyGsAoQkoWoGRs1dtjgbJpQkGK3PQphMK0OcccTDDOloQvO6zG24aGbLe6hMC4L8u4FbpS/wS+lb7DnlTRmNaOgJJVzLiUXKT68wbA/oI4iytEYdesOdVr+Kay6J574D8+vDGfcT4s/0vdqrZH/hsLOdxYJ/+J0iubxUaffr9KavmMxqypmRcRxXvI3x7sMxxP+3sGQ8e8kahqmoE4S7DLCkA6yKjCyiLtmjUxmuIdHWGaJW+Y0lcDUFaFdU2UpVTKncitEfofaA6vfwRM9VvI9zhnHpLrmm0GLMyvn0do5vhV+kamySGsfJzC5N22RlR55rlkIk6EJDSEYuw2aOieXinABt71NusaIJTtGIzkQAWauOA57DIwRhu3xgXuFf/zMXyF3bVJTIMMe7y5fomwENKkxphGeUBz0amrX45Gxwri1zK+sXsF3jqkNG6QkUAscVRNLhUgKJnPBpYbkb02P2D78NsWgQVpX2L6gDgOkTjHNCmXacDrmk8bbKCdEOjbrjsGg9lmeXqGzv04nmROGFaGfkyjB55TP840mjqvoOA1e7d/n+9IjArFg+pcj2Hie5/0NXiwcXhu9z2emdylZRaoI1wwI5FVmlaB16tAtXQwrwbAgNkvyjkccKKbOFe74SzRXBhTePpFh8h29xYkd4oQOhmkQ2QaFTDn1TXZ6m0hpYkqJpUY8d9TAHCeUSQZn9/ioXsJfMcFyEe0W5xIX38lpmxWOisCrqKOMrZYNouKwPeTMOWO0PELYitTyMC2XNi6lJekXGQ3ho+QUYTqAQaAdbO8lhomFF4Q4xZiDdkVfS15NP8KyKgxdUoYtsiwhKlY4XLTxU4dJAJXXwE87NOqMIl3mg/BzzMwVdlpNTmTOe35B/WrAy2ff4vPze7wtRkSVpFYuqdih1hlW2cCTOVbVJy1N7udDymRBrhymdh8Zt2jsv8JQn/DAWWbYWnDmX+JR/kMU1QpLGysEC4PZaJO5bHPeDRm2nmH1x/+XNAdLxJMxbhB+9xZqnvjuoLXm0fvfYbjzkJu//TVUXaO6Szy6OcZyGzTckOHehJVnulTa4OZhQWIaNOYKSyqU3MIxJV2rjWvF9MRNTsYF6eELmFrgeBdYuGvUgY/Ivspx8wShNZVXgTNCGSZ5rWm4BosazlfnaBsGlpMzosFxcoGk1hQl2M6YpiE5MmxCb4Yvaga2wg5MLnpTLpk5NpKNs5uIIuNn6ybK9lgyPV5wHZZHZ+RuE6tSzBsByrJg7x794x1SP0DEYB12aNcLvjj7DO25wlsk6NJkv3GVXeGRWA6l02C6qJHViMHd+yylTdYDA8c5pLn622hnyqS2GTUtFnods73JotthXnvMjm+zu/8NCnPCtjhj5DcYuQ6mjkjiQ7KzY1Zweed0BdXoUOkfRKZtZNBEcg6harRQyLJmaG+TjTcJ4hMsOedeWlFHDeIyYlN3+Fz4G2w2Pyb7zCmL3uOu+KNWyMpr0HruZeprz7K3ssG9raf4y+/+JlfqEYXrsD06wQIWlsWvPv8KK6eCbjanmDxCJL/BNJTcX7+AfXbK+899ihteh+Owg+X5mIamqjLcokbOYqJyDbN7DdkIqOsE08zQRo4xBpGVrNsXMB0YzyPEts8srzFERbEboaWBimuKnRl3/4evMb7+CGezQbm7QCUlKq2RcQUK5KL4veTNE0/82yqzjG/8zD+gKv6lD9Baw8f/I+y+CXUBN38Bhrf/0POVqpCyQMsSjq+j8pJ7YsGzW59Df+3vo+clScvh5OA+ygx5eX6FldMc82hBNGkRDiacJSFf/2APKT1cuY5/2mYq9lBICsNluLnFxcs2c7Pm2noA9iZD5WNd2sYJQ+yWYoljVGWirQo3s6gKG1UqRC2xuYw2+oiiS9db5SNHcjOfks4OUMOS1JS0VI1OpxiWybIe0y33KJtNHhLDyUMm6RF6ssf62SHnWOOy8wxxo40RL/h0+1O0C8XrxzmngeC0PGbdWKVLhwtWxLW1AjuzaVltOqYg9AbYts2lSDF3NXEeUqgcQ3YYNxvMDRPfW+N2lfHyseIHD1KC7mWEUHTrnDVxj+r4OoWfols+62HI1XIZ4d9lrEMsq8FIR/x88/MU2yNw5wjzgPFgFX3wozh3f5RsfIVG5XM5OU9iLbPNr7ORXaVhNkidCiXmPNKrxHqJpTWXoqF4kU2+GF7hUjlAmT3GrmTsdDlSHXaLHouoRCUufWakdoCWFSL1+NTDb7Aiv8mV9gnP6O8QyCG9+JSgzGhHx2B7BOmA6mSNB0uXmbbXWEo87nZNmk4Px7XQoUnS9MnFjGloUcsIG4uOXmdk+syLI/z2CxR1jKEPMRb7zJXFIi9YVB3u2S/RSRokTsWQmJ3lFHuRs9A1ljb5/EOD5+MO7U+9TJ2m2Lt7bPzWb5Pujf7QNa+1pjw8pDp+kmp84ok/qo/jjGFZ/ZG+t9aanzwc/aEmwb9fXCtOiorAMCh/ZwjL78qVYs11mFQlh3XIlufR279PNDzhIC9Z1JLQNGmi8dDoMkKXmqouyYuEY7OmqDPm6Rm2adIrSrqGiSEqAlsiq5Lp/BRpWMRWi3234Bu9bcrOKvLkLhNMJt4Zc9thr1mxG3R4Z7VP2lY4ek6jPuIvbR/RtXJE2KCwbEZUrBsFpeuyrDJK0wTt8Xev/U2+sfRJzoshRzQZdtbYcZfBDalwOLE3sEYVj/ahFZiEvslxZ5v9YJ0itFBFhQybXNl/SN1xqEKf6TzgVfM2P/He12nZBZdPDxGOzaS7zSsHH/Kfub9MI4q4NNzlYr6HHU9Qz/noRsD55gjTVXSaCa8uf0zobaHNEOVB+OwQ8ekfxQ5rfsA8ZbPzC9iNF/F2e+yvXcRx57Qbp3gWvFQLPleaXBzs4WmbV5Ye8CnxHlY9IbNnJP3LrMlruOY+woSWKYmWpmg9Z6ndpKkcKgXNI4uV1n2eCX6aJbtAKcnFg4x+vuCsvMY/KqEIbCor4r1zLzLVHmNtgLYZeAapENy99iliBw5a68hSYM5s5McW5m4HK+gT+OscVmfcXFSYlk3UvYa57rGySPGNGQOt0W6DOPNR0wwnOyBw5hyyyS8tv8FB+wBpCT7MIMq7CEOTipILdyc0xzlmaCCwQIOoHKp4iQoX03SY99c4EZc5HFzGrR5RqJrSdThZXsOUKZUp2M8FvaTBWETkWhCmIQLFcWRzs17hv9/4P5EZEdoO2bdSxistXDyuDT+kaWS4poHWHoWIcERCr5xDO0CoJeISRuURzTRCKofcaELWhf0GJ+EmXmOZWSMjqkuCss3J5ojtLYuOWVNnElf8JVrFZzkoQpLlddwgZDE6ww2CP/ae8q/zpFDzF8ju9Q84eXifW2/8FnmWsNAOBzcFF4wr+JbH+ChB9i1mUmGbBrFQLPtNOjjsJylN26JluoS+Q7HbZHi7xq4khrHCC4HgtcZVLFtQ1iPG+giv6DE1bOosofZycl1gSU2mBNvZNhdmS4zRXFfnGMcOaQ1JUWLWCUkRU5NxzvsqF40xr8wimlUOIax4Fk3TZtU5Y2ydcSYUQtWs7tzgUvxV2qspwbkZ9lMKb7jHjede563Xf5R4UtKwLQCGOy5p5NPPHJIHcw6PNUXlMjkyMYwRG96UXgZKeWh1TH32Ed06Qs+3gIDAuYVdt8lzn4fpAKu6xLa1xc5rrxCZLU6HRyTpAlNfZ2v+NV41dnhOH9MSHrGteNTqI9Qj8mFOlHwf2cEa/nHMuWROnnwBEXRQjsRzDEpCXpu4+MYyqj2i3NhjOg1wp4dcda5zWf4avjshTp5FXghouSZW0MJadWmULXT1KdayBR/1L1I+1+JHZ29TdjpUlolhmCRSMhgdYxSK5UXGtf0GF+M+X3N/m//vc1vsLK2wd+FZvu0+zW17mXbpsLR3mzkZYnaCLnIEBnp5Gbt7DpFE2NUBLBschBmZVuzGtyCfUlcJFTOECVJmKDVFq5ySgsOvXof7BeaZInx1DeGayHlJ+tEQndWovGb6Cw+Q0/xJRP+Jfyd5EjHcfUj9LxdqlITxPeief1yome/D4uj3HtZak1Yp09nbnJ39Mhxfh5//r1CnuyzcisH259g/XGA+iAgsn3w6Jr7gcm5mk/Y/D60G6WiC5cyJzFXmkzFKOJTVKY/23yE5niBMk1G8zZke43W+zM1ymS6HlLLD31F/lcwO0fk26twq62EBtYkuMmTUIC1qqqwAU2Laj9OSlmHjSJsj10R4AbblIdUV9tYXNNwObu8CtlZ0LEnWUCQ9WI7GrCcRk3yf2bkr9GZDtO8Thn2qoIvn+HStZbygzQujlI+8nETOuJydw7BbVCpg1tFUrkmntUbfsOkVNp4l8KIKO1bUaIStqIozfsN4xJ2ioPY2ueVp/sE5m9KRKKOFLTPCGk7sDyiyOW2vjfYs3PYWwp/heafghhhmA62b3FYrjL2ScaePCCfUqoFrj/GChwSRx9hb8PTiGe6ZcyJR4KtV3mv2mNhzvpgNKWYO0SLCCM5w2g9Y8iesLR3ziXtP8frsC7zXvsIv6R9hV54jtRMKwyXdj/lKtcnX+i3MTsBDYx2nPiSSYzbdD2nPdlmtC/73/A+clyPCYkxl9VBCoUwXt4D99VdoTV0yr89m+zLfq7/D+uoUw3coBLzbqVkwJVcwNLusxUNW5hleGZDZOXX1Dlk+x9c2MrVZL7e4b6zzVBryufx1TOcStUoRCHKzi5YGV+4csn8pZP2la9R2SXznHoGsUNOzf+W6iX79y0Rf+cqf4sp84om/WBa1+kNNf/91cqX55jSmVPpfeeJWa0iVYlhWLAmFfvv/x96fBeuWpned2O9d8/DNw573PufsM+c8VGVVZQ1SaUQgIaCl7pZEuB2Ew20bd9iOsC/sCF8Yd9sXdke0o5u2oaEBgxqEJKCEpCqphqxRlUNl5snMk2ce97y/eVjzWu/7+iILgaAIAy2CkDi/m2+M9V09z3q//zP8v/kvCDV9x2JZVQx0k7OBT5XnpMMR7VlJJCWuIahphe+5lGWMzhVFmZHKmAUleZWzzKe4OqA1GpMM91FGjmmaeEGDqUqRWjFVAYUz4UbH4Stxwqhc8iA5Q6aWVJbNzPNIMeiXR/z21iZVw8E2BDWREloVRRBiGzCmYrc8JLEt2kUMQcCwu447F3yr9jxTN+RQNphVDrpQjI4NFiOPB1aTONXMThLGQpHULKLNLeLjCj8U5HHGLOjRPNzjpHcVbVqoPMedv8H6B4+pm7CWzKjcnEn2iFsvPYW5mfHS8Q1+NLvGeb1Hnowwag4/zYTPTK+DpRGmpGaP6dmrFEqQ+Ralv8AKUmruEX7963jlbQQOcy/k7oUTfFWw4QwI7SWN6ohaEbHjfIguBFWV4OsMwxhgmpLQHZKpu+TuLdAhTpIQOwaurugYinFjzIpdsZouQA/YKG9ytVYSWBb2tMBY1ImyFp+p3+BEHFPYkjdb2zwT5JRhi8VwQc+GXCrqrkPLSEiVYGrV+I2bn2B2T5I4JsvLF/C7z2POTrhyWCIKi/gFH54X+KrkpxcTPn50C+UV6CLH1uBGI3r+kgezS3z16LNMszaVZZKbgiumQDseqVPgCJ8KE2lUaAmGUDheGyV9pN1Aqox7a1eR6dOUlsPh5hkcbVMSsFzdIYumWHUbFfq40kGZJieLfTplB88K6ekOi9Liofk9PDdGE9IxQ+46G8TVx6nkLiuuTWVIbHyUUeNqfpMfOf17qBVBpTywTAo5ox7P0aWJLmyMqk5mexzTYN1xGUkbVEVQW5LU72OIJXdWPsu3hUNR26bRf48MRSwVbhgyOznGDWt/WKnlX+CJUPPHBK01s9NjluMhi+Epi8mEJJZ4jkXYG+E5LmmqufngPkla0mk6jKoD1OohpZUzT/OPbMZkRSZWmDwICdYd0t6CbP/TPC0yPqtqlFVOVk6YRY8IjIBv9Erebyve6w4pdYxRSOKyIBEFXaPBzBXsLy2Wmaa0bCpDY1YFBTaiKtnYn/NTxx/y7HiIqCJW3C+x3Yk4F5hY5zwepXuc5jFWbrM6WfJ6tI0xWGKuj6nOpDRHI97q7nDtzHn0Zpf8yvsIv0SmGjlr0Yw1m8mcfGEhpIE3WrL24pu0exus3dnHzASWJbm8WaPlN3DLkIXTZyutsKs6tmExH7RZpYa/SJimKVNVY329we5GE5G8zZG3y8ej7/FKcRfHWKPpn+PE7hCnH4kcSXQVVflgncFUFykXK9w6OSKLjwjcEk+ZhPo2Ue0yvhfx88WHOBVY2ZhRPkD5Z+kXHUx5HudMhx0v4/JJiVUm2HGOV1m0Dhd8uHRwGwYbg0fUk4hKQOF4mHnCy6//DjKLWUligtymm67gTApKx+C//IW/wJHtMyjbjC2T1ZUrLHvfRvQfIZIpeWcLQ5qMq1PsziVslWGqISt6lWF0SCwSTuIHWMZ1bDtjHD3Gqwsc28BYabDfn/MwPELPSu4kbxPFMwzPgoZFNc0oD5aovEBFBeVxTPTWyRM72Sf8G7EcjciiJVkc/8EPZAGqgrAH6QTSCXpxhKxKdJVRFBH/9bv/NbPlPdL4Idz9Mlz+E2SjO2Rmjls6DMYNNrMaF+MajY938D9xgcobQ6dG3BwyPbpOsYxY6gZnNreozAbZMiFOxyTpHMNx+PWjdWbpAmkYWMlVSnfJ2P4WRShYX0xRcZ8zyQ7tyoDKgGKJyDSlGqJFBO6cLRMueDnHbZvEEkx9i0qYjLXNf1U5PDZCljInS2MunDzk9s7T3G1dZEKKmywIrYqJk3J07gqJMqEGupqwc/AY2w1xjYBWOyCwXDb3v8csSPnY7CoDWTLMdtgf/jjzuubQvspcX8ATAtuUWLLAng/x2pJ6MGF+6++zXJbcSEpODRhnFZ+ZT3jk2URSQjrG1QkfqnWWTgPH9BEWJM0toiu/Rt2Z0Wy4/Kb6ES42Sp5qXeNRcpW9FYss0IjCwbHuUTVfYzO0mK+8z9/a+E3+fue7RM4KL2x8k1sheN19nG6OWSgss6Th3qQMB6BMOrnNfsOnLzYQTsi3DZMFDYSXon2XKtdcczwOfMHtsxsc1UM8v6SQBXPZ5WhxgXqZ8XTyDutqAWZJITokdsnQMfipb32Hlx7GrOQGpWdTrL9AS88Iq2NMIMblXtggVhKlJc9aZ2nvPSAUbYI8wnRDnjrXJ/AzDCnxnTrhEqK0pDeb0ro1ZeD9CEXrR5GOS7b2Izi5i39+l2uvrEJoE6mE2d4DnEsvIU8e/8C4ye/epXjw4IlA/oQn/CugtWZRSbJ/RaGmUJpZJbkZZ7w1j37QFUmlYlhUdFGUj+6iv7+nRmtNJjVd2yKqNMt4jS3XocpzascjfvheQiIVrmHgo7Bsm7KQmFWDSlQos6Rtg23aSMB2JcQRaTmnsEtKHdJo9pHKpe3ZJPYqolERhQYr7RmnostD8/OMrA4tWTJzfEzb4dKtdyGdU5oOFhYCjWUJSi+gIUuKeo3N8QfkhsCuDJRps99ZZ3Ec89OnX+ednadJpECMUj79zvtMWmvcz9YZiw5xJQgCC+naeEIhztbZvuDRthxiBCd2nUWzxcPeJbwyIqRgYOb87U/8WTJnm3rNJAsK7MePuLfSZdJsc3Z8H9FdctZ8QM0bUlkZz8ic1e4QadtkssSUJc3SJs0iohCUVaH8IU8l3+SVyddQhuBe/xG3djVPr9/iIhHbw8d0gxle6wPW6n+DH1M2bpwTLdaQYgPfXLJ7oFH2LbrG38EMIsq6idAly1seHeHQNNZw7SXbxoQN4wGGKanlS/60FxG6IbaCqszIC4+fFK+xF+1zP7pCllQ8rWJyMyDFoy0rTAN6VUygIiqjZNDu8qFsk9o2xdGU0806jhHwF173+Nx9l9JuUyIRDQe7ynnpw5tc+d5rVEGFrzJc38Zf5HScPa7dO8ePHu1TLTdYCItcQKAUpVil3t5BK5+6I9kxJqgKDCFR2sW0Q6RdRxgFoqhhZ222TJs03+FcoVkVFkf9PofNnH0/ZmRCpg0EPvvLe0TqFNMwqBcBgVFyv/gmJ+kcv8x4cXiHbv4VzogFy+Iyddcn0SWmtjBEyFa24GZwBdufkSiH3CpooRBpTlGaxJVBgeD/9VSLD91zeNNHmKaH79cQnUMco8lEaH6lucsN32XaDBBqj0xLYqnwwhqnD+/TXFn9w0sw/xxPhJo/JlRFTjKfsxwNiWdTFsslpvJQdkS59V3edgX3hSYZe/Rsk1UbKnfG3XtfR3uSZtnDqWx0aRHVXEYvNIjaTeJFQHV/m0bUpty3kGVC2xKYhUaUPu4A3k8rfjOdgCMRpSQSJTNrykbW4pFcMilNTNPBrDUwLAtbCGJp0DAVK4XDajlG103MdBfDOCUwc8aDMe/Xf56d2mUWpeJkdov9Yko8TWCaUfUky4aFrvtcbuZs1gac/PizLDb2Scoha57J5fkWyqy40MwxmfFq++/TrR0TrI3QhWDQeolkmeDZgqete+TlEE9LyrRBVvwsadXHCzt4tkMz0wTLFOvaBwx1j0tdl8teTCQuMMw2ydZ/mPPLu4ycFbbsCywO5pwuNI7jY9R6GLUOR9aLTOVnqUyPpEqZ8DaBmZGaPoVMmMvPsTftsTO9TXd2iB/OuTOZc1vUWZmcxUoarMaH/NDj32br8D5WMaftVbRTwY9nda5agroq8CeHOLbm3EWJFqCLHISBt1hQygXjzRU6R8fsnEz5XPoeVBU1qZk6bUTrGPfql4k+kWL6I6rJgEJ4GNJi4DiUnV1MU6GNivaiQKczMjehMgoC18SxhkwXR5jBDNc1KUufuCWZeEvszGERjVikY+LjGffkI4pJiiwqcplSDlOcrTrlSQxPxp+e8K+J1prF8JS6lZPFy4/KlItj9PwAlc3Rhg1h/6NdNU6NbLDHG//gV9Bv/vekt3+T+7P7RIt7FNEeLE/Qz/8nHNqSWqExE8kiNQgbm2zfGqG2F9hODTNfpUmDdhzgWjbT/Vss4wTLPouvdyiSGc3zWwSrAseXtB1J3YzJwh6TtMGe6nGPBzzVvEdvdcw82cA5+hRR+jxKKAy9xKKk1CmSnNKeYPiSNdPnW3XJ0BZMHYNMwL40sYKSB0Iw1xVFFtOdTzje3OCd5+uotsR1bUaqYuYY3GqtYJ99Bs8+paiGrC5jPMfDwaXb9vE6c1rH7zFbXXCzvceRdUzPqHHG6vCed8yW6yDyHtLViKpEC0nv9HtsJrc5Z3yDqmYSiwYnmebw4FtMognPRw94v4qYNTV0LKQrEV1JUmuilIFlGhybF3CFg1PlLKZLJmWLrpEjq5jffvAZlkaK0i7C8pkyIbH3me/+XRrr30T6CzJWeCP4IXxnwaf132PQuc5BZ07YANweUfsRi+4eVbqKf/TzXFc5piGohksa5ncx8Plc/Az1honc6nJSi5npBe65JW5jQcPNqBVT7txpsxwrEh0gDJeGjLBXLSblBrafMxOa3qxie+825/MP+fPHf4e3Vx1smZLNN7FTCHwD1etirKyhnRDL0xw+9QmiM+dgvckr7edZVVfRZUGVVjiGj5mZvHQs8BYLnDLnlfEIfzpD2TbnDiZ4lU28ssbsdM60WhB6Hn6eY/d20dPJ74sxUsqPrFCLAhXHyCiC8l9tlOMJT/j3GQUkUpGrH7AL7QdQaMW8qri+TPjeIv6Bgmj8faGmaYDOc/j+TptMaSqtadsmo8rjkf0xelJSxhmL48eczK4TmgaWgIZWtGOBO2xTL16EuoHj2ew60G718Lw6tCYokYGjSIucVHTx6x1EIQjkEsMwiCyLzViTuvBIXWRiNJlWBv1kwcJ2UY5D4LpoWXKzvc3tjSv8lc0/R2YFlI5BEC9IHI9mOqQQgPJI9iqKZpcoN2hXFaciJLfqBLMIOVqiGw7SM8krQW679M/atN2UerXHFIMeS4IyQXs+89YK461NpLrJsjwmNAyMeoNbG+dYlXMuyAdEPY9UP80n1X20a3F/4xzXvBpBcowpx2jTYRJqqJeUXo2iSjHLnPxgH4yKR1dCbLWBZ07oSosHjc+ytLe53bnJZdWlaSzoiwMaqeSz7SVB/T2Ud0pHH/PK9F16SZdKncNbjOgNp0jxAFFPuXNmm8yYUtgR8doS111C8zbb4U22nAF+WOAFJpaU9NQpKBNDFYR2RVGkrOePMRPFa4c/zvPlgFXtMVI+74qLbFgVPgZOlhJaFg1PMT57lazZZbB2hnye0HUaaLOB4/cZvnqOQnhUEhK/jqMkrcrA0iW0Q1qWxGoEGJMF27V9/mRwk589fY/pdIshIYlSZKpLlljU612k8DhrdwjzJlUuye0cpRw0Drtlg6dOzmBWEMeCmlpgLse8sXqG6cYuGN/gnfa76OX3qOsBqaHRuUFCzpuL7zCrMvzcxS+mXJBXuTMp+MnlT3GlXENGH+ApSZ4HGE5AIhQ1M0Apxet6wNdFynoxYCh6uDLkgpIYpk2pTAptsywl1yyfb6uX+LGxRc1QmFWJbue4skcST4gsk0QIJp6isAMKrVhWEi+sEc8mNPpPhJon/P+hTD+ydV2OR/iNJtoLaLg9pEowjIybec6BITGKFLyMUk+55r3Bgzf3EXaBPQ4RUQuhJJ1eykkhmUhwZIMgb6KXF1HjdVxRsOVYdEUbMPGnHubJFaZ5F22F3K4nfLmuGKold2oj7qdT4sqg5thIM0QYFpYpMbRiez5gNalhGgnG2gNk2abW87EaOcb5CVmyRqtyuGIsGFQLIs/gGXfG0coqtq0QjYT7F7t8xvsyP1K7x7gKyMWEuJpQGU/RmLrkTkonzEicOXvzDLe2xFJ9pKi4kV2iXTfZaqTUDIu5XBAnMSpvUM1f5Np8ncBr08407UTRqNfIz55jnik6xQDfvkTGZcyshs5foL64B1WLZLXBhd4G46rFmdVnccw6WjgQrlGldWSpuNTrcjw9xMdhIOt8t/7zHI3r7B0K9ssX8YoIU2miaIqsCZz8FpP9OxzdnvPMx8aEiy8RZxWBk2AYkkup5LJwaFUSUyX03AVng4e4VISmSc9wcPs7WFHBze2niGcDJnWDtdO7/B9+8zd4+tDHCSyydg7ZlIP6SxROghUYuCrDSGZk6T0mrsIwTSpTEywSHKlwzRr1JKOjdzHUDcLMoiUP8Os2VaLZbJ4jaNRJlSBXJnmZcOeD93lg7lNmOZiCSlaURxFGYKGTCl3If9ch9YQ/RLTWTCYTFosFVVUxGAwoy5Llcsl0Ov0fXclXUlIVObOjPVbcJdlyCWUCv/N/YvrLf5Hrv/G3IeyC1/hIvAm6TCdz9q69ibr1W0RH7zJOTpkfHJEcf5T/Rm8cM209YCUOWHwwITbbKHEO82RAxYxEZlSLHk5cpxIvs147iyxTkiwCZbFrCurGklbfon15zHor5c/Wb3IpGDMRAXFuc1tewm30sB7toArBqbPJPKtTZT20J7DsBM+qKAxJZkHhtcgNqJTkbksxrpskrkFpCx4/fYmNzREntkse1nnh6B61NEIlc84WCyY1Fy9PUcJgo1B8apFw7t4tlPTQlo9t1vENAWhEtcPMDrGfP0/VesB7RcIJgmkwol4vuGlcR4ojapkkRVJkBjEGzukDLtz4GlUesXeuS15v4KucqVzi+kPS7m/zCfkFjKt/F7M7ZNooqPo1fvfqj2KYJqYhsHMDt4KB1+XAPsN/eu59/kRjlWEk8KyMUIyphEVqmgx8A2XmGPkVTrLPctkK6Sa7fKvUSBHR9sa8G00RcUzTjvDSHtN8RlzEDFZvci1uMtIlWimO9Daf61b0qgm7kQOey7InIFhiG4LG9gjX2MMRc0xZkOYZ7nzCowtnuNfY5mJ6Qjtc8Di7iF0+wPUiojNrNHsxZ6232IiHnNqS3PaYGCOaj/ZJY4krY+LtMwzPPsM39Zzfvfw0mfWAqJaAHxNwC6OweDZTGIXAFSUbDyu8ymVrdYeXPijpFgG551HPEywD3nIDjMxgWi6oCYOOU8cQbYrh6Pf/AL7//vscHx+jogiz3UJYFipN/3AC/glP+GOM1JpEqX/BnelfRio1UaWYlJJZ+YPPNomUTKqKhiHQZYFSkkJr/qtHJyRS0bBMFsuSueVgfXBIehxx9PAG48H7bDofjfz7+ZJ65VDgYZVbaFPhWS4/3XTp9dfpNc5hew5aSNy1FpOixsPuc5R2SF4f4VgjhCgY2x3WogpaIQ9757B0jPRcOrMBM8thYViYQmNbgnG9w2+vXOFXmp/g1K/xYXeH1Sol0pqWaeCrnNPU4aSyKVb7oAzeSftMaRHZTeoa8kJiC4mkQhaSRAg8N6ZTPqQo7xGlCf3ZCX48JA1C7tdWOd1Y54euH1CUORaKl0WdzfmUoDiAmsF6HiD6fX5m+GWou6Q/G3ISZgTyMmYhEU6T2EpBZFSuwDIMjLJkSsELxcuIM1uY6QaicYgnOmTun2bq1nH1At/OCWRIWDnY+go/kUEQzohCB1MtqKenPBO/TeI+C9JAiBZuE8oWFOY95pXA0JLy7DGVMSKq32YzfotPW/cwRIqtpkgvxHb3yMoSoSU1o2BNLvBqNV5uzDmNNZvtfRpYnFY+50sfsYi55Go+XMaUfp9A5TyQgnNhyan2kb029UZOaq8SF33Ovf82UrrIymBoGB/tK93ykedaFA3oWCW6ZqBTl5Y95UfyL+KsbSOKFqdVQKYUSdnAmc1xy5zqzNO4YYOw+RyykmTEKGlhuzYNew0sA6E0C1mwtDIsRzLJTXQkiKdvM3Utdmd3+fzibSI/waosclsxQTLNE5zKwitnNE7WmNnrtJNLtKs+AxOyIsSzTNIqQpsujmjS1xnnF/doJBbN4hC5BGvm0JMWCIFpG4DJzAo5m1aspe8xL+6gjYjj7THz3gxTNRjndWJREWvN1KqQXoNCyI9GDl2L5soa3pPRpyf8yygLiVKaZLkgd3xmyyX9nbNox8PWNZSOKYsFJycLxmS0Jr/JnXN/le+d/XU8O0F01zB6CmUXjDOfIDyguTpGlg5NJ6dmC4y6wp88h5EHeJnHmlXnJfkZhGlTeiVRbLHM60xiwderE/aLjMiuODGnKNen70HLhWXpYNgaL1zQ8DPOHhxTxhvUjw+xpQPCxQtMyuCY9tYhV6IUlhk/Mf8AZ7VEdyU1lZI8u6STmoQiY7pcUHGKcqcQzhGmBregNK7i90KWTLHTP8kl+zKl6LM2OcWTXTJ3jpwZrLspu77B0HuV4yAm1ga+9zSO8hmPThCYeAk0zID1Rshuq8ZikSKcBaJ8CVeG2NqiIetIp40u2+y7EY6/zdRYoSn7KFWhUbRrO9iljWXaNIoxP9bd43zLRUuT640f4rY64YX2kOPYJzAv09Y7FCUsjSEzOQRVcOX5OS/N79HdzTiQm8RkKNeknpl8HJcQqLornOumqEpiyJKa0mxGc4hzGpFiaHeZv/wUo6e2uJFtszY/IlQJNT3BUxr9e2vsjz9DZi2J1hoYxYDCVLTuvM9IjhCmJPXbFKvrFGGNrIBQaVQCspSgJAenN5g6CwpD8/C9Ej2FSQna2SCSM7wjuO/sowyFUAKhDYq9JcIykFFJOU5R+ROx5o8LZVly+/ZtfvmXf5mvfe1rvPbaa3zxi1/kV3/1V/nCF77AaDRiPp9z9+5d0n+DP4vRZMzX/uZfJd3/gI1aSjIZoA/fhvY5prrN7d/7Jqq+BW4DJg+gtcMgq5NPjinNOvP5IdP4lJObcw5vR/xf03vcOvwys/yY2txi+fAUjBquCKnCkKPrPnc/GGOZa2hHEMfn6VcBjuehVYKhTFw35g4WGrADwXO9lMvl+/hWRiJsZGXwiF2SlYtcsEOK0SXmokmzEKwmJXHN41LveTZCj0JlTE3FQbhFrhrM6jVuWx6/tuMydASLVsDhyg5+EFI2TAyRUYwHhPGEq/fe4mffu8v2JKGtTbQR0vBbtPZG1Op1oqMZeWFzcf0qV73Pk5PhxBbWWPOJ8Tt0FoqVg8vMNezpAaiA1dkP8/Vag3ftAQtbUWqTZbnErKZUwyVviI/z9c2XeKoz4H/vf4VfO/tpvIYDtSNMJ2InuoatPgRrCqXgZq2PsEBhIqoFlQp5J7xA1DrLlvwAYR7S8Aqu9B6QKIebM4t3ljZFPaY0CszRj/Hh3nPY0mI0XOOHrceYomBcq5FWBlYkiRsf8OejZ1m3Z4Bm0XiTd4h5PjVoylP2w6s4fsFFPMrWfQ7DH2J/26URuLykduklL7CbfRar7IBlkQU+wjRYdDSDKuGTsw8JDuakkeLM0ZQrxzc5xw2u9L+Fb0UYukVhlxzVujxTJXwytjCriv/s0d8gLEv2jZJx6FEJC2X4RJbmv3v6Crc6oHwNSYqhHWR4D3t5A0PmyDhA6BMOGrssghDbcMkbDW77IU7pMkhPqaZDdOpBUKeczUneeguk5OTkhMViQXlyirWygtXrUY0nf9ih/4Qn/JHh951Tf8D781ISVx+dSZT+yJnpn3dn+v3v/3PXWkpJrhTTsmJWyR842Z0rjYUgEKDLgrgoWVSSr0+XLKWka1n035qxKCqq4ynS85CGRR/Brm1QllMO7vx/kK0uf+cTn+B1y0XKAsfwUVmCqvWY7XyMhZ5jdl1G1io3kh5//+yrDGsrJKaDGQRox+PY6dEWp8Q1l9fOX0baMyLTZs1QICA2QaOxtSTurDBB4cic00aL3eUhz2cfCcLDYgNXK6aRJjctDg2PSmn2JiaV0aBdZZRVSawMfFkSWoooKim1puYbbKYHiHxCvcgo/AxXCAzDYISFZQpeujWkoV3mysAJV2iNhwzW1vgvPvNzWOcuYncN1tJDhtQIu8eY6z53tn6GkjaG26IRGti45E6FG9QxZEbRCLiyOMtK5WGoLqY8xMt26Ry1OQ1K+v5D0t63MAYXkKrG7eiT+Olr+ElKWq/h5xWGuYJfTIiLy0zb62T2MzRySWFfQmdnKNMtFAJhxWhdgLMkyA55UX5IavYJdM6o1sKwTbJCIlRJYCU8Je6z6Ias+zf4D89cp7VqsN7aB1WwZTn0EaxYI2pFztju83T9Q1Se8Qt8gdRuoLtNZuMWlmGgez3EuE/XCbkYfoDlzJmbFzGnklsbZ0g6Bs9sntLc+SZL30JXDuasz8QUNLDxpnMsKsyjGk8NHPTokEXjLI6fY1kWqJJ6+tHEueUVDKVJoSW2AMcsMOLz+PUGy6rELUs2zA0a+gKHcZ3lw0d8L7+GmcHCiLFcm4yc0qlwdUVd91FiDSNr4ucuZ+0uo1qAYVeYToprenRHG/xvDub81LjHKhukrRjLzTGlQJgbWFVJzUyxdUXqOFx6+D4v7f8aj437aD3lXhu+EzcQsWY8SomqgkhUnFQJlVujcmGZLGl88Lc4t/scwvi3J6c8EWr+CJFXkjivgH96E/jg6wcshimL0ZAYg1QqOttn8YJtqqWF5WUoc05mRcyNgjids3RNLjeP2TUz7NqLDP2zOL5gp3FK2LZ4y9thvv15Oq6gTCTOms+FeYCRh/QGl/GOP85Tp89SJJJcpYx6KaZyEM2EgSHISkVhKEo3RwUOm5am40yYZxkXum/x0ubb/B8dzZmzV1iYq9RMRTxexQskoipQ4jG2MaNlnVCrBfSaRzx15S0an3CZbl1CmYLx3TWmSY211XVORZvEHmM5M1xxllpHI5RHevlL2P4pKtuiSFep7dzFWQkIl+c5cY94JBJM7zMY3s9yal4g6s4haILcpTIK1lq7DKwJo+UhpS5QwLP5WYTtEjkulWXQsvpcrL+ElQdI8RyFDljkp4S1Pm999j/A8/roSFKIHGIT248wDYm011nyo8jsJ2gIh9+pFxzZKa73eWTps8hDyA1ajQ3mmc316mmu1Oacn67jJytcNFe4F/X5xqMDZplJaQs8uU8hc76V7DI3DKZGB1vl9GKJq7tsHe3z/tWX+TPfeo3pxmUebnwC0baJZEKRvktgTGmQMCtqOJFkL4h5u+EhlifE3RaiyGFyn2J5ynG6RmasUhaC6fg+bG2gpUVgG9i2RWlWPMjvc+pOmc5z4iNF6kgMr0Gh5hgleP0a2tKoSiIUVGXJKBuhPMHyGwck75w+2ZnwxwTbtqnVakRRxNHREZ/+9Kd59OgRjuOws7PDcDgkz3Om0ylVVf1rX7/e7fG5X/xP+OyPvULr7NM8+NYX2f/SX0Nf+gkia5XE7BCH5z4Saoa3oHWGqb1Do9fnw2ibNw9KlFIMpyZHSc64ktx6/A6zVFON58zTAdoI0dIltjsU8Sq9i0/hN88iyxEdq6LbuoRtu1iWiRn2SZNTbtsb7FUbDB78JO8nn+RdfZ4V4/SjQ5opsGoNKtHjHA5yeoHKqOFoTRhVzHyTZhRQy0KKZMpjA+7aDkahuNlPyT3BQSgxsoj3tpqMG23ebu7w08aX2BY5RprSdAteGLzLlbnDZ46nPG1fZWfDwdpa4Z3cphZewMqWLPI2YdQh9hvMklN8s4YZTTH0GCIwbQPDT2hnOc68ZCs2KLXLHIcJD6kMiO58C78bk4U19nsNrEaPT8u3eFldR0rJblhy5LT4XutHcVMThyGr+YLGpGS3FlFhk1UW0ot5rNts5gnnDgyceYnUMR0vZbM+YlKdpdAes7yLV1+gbYdj4yHfGdWxhOZ/W/8iP2E9QIg6LkMcbfMt+TwjZ8j3Wr+HNkrM0ETrBV7hUoxMQNJ1AxzPxrbnHHVibo8K7gUZ6+oSz46voo2EsfMhVfmTJCIk8eqkQQ2CBKtZY3Vxk2xmYGY3MWXO1b236VrHnGTP8Eb6cwh8dBJTWCVOWbCaOmht0EhPuDo/JQ8DJq0uV6nIhUtEwWuNVX5TXGIhMhaziBKbvXxGmX0AIUxzD1Mc4Sqb/Zc+ztbaNg+fuortOzy1/RTf/ODbjOdT3M+8RLJho45PGfw//0vK8ZgoikjTlPz2bdxLlzHbbeT0iVDzhH9/uZNk7GU/2ML+bx2N+Pbso/0y6vs7Zf6lQo3WfHW8+P2Om+X3xZlJVTH/lwg1SmvatkWARpcFf+9wyD8ezBgUFdNSsmKYtC2TTHhI5RG0AlpXfozzXpcfa/gsFu8xO73GrWaDtfmAr9QlsT0n30wZz2YceRa/27T4aucpTloeq6sWquXzsCp4FLR5u7/Fne4ZEmeNmQhoa8mHzgYTw2JeF8SmTeV22ZkMeEqd4KgSE4UV+PyfD/42PzX/Hnv1DfrJjGEWYivF4LSkKFyqtKRuWRSFi+05FG6PsdWgqXOWjsOitYJbFUghqeU5pVRop+IXvvwBV/IOZ3SAbec40yG+VBhC8+rgFrZlsbVQxKbPUHaoqYJp0GHstbnW26JmDmiXcw7Y5be8n0Nu/Qx/+9IKd7sO0aKFa320IkJ6JmHNAM/D7wi6qkG9EtiyRnti8k7hkVcJ16ojLukcbcf0Fx0St8M/qj7G9+xtaouKuWNiL2ck9se4Ufs8WdbkRtcllts0BzMOjtc4fe9PUSUXEI5EiDmYgpqc4bs+3WJAauziLSfsBTUw72PRxULh6BnnuM1RTWBWC85nR1xY5Owm3+GCNeZZP+Pz1t+kqR6wbpbsyQ4v1r/Ff3b2izybv0sVdHipd0ica+74gsHZXYa7P0Rb5FzUN9g9qnh99ktIp8YyTtguZqzVhzSdGQ9b63wr6WMsFsjZI7zlYyLbpek7GHmP57Kn+Hi1RmA3qKqMUtmYFlh1n1VfkIshVrjAyOeYStGRivoy4OX3H7EwDTBMNmc/zE6xgXJc4sDFM2P82ZLKASMMUSHEbo4lPXx3nYZapTQUqgz4ibGmUc9xnZSNsM6L8QaNW88wT1/ggf2jPGrfZWTEvPuCxHZqrIgaujKoWxmu0ihh0JzOyEvNuDbGVgvGRshJsYUezYksg1hIYgomZUblNSgtzXI5ZLo84R8FPe7cvfuHkYJ+IE+Emj9CvLc/5wvXDgGIphPuv/0m80FCnlYcRIpH5gr4LR7OBtQaBvG0JNxIUSTkLDDDlKKQvHtk0xq+SjctCTbGpEWFHcTY5jHhusnp7A329ZjIDrB0l8xq4EqFKWAtO0NjdpYzmUlpaXzDx6/qbAiBICLCpe0ZVFrxYd5iVAqer/u8tPIml3p7vLz6Ng1rxrk8hHqfzKyDG5DV2mw/+xsYwiIzUpRQaP82YdMgfC4mvbmJsAuOXYNEr3LztI6lanT7NaSlqcScRq1CJmtQK6gJiXaOMLwDZrvvE+7GmJszONPFnLfInIrKMZlf3uevPRXjlD2uVBUeBknSYmFM2Tm7y8dWP8tK7xxROiHSGrfoUvNWya1XOOxkuM4KATVSYTIqfoG369fpy4qls8Y06FIFLqVZkdgSigrDeoSc3aG01jj0XkFaPufcFV69+xbPO2vkvEA4mCJwcS0f2m3S8SqT+YIVx4X4lHeSP8FKdICQKSI95oz6CiftiuvL1xnMU4gn7Kt1IruDbylCqZFnS8LZhG93LmAlikHRZqK3MYImD5o11N4tPv74Nj/93fc5uXSVN/rr5LbBNLAwBydEOic1FPb0kJMPPuQgukRgNLhcexlbH5D4NqblslIz8dtNDMOgGWuG80NMXbAoBLedQyrhYqqSPMy5uHOF+9k7HJn3SIkoNwxOpsc8dA8oTxKyuzN08QcPQrpUVJPsSbfNHzGyLOP4+JjV1VWuXr3KV7/6VV5++WVs2+bg4ICtrS1WVlZ45ZVXqNfr/9rXF5MH+Pe/iJNP8LefYzqKuO99CjZeJrF7rJ/fZZra4Nbh+D3yYJNydkTTnDPIG8z3FZd0DyldzMrih8tnieeSSNookTCZHeMFXYQOWE4SLHOTfLaDxMPnAeda18g9G8v2sW0bywyJ5ICJ3WQiFKZyeCDP81v60yyXn6KaXyZsFmzvS3ZvbqAaSyw5ph8pZr4JhWDsGHy/gElKxeN6yciaUboGH1iSvhDYquCH3voycQBbp/u08yEvZ1/nXDnBkwW9Vgcj96k5TbajFXqyyZnt92k2HhFjI1Qb28wovYCFbfPLuwVHVoSjfUo75HfFDzPUl0g2jznsvEbzZEIlTeLuhJ25ol64JH4dLI3PAntNk2+t8MnWt/nZnd/i44v7KKGpmxW7tQLfSjnfO+G98NPcal/g18smt5Iev9T+Lp5yEarGfGfIUs/wgwKjOeeD6CqZsjkTpvjGCQdqgu0a3Jt1QbSYBJusLb9NqUpWbYen/EMqWyJlF7c6oKY8jvUG02wD2XqMZTpImYK0aaYmIjcwqwZGmeEaTY5ad7hHwTLLuSEVzWyTN+pvc9p9k/jcHpHrY3rblM1tbu9eQef7yNBDVAVDc400HqFdF390TGkqPlA/w8BcQwqTZ2cJRWlwnAq2L75BPTymno85Vx5hhjUKv8aZ2QlGex3L8nBExUF3FWXZKDnFlNCtIopshpTnKdttknSBPx0RNdbZ0j1iBCtZwtXtp8gcRb57jsFn+vxV91cpJjPKg2PyoyPiOCZaLknu3MG9eAGr36caDv/QY/8JT/ijgNbw1fGC95bJv/BZrjSvjRfMyo+KCFJ/JNbk3y8k/ZPlwtX3X5da88vHYybfH3NaVpK2bTEtJfNSovVH41P/bCGq1NB3LDwBZV7wnfGcD5cJrWiOiaZZaUCTKxPVrWFrOONdwC1NAlkym1zD1tvkpsfqwT5epRkaGbE1YTYeEZsmY8/g2LOZmAUXwk2S1llajZBp32awusmbwVn++sYzzLFgPiA1bC4vpjxe32He6DJewAujO/zM8e9iVhUoKAzBs+NrbOs5t406QZVyJw4IypI1NaAWLwktA8tzqBeSemAysmoMIkXa95H1GrPOKlYWI3VJs8zRAszpId07j9jVbS5FJufKVQqpEBaYluCN7SV7nNA8GuA6NpNEEJgFKQ5reUIRO9Q9E9N3GVRNXpcXKETKWU74vWdCHiYuyhxCqZCWiQgFZaNJsyzRpsTXFUGhiT2Lt1ox3zs7Zd8pWT0ecOHxGv0qYWysYHt73KoNsHJB4oZoWRKV21zLL5CYgkQ2+K64zGvpp7ldvMA8WxBrj8pZoLARpkstS0nCHtJfwdWbTFXKnbCHUYwJ4y0wfXbECcJwWYoVhPDxhKYfH1LjhAv+jKf8e4R2gTbG1IIx16MavlqjXx7h+iGhG9MUA2TT5TWR80W5xYf6Ewg9wI4CvFOLedxFDTQXhOTM8oiO9Dk/XeFU/zDF5DyqSqgbGRvulBMzoGU6FE6HkzDiYXXKhm+TTZfYSY7TCNnIcy57BqW6iye+il9NqZkmtTzBTgTNwYTMNhgLkzdGHeKFgMshg6t9qtEx5cEJpu8SWyW3W/dJvQKMM7RUn49Nn+Ja4xamHdKJUqJxQCVKhGVTNzXLCzcZV2cYlmsc1Q0eKo12YizL5ZJMMCoL30ywswqrrGhlFbnwmTIiMDQD6VPIOoY0SXptEiSJLoi1pPSaSFsxmY8YasENQ7FcLv+t5aYnQs0fIZZZySgqPnJ4OjnizuvfIYtKqkJy53jGQdbCla9ge4ru+nuYFuT2khKbWiDpOgNElbEWhcj8PFXVorHxJWpCE6xITC/Hbc1JyyUqe5vTZoBLk7OxJEIQhhZ9tcZVq88gjNlr7NF0BObSYKMqSdIpShvYosS0BUHep0wFT9XucNY6pe/tUbMkpWVTVoJJZaC8JkVZowwyaL4NboIhwNCbLJ3HZDvvsjyto8ebhEYdOo+ZR00y6dLJn4N+zlprC99y0eaCIu0wSg9p2DOMqsa4vWTfvYtVn6P9nNwZk6GxTEWrVkN2HnIrCFiYkp4sGTvvcT9/C8/xsT2HZl5ntXGe3Kr4G+fa3HdaXK2/wMryPEP3Fg9qR2hX88gt+fJaxG8EbzI1AlQiSJQg0zmpMWfsgaok2cE7jE8+IFMNSneNPB6y6V/iz0XneWZikEeH1I/3qLst6mGPwvFxynU2rbPczf9jvpT+rxmIC9izx7yy02GjUWEWH5AHD5gnKcdyjTOrBoeyTW62CBsGsl6SNDIOVzfJu220rFifjfn0nWsIZeEIk+4i5uprNzg9TfngpReZC4VDwWStT+k5mI37RFe6NIHKsSk9E6uyCa06Cxmz21SYmOwGcxyVQ1YSzAvySNNseViezyQvyHKNbjisLh/wE8ZVpvEJ98bv8sH4W9xO3qNu17htPMDwTMyWi1z+0+qW1pr01pjR3/qQYm/x7y4Qn/Cvjed5fP7zn+eXfumXeOWVV/jFX/xFXn31VX7u536OX/zFX/w3Emf+AJaDOnkfvTghWHmJH37uz1OkGTeGN4hLTdeOSKIE7dbRhsksd6mvbOBZmiRO2e1s8LJ4lm5jhbro0d830I5BlWmcXsEwf4Tl1cG0kFIRTbcoiz65NPGcY07yI24n1yiLnDTThEWGlCMCvaS0hmgZc5p0OJe22B+cZ3a9Q60R4TRC6EhG4R6lW3EuLYnCAikUQxsyNyLuxPzepz7PTC4YT+7zja0Fd1sh7arAz1KasxG5qHju5lt89ubbTN7r0sxvYpQlUbXEcRwwNZ4MsAwDpYaMxncxW/dYVBnG0YSstPigN+HNRPNd9wxOlFMsTUZoMnEWxAl7xR7O8YhMCDi5z8ZwyUY85tPVh6zbb7Bz+THDiytcvHiXNfsGzTLF1BLZc+m5MZoJnrnADd9nlmyz2PsYN7IWU1HnNfdHMCsXu9wgc0b4qYHlRLSe+TLvtZcsdIhvpUhR4okz9OgxT/vE9oh3rTPc7lzirLOkIy32NuC0KynyFpbKofTZtnIWxQ6bnqJe+agswxcWT114nbB1TGoUGPkUr/DpVRFnW4/oWSvciQtaZZeBq6jy88ydlLfsFLflMtkdMlqpUfk+C9tmYq4SCw/TslC+iwpccp0yyUps3yYpTZ6bT5gnIae6Rb0a8kLyGEuXxDLlftiiqkr8+ZRKhLRFh34RUfounX6LurqFUe5j5zHG6g7xokthFqTdLg2V8Cx1vDH4WYqTp4S1LvVGnfI//pN8lZQP8zucdsE++xLT6x8ipWQ5GrE8OcHs97FWPhJqnnQxPuHfTzSHWcmyUv9CDBxkBalSJN/voJFa4wgD+U8WcwN/6d4R95MMgEppDvOScVl9X8RR9ByLWSlJpGRRSf7y3oB/tgxVKMU5IWmoijTPGWY5B/Mhn/rOb9EdLbn7jx9xlJZkArjQRFSKlcmSUbLPcnrA3hsVOj4LrTpGOqNTlMw8G6V9WuPvsiBh6RssQxPhgjUICWSCkWpikbCwLY6sDqVwKDXYowNWswXt+4+IhEmfit5wH5WmrIxPqaRGKMgsCxsNs5xIWTjSQElBoypZc2a00wTDNihchzwq6FoFuD28ScpRd4IOXOZejVaZ4grJIlIYJqweHOMowWdvvs+f/eADdo4kByvrDCwTWWYsyofM/KcJtCJwHJaii2cl5JkmFnPMOCNXCVW9i1VFnBMP6ct71M0l7fWADatFZk6QwqbUBs2GRRX4nI1Cqo23KfpvERQpqTXhw94Rb/e/yoOwx3cvXkFkdez0Q+4dfwryJvdtg8hsUgqHyrUYL1o8a17k2J5xMPgc/13e5a7xDHOxyrATkkibMjAozVWkYeJFktg/w7RxkaVznve3d4jzFk7SZW28Su66nDUS5rKNI+tUhkFoKLz0AU55wM/ufB3f/JDU2mXFO8LxHjNUIWbWwFjAqXeBy9wl0oLL5uv8KfMrjKUiNxWmXTLWrzJTa2wHA/pnJa6K0GWOn6eci2c0CdkavwhSE4iYNTXkKC/xhKZpVBjHt8mMBV5V8mYlsbOEWt2ka7VxTYNGXNCtDnBNQdc0WQ3bCOHhAa5TY6+0CWyPa2WfD6yHTEuXdJZw4/ynma24JMWCA7WPYRrYpc0FafJ3wq/yvnMD7TRQok8SgydDVNEBFZPXvs0032Zahez7HQwH6lWEYVqsZBFtEeDJAY6OCYqYTjwnU5JYRQSmy1B2yDMXU9mk7Ra5YZILSAzBkRuCFzOQAQfrn0O5AcW/xUX8T4SaP0Jk5T8dfVpMpkznCfEio0gLBpMFlWoSr0zZcQO0cYq2BEslKXWTNXNKL5/j1XxeXF5klNo8jiqOhIPKK3QzYWmsYyoHV9f58eQC9UchsnDoSkgtEyc0cbRLQ3lw8QusP/0/0O0/Jisrnm0fo9dzntIupqoIVu7zH/bv8LH2Kab3D9F6n8vcRKTniZdtRld+HVVM8J2SLLPAP8JRHcKqRlAGOPMtIhJm1j5e/hJ1sUooV/BXI+ZxA6+/Re36Gi5TRLDEFU2gYBArMiPllnWMWazgGRl27TFVOASjooxOOThQeIam5paklcdIdRk6mjedJpOdDzg1bpLWBjhzl7kuMIXLaSvgi+0G44Zm27mAa92mNO/S/96XMSrFP95q8dbiPr5ssogfkcuUSGjKas4wvc5jt6TCJB4q7jdrVNpkJS2gSBClxSwbcCt+l1ZWofs72OEKXX+DH+JTPCc+zsXGixyEHpecBnlokEuHymhhGzA1BLZ7DbvMOI1M+oGBmRSsxzt0do6wVytG2Sbf/ZEfZ215j3424Oz+I376N3+d9dkJz354j0BrVO4xy2J0FaNrMR1vgF6vU1RzPP+Q7GIPM45JDcnEKZCpi4WFaxtsqlNMDGzHhyyizFIaLQ9oEckDyHJW5RaG4ZAIh33vDLO/8z+QzEZMJye0nD6zm48J1loUdYUILYzQYrZ3+JFN5UfFJNLrY+Q0Q6X/+uMxT/h3hxAC27YxTfP3nwshME0Ty7IQQvyP+wGvxaODBicP5+CtErhrGK7Lf/XN/wfj0UPq02vkSYx2G5yIs1x//S3WP/4T2Fd+nOXpmCpcoxXVqeycWVmQOhm10KClaqxdFGxd8bDMAsswMe0ttOowKzyUTIidO8ympwyTY5J0gReuMUq+hmPt8WxthuUpikwgU5f11IJsBV3WSTC5fs7lll9yuj9hf+MMaSvHCccIU7K0Ye7H3HDe5JvNNqZtszK+Q3vtb3JoaR5omyrNMBczyFPqiyntkxOig4Kt/D4tx+f548u0NwQEC6L2EYUZI/c2OT1asPS/jeM65JbHIsl4zf4qZxZLdOigpE28MGhpj9w1uTJe8OcfdCmCJq7OuTLdI1MW4egBG/MvsBL8KqvND5n1tmgaYzBi1iJFHAbEzYL/oPYOa5aFIWq8O7nM8bLFQC/ZrC3oBBnDUYKVmzhRF9QIx/eRMmIol5w0loSWiWVOwXT4YB5jP34WP2uTza9S2/9RUrPF58SHNDMXaZ5CFTOeWKjK56kTi/pkSZR5xLnNaXQOfJfEbuNufBX/wg1mtYCtQmDMIiZvniUVCQ3Tp1ImddXjke3yMG/zqMz4nv2Iub3KG61rtJo3mVsehan4cvFpvtN4DgODyveJn30ey3Ix5IJaPiUvAlxmTHOPsW6wdvw2O/ERub9CblXoOKNvgopi5kpQhi3MNKEqDaRhsrleo4rfo0gTRs98mlLXWYQ2t7avMAtLxLiBn1u4ywXZcs6cj+4FB+WEtx/d5E+c/5O8/+J58vXnmH3ta6xkGenjx4yLnFzr7++oGf+hxPsTnvBHDQmcFCWR/IPdulprri0TPtGqkaqPumAKrQlNg/L77pSnecnrs4j7SQ585OA0LStGxUfnlEhKVmyLWEpsw+AoL/m9WcTjtGCQl2igKAs+9o3fYHN4RFkW9E3BOM7wB8f094fsXx9zYgtAUjYMdAWP44QonTEfPWb0aMD43gjtBriWYksUJL1dKroYMmKYRkSWYmmDMkKK0qDFiGUCP378Np988B6fOPyAP/PgFtvZkloy5sdvvYEXFzx//S0uHb7H+vQmhWfgxzkIE0MbJAhMpUjshIYskdJinhkEecbQ7dA9miJ0gbY0flrRExkRAW5HMak5aMdibrqsW0cI36G3cUyv9vd5fv8m+vwm3Xv7NGSJM0942GyxEAKtEmQhuFmdx3FcaoZLVN9k2pmQmhkD9YjAO8Irp1SOx3P5MX+2+B0u5K/jMcXyn+HmZpO5Y1DlbaR5Bs+IqVwLHR+QmW9jaB87jygsgV59kYt+Rc9fZWhVHPMTPJT/K2bTHk7epDTO8Zf7G8y0InctlkGblaXPg/p98oNdfjiq4es+Sc1h7kjmqstx2CVNtpHCwEtNFlWHU/cqs9aAiciRyxCdt2guFHNKmsWIYdnEjHpUZoKfLEDFSFNTLWyK+nUW+SqefxdT1rBCEytOQdWYt13+hPk6N9jFT9/nDN+jYELlptyXit9xP0ZdH3Emfot+9w4bay8S5B5OPKNZmpheSa4kpBZ2mrH58ABfjTAaM37i+DX82T5BNEenMV9rbpL2VjkbBjRsjXIFTzef5dnGVSxbcDUr+RFvDW15OEGIn4SMjS7PlQfkBkgdUY+7yI1LDGpNSs/AVi77zpL7yR6racm8LLmnKmwTCupUZYNKZJSZxeasja88Pp68gGW4zJsurtsnFjluvkQYEKYZDW1iWyU1a8yGPGBl+AjhaEzTReQR41KSTAuMQlJ4NrYLpWtTNOv8dQSlnWE7DofNp8kNkyz/wSOTfxg8EWr+CJGVijiv0MDjGL4udhmeTEmXCfPCQ/fhrc0vE4kDcnfOXjNnYUQo2cEVKetWStaw6eQegoKyMLgj+xysXGUYbhDlNQpdIPMuW3dexr67gi4DrAoSrUEY3DVMJuGYORMMM8fzJEYVc7n8XZ4+/w/ZZYhnWlT2hGL1W5zvfB3bKzAc2A72mT1epUyaxI138f0xtpqxXF/BW02oTT6BEW/j5GsE8RlmQoJp0ZEGq7Xn8E/PoQcvMzTX+crLP0rkZJjZFrl5gkpDbLXCd/pXYKVO2ppzmm/yu83PYDcW5OExnj6LNrssQwdLSLrthwxHOwxKl0fqAaJxRGM15txLFyGaUByd8nvVPYTwuN+pc6U0mLVydF7y7d5neLO1g5HPUUXFzHO5dv5lBu1fIFIVSdNgaUBhJ4zSa9ySMwqhGfS6jDb6ZIbCikomtoUoTzGt6xwZFdJp0zn/p2mUJtoU5Krk7d4BQwfqdYOmqbjh3WSmV/iuWQMyvnu6xuBxgteoUZM9avJ5+mqGVQXU0j3aYZPZ4QnvbWzRnh6Da/D87ffx5wX9WweYAtphF8/rYFaK8PEelWqQx10+XtyD6T5y9g5R3aUqSopajdfPuuSmjWk4BN1d3GwBQmBICxnPMEyHtnhAzdHE1YxOZxVR2ri+T7RImLXO43z8FWwsDMuiXV/HXFSwaiIcTZpEZGnEnd/6BtF7p2g0clmgC4mwjSeuUE/4g1guA54nts6htYfOJfVODz1LEMtTguyQMksYLeE9PsHFp19k4+xFbLtHIY456NwgP1qwbI2ZlDEyfZrA8jEjE5TE76cYSYyjE7zGFTpuCxlpLH/GRW9JXJSIsmCrY+E5l1jkGZno8nQY4zs5qvLoCgsr1ehFkzV/FZKEnlTk8yH+yilKmbjKZCpnVKbisSe4tupxuExYUYKnJ5Iz2T36ap8zYsl6MSYsU1xZsZLHuGlMGReozGMtiqnbAQ3RxbUgqhW8W36dZTrHnTxNHLYRdo5JRVJvgzQIJk3W0j2q1W+ghUHRaLNx+jz1mc3qTPKxr+4TNdoIldA6fcSyZtPw54xMj8Sek4Q1brhr/N+v/kUqP6SUCYW7zWk/5+nmB/TVEa65xd1FnfvSYF8s2dy8T3v9BvXmA2Tu4VUhmiHfVkMeZjl1MednGmNCBFoplJFwq3rI/XCMFaQ0H/8YnzntcX7h8+PudczpCsXhOYYPP8Yy65AsLITsEus+djTgt2dP8b29HplXA8fENEK+tGjz/qnF2axLYbrc7TxDYjl0O4952u0g8JlZNX4ju8Z3IgPRh9PlGeyyRf3iMbcigakSWCzAKKiaO8RKkPUbNMxLbDd81MnXUdojzI/IhMdhUcfPTtlMh+SBx8fj1/mPlq/xVHlIKCsyN+PxXOAXFaaURFaNyohp1/vYQZ116eM6BrajkEENGQyYiwTLt/EdmyLPeefRmNbiiMP4kPbigM+ufoZN5+c4WO9xqwbbD+9QOz5m1GxxeHREikDFCcgnufUJf7yRWvP6LKJQH3XPvDOPSaVikH/UUfPPooHrUcorzZBMKSoNmVQ0bJPi++NL1xYJn2rXuLZIeGMWMa8kNdNkVHxUZY+loutYxFJRNw32R0MGWc6vnIz51nRJpTXuyQHlo3sQL3G14pIt0MuEpmmwsZiSqoqpY9BAkpQZGAbjZcbSr7NvNciiiHSZk2gTPzSpt7/LxNvizeASj8+8StxaITRSMCp8u6Agwg5slqlmnHXY2XvIzje+Qvv+LV648zZBMaU9PeJI1TCU5NQ4YmGNOG5/iFIuhmWiESxLha40Q29Gr1wgS02Ua1YPDvmK8RIfhFsox0bpBCfNOJM+YpBpsCIqe5uuMWUqBZY8wEWzaY9R1Q0245To0ke5Ve5IWAtJPYemaSJsiVA+N5rbnGyf5yQrmLowsB2iWkbbzrnU32ObBYm54If2Ei5PHSgdQmZ8qNbYnL7L6rTCLVdRRR+jOiWzSqjFCAtad/9nOHNNmltoa43fMf4n9LxdEqNOVTSYFDsoadA2c7JqyTvWKvNCs9da5269x31Tsdca4PU1ec8hyRwiblGpDzmJmpyWz5HevISSFn6hmUYOIuvwqL7PQhTMFw5lXDKwphTSROQLlk6LePE0humxky/JW33S9gblpIZebGDVXSzZRhc9nKDELSZosSSqDfDtEx6au/wV7y/w6/LjfM69S2YveUTAl8oWsl4RrTnk/i6Ob2Ism1iHBmZhMtRjTowxVdIn8p6jtcz5X1a/wnZ4jfH680ghMa02c8MiMy2EbRKULjP1iFyXdKKC+XwHaTvUYs1qBZ7vYAiTdFpDmy2a6iGbrsmnjy7gVjYP118kEksMJTClxdwuuJfeopNV+PmcT55UtPFYzgNSZ5e54xDFJtVwnTIseerkVXQe0G6eUCtazKjYzSI+VTYIqh6+MFh4YJmK0DIxGxtIL8c2Ar41fYt49ttUjoPQEamhcJ0Cw9GIRpNjJNKQ1GTJKFPkGGR58W+tG/WJUPNHiLySRElKVZQcpAbDykUWmnheMI58RmXEQXHIxDlBmybXu1+mXh+TJzVMJnhVxXkuc3f4NnvT+7SNdfpJm6wt2Juew1r0yFD05QXe9w26zSYbqoXWgllUslpC2D6lDG5zXD7HcXwWMZnwY6N3iFoa01jgOBPqtokWCqG3CdoWhiswLZs8lGw09zh30MQ9eBVjdUjRPGHydIFl+zycvczX9Z8iv/cyYrCLaElOC0VsbOLgYh5sYR9uYQUt3vZd3u0FRJNVoEkifQqzx33vDLlbUF8/4W6jx9v+NmbVotQzVLXO0lkjbwnwUqQ/Yrw8B5bFoirw/RhBC1NNWJ4MmNnfxqtVLKqYo9DhQllwMDzkVuOIL66sMJBnuPnUFZKGSWWlXJwdghS89cyrfMWfE4uK0zVB3a/QtY/mJ//xq5/l9sdf5u9eFDx2Xd7pn5A/+uvUZ3eZN+qU9T6O0aWyA0a2YNT0ObZNHtqKez0f3zSZNQo+aG6zkrUpa+fJlhn2qcBuCmq1FplzDtXZ5MS2qLwrDJM5vWCTs8cPEUGLuWXhT8csWk0CTMx6nY2qg1u/TCMrWBke8dLDPYb5DjfnPtn5HdTpmKOaxf7qGjoImHo2uQFlvUkWvERWtClsA2ueovMIdBMrPcTIv0xgjamfaWAYAttxKLKSZFFgf+IVRNNDr4UYrkdh5bzxhV/GevsxibmkehQjUk32eEp6fUR6fYSzVcMIbFQun7ToP+H30aZNbGxQrLyMVgY6l5iBRzO2CRwLt9GlzHMO79zh8qd/hODadfIPbiNvJzh1zY7Theo5VNvCFQ1k0UJQo8wgsxMKobCqAl2kONZZVhwXkUsCa0ARN7A6ZzGtnFZ7SD84Yin7DJOX6FawZY3xLI9WVWAIkypx2HJ9lG/RLhULu4LNjPOVSW74DEcjUgGDmsVrvQ6zKuTFxOCZkYHSArNc42fHp/zFBxlXp2NqjRa1xZR6UCCjip3mi+QzC98OcZSLS5P3Fmf40vJFUqVYsV7Cc8+xal2kqjzG5i6ma7BZbeBUBjvueRCQ1gUz2aUfbWBFMTkuamZjFscY8yn11jHe5h5f1c8wDDo8aD5LnLvowKKyDFJXMmgek1dbxJYiqG5g5Dt8cu06L2zu0ezmhM4xeLd4Zv11bsYNqqqB1pKL1Q5bTp22EDhGiAJKEWCrJZiKL1tf51XrkLXCJAtmPKxlfJNniZYB8Qcvcu9ghYm1hc86s61NDnSDF+oKUbvMgb3LrAoYZ3X2k3Ncck8oDEVd+yzzgoOVDbAFtO7z8+nzCFmj8EJ+slvxasPj2UbFDece/5HxGfp5n3nUoeOs0Ox1aMX7DBpXkVpxVv4eD8RzaBuSYkRWOdSMES1D02iscce+QiMZM6t6/IPsf85OPKK1d4owBdoSVDqhLit6siS2fRbKITavUjT62GVO0ZFYVURXzqCYU9aPuSVusZwk+IbBg9mSNTQH8Snr8/PUzAZVJjh1Ur74VMHB6Dbdx3s4T1/lK1/5Cr937V1kmnzUwfhP4qoskfP5k1z7hD9WpFLxn98/4tvTiEpr/t/7A47yAg1U+g8KNZFUxJXkrOcSVZK/dP+Q3x7OaVomxfc7au6nGT/cqfOl0Zz//nDEtKw45zucFhVLqZiVFauOjSUEodDc+oe/Qjyf849OZ5wUJVID0ZJOf4UijkApkkqxMjlhZ/c8/dkEJ0jJDeiYmqRI0a5A+xWD3ef4/6oe2lVYtRVOKzBdD38xZSAM7tc6PPa2SeyAVrqkU2bAiCvqt0hN6BmKQe6w06mo+jaGZ+KWMX03pVaDTJiYSuEbHpYSVMaEJJcgJFUcY8QlWljYWcW5+XVGskFZKaok5kERcGTWScs9DH3IOFvC6U2kLGm4Dusi45z9HnkpEYbEqUrWxxO8XFKvJKI+oXROibuPaekeLW3zlDAxXUnD8ni2PuSMUePVzoiRJTnn2pwRDS6bOzxr3uOqGJBbJWtljdxZYsQtGkTcLRvs5vfpTyfMRJs3xCaymnDTvkzZqJjVDQL1CIIBj10bXxmE8xDLDZnbVyi0he0qhMwxzJzNWZs8tsFq8LXNT3O31ufeUjIxA95dPyL2Ux6cLai1EkwzwawK5nd/in0VEM22sYoZUVKnmtcIvCm+aCBYp8LmdE0wU+eIdciRMkkqg4F6CSs7YNmpMfU6OI2cUixJV69RTm1UFbPTnODrCfgZhr/Pw/WzHBvrfKPc4bHY5NPBKZNiwlpQ45L2OM63eFhNmDkblOaY3NhFFIoizpkbCcf2Mbm9yZ77KSb1q+xO3udSeoN51eAw2KFQLYaGR6IkZVlwmBWceIJSVYgop7VIEarCsVusxTkvOya+47IqclzfAD3iuf6SMMkwTc2pqBMzhkwjc02RxtSKGF8bePmAtYXHhahNJV3m5hanXofKgMCEa5173Fi5ixA1JskaYezglXMu5xGd3MZJW2RC8GV3iaUizjZvMfXOY8krKCHoNJ4nMARezcF0IQU8M8WwFco2qZxNbLWGKySz+ZICyMsnHTX/3qO1JM4WTN79Nh989YuM9h5S4WA5JtOTGctMkhYJO2ySBAvmRZuVcA9LFAwehpgjQZEqaG4RBB2m7ozadoPnegfE8a+TlIdc15t8a9mnO9/lsdJ0+wnPWKBMRaYlyWTI060v017/Xbi1QBfb5PmbbM3vIftLTJrUmwvWq4i2qXAGn+TXrJ8ntzugLJAm3cUc/1EbI3+GujXn/NkY58oHvBZ8lluBw7uWR1q2UYnHcvhZTtznuOlFHIqS0q9RCgfXqbNaFXzYOcvhSPNF+XOMZg1GY5c5LofTlynCfW4HfSociqyPVD7fyzY4GH8Sw8tYOAOSvMtImqxbFdO1NpYWpNM6UVAwcV7mwaU2RdBi3F4ybRaEyYDjjssHxgF3wyWuucPAdfjK2ockcsZL3/nHbE5OuF5rc1SmSBR3WeLsNBE1Dy1K7tZqDFC87ylC55TP6Tco5xnm44ortRr1xYilZ2CLHLtcUJkWdzfP0dCaB4GByDVWVfAl8yc5W75AU/wM57sfw9MX8XtLehsb7AVneXvnHEcLkwfm/4Ij6bJ9tsvzN14naZ9n0V7BtR0anU0GwqJsNaESSCek3unTmI1xjo55i09wZ1bH608xEsluljLc2sTSGXVXkYUmlW0S4zI9XaUyLGTYp1XzUbpBKl3S+JTG/evURYppa0zTwrB98rggms4olilXmh/DCANQFuVghJFlvHHjC5y0jgmCBjIryO5NmXz3AfRthGNSJTn3334D9c9Uf7XSaPkvzpc/4Y8/SkK0UOTWGrpQqFwyEwneAmr1Lmb/AmkUMzp4zMrZXYrHjyj3T7BLG69ucsbbxjRaOMKibWwiKxctPKSlUZaH88jDMhWFdDC1iWGBY0NorPHW4j8ltl5Fug0WPcXF/j/A7iqk6ODmOXVjjuW6lC2ba8/WsGsGngVxZ5u6Eky6TcZ2g62lIvMFy8EJhS4whSIrK8ZeSCdJqXkN8qzGbH+L9u894Mrc5dlBRC1o0ZsMCNspjVqbTfMMyaBO6LcxhEld7OKKhEw4JBqC1OFKeomfnH0aW7lMWSGwKy4N27TLOit7G0gEvpNilhV6JtBpzN2XXyJ7cY6T/yqOSPnY9B9Qipw39FXmrXXuisu0qiU/qn8HKUxmYY3Tuc/jx7ucej1SlfDV00ssEHQaH3Jx96t4jsmmoZFZl9HS5LoxBOVRHvVx5QZutcZBWnJSasYypWZ7OIZgoAfY9QVKSb5r32EWVcx0je81R3jax23WOJJtvnH6OY7Dizzyehw2zjCuPUOmbS5GD3h5/j2unXZ5vn7Exe2vcfPy26gyQ/qanozJzAf0c41Re5OznuaSnfJCoLhj9LGbEy7kLQJa7JRnqJd1bMdB1s7zttenHUSY5ER6A50m5FVCXNjUwym95REP4j5/Rfw8jXjMKG5wp1yjtRzwGfEa1uUJj2wPt7/EyFPqUcTUNNlnFT+DrWWAKo84Eg+pJQs+Nn4Dv7QorVMe3dsjTxPWMWiXJfUqJI8SmsfbJLOcPC2ZBDHTxpIbuz4PzmzxmvsBXuhRAosoQsUxWmvkfE707e8w+it/9d91eD/hCX+olFrTsEy+Ml4QScVBVnKUlfQdi1z9wfNDIhW+aRCYBstKsZ8V/PrpFNcQKK2RGgZFxVOhz8eaIVrDpJTsBh6/NZzxv7u5x7is2A1cPNOgKzT54R7bJgyKkpO8pJSSLM8I6w3yJMZ0HOaVxF3O2LhwkTRJKfIhWks6FhwtxkwDl2hlwqBe53Q8Zby1Snw5ILNL8kJzetrB8Buc1Nocm02k4RDGMa3xKQP/ArglSxRdlSBQqM4Rsys18jLCtgzO9Ep6zozCsEFASYZEkQuIpINBRUiBejxkFCqU1eHxYJd7sYdra1Q9YKxKjFyRFHto+ZjSjFh2MxpCIZWFl73OqriPW2YEyxgvjWnffcjZpYPXV1SNGWrdobAXKFmjXRhcSjQYKTt6xn9u/TV+3nqHF5oPiAzJsxzyF04XbM962MWIoJBU2Oi1xzQcmxdnL9FUI9bKlE4S0c+m3O31+M3VTzBw1vhd4yUmlmakY2rVL1NVb3PPFVQqZHVpokg4kmsYWlJ3LNApoTI5d+BRLzzS8RaHeUrkm+iyINLPcaJfp7l/m3T7GdovnsHNBFQx6cLhuHXKZHoeSU5u1fla0KIwZgSqjVu2iYM6nhhxpFvMjBYLrVFqwe+dnEXrlEedmIe2g9ZLRJESPPjT6GWCXczYdj5yllyKJijYt3sURp1p6rDUPkF1gq1mNLXJWRVzoGqcM0+Y2wJpz8m4QMt1MWRK0zbYtltMV65gGrBsn8NwJR+agiJT3Fg9j/AXHImKuZTMy5TvFYoPl2MSvYCwQSg1VpVj4WNbDrXSwPbrfIIjguhdBILOwQFzb4FbZYxTqDsKTwWoTHG13Ca2CyIzo1JLpt0dLGlQUOPIWOPUsJGGwJYV7wUT3nYPcV0be2mzm5gkhkmgCipDgtVlUsZM9AhTRpxPf52r+us8vXyJjh3yqnCpGyaWH0C9hVU+xpJjfKNClgPayWugfGzTptA+JaC4T1GM/q3kqydCzR8RimLM4clXaKiUa7/zW9j33sIzbZyayXw0p9uccal1irX4BFXuomYhNXeJzAtEopCDgiytSHQHd+2z3OuckMk2w6rBzk2Btzji2/WQa1UIzgqJ0siFh+x8h9Pte9TOvMN0fA/HK5Blh61Zxmz0EovzDapP9/GaM6roPIY95er+TZTehNkaA7lOptvkpYdMPMr3ClSzR8vZI2tqXl9b4eitV/iqvsj7bc19o+DUhvGq4I32Nu87z3Dbc7irxuALUsPAG+7Rmo85sV1++4Vn+bZ5nkQGnJ5olkJwz7vEl/UvsBA96rrJ7fgKo6rFbzQ/xfzkKW7IPkXuw3CNyDBZzSVWKyc2FIvTF0k8xVde2eG1jVd4FGxxaixQjkN/uM+iFlJtV6zbB8zMhEzDyM+Z5D7Ha2tsz0cUwmDR2aBhCAa5wdR2qcYnVJTkjk2KZGgLBst3uG+a5HGOGadcGR5SlDNuWDmmyGnKCTvjEkPVCWyPUipKCR1CXvbAtl16eYO1/suYlYfTmGP6TUQ1QzjbHM3u8zuH16hCg7POl/ipTZePrfqY9T40t2j6u0SmQ+y53G0oasKkg0MrLSBJOHFrfKK4SxoeQ1Ln6lHOTmrgjWb0nX3+1uWczI5Zb1+nym1yaSKdVUJT0zMF88zDCesoVTF/fINMLSilRBs+8TzinS/+NnZlcyG+yKSyWZY1yqKgcEsWXsre9C62cFgcnzJ+8Jg8ibnx+mtoqViMRlz/+pf/gFBTHkXEb5/yA70vn/DHGlkpknlBXgh0qdBScVpN2IxfpX7+FUadP8PsZEKejEhEzHBxzPw3fgdPC6ytCmvLR2HRyPuE/lnAwS1ACYk1fhb3jZRU1EhooFSFEuCFAi/foJQRMssRep2G6mJIjWr20WbIyDiHZ3gcdfr8vU91+HDNIlu3KCzYihRhlHHkNnj30Qq/1hnxhR042H2eD7aa+HlJUeXMdp7CM1w8O0SrkMkDhbvShTAjWCaoqsHO8BDHaFCz+7gEpBOFg03hZnjpDpEzwxOShQAjH/DU0OVc2WAuJKBp5gtip8lW2SCcl0ih6HFCOxwjqopEWnxj/QKfrX6Dsr0k3jaobS5ZGAFeX7Fo7hOVCaLUrCiNIRpkdoVWTZqWzcz02Xe2aebH7E1i7hycRcmAOKkRxatE+SZ2c8FczjG1Q7OTcTyrMRiv0NQtvKSPU6wTmA5/zlnhaXcNZ+0mw+d+nbk1RSwtkkJzYsxZ2wxpeTHPGyc8FgH7xQanesKpGXHl9AYUBYmyif0unnJo+gu82j0C432kDigrg/bpMYbKsIPbvJT/t/yS9dtsaY+mKHnVfJMrJtiTOlbq8/TsEhkKtcgJ7SsswveYqxOO0y12RQhJjGNAZLsoppRliWdanFpbuLrEqNaoU6OXzzmzuM5T8SGN3GTUC5g2usSs8e7qDotGn3J9wJmLFbtlRVJWJNJmPU+YTQXXF20Me4DXysjmGd07x+i9i6yXGxBbXH/vNdIk5mZ1l6tnXmFy5gWWZ69yQ97kMz/yGbbPnGGuFHI6hari9L/4vzH6b/4bir09qJ6MQz3hjw/V962wtdJMS8lpUXInyfAM4/eFGv39x0IpLGHgm4JpWbHm2FwIXHzDQAOJUmRSseba/F8ubFKzDE6LkouBi2sYGAKuhD4d2yIwDPpVjh0tuGBqTCGohhFvfOEfkEYRQb1OHsfYns88z9FegLewqfe3yKsZhZI0DxR7p0O+trnLQ98mb3d56d4HfGP7Bd7vnZCbGUq4nCYu3fmQSzpnJkwqYdBVFb084qFT5y+f+ZOMDYtaMiMQJd8NAma+yzKP0Lag5UWoMiI1HQ62XM6GkpKCJYKZv0LlOAyrIXkcMBer3LFXmDsWU9PCrzkktknDqWGXJZZRUulT6rUG2a7BqlqyMZwSh6/ScEoCXWBOxqyOTzgXZXxs6WB5T2HU68gVQV7LSJ2EC8uMTcOgvhZzsRpz2rlAy7yPbTzAFiX99BGXhm/ytMiwtULEDkJ2MKxbnH8Y01xssRUf8Vdv/SXqpotUOdf9Fp+vYkovILVC9owt6vIpRrUrHAef4u3MY5i59CYxiWExzzvoeIYjLSwjJ3ANgqrB0+FlpkfPcZgKJq7EskqECglq5xDBHJ0rHqUHuJFLUU4YbQfct16mMDrEus/Q7/Po/IDE1dTLDo28TeYY2MvHTI0GC6uD9EAZQxQNCqdBLkoS5VMvKxq6TpmvYyiNZcfEnmSg+xzFG8i0A1LTdDJMQ2F5BrFQ/NjqDRYsEdUN7qY2O/qIPIhQ9hztnGKaGRYpl48qfn78SXJ/g2B4h5Y1wfQtSncVS0tcO2AuAsbZkkVVMTchMiHSgkyliF4f6l1sJI4WGHqOdAWOF1JfTKlbd5GegUaw31wSlEuWi5zt2hXqagdLK9YWDZZ+QGzC1M8ZmgFVWVG0bBAVfj6kNA2MtGRlMKdwQ1wJr+Quzw4rZobLr3klqVmQ29tMRcazZYYR1tCqwmvlNCqb/+l0xGcPbmBJ0ConNyTDxQ2Gyxs0dMWoSpn9/9j7z2DLsuy+E/vtffy53rz7/MuX+dKXyyzbBu3QTaDhAQIkQDA4HJATHI2GMpTmw2gYodAnKYISJyjFhIYRVMyQ4pAgCUN41767urpsVlVmVnr3/Hv3XX+PN3vrQ2GgYYyoAAn0NIas3+cT59wbcfZae//PWusfPiBXClM45EYVXwhs9wZaf3cGCn8k1PzPBKUy4iyn5khe/ku/gN9uYZuK6yacZGMa1WPOVJ/wYLqEmpSYu3M2oyWsRx1WVm9AWaLSDGP6iN1zA+Y+zCKTnYnN6WEFcxRQht9hYm0QugtEWUk4spl1jynH21Q2f4t81UAIh73X/yq/f+oLvEOLYnia6EKMv9sieXAJo7bL/R+ErwRPExcpIYI88TmqLhHMznLH65K3anwwtDj2PH7deo5EdxmbDncqHWq+x0wIvtWpc6e5yJ7T4gOxQto6Ydaa8vvn1hkaJgt5StBShC2fqs4RRoe03SITcN+Fd6zTeCLDJGE3e4G98iyH0ue1M22+vn6RqX2B8ChF1tvUJwHCnsJhytuNDfZtkw+6Fttui7FlYsdNPBXSOzrBs0NGvYzneI/c0Pj1Jjfdi2zkGQeLJ2zkMS+mc4JKg1oaM8chTKv0kjFja0JbnRAZgkAYHOU5/7TzBa5tXoW0pD46xnEHjIsBU8MgsD323QzTmfHtRZMXTz4szc38F7HLFTI3BwP8CPx6j+3qK5RZBTsPMHITFr+IbDXY8ELM3KEwr9IrblLBwm5uUtZ6zJIJasVmnA7p1T5ga+k0TiIospTC0pyOD9htfIx8alPObVpGBz+MeT78KifuEDkbktVAOx5RVqKoYOuEM9tvUYYa03ZQZU58cIvmRkmWZeReG4nN+PEhjeYKsgSVOihtYDkutrApy5z+4RNkYqLnCp2UKErm/ROKOOX29g1Gg2Oi6YR4PkNrTTFOCL5zSLb73bPJ+4g/myRhTpGXlLlC5yXCNQnCGKGWSdwhc/c8k36ftNjhaztf4rXKiHnFxzAyvEWLrEzJMsHK+DSqbGBIi2pmYVVWkMlTeJ/8YarYdGsTXCckLRSGUyILRZaOWH3qBNdYZmuyi8hdEmsFq5NxJz9FenSJwqjgACOv4P3zOce+TVdY1IXFwBMkSxbf2Vwhtgoenz3NB1aBnQpeDGvk1XXqpYll2HiGwsmHtBYm5CLGVBJD1mhOYibJBo7ZxNANvNrz2FIwLYYUU823N6c0NpZJ1+rMizH7w7e5XhvyUO5j9EKOu3PyzKCMTNLUQZvQ9Posde/RXH/MtJA8qLlsy0W2a5cpVg1U4wS7m/DU4n0ajzbYH22giAjTGFFopB5Sk11OtyJcP2BuVlGJwJyvo1KT/f1NYvcc7x2fZlCWVNyAOE9B11lpH3P/xOXO8QKzo/PE4y7hsId/YPHF8oS/2M1wFBTeDLeQZMmHAzmVVfDAD/HLDsqsc946oNg/5hlviDd5l0+8+Qd8JrqH48BI2CyriMTIOc7OECeKidVBBAp9AH5+GuXFzJvrxGWD5mEO8ZA4tXjU/zSpJRCZxVayRmgFNGsVnrKrlO5NHraXuLv0EnMBnlPD6CzxgXnMt92EOIpZKY5ZzUfYaYnQTbqxpK0MbATWjS16E4N3nRWuLazTmk/IE9he3+Kdi5s88i7z2N9EWx6ZECB9KmZOnSkyj5BlE+1OmSweEQ4ka4NVTO0yGxuoQmLFHsfFC1iH5/DSBhERQ2OI03IZKUXR76OSBFXkNH/2ZzGaTVSafK+X+Ed8xJ+YSV7wMEpISsXCNOJzD0ImeYEAbs5jfEOSKkUR5IRvHKK1JiwVviFwpWRcFNRMg0+2qrQt84/u6UqJJQWOFJhCsJ9kbPkuf+/iBv+X82v8/HIb35DUTMllclwp8LOElmXw3K0R977zOlYa41brlGnImWbwoVBTdVBhwPTcBjevXKAwoFkq5kcThobFuNpA4rE8myECCEUbE00cRxTeIhuDQ14+vsdMCgoNa2nMxnAfVMpte4Fjf4VaNmdJHOFnjyikRyYSUkNi5xP2bU2iNZPqHpeifbQW5GqBPaPFzK8yLRMavQbfMJ/hgW5hVCsciyrCMzgqIzIZolROrbqMtAqq1SrzYM5z8SHnj3YxyGlYMxpWyUIs+Pjt3+CsFXFxmLKz+hTK60LDRuiC0cov82Pjx1wOZpy1b3CxmDFtdcisE2wxwCKnVlrUzCMa5TG+0UaIFlLX8QOfUf6YL3du057atOIAJZqEVpdEdIhKCxx4tpJzr77F5f3bfLn1Il+X/wFr8mXyyMa2I06iFa684/H6kkO+4NBZkdSrGsc7w+p0kXazTsXIKJLfQYiIkpJBdZNZa0oxnbM9H1Bzu0T1PqPTA2ZFk9mqwTz1GBZPeDj7KlngI+IqdmGSjma0jRHztRZ3l36CUmiEMWNJLBCxhDlr8aRxwiM7wtBd5trFtk2klZLLB+ybgpNgCd47i1YKx9ujasdcbPeZWUMum/eZVwf4rfeZ4OPohIkAqftU7TcwnYCKm3Mx9bGkwZZ6l65/i4o7xiwTrj4esZQe4U4UBT0sp0qpJVMpmWnFLM1xnAKROpwY61zyL1MjJTy6zvHkAMdrYKULrKZb2LVTRJT06wI/2WE1G/GZN9+kNsioZTPs+QkPameJdZXJigCjShhEFJaJVaYYxohI5qhUUw4mxM2UlpGzXCo8AT+ru/xcZJJWYCjPoW2XVRbQroGw6+CnGFHKhf0hS8kYVeSoIiAnxbdq1ERIPc6wdUSYjcmKjEouOWhl1Nwp7YqFhfddiVsfCTV/RtFak6XFH7VxlCpBa4OaBfuqxlGiyFTIHjnD4Xukao5rhCzbiraVkU4KnJFPejjH9jKkKOn4BUs3fpkD600qboWlzbcZCkkt8bg0eYnNtMlG9iKHKJTKacg+kTvAdgcIt6R+7j4eCWXwEEMOoA5ZcJ5ftP4cx/cdivs+torZc59mLKqElmACnOSCYzo8eEsyCkryNKXTLUgPPs2h8Jk2O9RMA0NAV5WU0uN2tSAzLI6lj3IsQm3w9XrEW/UK2+sbtJOUwFRk8yFmEpMnW+TLPh0liS2DaWGyabyPyZSjyGIneYVFecLjTsiGeMh31BY3z3qkus2Sk3IyOkd1e4Gv9hrcVx/nWNgclU1Cyya0mzTVHvn0GGW57Imn2OI+DTfjZGGRxmzOCwe3OR8I/JMhZx/eJpOark4JLJd97xLCNnln8YjzyRNCpamVitnCEqW5zP1TZzheWURPjykbj7k8e8yN8jHvV9qk+zcR0xE7sqDSD8CRLI5tVhIwpxLTMAhqFmZtgSL8HEZWw1ES0wmYd9qMV5/ltHvC/bLCl7YcThcHbHk7ZNJnbnrYjk1uBCQ6QBvXMaVCCYMqinYUUpuHJI9TZk4NDEEzmaPOKDasD/ir736dughBZQilKWyIyzZNR+HHEWfdgKYhUGVO1TWw6jmmEiA9hICV7vcxV8+gFnyKqcS2fKpaYOcWVgLR8THXx18GobFcnyiekMwPGc4PaMoaOsl4eO1NXvulf0oSzCmnGeUwppym39O1+xH/01NkCq9mo7VG5wppS/y+i5BVtMxw2u9Sqj2wpxzfPqJjfoajs8ugTRqzLdIgocwlRtxDFy4V16V0n0M6TzNb1vhXnsHITVz9AMvcIyEnT4f0LY1lzDi15FHvrvD7Z3+a/3P2v8Tqr1NvP0IKwXb+MhtBSlVHaMPi0G4xM2FgCHqRwQuxTbayyqEwOc5tUp1RTgfUBLw8NnlpXGIlChyBXy/QqUJEGalKsQwbR4a80vshVtQ6zfoi0pJovYBptzkaPmLi5Czs3mQhf5Mn2Yg3anXG6U3OhTlWWbK3+dtcW1ZkqSAREm2azJuKa3WXh+d8Os/+S6obI17a3OGWvsztaJls3SETCY2lXc7X7pHXplxQR7jegMyYIcoYQ5XEJ1OCAhxnTL1a4Ck4Pe9RGjZB2OHo8DGZLomDnNOGBBFyLVhAyH3ahY9jmQwyl9moSn5QZ7x/lqjawDBtnuydJs4cGmWFmuVTeiWXxDJ3xgVOtoQoHfy5wmHA58s7TC1BIhQ5CSfzNWa5Qd5qEBspdrFAP1xmu3KOmVnnSfUM9nyTUEv2lMur+z/CB4PniebPsaNWKLo3UCvvERsK6Q5QbsriSouWUkhjzpP6Mk8Xp3BEhGG4jLwusTtiYAjiJGXr1lf42N5NikSTT1O2qwbDpMdR4yXqjYQWMT4au5yQHu2y8OiYG06FG8Ya7/httmsLFO0ulq25Nu/gFymrxYwsKtC6QqZ9xocWJ0XORNSxXJNwYiNFyZnRaX40WaSW9thhyqLq8Hfe+jvcie4gFhdJd3cphkOs1VWaP/PTSN8nuXOISj5y2vuI/3nTzwp+5WhMmWWsffW3WXo0YSdIOOs73ApiSv1hQW4W52QHAQDzoqRmGthSMi1KfEPyYwstfrzXBOAwzenaJgYg+VCoOUpzerbJGd+ha1vUTQNXSvxY4W/3Wdo4RR6FSC0omwbzPMEtcsqyhSxgQ98hUgpzKeX2wTcYNj3eXOkxrBm0ypJhVDK0KwzbParawjJ9ViiRch1dKIw8g0JSmZ1gxLsMHIt6mVA/PuD8ZJuf3H0bSZUdZ5W8VnC3fYOZ4TGPPRbWAtw4JEsyfq8SkpQlUgW0whGGdZpx/4vcLZa5LgxKw8drSr5T9MBooyyb0rJxnJg8bSMYomWAdpcpqwbVZYNqnPKp8W3qgz7L+ZAVvc/frH6FxVLS/VSAqArypM390xDbddqlx9LJAaa9zbIVUytCPnt0nktRG73/Iql5gijB1iH11KGVHlAx+sgsQ9JFqh5mFGIlAwo7phm4RPKvMSs/wYl7ijSs8kB4zJoGnh3xndYFbjufZMhLjITkmeQKjbLBbrNLIpfZ6XT5RruFen6Bsy+2yeNdKKEXajrNBk1XcuhVyOwEpRp0/VXGPMAYXmMQBSy1eoR2TMUOqDfeYOBnjEuXYnafl95XFNsmSVAnTRLmcckCA07sgn2jR8fM8JYiwqnPN50fgngVVfr8Xysub9U/ySAucKUCX+MJ+KB7gcPCQ+5WENql1phQdwIqbDM1alQmM9yWSaMlML0qAT5z06RSHFDNdshFTM0v6SzWeLS0h7Hss3u+YCaOwYAr0T3Opa/SjaYkaZUY8AxBP5ozC/okGixnDLnJOJKkiYdVJEySAeNRH4RHzBp+9DRWfhYwMaofI9Iuy2XE5uO7uEXGhXmKsbrOrMwpnZg6Flo6TFVKq8hJ50NSGZFXMpShcQsTv4hRZgEqY0WGnN35EXp5j5lrkhce2pAk2VVKOUFbHg8rH1Ywm0IxzK/gFC4hIVMV0zANXDWienSClw3Ji4SiKNicSabE1BQYfYUeTL4rcesjoebPKHla8jv//C5fud3/sF+8jNGYWEXBVz8YUHHmFCJhbqakwZhcRax6IZ8qrlGZ55SRh55YuL0OhqswjYL1V46oypjmfJ+fD69wqnpMSYhHDSdf5S/WoFH2GDcFP3vmK6w++GWkOKDePIJyCad1ExHHFPQp0hmGP0VnOY/UKr94qULouITvX+LR+BRGfYnQcakJg8Jb4bOHVU6ZCyx1GiRWydr0Onls01M5u60tFlVBNVGkQcxwfY2FYpdWOGCGCQsjvnS5x6vtHj+wc5P7tRbntx/jT2asxHM8XfLIqXPLOc1CbDBRVdZHc9bL6xylU2JL0bdWsGbf4UryTcazr/Ao9WnZfQqvpFv06dea/OILP8Sp9IDRpM0SBd25oJCCg5Umq9n7LDx9xMC08dWcuhqxbDzgrYU2a4M9Vhcf8EzuoEoDMytJypLe0QBhObwzbRNEBR80TnE+HOOXsJCnTJaXiZw6DzdOcaPb5uHCOr+4+hyvnekwsqf83qLLQEU0Hh0y1JK2b/GgYfBcqPnqosn1BYfSlbzflmijxQ/selSUBLXCW4ttpq6g5+c4xZgAgek/xI8f00s+YDq+yWM1pJnlzFIL03DIon2EjikWFqmbJqfff58yqJJMZzyxDPDBCHIGT9WxcpP1V7+D8ELaowmWNAjrBvPAo2UKZBSx2pqzkSQoXSKKknya0KSK0BZCpsTZAtq2iVfqRIXCLAS1g2PCIEBphWu5jOw52tAYyiDWIUkUEuVzmlaTqytfIBnMePj264x29iinKVqDTj8q0//3DVVqWks+RZ4z5wbSNyASaCWYHJg8ueZg+z+IKl7Bmgji5hpU6uS2SSXeIIsUXtXkOK2TFS5V22IctNClgzmfczLMCakRh48ozSGZWbJUbzKcpawvRLT2vobIA64ZV3k+W6dMTezaI3S3JPe6rA1n9J7coZOnGIVJZAu2q5pKDIuhxZ48xWVOCAwLg5BX+t/hp+8kLI2HXBkHLJQlqaNpnxVkUYma15mMh1TbiywaC9zoRdhVAy0MlJPjmx2cssLEmrDTHPFj72nqUx8zbDNzSnpOgxV5QsNwmZtTjtyzaClQjo3XPGF4+R+DeZNV718grDnJZ9tcaR5RRprQgvBMRljvMfdddFZSDT9Fb+s6jcYQQ5qY2RxDOYSFw82dBkXSwXcKlufHnDnaZSZS0txhpiLqFsxmOcvBCMN+E8ueYMo5dUuwbRyTewHWVFCdZjyedxloF1vFGKlmktiMzDFJa8ZMjvCnGaYpaCQulVnMNNZseQc46xky3GJ3vce02uXG4UW+NvwJbtfPo3XI5dBmc2pyNHBwhjP+SfB5ovhTxDjkriQeluxZZ9gpLxCbVdbab1J6j1F+wnRhjyzoIuOUwjb4dP4SabZAN1Q4aoL0W4wqGyRWxFyAkg5+mrK+/YBxfZOa0WJbF7zl/CC/nn2cdb7Dxw/+MZUnj9iafZmFxgwKxc8eztlUmtuOwV3P4u2VRWa+z3IFPNcnHp5QmrC34NL3G6TTmHgS0bS72PIRzVoFw1ZUrRqrE5DOjCLRvGhdZRCMSXXOmVde4eDau8zvP8BaWgIhMHsLjH/1GsUg/l4v84/4iD8RXctkkBcEWUY6PsTMc/ZnCZeqHsO8oNAaCeS5+nAfoTSzUlEzPvyQaApBwzSom5JuKRCF4kmcsu7aCCEQAgwB9Ue3cSYjVPmh6YEqS/auvYm5H3Ln1Xv0Ns8QzubkSvGrSxVO2l2aRcrk2ERlNlIotDRQ2mHSH7I9PObHRif8wJOAdhgTC4GUsO03sOcjciGoRTmGuYZlWpxTB7yg3iPONbv0AcVWMiBOc/wywAknZFJz37K4X/0KT+yA1LaxJYyWOzyV77ArXHaFIC3gqNQYWc6uWCPKK4yVy6NgGVX2qNcUiapSZg1Ky8B0Deb5DUYTk6vzAGTJJ55MeTG9QtvIOSsNatJhKYh4/uEN6qnLFfk2lYsTyl6JKAUVI8fZO0SPBXae4pJQt0a4ZoLtStbjFrW0wuJ8A9/wKaYV6mTIPMH0Smx3QCNaJ087pI/OobMRtRI+ltzieHCG29NneTh/nn+w/FeIkg4PpeBxR1INH/Pn5T8C2WNFCsaGotc6h1PT7NUs5rFPWB8SuCV6rYpTrXCydxdX2BhpBT8Z8aNn/wJ0P8Xa80/hFRYvt5fwlzo8qye0BkcsVBpkvVW25w+YlV/n/uyIr8ZtrKCkflLyYH+JG7OXKYmYxpJ7IuOWOUaHI35s+m3KxZLJwhNeFx92P3hRh2ZeYy96yGS8j45jYtuhMojZ7DzGkSVmqkFJGt6YhhdQc2bk4SpmNEP6IZav+Njmd5hZVSLDZm51mFsd0nJCQpODYsZo9zrvWqvcW/eIeiG51cCpZXij2zjFCZNySqxnvCxdyjzgdJJwutfF6g1Qbk5pw8gSJPkYLS0wIbWb0G7TLQw+kdaoG6usBacoHQ/Ps0h6l3GFoHYyphpV8WnzoPE+YxURKIeBjPGjgiKdYcmcUtxDWeBT5wP/Y3xjqcFE2jTsHtq2KXIfaeeoKGUz6pGmkvfb93in2uUbdZtMe/StZ7m39xQXD5cJzIK+UNRlQisf0p0PkOkQT0i8bMTZ8YTO9Hdpqho8XKGIvjtnj4+Emj+jpFHB9cdj/uDWEQBlGVOWoIuUg2lMxxtjGzmZSrHLhM2GYk0GPL2+R3ZUocgNlvQq3oaBsHJcr8CsDMleWePyQkQ7LRDGhMvmacLTn0L3LDz3FrJ1SFGfcnntHaZrErOYMa2kZFOP6Tgj1k2MekZueySOQbulCLXNFf8cSZGwezDAcaAmDKbSYROD6ew8Z9IRF3rnOFirEjck/2LrLzHounTyCUe9HvWgzzNHT/CzGV9runhzkzxxqWrN1JjgVgRN/TXW9m8zxKbY7nP1eIdT4gSbjOtnKtwUSzRziISFuTNhMqkyLUMGp+aMbE0nmtOcjpmkjzixqhw3VlGtGd8svsVjs2Dl4R4v37rFw0qdL+S3eG4YYSDZN2x6tiJdNujObvNieEScrvBK8i3+Ov8lC+6cxsJNzE5O3KhhmJpCCApjA6+qeXFlDxeYeFXSgaQ5nlFx7xLVPISUzC2fBxsX+BcvfD/DSoO7S1VurF3kVrXgwaaL6RZMTEHNMPigaVDNDW7VDP7ZWZu361N+tZsTpDlerDAzTaIaXBy2GQcpPXGIJmBzcczWsIGKL1LVBww6GTezQyqWwyzSdDptpnIDVEBhWHQMnzPDOU79E1iVBsq0mWUh4oyJfWqEoToYE4W9F9B+bQ7CJDMK3LxEj0wMUWBaFtLxwXfIo4g8zLEsG11IlAoIREndE9weHDAsIwzTxYtTgmRO0jLQlmTHGpCRIrMPd0An8yFKFoTBkE68SHO/QcddZfbqLsUgRnom6iPr7n/v8BoB61cOmM/usl38A/AL/KyCNBMGj86j3fewq2+TTnpU5m0MSuoyJ7YV9ahJFhlUWwZpZoOSeFoQJS6xrhB+6x2Ov/Uq43xIXIRI1yBLFH5mUqYWZidn3h8hgjt8+ha8WEgOLlvQfcRO9xgvL3EMk4V0jh/OELlC25LQjlCWxI0F+4XHObGHbQhqUYoz1DgaCnuP5XLIapwRqRxROBiGD0mb2WSMKT0cWee2sYNtuWgNsZqxWi1wjx4ySmJ25yEz6ypZ4VC3UmSR0BAFx1MDC4OxVSO3fLAVleohVmcX27jJqbVD+nvPkk5fIPHnNMQj7HqKFDZKe4Q4zHQHkbWo3j9H9MEqOq5TFCYFPoVqUBp1JoEkS2vYRcnF7CGdesTIHOFaJRPTZHEnplO2sfIZPz/Z45VBD4mg3hzyUl3wVGPA6XnIhW+8yQujPXaOO+g3V7AHmjCoMlchUfNdLD9lnpWcX7FpehVORYv4losZLTIPl3CnDrXqAkKbZLOE9wbLNM0UqWE6n+E8DvjC/BaPxzZeAfvxAqlRRdZN5qnNrtlj3G3RiyN844h5NUG4x0SLv4EbdlFOzL0zv8mF2SYLJ1sYZQ1LV5BOlQO9QOIvMQMMv0sJ5GHGfe8l6v46wjd5HC7xXr5INXzEufIR3o7Hpx7b/EzxGyz6AbYRMdYGE0txvwK+WfLljUu8tvQMueui4xzPrTPxPFLTwspDSDOMYcr86HWYnGBwgCcFPA4ZOA+piRpffOUn+StP/6+ZqYyzH/sYFcuk/9/+t9inzxAXMUfVknJ4jIo+qqj5iO8ueZ7z6quv8q1vfYuDgwN+4zd+g52dHV5//XW+8pWvkOf5h1WT/5aGAXaZY0QBgyQlL2KMtuTwJOSyZYP+cHaNIQR5XqKzEvSHFTV100ACddOgbZkUWUbwzUf4+yE7ScaaawMfHqhOF4Lu9RvM93d46zd+Ba0Us0Gfe7/1KzxdKLK4oLWyRlBoClVytyiZL67TyDPyDMo0J7fqWKaJzjxsp0k/mvOpKGVzqHGygsir0EUjy5KN9ABTBljJhBPDRpsWThGyMX2N+6LKEzdhvYxZpEqpFEY6J7AaoBVTMrQusN0Gmcj5fPoOr4cLHM8NrgmXc5XTKGUwkg2OrWVGbhXfV+RujUa9IBy1WTk5QNqnCMMGmB9guxmROqCmEzqxiXYXeP6dt3jqwKLGnJeNgqasslgK1ooRIlvEsRMqhUTunSUPJvSbbe7fMDDnkhPrRWTpcf4wxC1zHMdkJQ9RsoVvm/iqzmfG21yNj5EooprATUfUj9uErBCFAl3kSGeNFyZ7BO6nuZNoPqiZROUCi6VFIHMGBSSxpKH6rPRcVu0B2hY8eRTQrm8zcmLsDNrDJ0RWRmYKli5s8fmf+wXa0mMWCkS6wwuLL1A1JSr/Gm0kV1ttOgvLtBqKbi5Y3djkynOfZ3/0JlWjyXy4g3GoqWUuollhbXWD0vYxGXOcu/w/nS3mash8/k282ZRR4RLLhKPcZxi3UJMKP31zgV01pZSK1O0wdhqYB0CZY+oMQ02xXY12DilXHmPXclSjQm5bFHKXRAxoVifcaVwmFhXeFC/zpngOrVKeSJPbWw9Ihop3Zi1qaQ3TnTC02njFLnZbYFTnDJu3Cb0nXEjAdGx6RpNq2+CwvcOXN7+NdgvGWrObpWhlcm3xLHt2lbo7wmm7NPIKtuyysGtheAu4zSOm9UvYSuFHAeI4wEhdcjmgP4epMPFkBau0KY0cMy9IwhGpDSotIDb4lZ7JREvkCAaJotR1OuoAs4ipjGpkkcGNsM1/nbWJVIFglVvFp3FkRGNiYcmUY9PD0ga9GBrJmG4+YRWDVya/w7n8Vaz0CLs00MkWRr32pxYL/4d8JNT8GURrTTxP6OuCYZBx/+03Ge3lzEeLhChmYUmjbXB15R3sMsMVBYteRrov0IwYTwW7p9coK5coDQMtIrxKhDBj7l1dxTYzzHSKoQM+n3Xwug/x233y+Tlia0hGgBIOB1aEoosUIdHQIDpsEQw9vHZKXKszNqoo0aJZGhzNt+hWFzGaHSqlgqJgYkk25ZwTI8ES7+J7kqpY5zCGspiw15yg8tvs2oqOP8PjPjr8Eu7+38c8GNMsIyqpRlurVIMZTvxt0qRPTRVcO3eJhdkR/bDPXIzoF/DjD+b0pikVLanIKr9/cBGpLZTp8qOjGb3MZhY41DX4xRGvuc8x1y1+Mv0Z3MKDxRW2PthliMHHZw/43PAOIjeZ1sFLHUp/TCN+k/2TiHD7k5TTFcw8ZMM7QYUXKBs5k1odYVnYQrKQpwhjzJn221y7+DxF8oRjV7JowFUCpvWSXFqUToPhhed4tLROaRs8p/b4YKHOM94TTL9k2FvCsRV2VnIq7vNL4oSJkXHHEbznRDhujtd2iBY9IqFRjuQnnhRcdguk8YDAXsSxK6zOFgnNZzA6K4jqnBU54WR5lSBMWXT2OU6XGJtDjDTHz0zSYIJRVHDaK7Rsj7sjuFY+IEzWOd5RJOvLiEmEzEqUMKilEVYwZ/bWAO/0Crn7/XhPX0JUPCgU277DQcPCkz5FNkFIg0XDZT7KMU0DZdnYQG6UjBuKmrSxLMlJuU+eJNiOgyoLDEswnO5TljmqK7lU/Ri1aZ1yniEdAxX/YcvgR+5P/95guz5h/mXSJGR078eJj/ZZYhl3KabMTRoLA5p1j7pTQ0+WMYoKlvbwrBiVHjA/PkWlqUhDjaDEkhrb0hTYBI0lVpZMSjXGcDuYskmcCEYEONWUoWGjopL62hG91WMKQ3DR9dna+Sm8soooYdry8btdXAGVKCEQcNc0eVSTWAoqWcG78gwKQeV4xuKZs7yxmHGnfJMH43fQeg+tE9rZJi93fwhHV8jyBF9ZxEmAO+3RGS6RhhGFjqhqyTifs0HJlXFIVG2hRE5aDsmygtioEg42UOObqLhCRYDtFJw6/y/xTv86EhfTdDnMzzJKulTlA7KopLQ8Og0XpeuklmY2dTkYvMytTsGOfwH1oEkcS3b0WQ6mZwkzg7UspygqFLqPdzAhdwseWA+YljFZHLO6N8dLTSxZkBmr6IGPlC62e0D9Rouju0/RCcZ4pyqseTsEs0UOg1NU8px4YJEWGneY0U46TEuLujxhZs8QoqQmFE1p4xsXsQub+lRg52MStwfCZOSUlKbDQakwogFf0G/xY+57fKK1y2+XihvBMiUhgdEkmw3pJRHZxCZWW4RMsDBwyxhbTEj9gIeF4sjb45Xxs6haiDYEnl3Sc1M+EZ/joe4wMDZI/CrB6U+xP/0MQvlYIsczJEageMf7HMpaomsmvMBtdpZe4K8Vv8KTVp+miigF1FTG1f4ePzM4ZuQ2SE2bRmudFi0sw2QiTZo6RroxKg9waouU4zFJ/waWKklyTTWeU8kFi/4yZnWNYTRnbmuOfv4HGfzcz+K/8DwPRg/4l6PXoBigwu/OoMSP+Ij/Hikl3W6Xt99+m6997WtsbW3xO7/zO9y5c4ckSXjy5AmPHz/ml3/5lzk5Ofk3vn/UP8K+9hryOESGAfiKK6ng4f4UV39YDSMF5MWHzoFpoRjnBTVTIhDUBMTvvsHOzfe4/+1X2RgX7CcZS471R8/4ZKhZORySBHP6Tx6RZzN2br6NE6c89WiCXW3idXpEnkc3mOLPR4wqNbw8ocgEyvKIzCquDWFU0lk+g+d3MXVBqQRGFBJ1ljFLzSvH21TDmCwvsfMByrOIrIi+0eKOOkuzZqKUwbMP3iGa9TG1wipmDGQFMyqpUHwo2KiYQ7vCd6yL5IZkmDrsVlqcMxewDIOGs0LfXyEWGZCibR+/ldINBnzyy79NzXHIRgkyf4OV6j6fLpa51PWZLXfo+gl2tcDbvo3HFKttE79wQr2IaREwPwmQpWA02+J2cY5yqUnZ+Rhhrc5SOKQ6+hRe4rPQD/DSe2BOsNMh/dVDEjPFyDWd0YS/3v8dqqXFUadBrz/DDqYcFwsEsk4pbKZmh3HWwEsqyFyxOMr4q3diOroglSn31DkmRQezLDkr77GafQOjUnDXUjjlXYQRUW/YzByPQECsFG9Hc16VUKvnzJOYIj9BUtKQKY6zy390rsdLzSoVp4rc7OIVJu12mz93/hnON1ZIah8jc5qUpkLFEYN6zMWXnmazlpKNdxE1D1+tM81zBvaYg/YCA1XyfusdxnrK9q024qHB4n5EWTdQjsU7/l9if/x50odNTk5ewLJMclcjnJy5jjiyVwk9m2mnT1jzKaXCcSUKg3ecFaaqyj/JP887+jSVKKE2n2MiuPnyS6yZ1+nZBmMUfaOHspex2i5h44D3e69xozljuDShkVVQdg27kAyMh9zz7iGdEqE0h/4We80XmEqb3VnGwjzg9GAbt1R0/RrVsIqXPEfTyCmVhZGkmGVJJQxBeuxYioqKOa1PcKSPkoK+NcZIUubxiNDM8YSgHgU0VMnEgETDeDwCXefU/B5SGKTCpev0EZbAkYr/7STENkxiekijpCUlX5y+iaNDqlLSHuVk5TFmfMJyOud0so3NG2T5GCcPyZYXKP9QsP3T5iOh5s8YWmtu7k345m/9Mid5QJoWXPvSl7j22kNm1TdIkWy2hlSaq1xo3uIzwV3sMsdVIZ3HUB3PkQ2bN88+w516Bzu2MCxN53SCldRJ/SF2EUNwAyGr5O07eEu/T7XzLvnD5zD2faoR+PkKoqYo5RK56VMULnHQYHg/Ja/1iOuLRNphYrbZynImuk2ltsLG+cuYRcQknzDqCqzoJnO3Qp5r7jqae93n2Seil+3wqIzJij1SnbAn7nOS7qPtgoahcPMp3WKfM/kOuagznfZYKba4vXqVqpXjPv2YO9UxgXlMoQqqxYQ4/5ck9h71vKTZfA2ncZ8GLQJVxSPAEw6RqnPabNEc/xLPT7+NFWYEkzm1/YhFnWJcPYUnCkQ85rj+Ll/I3uNHin+BSC3aYsLlfIhv7DA8bDO+s8XheIlG6xaT/rN4rgGmR5w5mKpkwTkg0xUUNoYJq8P75GHO2qO71I41x1adZ7fv8Ez/EbdqHcgUlop5Ktyhbs5ZLG7hNgWBadJRE45kziTcZ1zRFNMUM9cc1G0saXO3bTM34NgWjCxozAvO1w+YtlP27IuERUjqDdlddkjUT2MGktAzubW1ghAlx7bP7dji/RO41HgarWKiaIrSGtOqM3V89MM95tsBlf5TFNMaybMOwcUFkh9vodYF1XKM0arinl7AWlkin10k1xbCtlHBnLVM057MsGcZ0sjwgYkYIUuXii3ItUAqzWJlmR9f+osIvwVOjcPRA8J8ijMf0qi1MHVJRTaQGBwdPUCYkjxJUEEOUpDPYu6+9i3K8qPKmn9fMM0am5t/A5GfYXKwRhokGIlDqxHRWH2CyQHPrvwwdXMBEddxVINQNbB1zHyQEQ2XcNwpeaKhFLgVwXI7wJM5Q/cKR8UqlpViGg3MtE5aas5U/gWtp38bv3GPilyjobeoRRn365LarCAytmjn61Sk4MCxyENFVpbUZzPmEmaVOgMTzFKxsDdmL3ax0oTl8oS2rWntXceuxOynE+6p30LkU+pHF7FqLTyjitAllrKJGw3C1GZfpLy/MmWmHczCZ7K4RmdusDt9hrBVp2JI0myKU9EMl87TrZ9QOfkarZHB9xVPOP3c15FuTjq+gF20UaqguxYQFzlCZ0htk5uSpgOqcCi1iV8sU5+eIVABrllHHVsUqY2UFQb9S6hxzNWDW5QjgdYmpagzbXqkImNChJXmtJZMbBTuNGF8rY3/wQE6V5gqZfHdt9h8fIDMQ0pDUW0lPLN+k7DtUctzLvWPeNGa8/RoiU5cJStAigmupbHUq9jWiJk1x0gEtqrCKKF53KdEkMoSEVhE+QJD6lhCMe5t8LOV17EbkuHwgPFslT8Y/jxSCbRyKCc5Mlnmjf5noJhx117GoIbbvUXW/oB2920qrTvcWvmAsH6H3J7huX3+8unXWM+bxLJKYtYYNs5w9/QrPMqPcNKEc/O7bPqC//DJTX41+HFuiXV64jFKlPz97Pv5jewVvu/xDRZ3Cmp5ybOjPpvjA35sf4ahbRIB1toZTqwEFUfkjoObzSlFgr3Qp+Z1kEWIykcUecgkDWjunFBGE8q4oDj0yMct/u47f4//5u4/ZO4YlLnm4Bt3GC/aYMYUs+jfupLhIz7ij4NS6o/eMa01QRBgWRZlWZKmKaZpsrm5yU/+5E/S7Xb/je9v2TYEIfn1I4wsR9U0z+0lfCOJsQyJJyUGglzNcMV3+Id7J3xzPKdqGAgBVQFH77zOtH9MnM5ojDMeRekfDRYWQlCPC6LoQ5ODOArZPfgqD6//HisXLhEFITPDZBzFZNKgFU54Spjk7S46GZLlIf1GnWOaxGrOKEuRVUmB4u3j2wwrB0g1JzBMTDRP3XuHdrqLynKqaUZ3NmWcHzEqBA/KZYyqS5ya6KN7PDGuo9MYUxTsCxsnMZH5GJQiKSIiEm4ZGaJqMuqeIfJ83BR8W2OphB07J5YJBgF9q0JYHfPc4h7ePOCUadGqJzhyRNX6Jj/51j0W6xYPz5zih2uvs7g4pCo0vlWS1kfMGw/R+gg36mOpDnm1xTnvXS4YNvLsKXpmm8B2cbTEjX3smUHOMqZxnZOVf4K2H/D4+GMEiUWm+syMGp3oBCe0SPUCw7qNyB/Rj+vMZIdCWzwyt3iv8RmiSGNIaGlBNS2RlZCkDInkFUiqmNKjfvA6DQvud3yi8z4vO8c0bcWPrLUYVhokwmBelDyJUx4qi4ojsa0UZIBFwWdrMd3lEVevtPGkQctp0XcDrHlJpdGks7LGf/K5v82s9hKV5mWk51DEMceMSfOAg9bbFOoYc7VNJ21xyfg0duP7mIUmo0zTt/rk9gn3DaimGaLWQLQstGuhtofMpoIDHNJBjcpSyrUXnkI4AcMCDKeHdmzqzYKvLz5PLtuYpkUaxFgqJig9fBdOtEepTay84Fg3aBZTfkr+Fjq6jhYVDnWb3LqMseiwenGP9YZJLBLixh6Ws4jZNHByhxTBVJ+ATqkJgUIyUU3WyhCZK2L3LHVzGalNvNTAiDVy6tJWDfLSwC1LMs9G5po5BjNril1L8SsfVj/nsuSgMsNMBWNrwpv+Y/w8xZyO2DfvsX/RZtyxKIyURPcYyQrK9sByWLR3kW6JZedYWiIsgyj1MUzoYLCr53zDyOiIks4g52Zjh4a1Tk/UqeqcsBwSqRg7ep8HlXcoi+xPMxz+EX9soSbLMtI0JU1T5vP5Rwn7TxGl9B9ZAY6jnP/7l+5w5+4tHF8jwpTDx3vsDB4wl/fAUFzd/B2kM8UavMTZ8QTpWDhqShkqjJOMpO6R+yuMatCrp2hnAdPJULcbtBlQakVeGWKbG8TiMe3gWVr7R2weHWIqA98AVJ2102uYaZt/pv4jblWeprkm8VY+zTBfwxQuWksGVsGL+SHUWvydqz7fXDlHIyswdMZhXXMn2CWLFP9d48d40zP4jY7FxC6ZhS0K5eBmMTUVM5l4tPKzHKcSynNoJViOc9aKNzGFph75PLn7GWL3MkvZTUznAbYl6ZBxapizISW1ahPLGJFyyMh8zLx8yFbWYapzrrvvEmsXS1RJnNPMteZHJtdpC597roO1O+cHJl/nWX0f21Z8uXaKb1XnPBN+wMW4z1C0OFArDM0zaNfEsQdE+RItnqUwNTsTk3lu0aj5CEMjixCv9z4VrTiMz6BCyeWHPuePItr1jOBEI5KIU/4YP55QSWJW05CWYbM4mfGFybss6TFHi1A64OUB/6+LBocLNs1uxuJwTB6X7LfaPDBc7gC/1YZhS5CrEtOAdlzhVf1p3nd+lEw/TSoi/u76Ite8CzTbK/TMgufcQyzX58v1FxksXuHMapMFN6RVvIHWmmnRh0QzdSs43Q621WRhdIG12nOEdQOMnMyLUNU9zORdaCsqlzK0Nj90bHrjDiKHU+KEz0W/Sdu4R1S62BWDqiUYiBFyYcb55RMsqbAtj7ONpzhtbVIYAsupMpn2mTGi9annqZ5aZjrdpmevI8yCaf+YtIjYzx+AKVBFQXQy5p3f+jXi0fRfiVN/kpLpj/jj8b3KE0II/MoGWjlEc0h1lTgXVIwjll68gUwl1rDNQJ3g2oKKKXm8W0fm60TW08iiQMd3sBxJx5I4Ys7Vyj1WxJBaaHPYdzDzY6wEdnbuYRgaoWMSFGlis1+/ghEvkqoWfV+yOC14a0HTThwsQ3Kr6XI1OoUwK9Qtj0zOKCxoac2KjPmb27/N/+nJnP/0ccSfjzepDhuo0Q7SSVCtJaZjmyxMiYKUcTbGKixMWSJSg8e0KJTHLTXhLTtmp2xj6IxM1sgWztB0ptTskHYe0HAF9WqEeuZ9dPWQnTMXMJWDMX2IaP0BR7LG8dEWZpGDPqZtHVNMUtANXLfCufPXaVR2sLSNUbZpJas8HTU5E+TUckklzKkFEp0L0qSgU9fUNuEka3CkmzxZWqVf1ShREhFCxyS9HODokui2Yv/8cwzy89TuLdIOYmppxMbeE6gEKM9FBimdXwrI+wG2gpWjY1bEDk1m9Bb3sQBhBrgHuzTuPeC527cg06TjlCWzQz1MmTRKDCPCE2Max1O+LL/AbnUJo9Uhcgu+ol6m6Kd8fvgNznsHfOfkFFYUIBR0kwnJzGB7tEghqrxWbmGEFVTRodA7dO2MVWufr9d+k75zgpaCUoe4YYu2rlMzDOpeQsv3EKT4nkQUAmNyTJkXZJ2X2Qg83gvrrIgDikIwjU2ulRe5HB3Tm55QCSSn9/bohSaoRSqFSddbo1O0GNd9XFViOw5WEWHaFkk2pi5cVFmSxTOUGRCaB2iZYamSw/1j5teOMYcNZsEcp7T4xvgbfOtbX2I3PSSsaHBLZr/231CMx+TJRw5QH/En4/9fnpjP53z/938/P/zDP0yapvzET/wEn/jEJ9jY2GBjYwMpJZZlIYT4N36u7fm4ccxOdMjDVz7D7xU+I6F5qVHl/zA2kBo6tslO1MfK3+C9Wcg70wjfkAjghZqHk0SE4xG5W7JzusKnmjU8+eFRSmuNkWZkZUw0nfCogH9wJ6G1cInOxgZTpyRqCGbzAEyL3uEeLwpJ6FjEUYG2Tb528Sm27UVUFqAcyWgpR8mcWq2F4Yck+TEyDTDTEE8HNM0xtlSUseTcwROupLs4uiDNT0hESVp4ZGVOLgwKCcrzsD1NIxjSia7TKTRtYTBNp7j+FGTGt/xnOM6+j6NJF9fRFPPLPFAfx7AVdSMjMxVVjtkgoRLFFFWBs3GD3PQJojHVw0MWBvsceB4f999mer7Kwmf2eaV4AzOuMB6skC/FFA2bxfIck3adE2eRS1FC3NpmvPkqpm9S04C2QC6wl28RmSGL0xraP8JZvYnXmJF6CYG1RGQLRJpQ2/0R3s++yNy6wrx0SJRNqWt82/pBrnvfTyhsLNcilYLYSKkpA7tMuGAIPq+u41dWEZZPpdplZlX5a6d6nKvYVKVis+oyrjRxbM08nXAYHHFQzvFik+WFeyjmnBz9Ep8zr0E5YDD8A5Jkl57f443DN/iZv/i/obGwiBCC9fopbKtO0+yw0Fyi7rcw6g2uv/5VngyuI6XmsBZjh0c8f9+iFlYZ9hs8OOzQ9i/RbD6i3Nxn6ckjbhQeH+QFme/S2XmIe/ceB1uLzBMLq3HEOxc20aZCy1NcLAIiPBrWhNiRZEUdTUGgFRLFPJU0ypzccAjbi9AyGUea5+JbfEO+xKJysIoGt7Ml9hrL2NmQzf4emy54RsjWGzfomzkrRk6R+5T6FFbpozU0KxmdMx/Q7JVcDE9YdEwCqwXWAqmUjI/Ab+W0CGjNW2jhfuhy5nkYWUkhU9xsguW+zdgU5EVBqgtmVZcsHqNlyuk3/oB6GLOcB7w0CPi6l7Nb0yiRoFLBXJcoU6IVKHcdLXMMy2LP+jRYKUlsg+lSRfI3EoeLRQWzzPlU7PKf31nnP31/iV5pkGifiTxNonM0Y/azD7CL6Z9ShPxX+WMLNdvb29y+fZtvfetbfPOb3/zowPMnQKmSsijgDw+Oe3dG7N8bMwpT3t0Zc962aJcxL/gmVvqhj7u3dB9LzMGeQLDB/mGN2d5ZZv4q1WZJVk4pogw5LBg3O6ykEcNKTOrfQpsdyifPMdIv45UzZnqR5JxGWyMycUzt8SrdJ38Ba2+I6TZp5C7zfonTmpGrVZQs2Fvb4oPGz3NJr7MaLbCgDSwj56FxwrnRu/yNe0f8+EHI112fWpZiqpxtIagUJVee3Oa2t8Jby6eoiUMetmBUeDjKx8tgOXrIT1yLWA0DFnmKo90tDGlyLl5hrLdxSHg5FcRuiwvFjNrOA25HFS6ZNj8uX6F1ULK2N+CMXSLLKVU94T8Jfpifcc6zYA/QOuf97B36hcNKskjHehakje0b3Ksp3PYZzpguy/kARIirI97hIVOhuR6s0H//L3CoW7zhvsAH8gypTBjrGbmtsYeXOUw+wcjMmaRVtja/zAtbX6PtnpCMazRvDxibZ2mWBhuDNu/aBfHKdex4wl/e/UdcaL6FVyR84vAxi8GI5eKQt9I1nh69xyhosKdOMTZbvOavMgxTHns1xhWD8VxSKRVnosecTwd8syN5o2nw5Y2YzEhI6oIkW+GmusRAncWKniW1THaos2s7PFVP+aHaq1xNr/Hc+o8w0etMV86y5gyxzQ/wzJxqpclcz3DSlMuHB2w0z+LYFif2HZyJz+FtjzdPrnMU7TKt7lGG9yjSKUe3QqKRBhXBvEoZFVTqOb3yOrP5PUDhpXt08m9h1gq8XsHW4gDftah011gST5ObGmFIFio9KDWHxWP0uQ4fXJyzHz0gKxOC9BjfqiOkYJYP6Mtdyiwlmc5Z4QzpqycfWjjw4QYqfTihOI6+l0v/33m+V3lCFwr+0CVP5ZKd0GMuBBURob0G+07Gg/kjDtwH+E5Ke3lKr60p8pJELeIx4PTobVRe0KwaZNYAI5lRK4c0zBLLKKjIORVsmnabhu3gOd/H6b0fwXv8/Ty2ziOiKlFig2NSarhXszk3KdBS87VawY5n8+ePHT421hxad4nJ8LOAVjmnWVvjdBhyuDDjS6c2yIoecTpByIISi37ZYjYaM9Vj0vkxSjnk0kSlGUu5pm2Db9X4gbcfszYfEFgBIog4alfoFG/Qq79HeslnsSUx3QCjdpcnNpzUltlcHlNvzsmzZfqskxk5hRyDKjDihN4gQCofpEJgU3UjVOyQRV2sWCDTmB37mMfZEd7pJmfiPnEqyMsSw0x5u/NJbtkZvzLW3FusMpM2vjYoqwW2P8Y0YiplDgsFo6qHLiX2dxKqr9rQtNFGjHF3hjMuUMcl8skYzy5xZYnYjRDJHPfZHVbrfaQpwJVY4TbBD4MwDMzSYCbbLJsuamOdm6sKQyc0jTlWGvD+7DZB1eXtrZfZLypMU4vu0WOe0gOwcqYtl4WKQAkDMQlJ4pQaGqWb6HKJv/voL/D1Rx8npYtnOkQLBi21yNuZC4FAp0vY8RraBleDVw44V1nmymif55IdDCHpFQFbOiVngpfPSWSLs8YJnX4fO5Zoo4OlMq7e/g3OThRSG5wW7/Bg9h6NzCC2fSZ5yGB5A992yA0DqRVCGiTRHGFk4GV4TZsirpCniqS9gJA5QZBjB4JskiCmGj+3uVfc4/fGX+FG8YCgjKn8+Z+gnGv2/ou/Tf/v/310WaKy7KN94Ef8W/GvyxOWZfHyyy/z3HPP0W63+fSnP0232+XSpUu8+OKLGIbxJ3quaducMyRpGXD73LPckwbbLZNLvSoXE0WRlTxX8/mt42O0DkmKHN+QfyTU/MxCnVqeEkxGRFbOex2Ln11uYwhQf/gfsvkcx68Qz2aMleaDY0V91cI2XO4vSG4umExmM5QQbN2/zdX9WxQiJdcVZE/zqFbjg+4VrCzFtCU79ToryQhZFhTxjDwdcqXYxYvn9PyU1M6xax6qhOVgh7/Z/xKdfErViWkHBzR4hp36ZziQNkO75BvdFrt2iGWk1NSMNZXymcLCKDQmMXke049dHo83OVQdLCtnNGoziCpIM8dKhlTNiHm8QycxqOcZNR3y2ZtjShaxogLLkbySv0avTFFODWdxTG16hd7+J5Bzn9vzLfKzmpnXwIwVfdviK87nsMKUZv+zH1oiywSrVMSOQ2as0S8ustet0D3OMcc9ovEzRFu/TFZxmOkzpO4mStTJR+vcHTvslz+FLSWmhtRq4ut9OkcJg0LTWq0QzjPuDl/F1e+zGi8h02fZkCPajavI5eepNlf4nJPwwnoDy/RpmtBr+OjlVdpOwcODf8lhuM9hMSUlQpyJ2V08yzf232Y0+jamWaV/8ntE0ROWKkucaZ7h2TMvYVgftskZQmALgTkYsby+RW/9FBvL6yy+8CyGzpG64HZyn9x36I7v4A2P0Dojl7tUs7M4011WRhZzVzFeb3CcZ0xcn92PfZzZ4ioPaxa96ZSW2sMihmyDqnOZlyYPGIgeTnGCmmlO9tbI04JRVeJUJNO8iTWe8olTuzxxz+OUE35q/haXoms8qCzSyNssqgaBvcA97kEwx09iHGEgyoCt4yGblPR8QeoalKOXudL/IYSy8ZrHlLlCGCHz6imq1Q9bl5XMmFoFWkC1/IAufczYRwsHaxYSrv0QcpbgGRmrjyyquYVSGXGSMMtCkrJBnu9jyILGLKRmu7Qmu3SOjmlMjqjMhhRFQFka3EtfRAtAagbZOQpRkucGj6N1hDVC5wal2cBQOY1ZxOfmbarKoqVyFmsb2PM98vkFJpnPqFzCMSwCNeLIzcGt/Ini07+OP7ZQI6XkK1/5Cq+++io7OzvflR/z7wvHD+9z7/VX//szJDuTmFuHM/6Pv3qTd79zj9rOY8oo4rwnaIUBorfI5tIJP+YskNmHhI+eJRyuEk4aKDzsOqgyY7zySXLrKWbddU7PZsy8IaUdYOchR3oTb6tPKUweDv8S08c/gYoVSldgqBG1dRLDwDAM1qJH7FIjlPeYJCucFvf46Qc3uVGdM+/1WVUKVz7GKmMOdUZd7VAvXTbDOYFp4emEpdkEJ7jLsljCtQyWo1dRImAleMJe02XgWrSCCHemWT2+zVo6Z9Gp86mkww9U3mOjomn4J0RlhlUGdFrHvFg7pjkvqMULTINd2v1lavvPspA/xWIQYOUliXrMC/27XJws8xenU7reIT3h4pQm94ceTcviwFxBYPKOcYlWOWYg4AdkjjR8jittlmY5tjJJ4ymZ5TGJWhxVLvGa+ASrjgZ5Qrl8l7vLKQ91m/eHP0Jsznit0UJajygjDWGba85nGVlddsoObTEgrzQ4XDzFoRDE1Rlr8zmRlVJ1FWv9bdZ2HtL71h6PSpvfaja4N9niTrHGxv4O1fKA53bvs5nd5jVzlVaa4WYZv7D7z6nHE5ZyxV8dH1MmFb691uDeoodVKJ46LkgBZsuMLIeWjMmlojo9wdYevUBTF0uEeZX7bZdhGVHY++Au4TYF4doCqkjoNc9yIT5LW3QZx4eIWFJMArLLH+eDlWc4CmfoxMAaFiBbxKfXKSY7yMYCDbOF4SiOwjO4jKk6KXYypjP6Fdb8E1CK8OARlapP/PGP8Y//3Arv623SRNM2Gzimx+lzV2gtLlNWHQaLkgPzFv38mJrdxrNqTOI+tx5+i1SkGIVkvX2J+eGAMvn/HiaS2yPyk/ijyprvIt+rPBEfzZl+5QFSCuoVi5MMzlTAqmak2udA5NyVTzj0dlnwEjAcXCnJckVWahzfwFcTqramoTRZ5ZjSbiAtE8sV1PwI/JzqxnNsdC5RNwzk7AqerWgaNdZShWvWCQyLI6EYeJK37Aavrfr86ipUypRNTC4EBd+sHOFmGU1DY0UzjKjEUGv8v5d+ncfNE16VAXfEA3AUkCEPDvCjkLmcc1TuUrg2SS4Zpw1KUSJUgQUMOjXORlW056D0Nvb8MTMLJlVBufQenypfp2qVKDdBa5dT7oSl3GClMmKtts18sgT5EpV8gmGajItlHo+6uOcC7N0KmcgQSmHvfpH8DYfgmkkt2UeICbGREKuS+7ZHxdDI2MK0LLJmily8ydzfx1ENxgqi3KVbekydGR07R+Yjztbv0LEivHs+XjlF7IWYe4rI6sLJFFww9YzJfQ/dNLAWx1SmE9Q8pPZ6hZV+i/aBIpARQzMkP3dM2jpGScgdn2EQUGsknFdneSZeZlVHvNR06Mo6ZbDHxEz5gIw34yWKlk+zYbLUa1CJ4HPs8KzcpZAOX43PgTCQwiXKfLIDGFvL7MxavDlocVzYiMLjpfgpFsPz3LNvIWMbmdcZmxNc06FdSBpUqfgVVCwRpqaSxSzEAcfNVZRhYJc+W+UulSDDiTJcUzIWq1xw9/jh2bf5VHaT5fo+d3vnuDLbJaslPLD6POydRnoNMuQfHQhEWfBYTjhY2sDYbJP6+7i9a+TdRdKyYDCKkYWklimshQadUytoQxFUUgYMMaWJfeVZKt/34+y0Omy/+x7JrVsM/qv/Cv2HYs1H8fQj/k34XuUJKQ1cNGGZ0LBtBIp7OmHRyrkV3yKNYi5UXCoiJy/nrBiCvz01aesPq3d0WVKkKbOTE2KRcVIWzLIPh2z/86MRh3FGMptTcRqkYUBsOSTVBml5zOOdR/QtSSjhZHCMFgJLKsyk4GwhSF2Phw2HT5chr/e2ONXv49kuD40el9ND5nuPiY+3yQzNU+E2rbJgwU24XTGZdpo4pmSk53j5HCs4QVs5P+28Tn0O1/MVQqsgq444MGI65W1qekJamtR1ycv9h7QiGycsmCYFSqYMY8Ekt7DMkvFccxRaCJGyFo74vuQJWpWYiYWwJVfe+Arf9+pD1pEsBmCfW+ec9ZinpkfkBRizDPXlu4TDHkqnDIo1ZmsmfdnEEDnjQjMoLHQlxhy+jCFhzUtQhc0o04yMi/SN58isdbQcYCpQB1fg6PMMx7/A9uRjpMd/mQPxIicdjz5j7hYZBoIgNZiIT3Aq7LMym5OWmvqCx7mKxMqnbMy3+YknGYbRwKyfZn3jr8GVn8fd+gz/RX1OzTRxDJe/tuyy6DvUPIeuEVFayyTaYE7JP7hs8d+d+hyTCy/xteIqWT7CcdYIgruk2QmX2pf4z178zzCl+UfvogG4AtRkTKO3RLXdpdNZxlhpstBawGvWySVsGFeJxke0BoeoIiKNajSDFv68hPmQX/9snaPFjFNVF9eFvZbF7y33sFKJk2uKh58jHdfYvr7BSIPNMaGukFDFnFQZ7dfJc0mITWIrhlGDteGcZf+Im+kSVj7DTyb0jR6BaTDIXFpqiuFlhB2feLmJRQP3eI6hQ/xozlXrfWru2xxwD91fh7iNUiZGrU8yb5PEDqOZgWlJhMgJhu9yIkLKKMFO50xo4voNLEuCsomsZZZUwmJ5QhkJZrPTrEwCZDDnHo/pDs6iSo+ojBCp4pHdwxpFNArF4mzIYXyHMJ6gFTzxY1InxzIjorwkKXLS0sfdnkCyjBaQaQejCFHKJRh8nPZM0lrqY7Y3mRyMGRydZeyuMLXqLBo2YzXhROZk8t+8yu+PFbf+uBcuLCzwxS9+kb/1t/4WH//4x/+tyg4/4kOC0YjJ8SFlrnjwTp+b05Df3h/x9vaY4b33MA7eBEqkzFjJIlY3ljGKNvaNKp5tY2Q2ZtJB6Sp2xaF9rk/VqRGYl4nLZc5zyIWH8NL4NoYWFPGE8cJd7IUbjI0eN2vniMZnCcQGv2v/ryjr59DWjLsrSxRCcXl2l/d65ylLgztOlY38gNnBQ4oi40b924y918nkCEsUZM02aRpzyzlmpo9oJAF5dMLKfEhr9G1ODhwsRzFOCl6+fY2z2xnKanG8sMxWEXE1Ocsz0VlotHENj0YQ4dY10UKIUZ8TJBnN2X3uuHNGaUYeCcxqBzsvGAZVdrwxlUTROWmSjza5px6wFfSwyGmMjzHiCkuZzZmiy0u1MV4XBkaF3GjyO/4Z5pPfZc+LODbu8Tvrn+b/tv6X8GcZraxNWRFs10JGtsF1s4cufBKjyo3S4aGAI/8ilcLm1AEMmjG3zU3C+U+wN/shni4FR55H0lvnrlOj2XyM9X03OW5u8GTsc6c2IutU0EaEXu2zcOExo/oix34NwzHp5yvcmm4QFYLnt2+wOH+IX025Uv0WP/PoO/wHD76GClM+KJ5Fm03+6vaAL+z/Ln5p8oEluKMKKnnGT001Pzgo8USVkdtmmQNi3yATPY7s/wVDfgFD2XTNiGV/SFaOuYvBjcp56t0hW+Fr+OUHLLVjHgXfJkgmDHODEzektFx6o0125AbTJxbFTogsBEmlyc1CkzUE8vIa57c+g/Ivc3vUo+2mnDLvYM3HWHVJMD5mcXWT+d42himIf+CLPLJhf3aC4bwIgcSSDlsvfoxqq41XbbLdinHNiGkxpe0uYhU2wXREEA8pwgG24dM4s4xZd3j9n/wi8XxGmeXkRyH7N25y/Su/h1Yfza/5bvC9yhPjqsWt6ROCbExn2SOVEZk1I7UTjJMTsr0T+pUJpV1gxT712MBJIRE2mU5JdY3Ce5pe1WZnVjCVQwq7imW7GKlBFO6zu77G11urJLaD72icIiYyRiRZgKs8DOWiXJNUH3NrxSGSgt9egT1H8kpgcmJCns7ojffpbc95cTcgzo8pc0maCraTAHlQ4/ve/zo7T75CGgc8Np6hXLzKZGWDeSVnmPZJdZ1SF/hmA2EbFORoBPfrkmjrGebmFKt8naIypJrA5YNHeMY+TniXN6zLNKsjkvACXXOX1voOkhk14wBjrKjPH2NVQ+yiDmmVPGpitncp7QNGkYWY1JicQDxJ6KYJhRyQdnOICppFzgTJiThL287I85CcBazCRpUWzqRLQYPJRNDNHY70IQuiQNgmTjJi+J5LK94m7ljotIBRzGNnGf3sCsn320RPv0KpTPTFKsu9Mc0tFyEE9sGHc2fi3MY1NFMxI9o4xBqaFG2Dw1NLGEqgDp/wQf0+n9pe5kL5kPr4kH7rMaUREltzvGBGkLW5s/o0ieFz5BjUWWDzcJtcSUoFrmmhhIGdzshHHQalR1SrEAuPeb7MrSgFItyV9yhGNn/QvEEuYu7pEw7MPp6uMuFFDuIxQUsjzixgMMN1qyTCZkWHtHXIz23/AQvBNnZaYmVTLBnxJFult/SYi9mrLMgRnMBOYXIl/H0uqsc4lSqu4dCWNq0sQdgORVmCKhksLLK9dJZJpUFcDsnzgpN6myRPODieYXkmBiX7pYFvtanJOqfam8zdOXW7TljEZLbL8OpVyjNniK9fZ/61r1EcHXFwcECapv+TrPOP+HeD71WeEIaBkoLI0LR9DyUVY3LkZMrdwWMmswHVMuevLFTRKmZDaT4+KPByzZPZE3YnO+RZRjAakKHoZxmzskQDr08C+mnOODvBwSMJArJag9TziIoBh2lC0KyA63M8D9BS0mi0ECOfU/M6qeuw61h8/uR1mmXMhZMTpKhzki+xPr+HzGYoJyOptVgIUlqHO0hL87CSo5oCQ2smFcE4n2NJTWLF9IqQjyXvstEMKK0nPFmc8mTBpmsNWJQ7zCP9oeW4gtPJAlYmsWhSbd1nY3GPKDcxXJ+qLkhDgVZTPjae8vx7v46Lx0xBWfU5tX2HcqnBFWJW5wJzdZFeOeAHxw9w3xU09xT68AlH5pxAQlnWqCdP4YgzuEaKI5c4b0NuzbleFJRSsFmbUVBlEBdkh3OKqMLBOz/HIFxFU8UvJTfGEA2eJg3rvHPS5KuDj/NokrE2uUgZSfKiIEolJ+ErWFpiuQ71mo1XtRElGNKCtZ/Bj+p4rguf/c+RfhexcBHROoVz8YsIaWJZDS7VmrhSsOHarFgldv0VavUXsewWO/UKFdNlLpocyHP07Rf4tegsaTZiEvf57WHMgt/7V95zQwgqhsHTL3+Mqz/4I7z4oz/J4vIp+lGfrXPP0VxcZt09x0rlHF61RtNxaBUmjclTuKOI9sTES+fc9Q0OmgHSNAnbe7ybv0VkDmkUDbIyRM96mCXc1l2aeYpkjsoVQ3mGZKAwkKSpZCFrY8iScWRRa7aQyqHMZiSVHq+ZV7m9coaumbFPl15+H9vZ58bkk9wW/yG53MCWK/hWjl7wOad+k3z2NlMnxtxvUyY2qoBMZESTEFfXcGwBSmFJxXT4hEhnCK1oziJyp0maGtg2WKJCgoeH5uL4ATrJECOLH3vzm1yY9nHVjG7aoWI8jTRdSHK+4VfJ7YzkeId3V7cwfUUpBKldcK31BhiKzapGB++T5wVFDO7xTXb0XUzfJopMpICIGjOxQH54AUMFaKdGVt2gkreYmBVmEhaFyYA52l5gUn538uAfW6g5OTkhjmOq1SqPHj366AvKn4AkCknDkCTMufXqAceThK8/PGG16SDTI7L4iFqnhTRLlk2DzXaT7vtztu6eUDEamFLglHU8S1BZKHG7I0R2hbL0SaXHpvVlWmKHjz98g/o1B5EsstI4YZouEesKE3fATAw4SJ7ja5xnWq+SmhEr2iBII/qjCqHT41i/wiO7xTOPrjKZzYj0jCOR8BvrV3jkroElGDgt3oif506yy8Nyl4vTmxTzGbmREEQtyswmcCJ682UO6jsk3jGhUTAyfa4cPeDpE4OqXWXSbmGXPq6v0LMKq/5dpqOcPA05fXSLb1fOISsupiHQhUO18CCxmWctFloWbd+lOF6hqVyeVinCPGBoW/yyfZ5mAD9qncZbWeSfdVboqBFVuw0ipCsOyK0Ms17j6/U1bssaDVXwklrBsR0GjRWMSsq52fv8/PBVdvzTHJaKJ8s/S1yro/o5VT8nXFsnMde4Iz7Ljdo5fuEDzekYYkvwmZ2QU9ZbqNZ9llrw6eUDql6F3HcJjSFz7xrd7gnZJRNLzUkqEToMaRUJP7l9m9NRSGMguMYOYeHwo4/eYmP0gJWsz29tfhK/fIjtvE41vvvhBtyEHUsTmZpKBR7XTQ4QnEiDVSaMbZvUvUyRdJDjHiYFzzU+4IzxBoYseNA6T+45PC363LE3iYVCRx+wm+4yCHdIT06YzQLyUlENAsK4QZ7YlKaPth2GyxucevIQZc0xog6iqDG1FzmuWZThjDP6DYxBH+0b5PGUN3a/jRP0ocyZ5imnrn0TtKbMPYqThH5lzp4xILkzomW3mBsjFis10jLG1zUM38IyHBwsxPAYI5dkBwGJiFDjnIO7t3n9n/0ixSylf/8Bj6+9TZYkzIeDj+Yt/CnzvcoT2hL8o87X2c538Vom7XZG4UREckbQf8hMCPbNPhZTGk5BPTjBlRAlLmPfpS8PGU2+QFVCbGZgHZBJMLVP3ZBYcshxY53bHYcbyx6GkzKt3+XXltfYXT6FFjaGkEhPQucRX20X2HmGjDMuHR3w4szgm+0Ez0xIY0WcJHz+YMp9dQ9TCbQhqWUxzz/4Ns3+E9xqFaUN3huf56i9wbefeYGZu4ZZe4Eo8VGVlLr1oSWlGx/RW3qLz9feZdeuoDceEm6MmbQ7dOOHRFtjXMfl7torWM0jNAmzWZekEWDXjpBiTiqm+EcB4ayOLKF6u4E7qLGWz+mMlpgvWEzjBiJdRBsSccqlu6Z5r77O7fX3EG2b8dqESUXxJTnnzfyEUOY8ygp+Ow+w4y7VaY1ZGZEKTUf4mDpl0XTQPhScIQsM9s4v0z+zhahWqX7uc3R6GdL3KLaaxBfm6LxAJRmb5UPyhkVhWuhMkdo9muM+G8PH7BZzzFzjjizk1Yjn1ats0mbZvs925T6yu0L99AEXkgE30jepmQ6uvksz88Dq8NAa88hu8UQvszs3SfISVaY8xQlXbI3rSnyV8PjoKq5UiIpgVhhEssvjuEAYMcJ+SNM7puoK3uk95Jdav4vtK4zCpteoMxZjMlWQSQiIqHlNHNOkngSoJKQpSqTpYEmJVRyxZ+zxX+eneWi/jEGMJVLmeo2kOKJUB9TiQ2aYuKLE0gan4whlmB/aDZcl/XqDQliURoW8EJRpg3mlBUaOFeZoUnQhUIGG0KKZN9n0N0lIsJXN737t9/jO0ft0e10WL10kvvsAlCa5dYsbN24wmUzQRYH6SLD5iD8G36s8IaXErPkktkXHNCgNwVwVFOMhaakIZzP69x7QtFu8JZ9nUwnUKEGnJa/uvcr/Y/sWIw1ZGJIbNmFZMCkVSheMsozH/QGPDiaUliJLMiLLIbcdonxElMYMHIl2Pd7Zeo6Z6+G7HidBie+6pN0W2pjw7OEf8DMPX2Mhj8kKgzLOqcf3ia0TJm1JaHscGcvYKuWROWNs5pwEFfThDjNTcGjblK6F1Vpi120x7khO1+eYwkM6Fso16OcjfPUmz1klynSpGgtcGq/jVs/gixbSvo/w3iLKLQq3zUIZ0FAR3aKknVZwggBTO+SGied20dMxabfGzz0+5uUnPhQmsphTpAbcybBuljhFgRYhdlrSLX1ax1/g1MErWDpD9K/SGzUhzhlPQCjJsuxTmDVCUzOPdrFjQT3t0pcXmcs1KpZgmJgcK0WtHpEWmmjdxUgLZosHHHe3GVkZtmOQmpKm4WPh8OzVBRodl1xpDMPCqPnYCjzbhOYGyP9xe93K8l+gWr0AwMWqx9O9qyTaJseiZjmcbnvYZs681GyaY+7W/2O+lJzB8C8yTsZ8eTBF/Q/a8AulMQTUbZMXv//PYbkejd4SFa/GcXhMy2+zcf4p/nef/t/z1EtncatVLMvCSguaFYNKWbKZ9NBo0thl5JYMo4KTNGdmFSyIgIOVI04aGUciwdKa7c0zLB7v49gZfmrw6/FPMd1LaGU1wGdiPEfVM/jrW/+Y0gix4zbVjsVxcxHtL7Don+BbIW+WK9hFzEZh8dsPzvC7owuUZgNtrmB5BrPLXVLzM1SEjbSXKAuFVhYiFxwZ0Fq7h9XYJnADbP8BrjJI2lvY/Rl+3ccYhiSRIsnAdIBEkmqbw1NbrIwmmJmmHJuYmcRWsPb+bTJZkLbWmcs1/DSjtnJMohKM+Yy1YEA/v49ZqZFZJYaYYScRS4GBmYcYysRKNLYKUFmC5djEsUDaDvPSx7RLVHgKXUhmOiV75nkc5XJcjhiJmAVZJyzHrDnPMVfm/+jd+VOJW3/cCxcXF7l+/Tr/8B/+QxqNxh8pg0opdnd3GQwGTCYT7ty5QxAEDIdDDg4OPhJ0/n+QhgFJFPKtuyeMRwlBlNMyTH74VJ21ioXfqFNbcImjPnHaoxK5qBsSicFZa4tGOOPi/DUqjXsYTog98xCVe7Qv/j7JKSiC5zE232XaKIh3nyK++QqP5ue5Pf4kYdmCPGJTPuHa4AIrkeTNCkRGwsJKQs0xGU8UX3zS59fEz2PlNq0BhCIn1kNe9c/xmneOPbPFNBW0gjEVNG6lxoP6IePxGOUWTLwpcn6aBZHg5k0a2sAyDco0RKcH5Ol7VEYzGmWT6+5DIqWwI5P6ygMuL93m3crH6Z9EGInCEFVm0qRpJZhZSGcasu5epOlusJPDeOkxr576pxR5yX8cb9Bq7WA1v8p2tYVvQCynfL1ylYbqcWp6zFb4GK/2WRZUhU/OPkklmBB7S8xKxcfCKWe1xTPFIgutn0HYWww3nlCJBzyzf43j0iNv/xXazhlCVzJsW3hyiGmssix9bvoJvXGGp7/B6mxI37B4ZjelE51gE/Ji9y45M87LGmVZxRYWDa8ORBjapjYMWA0NsjhhqTzkh979JqlKsAc1wjLkKFqBWcC95iKq3uaoKjkX9Xn+RNIn4lacsmk+ZrsV8/dOV/m1msG1mqAbFBwj6MYJcyHJsy1CXxC5Gao+ZaUx4+WhwDM2eWQ/y2vGVe6e6VI5GCATEyM/pG7kVBsNktmUXMVIIbGDKa2oQZkJ+lsXEJU6o+Ur+E8eoZe2UYWJKlwOZprW0QBnO6ccxxhKsVd2CWUDHs3wygCpcibjEa271z+cs5BCEOfIVhXjMCf49gFd2aYySai0OmRmyrCzjbHqUe0u0XAXSWoOhVOiLXh87xpWaTPc3+Xg3VvIusXC6mmq7Q5pGPDu7/0m4XTyvQ4H/07xr8sT320KNaHM7yJkQjbNuVgPqVUTgkwznG6TWC7bzgFNnaNkhown2KYiSeFh1+aePSCIxtiZJq9EOG5KauQoTCxvjlUKpskG71Qlr3cMLDvnd+wqvykrCNdC5waBbTJOwfcyunLKxeCQp44POPPuWxRJQSXZxfG2WS98lnKTUliMS+fDfaFVIvKCpB9hmg7SlLjLbbanNZ5ULFITqrZHX238f9j70yDbsvM8E3vWnqczDzln3sw7jzUPKBSKmEiAGAmSEClK7XbLbqnVstURjmg57JB/OMJh+5ci3I5uW2xZQzNEiRRFggQIgJhRBdRcdetW3aq6Y96cxzOfPU/LP4oCSRHoBkSAaLHriciIPDvznL1PnHXWt9a7v+97ETWVQXaVaaVg39LIKhmacY+z0XX0AViNW/SbgqGrMTt3j+jclPZEJ3JL7pdvcHB8mQxBWBtgO2NsS5BRYJkGA1+j8t0E8YzG2dcf5sL4BOq9DmpZpUGNo9AisSS9tk7vpMZhr8HmwSx5q+B1d4sb1bfY9I6J1AGGYZAaMa+Vt1DHFTqOSlpOMSsqtbs9ZhUbT7zT+8ENYqamxqbtIFpL+PPzjH75F3nv5QL9jS3s76qUGzuUCx7FxxYw8wahNElmZpCGxXfyh9H6PRSrxc7kMtePHiebaRM2jliUb/JA0qKS5AjDYmqmoMU0jzf5xatwsbhElG6SkRGLPZZ5jXtyRILCIJ5it9rUywFVJvSjgNHsDDN5wo1ygQvxDrQN7IZFaFcp0wv0IgNPLmEv3qJiVrnufpmL9ojT3i6Xp+fYsI/YqY5REokI4SicYNab2G6IrhSkLRf9Up3SrlHYdc6qgiKvgnT47/O/xYFQEf4Bu2mXi/YBDT0kFQHX1haZiQ4QxFxMZ5m6dTLbI0tz2v0+Xh7SK5coMElDMBIL9Bxl8BaBCyUaawOBs6dwKTrF9mubeNJDz3T6fp/EK7l05iJGt0vwyltYl+8junkTr9dHxDHRtWtMvvjFd0qhsuzdtd+7/EB+WnECUaLZBqXr4WQJqqUzUSEfDb9Xwjd4fQc/UlhPWiz7Y/Jxwt3nn+fG09/m9VRFzi+jKSaJalIvcw7ChLuH32J/cotrd77GYWExWpxlWm0T1drohSRMHRIkqaZQaia7ZoWpVDikhmm8gjJ5kVFzjpoa0MgP0cOY1G6hZzkLuY+nwYKrElXWkDJCRAGXGxM+b/n0k4T9yIMy43x8my3bZVr18KsLbBIy8Ha4YGwRH38Ep7DoSJgYFs84Gk8VQxJVI9FcRiJGCJdpmDNjOZhJxDQV9IVO3cqpeJLTWZ04d2nkBq28gm11qNmXKCse0tPp+DssHEzQERQSjM0NSj9H3hyT1muIeMjqZMQZI2dcv0F7rKAUEZVkiU7SRU0FbimZn0pOBS+QSAvdhtHlZTxTY9FROJg+ztR78B3318wmVH306m1kmRM2IExzJmqDqbQYlwb1mkFuStpSgUywdKqKaWskeYmim+iOwX3zNd536ge7iFnWLKrqAPDZmSYfaLXxixJVwIIpeLDqgMwYpzEXzSlfGyt41jyp9yRRHjPMM3IpmU7fYsPv8092jlGEwFNVHE393vi3VItdf5e20+bhj3+GlRMrnLgyS7XdJVA1rl96gKKhoRs5tupSsauYuHiJD3HGK+MGnpZx4V5IHB2yJ7aoTUaoWcqu7dHc72HZJS0t4An2UdIcTbNRFA+zVHBziasN2RwH+EETy0nYqimMUhWlSBgGY/qWy6EyR5hU+PnsHr1ozFS4PBD2WSPllNljpJ+mYuh4epWwOSRXShSp0NLeZLX+PI9N3mY2fwXFvYujGUzNOpnUsUydwu2g6DppXqLYJZkzi+ZYjBozrAUGS9Wf4f5pn/7MHFqSYQoDJ9pjXBikcg2jKFA4oCg9hO7R3Bygj31Ux0GqBUupRBsPUISBY1rYiomrGegtg45fUKYlUpgomkpWelhqgYpCaXXYmqTsTlXMqk1plBzqfTphBadM+C+3HJaL5k9k2vqhhRopJbOzs1SrVfQ/rn2Gd7q3Hx0d8du//ds888wzPPfccwyHQ37v936Pr33taxwcHNDr9bh69Sq+7/9E3sR/DEgpmQ565FlKEgSk2zt886U3ibSSwA/41ZkaF4yCevUId3EHUb2N9J7HbcWM39xgYHqMaxWW+jnStnj75HWa567idrexrrfRrAN0LaRy6jXKrVXQpiheybB7P4PJSe6OT/FN6xKHygojxcLsvs3duQMe3p3yQjsjcraYeHO4ImJGTFk9knzoeslM8jx95xaa4/KoOaaonCVWIQVmRgln9zaQus4CB7yvHHJ/CC1R4/ShxUUh6WgJF8ZnmR1p/Org56lHHr9ylPBQb5cqqxSrJcutDcbxFNNWsRqvYzT2+Za8wLdmr9BQayhGDVSd2XqMWUIja3J2dIXQkrx82ua6t8FcdUzYygitE/yf5j9DoByzWVngg8PnQQ3Z0eH902f4VO9VPjZ8g4GcoXMccv/0fubGJXfrHdQo4m9sFKwOXdyJRuCfRcYea1mFuXwZFBtNSgLzIolUyGyDL91nIeNjVvI9nor2uaY4qGpKb5AxPxzzYOwTRDbB+Cz20GYp32c/WmLO7IPUsJUuU/s9lHlGfVolKm3Wnr9NQ7VZUO+xp2m8ZUyxwhzdthjGsxSJoFXm5K5Br6xyaLqM60dsGUvIScAD8R5ryj2i6iHfrQsOTIEoFI7EKsrmLEleMJIu/8PyLN9YNjmuTdlWHqDTX+Y5+Utsem1atZzSSNh22vQbM8iKy5Pte8x1TQxNJ80CXKuOQsDJwzFFkvHyqXMcDO6y+qXfIqlUMNZNytKhlAa5sFhBUNmbkgcpmqLy+q7OuGgxd6eOaQmSKGL03NO4RcajDz+KaVhEdoW9ZXAOFPJBRLX06OQ2dneGhfl5avERPfeAQEvw7A6HjNgQb6F0DeLRmIOD20z2DzndfIisW1Kpt6h2ugz2dokDH7fe+GlPDX+l+EFx4idNLZnwX08iLioDxsMYXathThzs8WUi1UGYTTRVoSsdQlxKUUNTNSZCcJyX+KXElz1cPSeuXmOl2EU4Fp3CJHcH6K7HNLFZyeDcRDIYHfCmsozuGryuCCrpGM2dMlQUfLWDR59Hnv0mf3MdFqnhKxlzL3+Xva0e701P8yiniWROKUpiM2caDiHKoChBcyiyBH/5FLpXoYfCJ0evMB8W2M46Q3ObweAekW7yahayVeshlCFq7xanql+llk+ohQHnT30XZ25A83UN89jEyu8SD84zyKqkWUSp5mhGSq5VSRSb/MoxXXvIJDPJU4HQZrHCOXLOsbL7s+j7i+z329wu9gnjJsNUoSxzpmMdoWiEecbtdJ0QjchooGkOUyVgJm/TjWdpyjHCkkg1pONr/ILzERy/g3XsYR2lqAstxvYMR4FB/6Mf4WA4RnRWUYVFx3sY55WE5JdWUE/Mc0t/iHi2z4sfez+pYeEMfHJfR1U89N7jbERN0lAi8xxH+Jh6TGp4PDpWwJCkTsHefed5eN0kDk5RF4uMaiFWHnI8fJ2pMWYpOsKWKW+3Z6g1bQw1wy8yNu1TrCktrHJId7LDY/7bnAlv89f3rnN67xxvD5+iuefj1W8zJ0LeImbGCZmKA0xD5/rcs8RLd3ANjWZmUygR9ZaHsEIsU6NqSrI0ILFaTIxlln2fv5W+xSedHi+XkgJ43Vnij+wVHmeTCk3W/DE/f3SV0/07lEXJUjGDbN/PYaVJpFmEhcZZpuQGZKggcho1nSybEhzfonl0Hfd4g1bZJLi3SfnaNdifcr96P1qi4TQcPnr2KdxUx2w0yCeHoM6S7R0w8+1vY+3vk+3tke3uUQYBvX/861C8W176Lt+fn1acKPu3qA+fp3BcsvEQ1VQYyJhs0MdSBUII/N0B/pGPX4Ic7ZI68PWN2xhHKaFUEbNLGIZFqjs085QvHQ747+5tk5QavbjDm3Mr3FhbQ1gGuapiZxlP259g5LRwKMlQ0ErJUjRhpNrUnX3ORS9z1OzQ0adMco9oNMEwC9SypOsPMewKV9wxW6LOuntAJT3iSvYtEscgS2pkzl3KRsGinnHVNPnmakitJpiUIYZ6hFn0Sf0K7aFDlYw6dfT0vSh5QWJU+a53hVetR1GCWZTIpFoWVMOCNC8QjuCEN6JZtxmfPoejTVHSnJN+BScXqJ5DZus0l95AVUaYakGFhKLWwrsSsnSfxH7MQpyrUSkn1KIB562AqPUWqZkiigTP6NIQf2yNrY2ZPdimM+4RZyaaGxDIJWJPstdIUDKToS/JigS3dNFyFbO2h1Bj0tInTiSxNk/VjMkNQa1mEIk+pt1FSQvEG79DdmMPRS8YNRbR6hUW1hosNOz/ScFQCEFNV6npKn5eYCoKHzRv8YibYeoe0yzhgdYyuZT8bKfDwH6CKA8ZZylJkbKx8d/x7Tu/wdVpiAA+1a1T1/4kC8PUTPb8PVpWC0V9R8ARQrD64CPE/WMa0ZRzR1usGSX1bptGtcW820QVISerNR4QJU3h4+Ulxcinp0a0NjZw/X0MITFiBZWApdFLnMnfQkGStBPG5gl83yabxBRmDVMpKdIKuhNTJgEy10CoXFBcPrHyOtfn2rxXvM7Dc7ukXsKebvLIeIu/N4i4mS+w43UwhMLj5Rs8u/g5CkqEKriuVEiKFWrmG7hNE+GkWHlJaEhS5x0L7qhznqonULQYYR4Rz11CtzVS1cZIVPT8BG5pEHSqSLNGVmmhpROsJMZ5p80/eaHSr1wkaawQjELmRw7CzUkp8RKTKBwxaKhoJTTVClW3wnShSei0KbMSpEoeBiTGDFoeIfKAXK0QTDJ6UxtPP2Y5q7N4/BCdaZ8aJd3kOnpZ/kTmrR9aqDEMg2azyebmJqPR6HvHTdNEVVVWV1d54oknWFtb4+mnn8ayLBYWFhiNRqiqimVZKMoPfbq/ekjJi5/7HXqbG8SBj/HKVR588V/Rah0xf/RV2tGbyGkP1RjQmsloLhdohk3F3ydr9OidvsjGbBUZZwRuxs3VCaq6haPuMTpY5drhZ6g+Kxnf+yV8ZRXDzHGdiIWF16l4IxytBoaCP3mE2GjwW3Of5lhd4kQY0SwqvFj3WHdOMlLuIsN9iljDTAZMkt9jXByw3XwQO1zjOJ2lmaQUmWR2MMKdTCizhHo64EMHd7GnE1LNZCk1UPMUU1Fwy4zaeItKOOXRrT0+erXgipihwjLP6Savuk+SyAyZJ8TZmOGkiTsNGVWadK3L5HqLTCjsixqTlofbmKIWGiM1ZqMKdX3Io6MWX3lkkT9YOEslMvmt5lPcNDvUyj10p8BxIya6wA1DKqMjqumURk9hO/JZyzVe9HRqSQ9bFLxdeYuN8phPb+d8dq/gkd4SV3YMtlmjiklHUTlWJQvZFGGktJodfq68yuNikzp9zlSeZiM4S1Pb4H1Hr1Ikgq+/8WHyXQUn2aa69x4Keih6hFE0aYSHSKng7N5l8/I57p69jFsqnPJixpaJ5rQxRIGnzGH1CxKrSkdMWPAPKAQ8LUueExVuW+dZFW9R7qV8KLjOfeW3qJQJU1UyNRR6WJTDNnsbIf+3sxbPVTJeWfbZrpiUWYcymkd151gKbf5GEOOWDaIMvMYy1Bzq2pRl84hu3SCNx5iVKqbhMrv1FmWeEUQhr0yHWIM+4dnLlMeAkAgtZ1XRMKoBJDll7qJXPMK4oCpUKlpC6DQpSkFzdxdDUWg22jgVE7d+htOLV1BHJWmY0I3bfOoD/wXu+fM89bf/Hou/+MssPnofNE1ss0J/8CaKG3F8vIlpuxyO14kORzhUuHn3WRSpUmm1ObhxE6/RQjOMn/bM8FeKHxQnftK4AcwelgQzz3Cz9W0OkhRl3MYcnyBTWiSxwn85+iXu92fBzCmMJlgpETlqVceszxMSolcSvMqYTm+fWrBFRalzu3OKl688RNky+eh2yi/entDP7jCOM1pZwKKcIK2EsZ4wl/U5uX2CpeNtqrlHo3C5YF5ib7xDuwjop3dZV16iSoPD0T5BKgilThbGuJFGnmakaERxxh1riVp7yOP7I36m1+fQaZIqE7bFTdIoJtAEM+4E4To4ToqY9uho22jrA4z9gLgWsdPUMEYZfuoRlzUmsoOwYxQ9QVVthFZn328S+BVuXH2M7ndTJrnKxsI5hN1GsTro9RXc3Qtk0zkeOW7StEyyTCOImzQagnoeEB96NHSdNWsZqTQ5kB7XHJ+J1eeXrjqc2TSo9Y/R7ZRKp6R7+tP8jH+WyudDrN8akewM8D84zzgVeGGBd2KVOI4RT/49vA9/nPbf/Tvw9x9AuzCDps8wEClqfYOj+RpvP/EUM9/8LsG6yoqSUyWj61Qpcx31yEFKB2FOMSopDz7/PJUbz5EpIZ9fOs/Q8jgzlPynux9j2x5w38uHzE0sxjWfbGuXcWWB9ZbG6wseQW0OUakz0ExsabJMj6IQvGfrZWS1wWvxWRQh6EUX+W/9XyMWDovtKR9tOpwuNXJRsDm7ziWtyfnZTRwrpa1bOI0Yu8wYqyqZZgASGfncSR4D7xPYacEHiu/yqPgGs+yzxj41x6RbzHIi3kSNLCqpwtMbpxgdz1HGBeg6y9Yaue1SWC45OkeDjEjTUEwNRY9pzibU7RqqbpDGh+APaLsrFFFEszuLlkuebD+JXuj0LJXMMSn8DKfVolAVhNGinMTkb7xBubdHfnREGQSUvk949VVknv+lff/f5T8uflpxYmp4DNwqiSLwDzaJkh5RlhCPxxBFaKpCUqYEgylF0+JqPkt8usaLVx6mpXWRpU0kXBRbMKnqVMKAq37IgX8BJ60xZYattstGMWGcTlAVgVHkfMVcYOTVcQQYpk5H+nxy61lyS+M19SKpWGJdt6j4B7wen2aruoI+2eLMxptURkNyy6M0FA6tV0i8nLoZMzIEperixe/lMBiw2N6iK6YMNZ11K6ae7TLSQE107kQnyHOTzC9Rihwt/AgnWWUsBUfxCv/Mfj+5PYPfc6hFVebvHvKhsYWhSmqpz8TU0bsOvXqXyMxJdcHyxKGe7+E2nuHVBx5k2tQQxQSjXsciRopT6Oo+lj7AvD8k/tARznyIUaYkxZCearKr9ZBaAkMVIxUMi4d5yPktTP0YNY5IsMDewg+aTJUpd8SbdCsmQX+HPSvAFTWUVKNwfKxOQF74FLpCTS158MpFPnhplpa+Q4sJpT6LaQrYfRFte4uZ+jO8YFjITh3vyYUfaRxpQnCc5lQ0jYtWTNc06brLFFqLi91H+F/Nt3m4VqEnZsjQmGQ5YeajqA572gWmeUEp4cOtKtafakBrqRZJmdC0/iQzQwjBmcfey5O/8Fmqhzu0dtZx/DGdE2u4VoVfunQR2xHcnzc5i0deRJCmWLlKzZ7BO9pHElG1BbpeoVBShNrE6CcIRcGq7TAoVKaBShHlZGYdIRM29t+g5k2QWESJzSC2sXQHz7zH21rKmew6Z4JXaZg+dwsNM7hBNUz5fHqJnTSizBIWw4C6IjmlVLENhZfiHP9AQWcdd6YANSGzA2iqmKaOoRQE5iLOeAOlHKF61xinJpqiMMwMJnqFOBTkk4RxVUGTBWUBXuLjGTnzSZWs3uREIhl5s9wqanjFhGoSMZ4OuZlt0N2X3FVvcRhtYisW9/XbLIQL7HQuUW9fJA5zQCHLVUJpo8Z9DGVKLKvoIudM4yYnijd4b+8xlvpnGc3eRw0FtzVFrZk/rqnqz/BDKyf9fp/f+I3foFqt0mz+ySCaTqd8+ctfRlEUer0eBwcHXLhwgUqlwvHxMcvLyzQaDc6fP4/jOD+RN/GXgZSSsix/5HReWUqKaUpZlgx2t9m9dZfB7gS7VHC1VdRog/md2yibX2HzrWfRqgnVOMM5SiCvUjm+gXrxeVKjRe7dx8FCjjz9PLaYIohQyoJJc43nlCUOD31eKjz+5ZJDqQpMzcKbXOLOqSs0sgmBIunbFZzS5K5c5j3Dr9Iqp5w6HHLDXWLdbhFkkv2Ta0i3xbHzJm2REeKyKee4sT1DNymZ8ad4ikKXCM2x8KOYnYOEq+NlQtXipdlV5rRTLGgKtiZwyxx1usHbwR9xr9hgsPcSL7tTIuUYa+OrXDncARQOkrfIIpuj7TbKeEIp4U73o2xVT1MKwYZyli+cWuPQmUfXJpSWSqqDI+b5tnWeXzne5qbS5m/eS+jJFV50l6j4m+xrNQolJ5SS0FxBEQ6ruU+sOGwXfSxUpIiIjU2CWpU3lKsY0uVSCNVehjkSrJRNmsnjfPrAZjEsyMqCyzd86lKisADDPpb6Nmtqiu3tMnS7mDUNoUzQDJULah1dm6FUpjiTFbTSxRb7mFGMlt2CokFF1mlMVmjVZmglHqVls79mIC64nHnoOo9vPoyY2vRXDQpvjJHv4pYpob/F18qLvJV2Wa5NiDONsTXm3uQ2j2/36ecFRxUNWQhKWcGPEgaWwMklu4nNodXAjD1S0aIZlWiOTTv0WNz5JA+ba1wyroBeUqgq89MXudjqQTFClRlqajCc7mIbVR7cG3AqHXDt/e8nb5wgTUO+Pie4NRtDVqB4NmKugdr9KOrJOg3bxYhSAiXhpWAWhImVaJiVJ0jjAsWQeKLCfdEJivE+mQvBvSGXP/Qr6EsnUF0Pc3WVSqfDwRmJXr7jzlA3LNZvvYJa6ERJAHGJo1eIQ58izpitrlG7WeHM3KPvNkX/MfOD4sRPmjLX0Y+GeL2IC9kChZojbBU5bfJk6AAqK9MGDhepOtcBSWnss7Z2hGUp2M0VilJi+/usxrt8s/NJxtkCFJIPb0PkNclrCudCyZEe8aX3PEU236AaTZmb5vhBnc1JjXGlzaPrBfO3QxqNM9yqHfNSQ/J6FlKf0+g+OWIr6jEoD0jCHUaZxn5mUSoKi1kLVVVJW7O8vfphDpIKgfYy1WjK7d77iVNBVxthMQTDIigKfMdlisDQVaQjKI0xmTFLdq3Cc+HHUJJj1ElOFtW5Vn6U465PW7+BZmkIdJQJHEVNyv5pDvcdCFWshsW3Fx5EyXNUPUOJa0wqm8jCx6uu0lQLAiVk6Js0hcF5fxvVmFI1xrzXfZiksJiUGpWKw4BDWoGG7gpmHniYkdNjkm7hiFmKvT2MA4XiuOTzKx/nvz3+IFOlxkm3wlxnlvrYIB9K2n//f4/WaELbJs4GFHmVen0dIUwUPefLnQVGy4vEukPRPknsdOiJGlluoG0skKcZh2e+gJbeJvFsaA7QsXlyKliMXR4ehixOK7QjyczuPTw/JlCnaHnADpLE/wavJxu85R1RpBnLucpmawZVyTH0KoPMw29UCDJBT3YxoojXRm2OJx1kGXBRiWkfqUhV51SwSPtoCUVMKfSIvDbCPn+Ajk2i7aBUQrxGQkCHcv4IW+jUdYtb+ik8ZcxnvD1smXPgtwhyk1F6iudEiy3ZRi+GBKmgjsVQ9VkuM5ibZ6Zdo4uPVmb4qo5iaQSpQWXnGu9xLmKbbSxtjCyP4XCAV7apdbqIosC2bWq+zZvJhJfLPfxgirBsZMVDXZkl1V2m3S7x1hbZ4SFlGFJOpxS9PvLd/l/v8gP4acWJsdbgN+c+ilAiajJGjQP0MicYjyijEFUoxGlEOAmIHYvXdRg3Ivb9gmbcQqYG2WIToxGjn3BQ+kfYeUqkKZh5jq+r+E6BgYUhFYQQ1CkRQlDOLjGOTTJZ0pJHuNkAiaRUdcaaQzMPmUaH7GYWk0bJpig5s3+TahnRM6rsOR2Ek7OjDXhmcYG3KnV6qsu2dZpxPKFXn8coc0IJDXuJPNhnbHkkusKwukRWKiROlTyDvX6XtdYbJFbA9Z1FGpNNVt2QaWZjpDqn92JWmhpdu+BvD7+AbHZQFYf3+CW70kXV4XxcoSv6FHObBPc52KoJpoleqyHwyWljKAlqNUeJTcqigWXtIk2PUdbnOLJJ1af5jvko5BqlCUfFfawrv8Zbs4+TGi6T2EXNTyGjgkzk9OUeTQWSRotD3wFNEFoF68EFzMUcMxmiK6DJgpqjc1qLmI/fYpIvcOPAwKlZUFugVmyz4m6gOTPouopiqj/SWtBQBLqi8IlOncX5X8F1T9IyNDzdpGa4/G8W2yxYOsMc3OZHiErJRjAmtS5wqJ5EkRkF8nsZM/8OXdVpWk1s3f4z51M1jdmTp9Gtdxrop1FIa2EJx6mwYs3y0dWPshi7FPubBOM+SRxiS4tZYwkjTbBtiafsYltNclEwFF1mnznGKDI8d4iaVijilFxoDDUPpQxpxCFWcY/N2TPccZbwc4dYRiiKRpIn5JrD8URgjvpsp20KrcWr2ad4JVlCvv5d8rRHY/ok9yen6CQKtQLek+jMo5Frp1jQXsW2FXY6z3AYmWiqSduNmEYpYuYYXfeQcomz1YKKgCi3OKzMURoWQa3DjjbFjI6RJZhJiCMU6kOXaaPJ+4J9Hrc3kaZOPerRGU2RgzHJ+G2c/RFb7FHEh3iqhXPcYyVsY1dPcH7wzmchFFBtBz92EMUErYRpZKAZEpbeZtiskGWQZSqh2sFTTO4U+xyXwx/PRPXv8UMLNd1ul3/4D/8h999/P2EYfu94pVLhH/yDf8DP/uzPcubMGT772c9y//3386lPfYpf+ZVf+Y9anPnT5EnCa3/0h8gfMrVJSoksSsoop/+lWxzdvUOeJvR27pEnBk6lTmitcrSxSeC0cO8PCIM30G0V4/UY54tj5JGBWJ1SKCq2kaEnC2iVELUx4KzT5Tu1T/OKcj9De4Ejx2HiOrw5q6A4BQe1R7lefppbxPxO20CpR0yFQl8rqRcaSqrzmXvnWMxTkslVJs4cu5rGf7XzJBVziVRVmKoTpsUsiXcCUaYMY4X3BAOafoaaZVQme+iajqkJHlr02Z8arKnz5EYNyzCoaym6oqPkCaY0uSMKthuSXWWPXnKTL7UPmR5NMV66jZ6GJMsl94z7CVMdR1VQLYt7psHNxiztJGBf1pm6cMtpcjrdoVRzTgaCu+oSh2aHD/Z+nY8Pn2PbfoO/s/n/5hO7/x9MYXGER6OMUI1DZruvUVEdPjA4op6lnFBbaEmfj/VusF7eYj1UeGL6CVaTFYy0IDFUhkJwpOs0Rx7vv52yGBYUac7CUPDASOEmGhOnjRro6FEDW+sz377FqJJjKbMgJZfVgGm6jNePOD/axJ7M4ZtjJobKgmySYmMUBnrfJaCkEy4i7rlk2j5edZsZ7YgVawu7LNjymkwUj06xTacYYtkau4pN1lJQqnV8KfnaaIekSAmKENcS/LNTJnnN4NVVm0JKPtCTdBKFXllhoHRp+ZJpkRGogqsmxFoLfTjPaW0JESpkecIothjRYhKrWGrKKf2ItmujUlDzZsj7m+xXDHazgGM3ItYTrlVzNtwjbqa3kYmJfuocojKPbUjOVVuo25tk2T7jBHrTkGnjEfKoQ/+Fm8TJlNBPuPn8S0Rv/CGik+G88HXyJGXylQ2SW5vIskRTNMyah6bu8eDPfRz1lasE/hGeXqXVWaJqtlEyOPXAo5RpQf72lGxZog7fEVLf5cfHD4oTP2kC1yaYbWAf2pyOG9SFg2omkBgMtCU87zxOUJDHbXJjDyEVjPwY4dxEygkVS0fTTUrhsbOn8i/MT0NwBVmUWFHBpZFkZBTUyxxpNLjpzXFjpoplVViJXWqqzsiUdEZHeHFKbZzSTDVuGsdcrR8gRiNUowC5SuLP8EL5Nn0RkJw8QyhVhhm0R3VsQyHPUo60JgfDAtPIkZZEtr9BUDmiY25zRge1XkWlJIqPaY13yTKgWSObqTNVGuyJJfRdEyNooGoVkrzO1+L34hh9DC3CtmyKJETbihgkVayNFlFhoTkOqgkPC8AKGBgReZLxYp4ROhpGrhKkJVMnoDdJ6KlNDrQlanf6aOOMk2+GuLsHzGWCD7eXGeUq3+o8ymsLVSqXL6NZPv3SoeM7xLduYF28ACfWeL56Aud4jKobnGhWaOQOrb7F6OltyrAEBJKSweAAP3Cp17u43gfQ4gF3V9e42q1zfGWZXhBQdXU2Sp3FeMLCQY9iHHPgbvKGc4bbH9DxH81xyjnedzjGaawxMykpF3o8znupBYLGVBJlUyoRzPnrUKQMFck9cRvaIYuTlC90G5iVDu2izZ7SYi27iykTAuGRBRHjWOVwOM9ktIT+5q9ye/1+UnSyDQWhjhFCEFZgsPBHjJ11ityhbG4RzLxCQ1qMvVMk8Sy5YtJqLPNHfJgt5QQfLFSyQmfSn3Bm+iL76ybfye7j7XKVM8o9csOgklXYz4+YVX6f0p3lUf1xNLfL+uwssW5ShD4FOvJogFNa1GsKeTrErCVMX/8WxaRgZ+JjKIJarcZJ2aB17w3+2cE/4rfDLyBQEEsn2GrGvLVQ5+7pU/g7O2T7B8gkJj/uUfo+5btCzbv8AH5acaKeJiiazY5VY7Eckx0H2FlC5E9pewqqEERxSOiHRNUu10f3uPbGsxxaKrdXVnEVjchLqZzaY6gcU09jPtHfoZA5Whqxo2ecGG+R5CA1k1KWdPwRj0VDtgwXJS4Z5hI7j1FKSZmnNGXAdCx43949NDGDq6YMqymTUsf1dE45Q7bLkonVoRAJSunzvB3wj5UYoXdwrAxNyxgKG0WzyEVJNUnIUp+pAF8m9IWkrkkUpUukzXMcK2yWkmf0CnFSRUVnJRtTFQ3a0QGdMCOas2mpOWei2xSOByh8ILzBBbFNxympf/sP6UQ9FIb83ORZuuGY0lrF6DTBGjFu7uOlNtLNKURBfPQIruYzVhcprYhp0kLJptzQZsjVnLCWodoF/rTJwc5j+NkDpNLltl4jDzJ0YZBnHoMyZr/uoqoquqWCnpDnHs1uF6d3TD3PkWWK3buOeudzGHpMkNis1G1OPTGPVFtY2ivk2Qk8r4r6H2CpbCsK/48zC1yq2KiqhRAaLV2jrqkovJMF46kqUSFRvQfJpMIfDAQvqh8kzAJcEVF8n6WnoRi07TaWav25v2mGQXdlDVXTGB8d0pibx3NrqMchf/Psr/Hohz9BHt5ESwrKvKCi1ZgpZ0EziNMjSG6xN/8gBTqvh0PCvsRWU3RzDyOrUeYlmltlikViGIS1Ls1jg3VOst3uknVmSIoxJgqyTHm90uRFo4YdTdgrKhwYTTbzO7i6SlCUiGmfPAv5TPwAtoSKlvLZgxssKk38+GfoHGcYWYRbfpWQlIFzQD3RmF3dQzlzyELdI9o/S6UUGCosmA3ixbNYRszWiZOY2ZiIgNJ0cCjQkEihMux4bGQefumh2Q5WNMA56+HqGrZSojcXMW0PiildfZVz5ns4FXaoTnJ0BKPTGmUpMUxBMtXJTA9NE4SxBSR8Ye7neb4xz1GYkwkwMkkzS9lKhgR58COPpR+GH1qoGY/HfP7zn+fpp5/mgQce+N5xIQSKoqAoyvd+/3cq4b+vFv7HTBKF3H35edIo+qGfE756RLo14XjjHk//5j+nNtvFWX4NXZ9HMWxSs0ahVyg67ycpl/BaJkV8gWTskS8JlF4Vbdki6p3E6o6RvoZqJXyLv06iN/gSj7ObnOdAthlXPfaXZqmpCV4w4Shu8ax1hQ1P8N4g43prjbricFwWtKOceSlZ9hc5GN2kaUwZ6w6BoTGrbtNIHUoRslcboGQXGCcuBjlDaZJHI45GoBclpaKwPJ1SVR1sYZMaDS7Hi3xwpJM1X4fKPZQoBjVDFgoNvcHUk4xWbCb1MxwaVcxKBYU2rq0yWFnmd42PEUiPaGGBQXuGyLRI85zqZMjYVqjlN7jR0vjN048zRGN+EGFrBmcnFRrpLnH0BUJvn0rZJ05S/s3wPegjiSXAcQKiyhu8KgV7U4+3Mofe+Nt8YPKvef/RFmt5jVtByPl8BbNU0eMcVRWs+zlKJrFMFU0RLE5K6rFgAZt6BK/MW7ym/TLtm7+MlUMiYtZOfZutakRWnKBdT+nEhxipIB85nFC+zdjYQxddjGyOUhsRCotw9hZ5+wgjWcYsNJwCZitDsnCeyegEjrlLYzKiejjlyJ6hti351Esv8F997ganj7aZmfTZLU7wpjphp/84k2SO9bzgfzd6lkQtaSYld2omuVC5oRdcM1UUtWBH0zk3Lng6UficlrFuSF6bcbhXHSK0jLwMUeQKvbDKC9GTTIsmtqVhKgqasDBFgdGs0+4IQtNAmQ6JRMpYFdxzdbYth2kUIW6n6N6DCMWjE5vUPZesTLHzY7pGSBxFhJMUU3mTu89ucVjuowgVdW6RaEZjHN2DnXXefPU1dt+4wfF/8/9CZhlCKDTtGnvRazQ+/GGaDzzIydOnWJhf5eIDj6NnGpQhiytnMTWbfDNg7cJDyKxEpu/2Ufhx8oPixE+aIk3ZTuZQrVUsaUKWYcgDSlT+2fwv0zMvQ6FQyQSRAbLQqPgheXGPh7aP+KU7CiY1JkWLF9rv44pUcBSB1CCrCdaCmFMpqKrgyFS5LxX86m7OfbFLlvpsmjFdkTNz2KfPHtW8giUhHw4Jh9BSEibJw8TJA+helztGm+HyadbsMVM7xT3eoPAnmJpLnoRcEjEfkCmO0WYiE/5N7SX2nVtYiz5zqxvItollQpiHJIoGmU7uGkSeoFeeoD/zi5wblrw6+TTjxcvEuUs7SVkZb2FVYmaMGCUt0fs1RFpBCQ5QKxXMlTlOdavUo5J7S1vsd3qMzZhRMqUsMoRSEpU6hQWBFrOwfo9jw6Inqshxk9kvv0A9U5lvzLAwe4K202DvxGW2q11aXp05PcWJ59CzkmIywr7vfjr/6X/OE7ML/J1ymyesQ/IsQfVL9higXqxx9I27lEWJprpY5oNsb+nY1n/B0vxFLi416RQpQlPZrS3iTwMyuUU557GQbGKYOtbtJlHQwhcqbp6Tadvossl1pY/szCFaVaKZr3AmmCFrVKknLZACxmO607t4hkMu4Hy0xJDXmV3/CifiksXUxzUcKoQ8NnmFUlEZpQWeyFiuK9zuL3Fz/z1M8ha3jBapquOns+ROSqFUOGi/wVuqz1RVKKOUxDzkVXuLOCpJxxad8Tl8bUBDPclSMsth1kbkC0SWzm5jxNpbz2JYI0Jp8l25xHl9j8LwaKo1UASFWWMsAnarCYPGLMNml8iroY4GIIC8ilrYWHpB5EvymVMY3hx5EbKtW5iajq7rLM7NYUw1Prr2a+xl+5BIbp27wq1xn2GzzfHsPKNen7zXA6GQHR0hdP1doeZdfiA/tTgRJpzb2+Y/8484M76KSBKcPKNIU9asIZoqmNowKROmuoXszrI/HhOoCluLS9R1nWE+hG6ffWWBmWjMyYN7ZIqGiAPO+ce8Z/cNIim4vnyW+yZ3WN14i4cPbrAhJdUkIJWSNLVIRQWHhCAuUYKAWm+T6ijly9Z9jIixZRU/1WjI27ygFSQjlVbiU9M0jHyfXpljGm3M/EuYRk6h+qhGFU/oFOGUPA9IEKh5SqV/zIye8GbvLNr4vcSpynPTkPr+DGrs0jioUi1TLrqS1eldvDSlbpjU85RGGRJaFpohMX0FhwhRMVCjY4xohJ6qnOvfoBWkFPIEtAaUlQlBpY890UGoKKpB0qtgZiPGLFOhTzO0aSCxhjUCmbFlHTMxphiqIBw2uBc8SShmeN4NuHnmFQI/xUmv8FK5Sy0JsdWQpgDNHhOlCfthiSjAUCHJYuxgF1O/g2FEPPJzp5ibcTAbFoXSxkheojDPcGWtiWP8eZen/ykUIVhzLNQ/tb9t6Bpt40/6zTiqQlKWTIuSiqZyxx/x9WFK07CxREnxfaozDNWgY3cw1D9fku/U6lx46oM0FxapdWeptjs4tsdL//I3GR7sUWl1qDQ8OloTCoWHK7/ME957QDOw9CpNs00ynSMvKtxMC767eoZswUFqHkWqIwXUlJJMWgTdeb585kl+2/kb7AZnmFgOe6qHbSXsRjX8QuFVGTFOCixZEKouryiz7Ldz5r2IgeciQ5VMxLhhhG1IXH2Mle+jahG5qCLTRYwjHzMP0NwxldYQIQXWylXU43NU8wMqno8hTRxbo5LoMG1il4cstJucXh+RGhVSzUQTBaq9x7iac2wL4qzKQOkwiHVKobApbCKvQsNKWfYyWq0lxtND+uUxB/keY2PCwqjJXbWklk3RdFBVAzUtQanRdCYI+2MYhU8lrZIbA+rKOkpV5eSkz68GMardwNO9H3ks/VDj7Yf9R13XWVlZQVEUdnZ2fiIX8/0oi4L8fwYOAlkSMzk+IvInf+a4lJIiyJDlOx3ji0mCzN/JuskOAopJij8ZcLB+G7vqoNhDSDPyKCYudZz2g1w2FogndcxWg9Fbj5G325TzLmUPMEIoWkycu6huH2EM2Csr7CqnmFMibKkytzQGTWG9OcdMtIeS5hzJWW5rKi84S7TTCft5hUV0CilwRIg33GaiTPnc2ptY1pDu0ZS/fndCK32G9nSJxCwIZIDnm+gyYV4PWZJjGsmUPBOspFMKKakHIXWlynb+s+xXzmFKhQ/vTEmat5HagDiJCLIBUtFoqBlX7CbGh2qMjCdopCmt8wWthzq8fvk826pDUtiMlk6CGmOEI1aSgm5eUB33MY2Ymelb/NLGNSbqEtN2nYfSZ/k/7/1LPrN3l9/tPMGMtsovHz9NpZScqFxkyzhg5s46H999BkPrkSldtrVragIAAQAASURBVBqLHARLREu32Fi9QVPZ42Q05X2Dn+FtW+XQCzhyDshLyU5RkFYEM0oPy5TEuqAZlywWgkoi8IANBzazJnrucHlnA02ZpTRizmTHoHi4My8Rn30OWpJe8gnCyhpClcjUJRkbvJRGBOj0Kuuoc9epz79AbXqDQl1hrdrkO71z7AUmmjlFq9bpzPlMuytkucfF23ssFiYXo03sacDHvvQl4vKYrtaiqvepFQWXJs9D0mNblpyMoTJv87at0DpO8VSDO0pJrJTsNVIGnoYnBV9cMHhpdsAt8QKJs0UefBbp/QzHI4sD7zy6bYM1g5ACT4vBMXi09jqVIsVKEsxCQ9MhywpuK1WiUiCjnMJahlLDSkcoYkygK3gVj1VHspBvUwTfQhUD+qJGICekacEkyujPz/HC1h3yOGf32RsM4yPS7U1kkiCEYEnrst8UCF3HPXuWs/ML2K0m1fk5NFRUt+DqH/wBe5s3UcyY6Y093jr8LtNh/y9/MvkrzA+KE//OUeN/7OcvgqrWKJRfYkX/JHpcUMlDzGKH3BaUbkqmuRSOi8wMhuEJwthFoYp3eJFaaVAZF9QbTeLU4JXOZU71QySgGBpSlMRewd99LUXNFMK6wc/vpDwyKfno3SkDf5N/lB2xV7GwFJ1t/xbz3ilycrzoiIFWoaJmpONZhv4cqLP4jUUiT+O0P+JosktqlmBo4LVBN2jLkHp8xEeHD7KkCDTRxCuaZDInpsuRbhBqJnUzxtEmzPUzCmEw1KHWkoxmOlxbOYOzOKZXOc80bfDw0TbeeItmFZaCl9EzQXJ7ntXnx3gbB3jOhNV2g7D5BMrpHV7qBWynOQd6H9QCeoeIIkLDIswjQjdkaEqemXuVq49W8KsL+BhoJx9i5sQSM915ZuwFmtUatutRc6p8eP5BPjr7UbKujnX+LPVf/AzeQw/wnygWK2ZBJR5ycHRAMYqIioSePmWwe0w8jZid/QWWlj7F9vYB1eocltXgbF3nH5xZpD3TpX36PHPnL9LcHrLGO6WzqeWif3Wf1u0Ec7LFYXCSVJqk0sdlB13ToGFS6AMWbu+y3s3RA4u2MYteCsw4JkqPsDWFpKaybvsMz1/jb+4d4WsDQjXgfLFDp7/BzdZpQqeCreXMWhENLaVISkbqDapmgFpEFIVEijGqVqMw75DLJnfjjKg2YBhlXM9SUgoaso2RtDkq3mZH3uGEBsfMkhVN4myR/myGng1YWOzRlS1uJCZG4ZNmGnPuVUwTJltVxL5PkEfs2B6+ZhOpJmoaE1oNEvMEZWESKXMIzSPBQbFM8nrOnteiGOuUqSCJQpx8gf64wond+8j6EWEKFy5dQiJRdINpvU42mSAVhbzXQ19YQP7xTS2ZZaRbWz/1Ndy7/M+Hn9Z+QtEsTgQ+enSAUU6hlJiKoBRQMwp0TePYU9lmyJFiotbrqGvnUBBEnodZ5IyzGuvKU8wWBS1dMs4K4tGIPM24/+4tSsUhN0xCz+MDO9+iCH1y38cqMuasBIOSZJLgJwKrCBj7Kem0T5kIJht7HDV6NLQhhuXQaJj80cwMb5djxlYVTU6RRUya+bj2CmlhkRVHKGqKLEZMpMmZNMPLTpKYM0yFTqm7VOjjxbc5t/I2h8MKDU0S5i5u2MXWdY4LC6+MWG3vUCkntM9rNKMSJ43xkglJmWDKACVykFJHLCzReGwJcyVFzUDLwPZjctklbVwj1Q9JtBxzkJDnEaqw0WJJZVLSV+pcjq7y+PG3cTWFA11nvyJY10oG5QRDaMQTk63p/YyDGmuZymKwRpLEtCNItRK9uoZXadOKCkQeoBk6L+/46IqGaUvMMsYc3caIn0dEfRbmK6iagmJr5Hn9nab91gK/+p4TtNwfT5/CBVPnkar7vceWqlACgyynpSvsxxFvTEPOV6qoivl9hZqW3eITa59A8OcTHEzH5eTDj1GbmePkw49huh712TmaC4uE4zGaYXDi0v18Yvnn31mXlw3qTpvCqYBznkR7mGxY4kc2oLH5RJPnzrfINwuKsU+pqlSP92g+U1I/0WUt7/OKcgIvnhLrgp3CpNWSTJIqvqzyml7BKN5ZtphFwUvaQ7wtzjKnRby5YDNs1QiKPWr8Oq61j1XsoogEVR0TWgp5XKHrj7GyiIXtLzMb3SbTJbEasK7tQSXCq+8iJKgS1FKSi4hkJiMv2hjWL2BYj5AoBmWREG9fpciHRGqXyuQc8ajNLxxdJ0Xnnqiyp1YIcoW9aYJZ2kyCAa8Hz3N96+vcDt9CJio3NMmZ/oQ8SilkFXQLpbBoJyllOoeuSPReQayoVDrPclBLqAz3cFUTvVQxi59Mz8sfWqg5PDykVqvx1/7aX8Oy/nxa1k8K/2CT3ee//B/8fCklWZL8hRcJeZJQ5BmT46M/u7mQMPnKBsUwppik9P7VDXZeOaQsJIWfUfoZ0k6YOeexE+fEeZ8siUiFjSwU5ntHTNUQsbNCxcpx6kfsVz5AXLuPmWYX7BF2LSKpQueRZyirAT4OO+J+Ov6A2JxHty3mhkPWW8t0U4mpemzqCzw8jrnltdmZ3mQxkaxMMyDBSd/i/OYGnze2KI0Qt/CItgPmwj306CqVQsVJXS6WH0LNwFBL3HTIWfq8n4iLWp9fufcFknYDNdU420kIyjZOa5GN5iE7rVeJ7R2qd1XiPGE8vkmRlExaLaxQx6guk6kzxELBapVc77R40V3jGfEA0jC4O7/CyXIMSYAxKrh/PGBR+AwKhZNxm+XJNqJQObYKnkj/gKq/z9CY4fDgLDedxwnzjOcbj3GoK7SqO/yie5v61l3KcshhUvDe+tfIzU0GXOe+tMc1LlBNj1kcnaApE4LDL9EpXyASgttBzF7jJqLyr1EUnyMhqSQlS6WgWkiqpWBHlESORt/R+Hb9NJvBLNuNLv1ynkLTuBh3UeuCetanf+8KITM8cfxeRO5SHs/x1lhllKWsVvrMtbcQ6pC16BVmD+4iYwur9IkLFc1LiKwZxuWjTEyH3DbZPHWerYUFkrpCJiWV4JBOOaZMMzw144Q4xNAT1pQD0qTgPXs5adugNsw4uR2RDTKONcmr1SHpJMPWFC4GBbe1gmQBjrJblPWbKIWK7pzhxcpJvq6dolOVaJjITNBwTWb9AZX8kE61ynxzDW2yxeziEbPTjDwMSQWUZx5CoUQiSe0nKcIRUgpmzRu0h7ssrz+HDHfpiz5F6TODRxGDgslxt0viOIyqDqN8QKINKYMJZRQhpWTBnaO/WAFNw1hbI9pYJ0h6aKqLoRmoC1XUGKZJn3T9ZUbbW3SunKLSbf2F5oV3+bP8oDiRJAlf+tKX+P3f/32effZZfvM3f5O9vT2+8IUv8Nu//dtEUURZluR5/h80V0upYhRt3pq+wCDv4SkmQg/xHMGHjgsu9zQKvUIpBGHQogAC5T6U4H4ssw1CMKwsYaoKj+omZw9TMt5pticTlc5AoMeSOJfc1QvOHGR8dU4jlgqjbEwtC+gffJmrg28wyo/IZYEvQmwtpWXs0DAiytIlPIQyBZkm9FIDe3fKpZ0vsjVfpWg0CF0V3AYTOSIRI+yDCOQxH3WfwtCbFJrGJNTwFUkodZaMY07XD9BvDXH9HlVtiNbYZ6steEz5BqvlNXbyFqmu8Z7Ov8ZpR9zdOcWd0UnURCcfTFjRGzSHgvu0MYg6N+K7TJgiXcF+tsu2sY8rC4pqQlTbRQTHyLLPwBxwvQFCsYnaE3yjzh8+8PPY3VM07SYNq8UJ9TN0Ki5nZqt47gnuO/t/YXlmhfy9M8z81/8HgqLgi1/7CqVWoro2WlmS+CPi6+vYdYfX33yDMIsIBlOq1ct43jyGYVCv11FVD0vPWWv3kNoOQ8vhdzuruFOf/LDPKLXYU2w4NY8TaNxa6fJWucReskAWWiyG91BKnVQpSeUATdNZX6xQL3Vc5TSy4lKkMUqygRYNuFW8zRETviH6rHt3KNs+31m6he0o3Jm5TG9hlQXLRRoai+Ex58smbjZEKPCgNUYXMXfuUxjXSu6NVmgoU+btI/ZKn53Kbdb7DpFvk+gFNavJ/uXfIG3fpK+9Qiub4qlNilBje/tx5vaeQhYqepFjAyoKdZFz3n4eRfkKS/Xf5/qg4J7dYVLfZGQF6AIc5Z3+ChOzQVKYJKYCZo3QqZJqUKgFaRGzGjUo45LdjWOuv/02lcCndzxFvVvn7d5NHnjfg1y4cAHV1jFMg/zKFeKFBSRQjIboiwsU03dcPtOdnXdcoN4Vat7lj/lp7SeSLKNUE/5AXmNf1egUMd0yp9QMwlxHlgWlbiAVSSkMlCTl2HCYkQqxIhBIitjlueGHubLv4jkupRB0DJW2LJiJxggF0DTyPMUrA0oU4kKlkecEyRRDFliJTzCNKbOUIMrwhcQsa4TVLt3GEZYyIW56jKoJuRaSyglG6SNlRJCHBJnP5Wyev7PxO5j6FF3PKOMpozhjrhTY/UUOqBNQJxc2jbKPO+0hlWscpCmdqkExfYRvZA+zYqUc5BqVjUPWtOdp2Dn1uRHeJKZBjqEGPGC+SkWMMAOTImwhZx7EmRtTVEcopYKeKhjTIZlVx4prUBpEporm+CSigsharBgjIj1Gc+rcst+PIMPScr6VZ/yrWkFSlBS5iqrpKFIj1RQKBc5uq1j3mhiWisgLcs9ilCggVZy4RJcaK90a7zs7h6ZqaN4+C/oQfXAbmRdIxaMYpwhVoFga+dQisy5DpY2q/PiqPk46Jp/o1r/3WAEqmsp+ktExTEqtxsM1j/uqFTTN4c3JkEH2ZxuuV40qTyw88X2v6d9VqDz88V/gygc/ggDWHniEBz76SYLRO71RHv74Z1hcOo1V8ZDkBJZB4LVJJiZFWqFICsqiSpkZqNGQu1OFF3bbNA/3yS0LvwMrN29zJfsSP2f/a1r6hAcq63iWJFU9DHPEzDRg8YbHtCypqjqFBl5Z8OX+Cq8crdKyAiYtg92WTXS0To6PXb6OqexS2CdQiiGRrpCpFbTiNl5RUBkHEI75PS9haORca75JbAmq9QBhSpRozKoiEShMdI3hQGOqzRAYdXLLJVMKxHRKTc0I8rPEyhztWMF0z5HWFjl0u0ytKv1IsJcqTMmxaiuotoOmWYySET2tYFeWhKlKKQXZqGCc1MgUj6w8jypKGs4I6SvEiklg6miJjzs95qYKMlcRyY9lKP05fmihJssynn/+eZ599lmOjo5+MlfzfXDLIZ3pq1CWRG+8gfwhLB+LPGP/zi1kWVLkOS/83m+RZ+lf6DqyJKYxt8D48OCdx3HM9puvg5RkxxH952/Q+yf/hkN/n+98/g7XvrpJGWZk0wi5kDF3TmEQOuTlGM0rSasdNs5WScZXuerscNydQ63fpX36d2ic/Rwp8zTqNaQbIrrX+Jr9cQ7rPnsiY6pK7mRNGlsxU6mwWQpmhvtMKh7uTo+aOstRafPg21v8/dv/Cte6xsN+yOmjGCPLcY8OUc0cw9Xo+p/gq+WTRIpKr3qdxNCoSFCSnPeOa3S8GlGUYSiSpSJDP+zy6VTnSrlFV8zQtU6SazaOqbHgxuzPqHxu7mkGZh1FaaOUJSLoM/GnfGHmSezLHV4pV0Fq9F0Pw1U5UlosJQmGVHlo+wZvqTPYR1Oag0Occc7fvfUFHtU2cJOSU+OEE+IQmWSErs9MOqUIpxyUHs7+FoO4zuvue/i2+gTXk/N4isdcvsuz7sMgbM4cGyAlZ0+8xIyucz7zuLMBb6in0auSv55+lZPhW8SaQV8VaDLiU/nnqdFDZpKklIwnOedem9JUBdVQoS4FtUzyXF3yuqOy6bdI5RE7aY0DXXLdmWN0+ClyucfqfMCB7TLFwE4XKSoHNLTqO63XxIA35M+yd+9Jho8LDtaeJbcKGjFUrJJCDaFUifaWKROToRsR1WOOlpuIxKUoYVgpmIlzSiHwrRUerD/LvzRjhsEGc3nOS37AlZ27DDZGGFqJNv0CJgn+bEiiZuTNgnvTCaIQeNJj5rJL2vX55xcFd6w1TpY5RpLS9IboqkEuNM7WSlbzKaqqUBEq5tL9yGDCC6MWK6WkE+bkpeT2+Vn89Ji+NeE3TzQpwhwHhZqqUxYF6nwFw9DZq0xwnZDTiYVta2jYDNKUueEQf7ZLWYT00gple5b4rbdJbt+mS5VBMWUoA9RGg3vpPr8dfQUlFOilylFyQMddwjXq7BshdrXOysX7UVTtf/yL/y4/Ej8oThiGwWOPPUa/38e2bYqiYH19nfF4TKvVYnNzk42NDX73d3+XXq/3I59XFTmmlrE3uE1QROSZxValQ1MIrtyOOHXnCAWVUuiM+k0yT2VqeCiNKq1CR6jQSASFqfLxrZyN0iBMY6ai5HNnNX59VWfdUxgxhmiLXGbcm0y5lV1nmPVZTHp0drYosoQ49Hk5vMqrMkQkEhkLjKKgTFWMYYLi6ax40J+6yMxDlVWquUJsV8iEQGouQpQs6yP2xT6WaSPUDF0rGCopYagzU5NUVEFFHzGv7eCYLmkUMjWXyQzJtFaiElNEHRrmEeebz6FUNpF6wkv3GnwnfwS9WEFLUhqzF3Ef/kVWmwYb9h0mmc/RCFIlZqSM2JeHFBWfiVnjO+WEbLJLqQ/RTQvfmnJQXCJMJyilwdeb53hw/kHu69xH03H42088zslOhfuW6qiqiWXNUqlUmUYhSsXj+vXrhHmEPOWiOBYnZ2eZi33yccLpi+eYmZlh8fQKR5v7FGGGruh0u10cx0HTXIo8YDK5hjevMox71NSnKZZX8faP+Ir3cxwA5nLM0LQ51RxyMbtLfniKrX0NoxIhDA3KMegxh6eWWT//i8xMc57Yb2NWPZwcmobDZ24Z/M2vp7SER82s8M+9L3HHu8Gedo+vLl3kt7sfpKmbfMB0MNDZ7XYY1xscqm1ulR12K22qckxSjRirOq/stFFKBU/6XHJmGbRuc2s8oUg1jtUBSTEhMm4jlTELxT5q1mdh5xalMBnUzlNPl0GfR0Ypii55fOltGl5JJ7nHV1sfwIkj4nRILHWeNVZZ6h+hFxl2noNm0faqJMEeh5UU260yNF3QYoJiiD71aQ4hJ2V785hJAVZWkAUOeajwjYNn2G1sousqnufhKCZD2+als2fI84xyMkWfX6CcvpN9nO29Y939rl33u/w7flr7CcMpKYK7tO7mbIY2K2++yMmNt8l0m+s7CmVeYtk2pzQwogAvCxjrGvVwhBIn5BLMqc+G1WB+IlHlmKqRsUhBU5MYZYgu3nFdK/wRVjpCVwRjNaDVi/DCEKvI6eoJMi8oZYlbhhRSIWzNs7d6PzLqcRykvN3Q+Hx9hVvaBbLCZ1H20NFQEHjkXNkfMJsHlHqMbpVkxEyKlNSqcJA6HEpI5Qxx9gi+u0bFdhnmfWxzyqwZMRjUOCOGzPs7BAV4uYmWGbiKgilzNLqcL/fRRMT7ij/k0fx5RAjhcQN5sEnmHJGXEUI6aIkCRUbUiBF+RloUJCok9hKj4EHEZI6O6JHqGk7u8R33k8RSoIkcFIvlTEPJIvJUoAjQDQWpCnRLQ00leV6iagpFXhDrGgfTBH+YoUmJUWo0Kg6nZusYuoEmQoxohJZH0DoP3hxZL0JxNISpkvku2eX/I/psje+TuPIfjBAC9U+1+xBAVVPZS1JmLYOaZvB/PTXPRc/GoODXN+/xjf7kz9yY+pPs4h8saju1OrplgRAo6jsupsFwQJnnvPbVL9Lb2sSt1SjzlNuB5Iv3fYws0Yl2AmQSUSk/RJHZROqA+xYW2JtdYHkw4fbqWcZVheGpkkrRp5BVtCRgLrtNxUxBr5BzQBl7dKwmNh/m0LCJ9RxttMdaZcKMG1FxpzSlJM100GPuGSso6gFKcUwmTkDWI9QkqV5DlCELygqni1VCP+ctNWaqSEZaQCgUTM0iUxTKcI+qAc2q4ERVJw8Fnelt9mdW8W0P23OYaXVYUFJajsFxcxZDqvjlAln7JN1expz+FhMtQagp32neI/MexHSqGGaduEz4nOmzGaWMvDrCUlCCLRRxg5AKmT2Low3QyVB9BUuBwGxST6akWAyrp9E0C2n9lDNqms0mn/zkJ7ly5QpLS0s/kYv5fgjdROQxZRDQ/yf/5PvWPcs/dlQq/7jRbxwEXP3y5ymLAlkWDHZ3KH9Eq0hZSJKNMbJ4x+kpCUMa84tMNg8oRgnTfp/Xv/5H5GlGlPpsfudtjp/7Gtd2XsQf+MgXvkHs+2xnX+TAOEBTE1Z0FRUDrRYzXjzBt9dsdrsz7Fsmm10bmS2QfWuOWppSOlNQKkihEeGwXs6xS51cMahKlZ3C4nTikukKQqlhcocPvfZvaUxz7FRB0SV7TpV7pUaST/nw8YDLUclcqaGNDXoy5yB1sP0IOxkjsogZucVtZthhiKoqmDnYIkWWKboqOGs0qevLLMcLuEGDK4cZ7XIO/fYuXd3nojHmi/XzuL2T/J72Mb6yfB/IEu9gQK4oHOoOd5U5juUqs3nMuNXhW96TvGidoBonKIFPt3dAVUrc3pT3xzc4p4cMWMRLdFaygg/kz3CmuEpLhjTyXWy9RSZydK2Pk8Ss3N7ilH+H+emEwwAsaaAlR1wfz6OVFsuxz62xzsPiZR5QfY7UlH4eczuI2KvtsSbWOeH1WD9osF761M0DxDRBi4ekqkaSSe76OVoKpaEgg5y5BE6EksgxkLbGvWCJIhvzcnWWfsviZV0wVCSHTsqJYoMymuft3VnEjaew3IwHho8xjhOyuMVGsMyRkfOc3cJ4MCQgZ2l4AXuwSCEDnGiMjHQoSiI1IcVEuBGWk1LTDcK5Fj//7V1W+3BUzjOpT1jXR0zCt9m+1aNn9NGcIYWAcm4bxE1imfD7lUWSGhj6EWbko0qVuS2HqOnxT+qf5qWa4I6h8KgMMFoF15VzHLtrSEPBMjN0Fd5QLhAqm7wwE71T2pXHLO69zMmyjygLJvEuXynf4tnpC7wxM4eqrtCWCpn3q4ydCrTBs3SsxhJu/ZvMH72M6WQoqYmiKASVCr1mg0I4TKJl/NYy0699jfHnfh8RF1x5K+T//tL/kxd713i7Y3NgjlATHVMz2Nm6Rrn7BlN/jzuD2yRpgm7+5d3J+18KPyhOxHHMv/gX/4ILFy7Q7XZZWlri4OCAOI7Z39+nVquxurrKZz/7WTqdzo98XlMtMfQcYWpIQ2WcV/lN7T6yUsEWBnaSs9cacVDVeGGxzj+9zyVAUhtlNBNJYagkRcnEVaklCX94Wmfq1bjmCZ6eUfiuZ5AoMC332M3/kK/oA5zdTbb73yUvjlkyBpDmaJ6LUBV6/hHrnk0SS9QxZLmJKCRSeGAVzKYxVTXmzROQWxXmfBO7WjKzcJu17RucGdzj9NV15qYma9kRJ7SnWVT7mLLEFDVm7ANmzQTDUSiEjzVnYTQ8dstloqLE1ksypUCNPNaipzHMEDVe4yi7xIODAd09k/q9/wTLabFhHDCaa3NYVXjVn7LU8JiGKTpTVEUlFzlZxyfLTa7nLXIDClMhLBWONUkUzjNJx7hSReaS+2fPc755HlURtD2Tzzy4wPtOtb/3WXmeh+/75Hn+jjPk6gqc9VA9l9V6nUqRIFSX2eV5nnrqKapzTeIDn6PffgvenPDBD3wQVVVRVY+88AmCO3TO1akbt3ho8kXyYQ/naI+r5gnumovcXq0zlhJRHPLB4ip/4+Dz/Fx2DdlKyL0c1CFKqiOKgPP1A2pNl/dtNzE8FTvPKIqYdr/AyHXmt2NmVMn7b5Zk2wpGMeaOW+crlQs044S3GwV0l7k5O8+bJ5qkGOyHGq8o8yipZLF3k2YyoWvaKMU85C7yoINqTinmDTShs17c43Z1j1FhkhY5U2uGMu7Trc0RWxrV8Ii4LMlLFZkpLDkTHl/6Lprms6QOGE0qdEZDzGzKh46fx8x8Pv7805RpQlbkDM89xAmrTVar8dVZwR+tdJh0TxK7DoVpoaQh187V8B0Vuz6Lbzq0DIfuKCI1UkYi5rWtf0qW9alUKli5zuR4wjjLyeKEMgjQ5+bIRmPKsiS9t07pT5FZ9uOYYt7lrwA/rf1ELEtG45TKQcFkIihGA4xoQq5qhMMRSRghVYUz5l0MI6WZTxhoFqY/IC9SpukeK34fq4gIa6/jTRqsRAL3IEA3JFEYocgCoajUihRdA1spOGVOSOIcO4iwy5w52UdTQBMlVhlR199x0vGKkoZZIdLgntVn3nuBnlZDQeLkE3ThUtOrKIrguL7HsVZB5DG1sKBUdaaGzvroJEdijgMMsrjL1uElboWLGCF85rrFL8Y9VqN7VIqEj+k36GYjHL3Ebi7iHDZxKDGKBIU2zZaOWhY0DzS65Tq+SIirFbRkzLTaJpUGES6K1Mltm6mzicIOKBa6aDBQHyfUL0Fm4GgjNLGKHrtE0ibMJJlmY2oG7+mpyOkEgYaal6jqO4JHmhZkSYnl6AipkucFhRBEmkJHvYtQwFZ0avUmVcfCW6jy8NxdZmSCYbqI5YcQnSWygwClYoIqQFExTq3gPjr3fUuMfpzMmzp3goSuodMyVFZsE10IbFVlPUx5buTzp+1pisJnNHrpR0o+dKp1osmYnRtvcvuF73K0sY5br5MlMbKAn/noI1y4tIwVZ7i1kkV7hvelMftikydOLBN6FnEUkiQhbuoQXO4QFjXSMkcfvXND9gG/x1g02d65wPFuyb3aEu2gizBAszRWvH1+7czneKh5E8e5gSEq9Is28ydMrqcd4nKKosfkSQUl8TnOC8K0QSmaKGobR2tQDdr850KnrkqiMqZnDfgf/FsMjBSRFxhGgOpsUhEBuloil+dQTA+BilFkFIZJfXKIUtq44TG+nNIsekg/pbU7xNjdJtDqDKNdxuqYuFDxXJuG5mCqGjsiIVEkXWXKlYYErSTPpii4FNk+mTIkjV1qCVhFk5vWGtXJAZE5w/XaYyiqS6T+0JLKj8QP/apJkrC/v88LL7zAs88++5dWbyx0izKLyKdT0u0d+GPB5U+XHmVpwrO/86/I4ndqoss8wx/0KMuCIs9J44jyh7ib845TU4GUkvw4ZPSH6xzfvcdzv/ObjA8P8BpNoo0e0d0BV7+6zejwmNsvfIfv3v63qP49gt4GjZWLqLokuvE8rx98Hd94FeKU1Dqg5vZQi3nU+pDpWptKVvDspUe505mhNEaYgz7O0TG5pbI9Z5DrAlnojJVZstIgZh6pnWK5EFQpmM9LjLIkQmAVkovDHea0GooeMVVyXmtt80btkPf5Nbr+CLM/YbE/xVQkaVFgiJKardMqR1x2p/jWHPdYYkcdolg6w+KY460NKMBUYAETsyzZdiLG1lNYpseR2MA+2MOJdnBlg1hIBuV9DHpVbtRbHFXh+TVJPj9PzTZ4Pb7AZtgiMC2OnDavyPPMkLLjVGkXCV445aGNiGYw5P7DgJ/be5pef56Dzad46laPSjzCliNOGbtcSfcoOYGtKJwrnkZXNZ5QUlaSG3wm+S3er/Q4X8yjCZ0DcxFZGtQTnx5n8EKNJysp2knoLkomecAz8mv0jRmea3Tph0N2ucck67MpFznKdCYSKkbBHJJiRiXPJUpScmacMzvNGAmwpMqkssihvIwhPL5QFXxrxkSiEFiP4BQVCr/DZOxymCro1Q3m6oeEJYjRDMvTbW6c+COO8TDlGBlVUdoJimqDEmKfucfcg1+gObvOStTCVksWl6/S7Oxg2Q1e7MT800c73H/tdeZ7CXt7q6zEBu/P7tJo3ePK2oBpc5bCVNm1t3HSC4gyJ0ksxs0mtSKiFB7jNOd6q8F3kvt4Ll1C1atsNFU6TY/l7hDV/2XCZJG48CltQVJ9iuvK41j5gJObrxGHIWcqIyq9uywdH6N7Lo3jKVIx0DVBGSlo+QL9JCGSNr4QZPaQx9xjOrpLKo5R42NaMsdIDSq2zZpbQzSbZMosKBoJBtHNmwQvv8z+//cf85h1ib916W/xR699hZ3E4lgOKfwCteJQWjp6uI4jtnlkfglX05BZ8W7fhB8zPyhOaJrGRz7yEbrdLtVqlaWlJT75yU/y6U9/mg984APMzc39hZrP51JlKCOEa5OQE+QqdwKFvpToqoPhtnlutEmZjglPpNx2cox3zIQIi5KNjoGVRYwmNxh4GlGrQmaofDtOEFtjPEoSVWJoTeIywJv/Dk8VzyAdGFc8JkWfPC3IwgTFsnHsCEMkKJbJ6dEdilzHMHKKXICcEEUpM1pEkdYoxCOMslMsi4B64y5eNubUC9fIy5JLd75NbfAKqjhGU46YS0uyVMOqvYTT2aColaSOi9QEjTJjv7QoS4PVcPROqq7ukYsRO/oybwQP8/976xeYHecs3n6bMqzhVNqEpU9aKqSjBR5c2Wa2fhevVNCnfWxsNE1H6iGqqqDrMKpbxIqNS4auptzfWcPVNbqLbTxLw9CUP/M5eqaGqf9Jw0bHcYjjmOPjY1zXpVarEccxiudRHB+DTJHSQPyxZapWN6luwRu926xfvYk7fGfZoqoOWTYmz6coaka9NQCrjV5zkVHIA3mEEuVcjeYpZ0+SqBbblfP4Bx5ZYGPGJUenv0ra3EPLKqi6j+s3Obxcx80tZF2nKmBeOmiFwYv32XzkKlx+RbKwEfKBjRVWh10QNkIobMk3Obn/OkZR43Rh87xpsKfW2C1r5KHLLXmKvulRLaZ00xL3+Cx2OIs/qWNLh9OzUy5VXLadHs+svcF6OYfuluRLAksUVI0OhaniJYdcyHYxTj2F6j1GVx6wcvhe5FhhVpvysewl1DRlesblAf9F/tc3nmc41dnJHRS15F57kVdmurzdWeKOZaBEKrvtFZ5u3ceguwRCMtEjUkdnsD3FHQUIQ6M9nNB3d3CHXaLY5NDfpVqtko0NxLiDYTqE4xFSStRWi7dffom7d++S7eyieN6fEWpkUfxQ2dHv8leTn9Z+YhA5bIxrqH6JNpZkZgW7SNAUaLgqap5iyglquknAhHZ4wL5u4wlBqqho2Tb10RE/c/c6R34fpR5g5CXN8WsEx0+zZx5RpilqnrLsDOk0NN5fe5OHeOfmUGEKvCKhZZYYuoqpFJhKiVqO8I0COw55YrDAp+/NszY+QElyPjm9jS5V1CJEVUymRcrl9BQDo8YLWgMrPYccfpBx+RjHTp26UWdS2FA6zNGkVvXZnRrosqQWGpxff5lLvbs8nG2jacdsP/oeqq5JeaqPKAPaioYWZejhAZ3mEVqZo/Q1okQluPcc/twiejGBbMRUmaOnmRRaQWoZJOU+0lDw00XKpEVQLmGFXTLNJVR6qNkVFL+GEekENDGpUxcC3bJpUMUwTShLNAXisqRo6EgpUXQwVA9FqJys2HzovORs5w6KJjljFCyqAsPQMT2b5sICT+RdDMODR/+3KBc+SH4UolaNPy5/UhGmhtCUH2tGzb+PEIJTjsVRmtHWNWYM/XunM1QDRfPw85L95E96sIbhBltb/z1S/vCJBYZtk6cpRxt3WbnyAOOjA5xanSSMECU8dbHLudNd5vMbILexrCqrh20+mPwCC94CmXub/coureNjKqmBbkcMoyZHcoJLwljt4kwCUqlz43iNINfZcJpU5DZdJadiQbvuYhHx3ulNZu1bhFmdHeUk7XydO3mXiZJQGgFjzaAwCvLOMarqkimLyKKKWm0ijxzmRxrlcc4kKoiNKfvllBes69iGh5Jp1Iw2fhlzPC/I56uIWEGVOuV0RB4NKPqHGNJmZrjJpeIlWnuvUNE9UvskFeV9bCunSC2VmlJDFjqeWtBoWGiagqNkOJZEQ8FMUvbNIWmWoGWCRNnnmJw0bGJLwTBZ5rvWZQwZIHWTJ8XncWRO/BNykf2hhRrP83jttde4dOkSKysrf3luTqpJHgWkh4eU0+n3MmrytOTetR4SSZnnjA72yJJ3CsSKPCeaTsmShCLLfiihRkpJGYb0/+k/haIgemsfZMnhzdvs3nybe9dewa03UHt3CO9eY/9uQDQNiJ5+hlX9FPvDWzhCRRVtvEqGTCXDaJ0gn6JpKWUpGBcRLxqPIpyCTSpciKZUNYOoUqeuXcMKBjhhwA2h8Jvaw9zyVChKhqHHpaLHbf29fLP4FIvJHZZEwoxmUQidqaHSPZDUFIVKdZl7yjpBUbCjfpeTxZQPh9cIRcyeOibZG4FhYloW88qILAmJ7TptLeHNdJFjY5nCE4RxQH96hJNELJUFDgpYCusrW3xHS5k4CwSFwb39p0nSGHUaUfbbdAcHJKbH1LaZkbuE1QW++dgn2W3WsWydrGuQ2S6Xb7zMpel16uqUAJVtKbh/6wbvNW7x3r0DmnFMLz5PN79NKj2Kscrc8REyg1St8fOb/5Zfnb5BEp0m8euMXh9hmCZ1NcZXG2Slwi9Pvsnf2v23jFMDX7QYpysod0ZUNtpkkQVaysvOe3BXMhIZMtB6/KNGym90FkjMiEoUoMmc1z34PWWBsEiI49cxqjfRtZtkQiImBQ/ejahFJTsVlQu5wl7Hpp/9Z3TSWWwEUdVjpI7pRheJ7HnKTODNjvBljmmF6NNdFnYe57lhhb3sm0y1HkXusJ0aRGOHPBlSJBqaluC0tjA6AZY7htEURRkThQ1qloYzEphqhd16l4FVRdubsKPHdCKfj2jQrv8uR+UGA7NG10o5nd7AK+eZ8+9SH+fsuR5H5gxJzUEJcr5VbXFV3EcjzDgqUt5salxbfJBSfwqrW+crszrHMiKRi5SJwu1sEVtNqG30iIKSqq1ywp5jsL2B6TXoDGKWQkktM8jLkMzfJkljJnnJwVRHNEzMaIoz7ZNjUDJBLzaxE5UZbR574cPY9Q5qaaLZJaljUQyHHF26xLDfZ+P8Rc42zrIcL2MlOZVpRjRJiJUSe3YWo9lg5cRJap0ZDE3w9Vtf4yA4+EnPYP+L4gfFCcMwuHjxIidPnqRarXLq1Cksy6LT6bC4uPgXjidKobBvFWiVGj4pphTMTAqa0xBV6ujVNvdsi/3pa/zaeskJX6DnKRvyBnuewqumRGQZYe827RDO7Y4IZcarecKFZ79Aa3jEtpKjKw4XbrU4CBbwkil5ZYY8dTCmHrozSy5MjOoFTHNCV51irnpIWaChUMuOoL0L/haUEd10QLVwiZzbVNo7LG1dxzADapemvP1wl7u6RI0GFI0QXW9QbQbUY4s41pDCJeseE7cOUaRCT5zl/8/en8ZKmp33neDvnHd/39gj7r5n3twqK2vJLFYVWdxFUiJFSZRkqW3JstpCYwB3D3oG6MHMNBqDQcOYLwO7B/Cg7bamPbLHdluyTcmmJJKSqGKxuFUVa83KrNzz7mvsEe++nflQsmy13TZliyzZ4g+4n24gbgDx3PN/z7P9TzlPoLmc1is8Kl7FKzKC0zaRpzExSt4a1/lcbcrjtSucS33MUmHMdfDTGHVyjzhIkJUYdfJBnizWyXWFmZtIadFVLkWrTkVmhM0qpnSJ85DVpRb/t88+wbw3Q6dSo+4Y6PLf/lih6zpKKd566y02Nzf/MHEjvQpZtwuiQIgSId6tNepNm9DJGS3kHM9HjN84AgVSmmTZECkMDKOk4li4xjxpEVAaJt0ChladynGO0BskicHvz3yGqNrh4bjCws4J+3mfoH2LQm+g2z61Ew197g1Ep+TV+hMU1hl+bvxDeFevcWO5w2jlLGv3E1amOZvfeo1P/vYRY1XFEoKxdHng7CAGcPkgwyxSeonFTl5DhkvslytoYowoTdaDQ4Z7m8hsgamvIxODDbvkchqxpDs8WtmmqlepLscU3tsIuliJQVyUoOs08wHV5hJKrbOg36K+v44R15HpBDsLeLnyBOe1Q5blAL3MecleQhUQFn2sJOBbjuLQNLHQ+fRxQNbwmHp1ThszFGXBTBzhaBKiUxw/JiwUWpDBrE9n5xxZf53/4c2/zfrZdZzaEnlg4xUu/ngCKLRGnenxCaNujyII0NsdismEMk1RSjH50pcJvvGN/6D/+R/wHy/v1X1CaWNUc4jbWEMPAa9JxbSomYK1VoFTJlgy4dRtMSxDZid7FEVOPQ3pK8F5s4FIMzqDUybjNrHs8arTg94OFwZrzK2FzJg+IpgwSw/L0GmXu2hZhJ4e8jnxzzmrbxFZOX7HQGmQWZJBOqRrWOykC0RJSa61kVrCTjJmfnQDEwOVThFqmf+srHK167IQxew0oZWsszXe5PXep7gtmySWji1yNsoqWj8nladMA41aUbyb3FYw+9odrpx8B8PJ8WRGR5PEs98hNk/IvTpyGGDs/S4L+uvIAoQxx6BS5d6mDnaIayZYUw1jmmNEUzI9IqgtEtpTEq3J/ugCW/3HGXXXMH2TWDqopMtpMk+KS/M4o5Uv4BQNHil0dqqSOXsZ06qgiZJZDXaXLERHsrTmkqYpZaZhGDoLnssHmm/SmrfRzRRHrCN6bfRSIqeKbPHPo2qXELU5qC8g6zVUWvxBoubdhcLC+N50PvyvWbIMOqbBnGVwwbP/MFFjaQZ10+UvLLb4a1vHvD2NmE7fIQjuEYRb5Pn0u/4bhmWTZxnDw0PmzpwjGI9wa3WSIKIsFHmW8IQp2Ny5zvBoD3CRheDi5H10nA6H8UMennP5xd/7bZa0GnP6LofYbIuASksyzHPCLGHFmFJYFqpRJa81CE7v8EQ8YiYIyRKbrXvP4ReLWEJnOoWjtIWddNGsOlMzY+T2uO5OyZySPXvEcVrlW7XPkiob5VZpGTZ54WBPBHEWMRu1+C96f45TeUit4SEKA11kTAqbr4uAaZYjMUG45LKk1RvCQpMs1gjqOhu3X8eKh7RzRcOwKJIljsUs+0uLWGoDozRQ8YjKgo6UCkfFVKwCS7NwlYEdmxzVc+KZgNwGoXUo+ilGXmDHBaOag7Iyppwl2HkOqVKU+t4UH77raNV1nbm5OR4+fEjxfayEZMOY0Y5GcnSEyjLK8N2uGX8Y8/YL+xR5SRrHxL5P9C9mopOENArJkpgiy8jimCx59+d/K3O//dYbDO7dJXzlO6g0Jfj650kffA3/pMfq5cfobm/hNZoY/gT/zj2yRODVZ4jfvs6hPSBxmpTSo8yhUzPJSyguzZPkDQwtw8pMRH3AF7VHOKpWOTRs1rOS5f59PrpzwsRpUCpFEYz5RuEQCYO3WoIiUWz3L3Cl3OOdzOU2FerRCU+OY1wchmXCkZFwfu4Si3ObFJnGMD8gjiQqXGDiP0YZ93nDa7FjBZgqJkkSNN2gRKLJgk7aJ/UnTIOcjppHR+PQ6CNbJpHXohKe4iJAZuzzGsMo4/nZBvXJlLXpmGLUp390nf7oW1jdAzbGpywMYj54fY8byxfoV64wFDojLFa0U57ZeoMn77zCpwZfIirGWECnzLkQPmAu26IejNFlh3FsYusRlpExXxvgGkN0GaNlPuvhKeoeRHIev7qKI2tsRDqaV/Bbxmf42tmP8bv6T3Lrxlm+ZP8IylB84c4HCXoujQOfqFhgZauFEzxCulLlyocizs9skAqFbnfYWjXoLsQ0fLgtd+hJg4IUf3TMdHiH0eCYUAK6QApBTUj2DHhqkPGLg5Rp4lKJBO1EEeaSX2l/m9N8Bi0d4+kRq40Ap7WHNC0sEbGUZByjM9AKxukUM3S5eXyRw9JE6iZTEWPoOWleYXT4fiwp8GoXsB2FypsIkSEQNFSbuphBeR6NUcQO+3TEEvW7Nj/ljPFliDs9ZE0/wCgiROxA/A4RI5zTCbulzRO5TtMvCErFiWPhxSU/2/9NVrMe/3DZ4qZr8ndWdb44azJsNhhoi2SxyWlWR3NMZFaCNOh2HmHBvoiJRUVzQViYQsPVazTzAYkakVkOeRCTWfP4skEW52xoPgqH2Aw5Pb1ORZdsfwfy+z4jP0eOpmh6wdixoFpla3WF165d5aQs6XV7ZH6GLmxcu8HEH9MfHGJXaxgLixiLS2ieC2XCyb1dzPwHO2r+JHmvdCIxck61kEG1QVamyFLRCgrMXKLnJc1UUtcb3J/u8nzL4dOHJWWSsN+/T6gKjk3Fd7SSpdpFtDBjYxwShTFLXkarmNLsHzOwBXYxRfnw2vECk75DpNXQPANjkoOc4aBzjSxcoDo7T0XA2Pe4U13GbgjM5ARfHFBmx8x6CQ5jEpnx+nqKm+UkGysUeo2oM+GlKzVqCzYxiryeYaQzWMYJ+91FUtFhyjImQypZwvz9lK90P8BtdQVz0mAkbLrmMRUjxOiNyCsZZq2PVda5Yo8RhoV95hmkiClmVkmkIhrtETkRAh2CNh1zltHqLDKVKGmyVcTcaRygq4SOWadd1mlSZam+wGzVY8adoeNW303UaP/2S5eu61y8eJEsy1hcXMS2bbrdLndPjsn29tFqLoiMMgoA0Fo2+bM1ZpfmsZsekR+CUmiazcL8T7Kw+Ocoy4hg6BMOEkJHMj5/hXGtiWEajJwqx2kFQo3d1MOfcfB1B1mU7J2kpHpAa3LEqdvnXC6x9RMy94inFh8y12jiGSnT9TcJ3QX+3nPnSXUX36xy/5oJjkNcpLgipFtb5YWFVb66aDCt6CSaQDfA0xX3cp2yNDDKE16OL+KKgCOZMeleJi0dKHVcJjiVI661ItIyoKLGKBlg1yVcidGUpHR36C1W6M5l5HJEOikYn55B+XNU4gbmyCfvSe6r9/OUeMAF16cUkmShxYfLWzyWnjBfBJwKQWJ7eJnJel+nHegsC5PIqVJoGklZkEmYyHtYrsDIW0gBk/lTds6+ymG/YMc/xfZsvGoFZEE1tcmVQmUaqlqnkuckx0cI00Rrtxj8/X9A+MorqDRl/M//GfHdez/oaPwzynulE5qeU8z76JVNpG6CVyENoRL28OoarsjYrp/nb63+JdrREa3gBheTLhf9Xc6MT3g8TtAAq4gw05Rtf4OXB5cxuiEraoYPOpK41DGCiGamyPQ2Y2EzTgRrcoTSC06Sb/BysUtabXOka+xZ8PDMOU5mZoiSlKaYIIqQQkWkFIzKCM+roWqC06NL1KYFc7LkrErpxQNEbKK0MX6Rs58I/NJn1Yt5LkioNjTSPEKTGZUoQGWKzHHRycifmWer+jjP3n6Hx2SCEAHC05l5cAOpK3SnwEoSlFZBZ4H5YoR2pkntA8/jtKdU4injwkDkGaAzVD9MoIeMo3mmgcfrO+uMfLD1GSZeSSUf8sZ+k2NR4XC14HX3DFm6zJOJJDAlsd3GFO677kOJ4tgRmEnG7LKOV7fQSp1cxVjjh4iTm8i1p9GMCGFIsm5K8Y0eZ+Q8yf0A2V5APPtLIDWkrSMcHa1igCa+r4mapqGz6VpcqTr8wuK/HP+tapK2Ds81PP7CQovf6g7Y2fsVTk6/hG0vkiRH756l38X5qBkGjbl5ens7tBYWMW0bt14njWOSMOLr/8uvUHVdZtsd0ihD4WJ5GlIqtNLAFhZvzaX0roQ0ZtagXOUwm6JkB7syZaIKDC+myRDfMAhrFrOlotJLmFTa+FqDINdYN8fEVpMsaOCEMZYsUFaFesMmyjTCImIKFIbJvXGVfSH5trzHPa8LVQ/htrih67jGKqbuUOsv0CxqlJUhohQopQjGJ0yOPVYjCSMbISLy7BbEAbuXV7jTbpHnivFCnZPlGexiSnUywswTSqNO2xDclzWqkyoy19hNWkx1i6LIaYqAGSPC4N0RZBnriGxCTWXcHl1ClXVEvwdFzloR8cg4I9B9+nmbZHuNWlAiVfnv/L7+ffhj2XM/+uijmKb5fRVXVUrCg5jBzbfJKx5lFKKUYtyN8Icx8TQm9qcUeUY4HuF//euE29vkSUIWx+RZShpH7N18mxtf/b1//f2VIs8yjrckg/s98m6XMkrIR2OGkU806NNZXUcIgVOrY2YZk7vbqFJQrc2T9XrcsG5RugXDpSfonbxGfPA2Zb3JQNtiqhZA+e9me+eOSESNbzqSg7ktEveAlcZ91uovEHkNqHi4FQtdm2Ul7POwEfN65Sqn7iUuHbY5S4+mOCZWik++voWYSjbTEe8YOREJefwJXp/cBX+dGaF43+QiG/o6XXOZWwyYGgFzVoKmSSJMskKxzj7uyV0cDRzpcIFF9NLkgIwTAz7/3Gf4tUc/wWWZQxExNUZ0Jjt8ueKSOjoOGsf6hO80j9hbSqgUBefsAR+5921m7u/hmDFntDH92UVsEfP17BHmtm8hifHm96mKEDfSeHSoWDJzTitnCKli1uqYRkDJGM865WzlPhXZQ0xgvHeRXvZ/ITicpSwKpOljnV9nrntEFo14UF/ljmiyX6yj7XaZiAbtKwnNmYT70QZuGPHF2b/EP23+Zc6d+HzT+AS5WbJQwOPuhMejgvnl6zxbWSCPD8ktScNokamEOPMpxn0G4YBAlEjEuxZ1QnAiFbVJwbUunKgSSylmY0UjkwQq5J+3Aorq81x0fJrFPaaX79GVDbRqjZVSoHsxhRuR5gkz0TLzkyc5cAcIrSAxE6Ry6BeKo3GEbhfkQQO38BBTC9Im5lyGNfS4Ou2gmzmXVEqgEsqDGcJvBSzfccn9Hj//z77AX65+HpsEmUOYpny0ucf/qfZVPiNusDNv0RiFLCU51X7CSlEQhDrvc57nieyUUZqxnWR4aIxqNi/FjxEXNWyjSmYscnT5fWyuf4SDyifQ81WuVq5SjQ3S2XWMJEZ3ZrCPT4AKmdIpihS9fp6eX5JIk8VyiCocskWTKOyRj7+Cbt1mikLmGSpI0dIpx2nG62tneUOYjNOUMMt44+0b+CMfw2kwbcwx0PoMJ0c49TrWc89iXL7Ia26XUsv58PET1GXt+3aW/VngvdIJ3ZB4/j7Hbp1MZuSAq4NUJUIWWGGBbbeQac7VXspqLyVwBGEa4IQnNN7+AvuDlxnaBXf0nPNWg2GaMxeekC2fpTbuM+0IxkUXVW8xziSJktSUgbeYoNXPIhYuUp8T5LZDYi+iCoM4reC2bYZOg7BhUJSgTKiubNFc3mVYTnBsMG+9TKO+S5BKQiuhJXOebdyjqFYQdUlYuqB8olNFVY+Ruo9UKVIYJLlBkDlImRAIH7+02Zm2cYtD3OI1/Nxjoiye6tWonDTJJweozjkop8R+Bcuw6M0JxmbErXLKyZnvMLUCIi0hL3KkYXBa7tCVPkN3QLPeol5WaHsdzlbOIhDMODO0vSp118CQ//ZEjRCCc+fO8elPfxpd17Ftm729PbbHY5LtbbRGFcqYYjT4w9dfvHyJq1ev4nouSZqgcoUQOrOzn6bT/ihSGgwHEs+bR/dKHs6usNdZ4FKtQsWtYoc+ejxHOA14M19ke/0xpGbSbTkc5xU+7/8wM8U3abm/is0c/TO/Szazg7G2yai1hUZIqc0Qpe8wCvvElLz0ZJ1RrYUzegGz///DRHFiXsGMt/i9RohDn1njgGrY4x2joCjrzDhd+nmNk6KC5QWMqxbjSgs/FIyLnMAOsSsHvBWZWOaYQkUo4VGsBigzo+f3MGMTXT/Drm6TJDmj/AJKV5TWPDIU7D9waHCWiipoJnvkZc4lcZcfmz7Pp4ev0Pb3Wcoz5rKSxmSIHuV8/CTD9XPCUkM4HnaUoRk6Nc1AL0yK1OLhvOK2kGzLe6yqDR4/WSDNUtLkIdghDacOtk3eFQwHCbkq4a23sDc30apVwtdeI7l9m3RnB+k4lNPvvmr8A/7T4r3SCRuDsBXTd2YJdY2pLglCHXW8x2F+gJWOeaWxRGdS0ht3ce0uj7PHWniPpx++wsa9F7HKhE5wjwUz4M6kwaNzHhuVhGeaX0RlMYEyeWTQQzudsEsDX1oEVLjsjrlf9DlWU3oypCwrxAgmIkG5VY70Iw7oUpIyK4eUaYBQJX3TpNRKhNDIMpfIr9O8uUeTkrQsGaJxrnOdtc51jGKJ7jBhrpESxQqVmGyaR0jhUzFyiijBXJSIOYGz2eV0bLN5NOUn1QQ3X0bUHKyai3IdZN3EiCLyiotfWePMYMLVd15EFPNI3Uaokq7dgrpBUa4xqm5TKofb8TVOxCJm0qZXFJwAYStAajm3XI2/ZQ25vRIzEz3K1H8URygapWRbCU6Ngl4RgwlTM6daFhgyojPj4OkFmeZT6zTgE/93RGcDUaYIQ1BMUsR+zLxqkPdjhOvB2Y8iAGFIjFn33VFaTSJdA/GvjOJ+L7Gk4L9Zn6djGDjavxwJrugaNTVAo2DdMfHzlDA+ZDp9m1brA0zDbX557xS/+O4u/uuPX2VmbQO33sSp1rC8CpATTsbs37pOOB4hpMSuzJBGOrZrousheiFZy2eJsojBcsZk7HF4cJWR6WPIeQx9n9Bo4NRP0OKUwDQI6zXmJxN65y/xm5tXeOitMc4NqnmXULo8ePAYDanoRPv0tVmq7gmHic1EdiixKHWdfmQxIsMIbLrlLLqZkptt3ixzirxNDZdcAyUhKSVpISl1KIi5NXuPc1nOjG7QMfskyR2my6ucub6LiEKELFFRn2HNxhQJXqaRmR5GTbGolzTKeR67fYqtadzINxgXAqVyGiqmc3oHM5eUdkmnuc61YcCZhztEpUSFDpphURQFVmlz/iQkNhKCiUUaOFQLh5b2vYmrP5Y99/HxMWEYcnx8/H07XPNGg7HlMbp7h7xeQ4URRVbw8I176Ibi7Re+xq3feZ5Kq83kwX1O/9pfJ7h7B9N1SaOIIsvI0xR/2Ofg9jvwr1prA6PjQ17+jX/MuFsSHo7JRmOibo8whJvuVUbxiLKsYVdnQU6pmDbBIEB3fU6mEoHGzbVPk5s5ceMcruzjNh4iqnXO7Ez4Le9Z+lbKke9znMWcMQOOVYdSczg2X8aub+H6y2SaQbB0nr/7C/8llvUIV6eCv5B9iWOxxMZol2/nN/jYvW+zlE4YF4okmZAFGc8cfBlVRvyO9wL/s5TcdedQ+QKb0iAVM2TK4PPlRxgVGn2qNMox58wuIzyWnJQntYfUVcyjag9UC5UoVrM2h7LNSa7z4d1dsjRDM464UVtmt/F+ZAV6ruTvP7rKi5evMq0ukNsmb5wZYBc5O5Zi0eqyu7nOD9mvs7Z7nd3zj/OousHlaJsPmoc01yXCiHm23OLq0T7PfmdCZTrBshzSDJQ/ZsmLSMyneMz7Dda4xYY1QmklqTtHXLFw5q/ipPtQjvmnmovR3KP5zm3O3t3m1ZOzjHsDdBStZExD3udqfcCkNgOazg3VoSvmWSzWCaZPE/Yfp62d8Li9y49svcxj2phz/SaeBhXHJdDH7Ot7jBdKymhKmUaUhqIAbgc574TJu6MEZko9gZ6rYRcKE5hqkjnzMsGJYMeMqKoJMjphy1jggbiEtDTqhQuUYIBTGCwdtLkyXKMoBCUpuSpRRY2jLGNUjMj1hKi6RRFKUtMj6F3CaN6k3Yp4vPMAu6oxOxixGF9GbAXUz+rMv1VyeX+f1e0dclHFjk6xkzFkFZ7aNelEgjoPuF+kxEZAkYywg5SzQ0U3cBhFHbAOcY2MrCjRNMl21UWEBmHT5Ic9k/n0fVySR5xhifmxSZkNCW2JZVQIkwRz3EXXPM5OJrB2FuGYZFpMIi2m05hCs6m6XW4sXeT+448QqZTR8AEvLpicCGgORphCQw2PUdUGr6+d4aA5A1LSz3Ke39nHc11atRoj36YoB/jxgOvxHf6J/ibRQpNf4WUe1jP6j6TIqvF9Ocf+rPBe6UTgT5hMB4S2y0CDA1syQ4ggIzMKtELjQlYgypRdr6CZlBy74KuEk942ql6hOrzPd5wxN0WX+umEUNOoTU8QScjCZEBDfQPhvYjT3cUjQ5jvthzbliCrPoHdMHh05jaiFhLGJr6yKQ3BmciintQ5cAI8VUVfX0WzRlAdcu7SK1xtbNMKTpHaiOuZYuI4zCVT6kWX2jmXuJnxZmWVA3eN/qU1FmcPmUGnk0mSuEUuLQwMlB6xOpOSji2u1HrsFsscnza51XuW9usuZ7s3MUeSspxiUjAsAgZeji0d3jkjwQp5Ke1yx/s6d91t+kEXgUBMQwZ5n14x4U5jm7xV0LSbXDQ2OWOvg4Br89e40N7gp68uY+r/7ocVIQSGYSCEwLIsut0usWlSjEZo7ToqnZL3/6X7V6VSoVar0Wg2KVRBkebcvXuX8XjM7u4eljnLI498nAsXnqam+TRO9lnV4Ok//4to9Ra1oIt3WiHr9rmd1bg9s84JghvliOPJOSqHl7gpl/iC9hhOUkdInWb3GnnxJs7kFlZqoGtNimwPWakxo6/g25v0jApyfBOTkvnoeS4k3+BTz/9/Wd7doqOHNO0h9cKn9FNcf5X5yoRpq8P9fIbN5A2O8ylpxUMVFYxxDRHlHMawFWoYDImES1noROxTWD5F7QG35C1IbXZzg9jvY3mSvLHPRGtSmk3qmc9SXFAyR2jNYtgpT8o7zKU9WvExa8Lngyf7/PTht/jQ9hfRtSGPJIeYg0Natk42t4Q+jZEJVFOBgWJmY8h46uOVJRMjYClZZXnLQWSSoHebLBugGTrCtBFWjcFuj2JlhcbbN3CuPom0HfKjI5KtbeIbN3CffubdMfY/MIBQ32X1+Af8p8F7pROZSsmVYFezSFs1jvOcY6+K0WgyI89iVg0idI4yl4iS3J5jNtjDYYTKNI7HDpZe4hgF9SSgCALOiCnOcpPdosJhZoJhMpf3MeIRr8QGE2kQ6U3WxT5DXRAWBZ4xj5+O0PUKwazFymCfS1vfZJzk/EZlg9/SL2MbAlvp7FoNemmfh1YNP3dRqkEjCzgSGbY2QyBKLlS3uVLZplEs0I7PsGDuMg48/OOCqwcZZ4sUy5qQTwPM5S3kWs7GIMZfmiU+3yNcHKD5M+RFhGxXiD2P2IgxwpDc1lj0CyqTCKvtY0VLMGmQBh4py2ieTVDahJUDUHVeya5xJJqsCIHRHPPFIOFYDUCzmSiDpEwoc8lSKsiFwCnASBRhmHFKyLGKGFtTXHlCQ6XYTHCtELM4ItMC5q+9D7wOQkuwxKsIU6MIMsokJ9mZvGvF/S/2zwiBMDVqn1pHmBpIqHx4Gel8fzqphRCc8+w/UrwQQuBqkmZ5hFIFMtliEOzSFwu84/08+9ZH+FY0zwuDKf530W0mhGBmbYMP/dwvYroOXqOJ5bhATjDsopsmo5NjNMPAtA2yNEc3daa9Fxhev8ln46fo2HVaS1eZjnLWVx+nvdyGrMNKtseJvkxhl6iwRrmywWRmHevkkDtrj9IJUu7PrRKjYUgwRj0aWciqE1L6ir+R/jjV+ikX21N203WKVCMxbUZpjZ61y0w1Y1RYNPgydttmbMJk6rFhbtDThozKiNJwGKmAY2/EvcYJb9deYyK7yDijVatguRVuX3qCrcYmpm0h9BI9C9BwII7I3CqjWgtNdTk3Dfmpg4d04pSKW7LannISC3IFXhGhjY4o44wkH9MRM1ya/wjK8EiGL5GVGXJmhjLNsSclblADY4Z8KklLmzu958gn35s4+mO5Pj148IDHH3+cs2fPft9mSg8sl3/01M9Q+A72+jpFGHDj64e8NM6Y+lsc3H7IwZs3aDbb9L/4RUIJSa9LtT3zh502ZZ4TjkcMDvfJkhh/0Gf7rddRSrH3zg323rnJpBcz2h7wYPVHuPPVrzG0FkkxKfo+u8/vobtnOTz6m+imQb5yAbPR5XRDZ/qBn2Fr5gxxqUiSgLnxHuryPTIDKg3BjtvgtniUrUxyO1khTY4x9QaO8EjUA0S4SWdyibzQ2LXX2PHOI/05nutOqCUDfir8XS6oPnv6Hc7tvo51fBs7nmBqA9JswmT7kA8f3MMQip0k58Q5RxLEtPMSkxShUsbWGroqmKWBrSIeL14nzhWPpG8yFCaWylhROet+SRIkDKVLVQ2pVXQWB102kgmve3PcXH7Id6xL3L10iVmn5BuVkt987Br/4BM/D+3nOHCuMO7o7Nrn+WvP/Zf86kd/BDvtsTAYc2SaXIrv80uTX2PN3qF+9gRNg4/1fo+P7FxnybyHpRQz022IS8xxCsKhWTaZlyfIQsfIXfLWNfYXnkHX7yLNJpHj8lX5DA+cs0wvdMjqNS7s38EwPBbMhNszZ5iPuly5PuGp1wd4M5u0LZvpgy6j3QB33+G/faOPJj/MEi6LYp1yOaWiF2hGxuVOwXO7kjKMGR++zWk1QFo2liawZMLNtZzJgiQuCpo5zBSgZ4q+Dk6sMAuFLTSW+TgbqUXX6JBpE97Wz3N2u89L6gOU8RSzG6IJhZPZLKYtrMEUy98iUxllkVIrWgT+AgPDZNQI6OqnZN4Iqe8yNFOGAw/DHrCwcB2vdRfhWjQHBY+Mz1LzajiLOZGxwvsO54nPrfNKP2FVuZy3+6jqPA/cF/hO+h2moy5oEW1zROlHFLpGOSzJJtc4PHqGWPdwy4TcMxjq8FAzKLD4f1y0iO0SkjlWjQg9tVnqFVg85O5qgrI8JukA4dl0hEG70Ii8WUyvQpbFEOdkaY0cB5FPCNod9sUSOYKkYjGtVfCNgrw/RG+2KBYXUHaDw8XHCIoSaUmG4h7N6Zj6UFHfO0YL1mjcfJnA3+VL3ecpv/IiD7/wj3DNFm8dvk1qHX3Pt/7/WeO90onEsjn2GpSlIE8DdvMpDI8p8oRp6aPKkk7fR8sz7mQ7DNITphaURUoQTzjRKwTeLEVcUq/lmMoltHTcNEDpBtU4ZPWNb2MwpNA0VhmQeVVyo0qDBqkj0OihJjWm+gCMBMcY8yH9DrpUKN3HlacspQ8YiBilJaSWYNZJWM+OmT1jkDkGp8oiJueMCMj1JeqLd8lcg77QuJFd4LXWKsoek+Axnc4xHTc4ql7GVQa6dsL8nqSYunhGj29MzjCMOlwPznC4XWXJWkDTTcpsAH7JVxY2eKlT8HZpkKYmUWaxG+rcpMUv1/4Zw3JM1fCYm13GMaqgYnzhc19sM+/O88OjD7BavOuc8cz8M5xrnuHjF2f5dzTU/Gvouo6u6+SGgWw2MedbOFcq5P3ev3aBq9dr+FHAzetv8+qrr3L//n1efPFF6vUPsLn5EcJQxxUTznoGT/NFZB5RFAW2zLGygPnJBL80eaB5iKTCx/dm2RtbVGMbw1TYXkj76B2yg3nK4DX8pR3kOMUMczTdoxAuycI5Fs1HuTa+RmDYzGY561YTpl/n/fmLzBydcG28z4Y4ZME+xV5skSlJpagz2HuMY3eFh8YatvSJBhM2zBSZ1XD3Ftl8QcP+zYI0a5DlHoXepKQgDDzGekG+2OPlpdu8YDzPcarzTsOiXugUbk6ZtRjtmjSMfX4/HbOtNtkpz7Ko73ClMmVBKZbjHlZyxOzOXT5961f5gPEtdOs6rfLLPLv2RbrNiHuLZ9icHuFGE/QoRuhTvJkYbRrQjnIKUxCEJfk0o3tyQhqMEXnEm+IeqaFjbiww2ulS+cxnGPzl/xxrcxNZrWDMz6PynOjmTZwnHkfFEfyBecP093+f5PbtHyRr/ozwXumEXdiUqs2BoXN4aZ6RlnNsepxrD1BelbjscmY8YN+zaZgm49zgTHyEqnn4dYeVxZTOzBTp2HT7Yy7UbjG0f42utsAL2hp/zwvRKhVCp4Op56iGw1BYjFSNxXQPzZpFZhp6rDOd0RBmxM25I3JbUdETNOXRiisEZRVNd1BFlW6uY2om96w608xEqCpWFoH8KCq6SNvJsHD4ubjLQmGjlxqd4R5jZ5Uwg9VxyAdPXsa1jtCKHGVHaOdbLEx6qDmL6eZDRnN7RMUyoaOh2hWELnHTETKekpkSigipQM6UVH2T1E+4Lp5iNHqSIJkl9D2K0eOUYZ0L7RM2Ww8QkwJz5pjQFQSFRVY6VJRgs6iTpA5SCFIFZglmXGLlOVHhE9ket7KUmdMBR+lDbI5oVnxOvCE4JYZmQKkQKKziNbSGizQl5loNoUvKpPgjo01CCoyO84dmBeach/jjitSfMJc8myf1+5RlxnT4Ikl8wD/Of5QX5Kf5wtjjy5MKh3FG8F121EhNw/YqSKmxcvkxWkvL2K6PlKesP/Yk/f1dNMOgPtckT0KUgjT0ufW1byEGKXO1OZR9jcRPeOqJJ7mmP0l8LGlEPrNFxIF1BrOfEWcmI0wW0xEf2jrm0DvHxDARQqGpkGI6wOve56qxxRX3gCvGa7St66x7CQ/TJkFpcVivg3A5qp3gzl9nL2ugknuEw9+l0b+PSlzmikX65oix8BkmTXruiPsz9/in9kuQW0zdMSp10HWJYZvcc5f5wiOfIFx8nLEuIfDfNWhROVlWEGFQJGO8wKE5OYtSy2S2galJopkhQ2tEPxCIaAwy56B3n29HX0V5MxRehWC6y3ZxytuPuSROidkLCLsmbv5ppGagG5J+uYJpf2/i6rtO1IxGIz74wQ/i+z5hGH7fBHXG1Ok1WmSrj3D70aucKsFxN+Ar51ymTszgcIgfHDH7lRep7OxzVLGJu11qnRnC8ZBh8Js4TZ3Qn5ColNPPf56tl77Jt/7hP+Ct3/xtHrz6MqrUiPyERLc5qTzC8XHKuLHG4sVZZo7HJHduIsp5xNdiyjwh7ayQzmW8M7vGbmWJiW5SaPPEjZzU6LLdXOL15xbYeXyFJ7NDDqyz3A4d7g+bdMe7FCoHqjxle1RPNmmFBkWhM/BX+dTkgJ948yEc9cjLCkWuuOUOMFSTcUPQPrpFNrqPpx3RbITIhsmZ3pCFYo3S0DnKFfPJgEdPD7GzAVGZ0kyOqboxmuhTJadRTtm0AoQOb7eeoGqvkWvrbOs1pjJjJt1mI71NJz3BLafUVnrsOxVOZMIH5bfpziQ8ot5g5WQXMwoJXZftxibvyKcobVi2LDaNW1zIbhO+AZ08ZF4GtPMpRjcjCxfIMx3DauAmMZOiSW5bqNLEkpJSusTM4RFSLX4dSoNUXiTUn8JPf4xKsUJVboGZcz9/hr8x/WHqmUVQlIizBdUrF3g02IF8zK21yzw12OWxl3bIjx3W609QOgGfdUsuGCYv7b+EefgaYWLRvvsLHI1+lulsjBQGd8NvU6zcwxMGEz3k3tkBQVvDmltEqILx5B59tU37SoK5MKFl6tQHGltCEgONuKQel8ynAjSdD2sONxtP8GuXVjDdq1yMHvDU+Aa5o6PXZhnrUGaSjx88gxPkTKYvkNsxWj7GClzuPDzPfhrTEz79PKDb3kKVJzR664RZxuhkDk/GmEKncGPGG2eoSpdBe47t/mVeXfoh+kaNmxuKP3fS4seCT/PTne9wod7Gz3Y4yI4YRV2WxYR243Wm6V3qxim+p5MKg9Rz2N+2yEpFvYRKWjI1JKdLLrqm8UrDJXZbdAIJIsfSKpS6wSPuIWQ6YyY8bHZIdZs0GTGNT3HNKlmWoeUlcVnFj0DkJaVe4TS2qTTrZEpRNhuMjfxd20IliWsSW9ZZONZw/TFYBTvmFpUspkgDGPSxxwLllximwTPrH+CT+XkGv/F5nnIfwerHnN1Ovn9L0f+M8F7pRKQ5FHHGQpwgkhCjN6AQQzKhOBVd9usDymKKY3u09u/To8fB2EeWGbqRIMcRO/Mf5ESvEadjtFySFgm655C5bTIhSYeCo+Es5eIqlzjCrFU4EQ3iYQdmC3y/RXdQIzN8ZjtDzrVO2Bt+EqlrlFmE6Z1grO8TpV2kEVARPnq4RLUcMbt6jEbC+VShignz2Zh7/vt5y/sEqgwwp7soP6di7BKbMd18RKZc0qzDkT2LVyY07IzxWDBNZ9H0LjOySlQUxGnG3fOf4sFCwPTom6ikTyE1HmawN0oIpIWeWRSWwjMsTuMxtumQyYx6rcG5cxeZcZe5IGxEPuLN/pvMlzOYFQfxB3aU/+Ih+N/HucswDFqtFo7noS8voTXrWGdmKfp9gD8SQ673rv35gzv3GXT7TG+dMhmNMY2nyfMG3/zmdZpOznzLo+LcZu/wAXGSkLdWie0WrWEXdBPTrdM49yRuMUtRSITQkVGHc9Xb2EnKr/Su0vcFI1thRBZoJZ4wWTVmOR/eJvGqnA8XaVsGn0iqXEwLrloKkj61wmKht81RWeO0XnK8WqXQJUdNi73DBay0xZG7xv+y9ovILIPQZzxu8ErzkxSNZe6tXsUPG3SDDiI3KPImqrfEF+vf4ZY5oaiURPjoEnatGE1YBKVHn5To4o9TODWiwufrR/N0T+dw81MG8RpykuBlPnV9jKGXSFejp5uMjHu06XFxcIrMUkbNGWxdR1rvGjlkqckk3iBPYkphUZcJhj0kjyO+/NrvcTo+QE8TttQ+E9dEv7RGqBJqnQ6hYZDmOQfjCebGBnqrRTEcYa6vA4IySaAomHzhCwTf/vaf1HHwA/6U817pRCErBHIGf/02+y2BMROR1yoMmh6vrc4h431mxOsknqCmCvKiypnokO2qxq3aAGU5LKuA1JkhIednzC/znIrpVmq8bJvsU0IZMqy66JZiWjU4djqkRp2V6ASVtXCUjcgc7lk1DgwLIRSRLRlrORYucqLRzU0KrYGOC8qgojn0ZAVdN+jps7y0/DT3/SWujJZY1STNMCdc9PmLCy/zk+tfQIthpCqYpoF76lMNe9h1iW2bmK5ANQLcfIoQEcqcUui3GSUt/IpJVGuijHf3VypNI9VyxukJfl1gFAqv9JhqVb6w8ecZjWeYdDtMdY/u3acY+2vYuqCyepOszMGLGFQk2+J9xIVLvvgdFmpg5hZSCpJCUTEkapThJCWNMsJSIETJvJ2yz4h2J2XtksabykHXNfKHPtHbPUrhILwG1pkWWt3CPtvAXKogBO/uofnf0iHB99Tt6bthw7G4aEXk+YQofIhj1Ij1BT7UrPK1/pi3/ZhRXhDmf7ydJ0JKrn76x2kvr7LxxFVsb8qZa08zONxHahqVZoPI98nTgnCSoptzZFHInDXLgxf7TPtTTNtl8eE6nKSIqWBl1OO0XOCyUmgVi5EZUF/UuPj6q5h1ibTAEQUpfcZOwWmtxa1sHlOmLMQj9FLgFy7e8ohte5VJkeEaOUXcoRILxNBh93iVdGGHz9Wep6lpVCbLjOWIUlcUySy7+iGn+m0uqDWuBE/hO6foQpIbKW4noTOUbAUWh4HOC3ZKmBXE1Sr+bAXpxETKZNtPmY1u0zm6zdDeRJMBUZjRTY6YaglaGmFbFoiMzLGZnQREKsHPTggXFjCLIwYkFFZJKU2mRsGcZVLVwZUZZR5B4n9P4uW7TtTEccw3v/lNvva1r3Hnzp3vyYf5N5GMfIo05c76ef5W7Qz/n+o8e2HMqVTENRPdbFAvCtpXnkJ8/OcpWi3iXo9KvU1v9zUmd75Iq1ZhOh6iLzfo/92/y+FXv0NRrjA4OuDJH/ks1c4KhpiSlDYNJ2Pi1wk1idcSWGGJciTt5R1Od68SjyNi3aJQOsfSZb9aZ6nUCNtneHvplN/4xAW+aP8ob7Q2eGg8xVn3G2SVlLBl4FseH8wD8mKC4Vd4JG2xGS1QyUMiX3KaNlgub1PXqoSRTizblKnOg+gWT3Yz3qp1uLQNZ3YzQq/CW47B7vpZVlhhbXoWzxL4RU5NZozSgMyWiDSmonKMKOWZaJkVHO4YF7km9wgtly+3f5hw4XOceh/i7dLlQWuWZXZ42t1nEkKhRQj3PokpGQgLkbzNX0p+lScmL/Psgzd55vhLbIy77DQ6jAuBHsYkccpMGVI/HBBeOcM3r3yYpoix8xT7KKLvnyWdnEXF60yHz5GUNgUhiWrgW2fIbRNfzpPol9ie+TEC74dQukNRtiijJnVfYJYPmNopdVPimSbLZYNFzWLBOMK6doGL96+zNB2RPvII+c4hM16DycYmRi6Y5BqffuMeP51INgf34fAOG+MUo/CY3w0xUg09XqKsDRnNhrSWZvEsg7ypSGRKtj4DquDN4DZycMDhiUnYf8D5vT77UnE0TtBLqOUKLVWsBQVWrhCOzj9tPcH/1D5LklX5e9lP8bHutylcl8nKCn0dlMrwwk2k7eHmCktBM51i5oKq38bNHHbMB6BVMWWBOdMmSAtENWJ8O+XhnY8RTFZYPP8Gh2faNIMq/fos3ZHOxPQ5nGsi9JAyGHM/PaLZ6/PfPvhn+HpOadcQRcinTr/GID5Gz3Y5azygtzLG93Y41koOugaDrmCyNeHsYMogzblbkSz1U8aGZH9uTKQ+wLdmbf7OJYdppcP84BZ6Dqk/5OHZNXqGwaK9Rj/oYpQ2QlMUeYFpNMlFExFXGJeCvm9Q61jgFaQ1E6UiyB2yYIQejZhLaliJonF6ADMNIqMg1gSBK9hqN1glYN9psrh6if/dU38FlWX4juCxaJZUamQnpz+o4P4J817phMoLGn7A5ZMBWA10t0aiByTVCgflkLvaIXuyjza/QvVkj1e1I97JIlSRUciUo6WzxP6AWBgUWUgqU1QxJnEctrMKOB5F1mCUdKi2I+yqh2PFFLLKZGSQVA6JUpNe4qMXClOkWCgmfh20HGRMU9vDXrpDR93ADcbMyZx8WwElQi8RZchT/WM8CsIVg15SR6tFaIAdT3m/+4AL6iZ9kZImAYa5QzSeQTND6rVjssLEfadPw25gRlU2JiNaKmFudMq5DAbebZJ8H+IRqR3TUDuQxWhSIFKdQAyY1daI4x4dv4LtOLRm2zQqM3S0K1ilomK6DP0B85V5jDkXaf+Ht5Cbpsmzzz6LW61iPf00+twc1tkzJPfuM/29r6Cidw0ElFLYacrS6hLxNKJp15jZMzl35hx7X7nN4MEJvl+AigjCU3RtzP0H10lMm11zhr7ykEVBYhbo9UXuPvV/5s7K02yYZzGQ3Di6xs7ts8S+jVarkOqzVOgiApOjpIGr4MO5y2p9jN9pM6kULNpw9rWST/7aq3z4Wxli7DKsWzjRlIO4RF6/zXPHJ1hmwY22TiIKZNKnV+qceot4lsbz+y1iKtxZWuGLT3+OLz72capqBn98iaOjD9Azc+oHDzky9lh0EtALimTMkhjTrPgc2TGnvuLu4AaT+lMM3IuUQQ8VBniDksiY40ReIEo9RqLGmeyURXOA5uikWoNIm2AVPpUXmry/r5FVKii3Qix0IhlT5BmH4xJLFBSJgYsJ6yVFnjLoTkjNgiyZkBYlp2cvs73gUs6aVCoV8iTDn0y5/vAB5uYmM//H/wML//1/j3QchGEw+e0vkvd6qLwg3dn9w1GoH/CfNu+VTgSRYtCvkZVfpsynPGy/xb35Pn+js8Lnccj0knvFS9jl22hlgIlOdbpPV7Y59ODIq7BIl+N6kyuLfRaiHhvTKV9v+3TNb7AsLXw55SeTLzEnh7ziNPnH9QWoNKimESQ1XFx0y+M09LnvW9iaRaDvohs5FR2Gpcc01fGFgyUTNATW9BG6iaTmSm4zz5dq72NaCLLc4MLDEc89f0KsR2TJIboxwhspTjMLWyW4WUbbq1I7qWHqEkPzUNkxZjomzccYhYOenGLHAkslVIIxqeWQ2zaF6VIWDcy0y1RvUmo6WiaIzAaprOI4KbFvcCwhCjy+2v8Ib0RtatY+uZNxfbLAA0/iFz6x1mTCEReziLOlQkpBmJY4UkBSYBaCMpyQTzKUSHkse4vEbfP5Lcn//PIhXnOJimZCLyF5OKZIHdh4P86VWdwnZ7EfaVP96DKyYiC9P/0j7bpWZeq/g67ZzLsdLlc9rtU8lsycFiM6pk7wxzwPhRBITXt3pLhyifPv/zlm188QTyegFJVWkzILSEJFWeoosQrC5YrapDZ9N3ul6TrhBFzDo5hoWNvvMFQt2klM3ali6hKtOqYW9cl0DVtKKhpM9Ih7myE3zjv0E5jac8Qssnf4GFuHLtp0wLG0GJvzOPqIPCkRcc4HD14lzDus5/uc1W7SUSmt1KUr+mhKEE09Dt0RR6OUnyqf5n1mi8gaoBsl72gPyNYOsdIIIUpidwenmRI2LLIS7v3QOqczGVEmyTVJ6/RNWt2biCLHKk6YPYpZ3R4iPYkXdDGqFTJS2jWTmdGEw+Iho/QeB+4lBs6UK6eLrJgeBTqOMaQufDyVYBUhTbGNpcbfi1D57hM1q6urPP7443zsYx/j3Llz37dKtFPRcI0tvrDS5tGdhIOTPveFz2PDU7oa1GdXOOO1KS58gPv5eYTXIA0muE6DwfAVql/VaG6HBJMhZauJZtpoxxlN4xpXL/0Ii/MXaMysc7PtclCvUtWO0SYZ0bhL4O8Tbi6SzzvYc19HuYKDyjmm0wHDnTFdYXPQdNkchZzYHVI3Zsu7yMfl6xhalzvKQw99rETHb32Ek9ozfDTY4awR0hYRqiiRiUOYHaEbBqfVNrXpfaqOia01OZ2ewaLFrJzlUvEUvzD9NO3QZvVYsB/Os5WcYBUTbM18187MTrlSHaGXKcMsw6sW6NUU83SP1UpArXBplzY3jzSW5SG6fIIbtsv/87zNl5oeiS25URYcG3Xa5Snp4gqN/m3aok/XdfDpcGNgMfhqlSv/7/tcuf0N3rBuICKf+40mteIQM5ySawXN4AFzvVO+6l6ldE0+mn0FrwgwSRiXC6STBYa3nuJB76Ok0mXa3yGWbe6KVRI7I0gtVOYySq5x1HkSRYgleuTukFIEyOiEv4/NA6A1Z7ES25Tpz3J3+UOkecDlXsATtsmnrp1jZ+Esjac/zPkPfIjILVi8/FEIjomKCbmVcaIS5odDJAXhyR7WjoEVdXCWhggrolpPeMJxea5WJ1AJYTLguNZnp7MIWUp3NuN0PGD5+hY7usb2oo4R5LiJwkhylqcFeq54WJMYCGZLSWxpSGOefXuWVjRAZhq57uDUakwcl9Sp0WwZLB4fo09O0IsAHFhJFlFmxlaic96JUEbJ3aWX2WldJ5kMKft1Jjc3iQ88LGtAWLgUpSBq1/CaKYteQW2nwTg1OUl8jInCfmEfd2JQy2I6ecpjJ19FkiHo8rih8cC8z7H+Jr08J/ZTtGlMvSiZFDuchClvuIqtSUilUPzWasQ36sv85mKdF2sFY81GKxKEXSLtlGudE9rVkFljmSILMZWBMCSFluDULIZODYYKX+jEjofVTpBmQqwrGB2h2YtkTMm1hEhBJS5phwHbsiRUIarMiOKQKYrVdEy/M8+NWofRYIReSJpPvA/7YEii62STyQ8uBn/CvFc60VIpCzLD70+QwYRSHeAZkp41IbZ0oizAL31OvQp6GGDkY5pGiBBAESNKHbP0kXmG6VhMREgtO8UyBY+N9hGlJGzNo6pVqo0+oTRR4ydZLlvkWslEZcSahiYrFGmONCeUqkdDDTANgef6OPUObuZwNUnI0VHSp3W0S2JWKTVBYbisl002CwvNTOmvCFI7RFGwvn+R+RKW9T5madD1H0PJDJ0m9fZNZp74Zbpjj7U7d/iZ8B06g8s0e3t4Wsnq4iyrMkRv+aQbJfS7jNQJsujTMXJmqqClklgllENQeU4jqlAxKjz9vqeZmV1DW/0p9LrF+ZnzLDdXWLy6SeXZBfSO8x/83Wmaxrlz5zAMA+9HfgRjaQmt2cTa3KT3N/8m6fYO0xdeIH3wgO5f/as4RULNrrBeW6Ja2jz+6BXsk5Lu1hFC2Gia4vz5OVQpGERHjGpNHmQWt81FVHsGYRzSnJzw4mvXGeiKRqQwRM54Osf29BxHYo5+o85p5mEmBdVGRpC5fLQ35OnRCNWwKdsOdy2DpFBYewdkn1AU6Qab112GS1VkVmJHW6zu+Vx6+DYrdo8cRVikPPuNX2c5GJNnOrhVIs3jMGvg3B9yIDvU9GXme5cQ4QwHQYuv6x/i9NERm3adWTniM40p79vUUOUYz4kYtr+B72yRFjmQYZ55jLqpkQ1OMXsxk1TjjmNyarbYYQ5bKp4wH6CnISUVZrQJIot4OHeR9z+QfHj4JpvqHkrqSNtDL3XCosDWIck1ZFqlNpyiyFkIlomMnNQMeCx7hnq0zv7RIXGZ4GCRnPhM9waUm5vUf/qn33WAqlZASuxHHmHy5S8TvfkmzmNXQClK/3tTkfwBf7p4z+4Tlk6aC8bZAK8YYBsWyj7EiVJUcsLd5HHqWZOq/wr75j7vtFKMdERvtEzVe5Ydc47G5B5vOtvkTo9btRmO9RpDTWM++zRnlM3LnQ02owMoIk5VRuzo7LuSY2uJXDmYhYGmCxplShTrmMKgp4cgYjQto+e0SQqdaepRlKCVOWX/PL2oxDIVd0IbU6Y8uXITv2qxbEfY3TG6b5MdBSgtpL3TZxplLGRjHK/C481nqbyVYlkGVlHHjiyMNKCjTXCiZQzRYT4KqMRT9GJCZDUpTA+lN/GOP0TDOOH16TyBrZFO90HazE18RGdIaVocYfJ2A6bK4yAySanirMd8e1DnOSMlDU+I5VUawQztccH5wEdzJHrdfNcgwiiYCMHAgDwB7JiKa/PZp87x/GCJ50dLLNc72JmEQUrWDclHBtnCf4YQAvtiC61mYixU0Kom0v3T7+bpeWfY2/sVZjqf4GpF8kHP59Gqw393Zo5N7YCLnk2Ql+Slovz3KCjqpobtWpi2Q1mUKKWotTv4oyFJJJldWyQKmti193PBeRyjd5P6bBOlJJpuUtDgRvxJnBJ6pUb0zk3UjXewMw3mxxQ/Y9KnRoYgqLQ4MOeo5TXOD5cwLYt77kXuiWUe7i9yENSJQwtLDjks1mjZAbHK6GdNbtvLjHE51Df5Hfl+2vkRy1mVvj7ByjSeLto09ITSMJkWBsbKb+C0jigrA8pMMMjWaKx/Dc/OGcQJC94RgdSQaUhu9DiRExzXZ70yxRgOKcqCWnhI7u8SsoR0nmauViMvYrqOItViFvS71JdSxvkJ/WTKUFZgucKD4A5rRY6uBFVDw0gVVVMwXmjScPvI7D3uqBmNRnzjG9/gK1/5Co1G43vyYf5NOLrJT2494JmdkPPBLtk05sAzuXb3NYJKFdut07IsotgmTyE1bKaNBL3McVRMYrYgjimnE462LAbvW6VozpKUAv8wYvCbDzGZ5/5yhXuVCoVzj1l1RNvskZrf4uQRh1QrKGSfladCRu1rPKgNeXO9wpwU7HVSVsw3ODZdAkdSt+pssoUmRjwsPR7uuSjNAXGZnxgNuRie8ngY03Z2EVEHad3jhOdJDJ/tNCEYxkyKjJY9Q9Jr4XafpRQ2i+oCjI6QQpLMLFNIjZySSr7GfpGT5jFLss/7tIeYsqShxVwbfwe3+xbr1Snt8RBhKlQsmUwVd6cXCIdPsJBLPhK8QdfzSeqKvWmPv108xn9z7r9j2JxFCzMKfZ13DAttVPJXvjxgaeeYPFacVnKqWhVvMqRUOdXxP0FM7zEOE9SeYNUOCXL43OHLbMavogmB4zikxgz5cA09aFEKk4qW8cxij6Bs8E6+SM1IEKrE1k1ix+CVQ4sYB03uM3D6DJwxE2nwTq7zu22BUCmaKemxQJI3Ub0eW0/9DHc2n6Rxeotrzz2Dfel9GKbNsdaj01+EIqHn9pgagluVeeTwAO3gLkxP8H7LwN2rUJMper+BMHw2ZpdIkQTS4Kb7gKHuc1xvUXSqWHtHtNMYlZ/CScwr6xZlTcdMc+aO32Szd4CIcm43DTYLyabSCFz4RAJ3nUcxioDC8OloBbPuMcutB6SOh/NUytmmS09M6VaPmDSOmYnmmGeRB4FNKAfYdkhfBkzdgMKz0IyYwtfIthKWW/u05o+QmiRcrjO/9jxe85SsPovZDVnsJwT3XZw5l49+K+DxfI65JKAUDa6ONR5xUzbDgE15i1g/xkkyUIpkIliW4OUNOnpJRQY01CHrfsxvybN8fXPCuC7xTINp6ZKoRxCNmziextU9l0a6hSfrJNkUSp2ebZKLiIQM0/PwszaOZqHrJlo2wKzWCJGgxURlh6o+JpWSSZkz4+esD31E3CcqIzTbpKrbzFXrtKIR7aZCJFOuv/IKBwpWLn6U6OEWmWm+u6A5z79vZ9mfBd4rnYiExqQ5w2TO49xgRDm4gQrgQXCI4yfEsU+YBNiugzxzEeHVaMgIXXcIdY3FySHz9Xcv+WPLJJAZ1WJAmQxZ23uF8HgKCDBNbGtMGudEWgU9KLHdlKrKsY0T5mZihJtTulP09oS42WO2esLCzD3KyiL2toE5L7CLKkZsUA3yd9u58ympVefzcz/Cd8xPcS//OMbyMamWUpQZsqwwDWwMeYTKZ7k7WSYdrUPSphQ9kuFj9I6WsIY9OoNdajfPIhYjdFmwtrDIpOGR1XzUzAmlgOPRFqJiY6uIWs1Al5AbGlK51IwaC+fWcQ2Xmc4Ms57LBzst6k6dM/Uz/Pzln8erVBGG9ic26y+EeHdPTVn+4fhU6xf+IrXPfIbo7esM/v7fp/c//W2Su3dJt+5x5cJllp1ZlCFoeQ1aRo3gdEKnM4fjNlhZsfD9FmlLsvHY47iGg6wZVJd9bLtBq7/L/nBIr+xiTh9ypvn7PFd7EeOpDn/T+EmeeHCd304+yPXBpzCTiCiv8b7kALNVY0+bx04kvqOTFib+UofszCxzs59iKdtEO/cUKjtlI77P+tRlJR1xeeVlfvzkgMpkiHEypD4+Jbu+wz84XOCDtUNOAsV8fxv/zimDexHrsmAxO2K2nHAvOsdBeYkN4F7u8VavSVkvMZs9/NNrSHuAXX+FJJ1CmmHKDWq1BWrBiEKLeMH9GAOnwhuZx3Y5x7iokKsaJiF5WVAve1DETEoBRcJP7P02HdGnoKRhLuCaNQypIynICg0j1Rkcn1A4DrIvkLaDMnO8UZ2eCgitmP5hl/L6iDLMGe73iAEa9T9yIa9/7idwnniC+NYtzDNnkdUqxeh7U5H8AX+6eK90wjV1RGlT4xHicBshINd2aZ/eYy45QitnqBDyLM/QUS6TomTkttHm6rQcySCvQjxhJ+/RzS/xTafF59d+FoccmbcRmUklDkn8ISdiBj8PKSUcVtf5q8Z/xcSuoTLFfFdQJBoWDarC4VOJyWNpSU5IvwTb0LCyC0yKgvnshBoKWTZBJuyEJnGaUNEDJlaF35m/hJr3qMbL6PUaumVQkxm1IuHs5AQtCJHdHioMaZ+9hhVXqEwa6MLmmn5IxW8yjNrs330DcXRKYacUWY0cG1U0KfIKdr7PDR5l4hrMFF8ndmosjAPeERUGmya7zPH1QJHmiqEy2D3+GL7Y48drJ3zsqMuGaqOmH+dCvk5DVamOMyggE4JCFQTWlKmAxLGQek4mQ8yrf4FHNzb4f1W/yn+9ssdzbY/z2jJqkiMrJtkgQljGuwuD/8XIrQC94/xH0VEzO/sZNs/+X2k0nuJDTYenagaepvF4rcrPVnf4YMPhdhDxV97Z5uVx8Md+f9PRMV0dISWN+QVMx6XSbhOOhhS5QTg5xnZLTHeG6cCjvfIUK49+jO23B7g1DyktvjR+DC2yUapk++I5YnIa/Smmtk3kjejlJkLzeXHtHN92fhKz80leWv8AqrUISUzaUrSMmMPEJh1YeFLjzd4SHROErhiX67ysr3CqHD4vP80X0vfh8RZni39CKA4xc8mfjzR+vn8DpfvM6SaWPuasHXOs79Is2zBZpEbMZzdf5JlKzrpRECuDih9SqWr0ZY/SGJAoHzX1GbdmINki6L9FsPAyLeZZ0GfpNa7RDB+nH+yCOMBd6mK65xlrC1zRd6iGXY5qGTFT6qXiguFiFDq1qsHIrzI22uSm/T2IlD9GomY6naJpGmmaEv1BK/L3A90fsT4+ZunmKeP8IdXRLid2TCZ3kY6NFmVk9Hi1kWO9r8Ot9UeJZj+N+o1/zMJ+zFef+DH++k/+Ep2wQIsqhCuzxAttSsfn2w9G3O6GvBEkjFzF6YzD/so8S+Vtjpohh52Yf3LmCkFgIOKAN1Zy3t6cYbBgcHPGZqm8QV8f49aeJ29qdO0OF7IdyvGUZS0gySZo+wkP+0181eDa7V3y8QpPdeH98repDR7Bd1NiK6em2Tw5eotxL2OU3gAiGgcPYDpHoeloqUHUH2K7LW7IGlNNYtoloW9yahVkRYlXTEkKAcLAD3OyscXltEZvbh4ttKnafcrcQUsyzNEsJ2Wf5/oRP7rzBldHkqBd4DcchrrOljVDV3okvk5+kFJKA6wGC/2YlYcn7D86w6tPGXysd435DKw8xI33aNRSRjk4Scnc4g5/Kf4m1iQgL0IspRAY6DKFsMpi8iZ2sItRRmzk38DQJshpm7pmoAuJjs7bJya/njiM9Q1c+zrOzEPe2oiQusGfvziDO0hR05KkZmBYGtFER4sUc5VFKmOD+M4RM2UNY65Kmeb0zTHmSgPrwmVavSM8HLbWLpAP3qG48xVm79wjNZsYx1BoA+Zal7GBeqnj6D4/ZGtc2oFgRqe/2CB3l+ns3MUC0oai0Aowhmh6l1L66MUMo16OF2bc1go+eZLzXL+ga2jUpyW7+QKHWoP6zG+wrl+nxZRF92XsWoSqBlRcjV5LcGv2OjveO6xF84jcwhNzoDWQckQ3GzNWU+LODE7eQDdqmP4chv6QzspLeEIjaKYQNymQ7HpL0JtQe3BMHBXcOVvwZH3Cx26MWSsUh6MRn3rpkJVkQF5I1tUh6AHFYMxGY0pFA0OWbE8NFsUx89khnijZyAuqsWTbdIh0wcgyGGkORfwZXE3hNBo4Ix1iQawyMinQNQuEJClTVKVBntiE900+eHeLH77xFrOHczTss0RKkK41aFh7rHCTWpQRRjmBpggKn0o4RNM0Tu0pCzOLnLGWkHlCamh4BQxu32YvSRnoJrkQGJpGOJ2i0uz7dpb9WeC90gmnKDDQWJgOMccxXvOjmM4jmGjkk5KiyMmFpA4orwamg+OPMaodcBt0dIcV1WBF0ziyPd6ZUzxo1fA0nZofsC4SRBQSj1OS+00sYXFPwO4SJJWE9xuvsyju0Zl/g/lwGyUFuSboOceY1gPMoofWO8YaO6RVhT4qkNMqaa4z0WDSrjPIZ3jRe5Jv6gv8cvVTxLUQ10gRokW16iMxKZNZTqLzPBiucrj9QYpAUKY2wZ334zwA5VQwTkyErNITSxQhtCKPB9Jk52iDbyxp/L2fbHJn9t3db6QhVilQQhFoObK2SEV6zC8sUTErCCFo6Bp/cbFDw6qzWFnkU2ufQhN/8jaUmqaRZRmTyYSyLEHX0dstkvsPqHzgObLDQ7wPfZD8eI9m5uLGOmLRoZxkUCjMQmNhYZE814mibcKwg9fM+cDaAi0B89YubvUQs3Ap+6ekhUITU3IleaDH/O6ZVU4qOmMVUTk9YC+0+V1/k7ean2QrWSFpvM1R8yG+O08RaYxUSl7r8IWPfIKhqoGyePORJq2sydAqsQcDapOMSi7ZlRN+o5OgmwOcjQ0MleILhx+qHPC5/Lc5401oiYBFhnibFp3lnImsYIuCpaFPGHlUG1tMRxoHqclEGbQu3UDT51Flgl310awEUYIxrjAr2rSWrpCbCkaPkQufHbnEA30Tkj6LwTcxrIJCJFjZmMzQyWSG5o1wZUCpFZQUVI055pqXMU0bXeXU+hU2tlySOCSpVDC0iEp1Bk1JolFGEKc4qy6f/OwPo2kaUtc43jskjmLKf2UxphACpESfmSF68y2MpUX0Vot80P8Tj6sf8KeP90onVKZolBtUoqfpqiFhmiFlyZ3GkJnhmGYqSOKE2QcPkAVkccb/OHeW5Z7AkzGTaUGut7lSfIAXy89yqD/NPeccjazPNPH4TvooVvIWX6/BqLJKohI0So5kg3fiGrecA9ykQA4i0szDKi3cNGWllHxqGCGEzzQrmXUlarKEQrAuCs6aExqyQ1ubYFASCYsQm8iocWR6yKfeR1gNUTWBadUxTXhUTFg82kFMfLL8DtHTGXPigIWehnkgEPoM8+FtnNBg6R8OcLZ2kcOU0s6x/CXKokletMipcGA8zXZa59Dc4KD6GKO1gMnE5WFqs9cAY8FhpXFElCgWhcH44DHqp2vMlQkdrc25cgnlmlyIZimlQ6v0KNMSP8hJKQitgNyQtJsx7caE5kyVjc3zUBq4yQkfy1/ivCnZaK9AUmLMOOTd6F0np/8VlQ8sYsy637eY+vdBCIGUBvX640hpUatewXPP/sHvNDrSx03v8ub03QTNbT9CAQoIioKs/Hd32KxcarG42QCgvbyCU6niVGpAgtRcJqf7rF+ReHWT4XHE/LmnGB7D9a/uYTo2zarDYSKx74d4cYYoMqzIZ+HwFJlolBpUtJyWvs1EBoztFsdmmwe2STZXxZAJPWNIxy5Rnkc5hZI2r3Y30cMmMq8T5TMcywov2pscpi530janqofKX+dimtKvWAyqx1STLaxcp+FbeELnitCZFRq1vM44m9BIXZraMU+VIW2VURhNqqqGZRuERsBEDomEojAM+s057gkgzKh3t3GTCr14hvveRZQw6fpvM/VzJlRJRhlZawbXCgmzkKQ2Ik3H1AxJRzlouk2W2+R+we/XnmHfXP6exMt3najZ2Njgp37qp/ilX/olLly48D35MP8mRDam2Z5g1ivYcxF22sPIBySyRxJO8Y977Nsu/6xW4XfKkC+ur3Kv/hijlSYiqXC/PYtZNImq88zEdaZBjbIswJjy2+csfnPR4FdnM1zpczBT8CuLzzIYDflKY41Xjx7hLjMc1FqcaGt8OXuS4MIR98+tUWfExvgNNsuQVSEQFYFeeRQzu03SX2O9vMPZQRUhLtIdZiSlybLR4sQ/RyXUqCYxTn+FiTHCtxus7pc0J/docYJR3OLXtHvs6jaBHuMmAquQTGuPU138JLfa7+PANemZGYcFVIuYXJr0E0GQljRsDUdTDOY+yTev/mVuLr6fvm+S2RJTr1JdeoSw3mJ7pYaelPxmcY210Vf5z1/8POVShdBQdNHoYdIO4czXTjm7/TxPvfkGiSEZrrQJ5l2OOnPEc48w74RUVU5Ld3DmUsqqyexCD+Vt8bPH/wRzfEyRJejxhLLUcMtTOvIBi8596tYIuzghkzqvWQbCt4kLB00YWIbJ0wL80iDLmyihGErJVmuOuLRx9o5JM/CFTigEia1x8eyzWPkZzqCxaS6w4p/DrbeRyy7kcO3x9+M+OYd98Vm8rQccmcfcmTU49LcIljo4uWDamUPtdpGHczQvfQpjcR6VjejYhyxX7zObSprKJLNziqKCluc4OUxnKtTN2zwyuIWKt7jhvE3g1/GDBjN+SVYqnt2JeHQ/4qQARzOohxm3vY8xbdxhqXRo9zcpV/o0V97G2fLwTIu9WUlQiUiqY1xNYmFixA5R4IAYU9NaFAh6notQM9h2nYH24+jPP4vKMmRmgj4iD5YxdEnf8njtIx8hkjUGpcHz5hSrFqB6MatpTi938PpTVrOAgSOJspxadZFRcMJGdUijdcpi9QY2BXrp4ez3yIVOt5lzcbLNg8QjlgqjgF+74PCVeY+/c+5z/M61H+V35x9FT32Ee53CqRDrU/SyQKSnNIsekcxImwusbO+y8vAhxu0u1olGgctYJlSqL6DpMXrsQ1jiJhHGZMryWGPBXeDEfsjtud9gYayju1W0ZpN7qkGoNMaOzf2TE8xPfhK7LPGjmNKfft/Osj8LvFc6ASmGsnEzGK5coqPXsS2TxriLUZogJSWCZDzCFxLfriONJfRWEyFrnE5mCSshhg1hVWPbiilqj+CUNdpRxkYWoIUhtapLMdpkPmlQrptYao+wrCG1DrKRoWdDzr9zFy8xKBMday7ErIR4jotXEZgTQRYNEbqOvjPDAMGxyDiaa0DgMZd2+Qwv8WG+gWGWmNoQSYuqu4NWCpT/GCfDWQo0HowXsYopctzGfrDPB9/4LbaWJGLHp4wkk90KWWuBcqRo2KdMRyYvlAucnH+Sk2YHs1JnaDn0bJdUpPQYkRlNrMKiYTaoWbU/rFRKIZhxZmjZLYDvyaiCaZr0+31+/dd/nQcPHgCgNZsk9+9hrKxQ/9xPUP+xH0MlAeH1LvUPrdBcnSHrR+gdh3OrZ1lYWGQ0UgxHrzPyl9CzjE7yEq7KqOgHWI7Cim1Sew5lGJhGRK/Qean1fpplyV4saIpv4lMwNm2OiwNuizbbscWp3KciAubteeJE8XT2IhW7xvaSxtezz2FkNTatx1kr26imy6OjFoWlM9Um9JIRXcdmNGdxc6PLcC6kO01oqWPmokMuRrtsy0VuaSs8cXCfYVyyldWwyFmb9JgKh0zrUes2OVN3EdJAOIdYlQwlQw4PH6PQXbSypFSCVuahWqvgNJE9QTH1+Ja8yu8Xj3JAh9+v/Czj4SLL8YBCaUx1k8XaANu8w8DbJBUFW2tnia0auZznWG9hZCHNkz6prKPX6szZp9hen3FlBc0wMZwUV5Ncf+MOtbkWjU+uYyx49NWULMsoy/KP2HALITDmZkn39tDbbbR2m/zkhHw4/BOPrR/wp4v3Sid8VZIpjyStIYWkLjcoMpeloMblNy0SP2VUeviWhpm5lELjHVGgxqckhxlpCodqjU/mA3YXV7ird/nA4GW0bMhObJImbe6JCrfsKsqdxSSgrimGyiSOBYuFQfsowrR0HH0OV2YsRBFpaRLnOpddD0NA2yyIMpOq8W5R7kl1il2YzOg+C1qIKQWhsBgJh6TRYnpmRFaZIrwUQzbYW/8Il7NdnDJF5oqJcph+ICFZfBN72EMmAUIts3LzZ3CnDkttn4tnTqk3H0VmEm3ahmKNA+8znFjLfDP/HKqI2QpWeCH8MYrKEd9qRxwEAXpU8snODc5V7zNOC9wM7AKu0mI+ncfKPObCGU4rJivxLIO4xMl1cksSpAWJVjLWRxSGZL7Y4tpHLJqtOvV6nSIzUXGIUDFlIjBmHKSro3cc8l6EsP5ookYIgbT1P1xy/x8L/+oSfiE0yjIj6H2J+0HIkzWXkzR/dzRUKf761iE3pv9uH+hqy8ZrWAhg+eJlVi4/hum6SC2nLArWH7+KW4uxXINpP6LWdpj0Y/oHAZZr8v7PfJaGLcCS1MqCtutgDvssnQxITs6ga3PMWyGd7BQSi8irMrZPKWRGUN1Gt7tkmSKUBmWjim1VGWsubT3jkeIGhhT4qcHAbfKwtkBYSAIkv5MvsZU8zlOZ4HqWcuy/irQW+WyiMRdPmO0/hqsiZpSiYadMvQlRqnNrOuWVYky1eh9dr+A5VVKVkFoBpu6TGxql57G7sM6t+iKa8KiOY4pUcphWmTcEtZOU87dPmJzO8pK6wBjFSBP0K016hUktC/CDAXXTxwkFqdQRaAxsQef03YXY3wu+62g2DIOlpSWWl5fpdDrft5nS2BVgXGBFd3hUDqgUx8yPt5laAZVgzMBxeHn1k1wd2fzXhwU/l3wLrB6nnTWSSUmew+Y05vr5i6QVm5F/hlNZ5xsz8zyQBa+u6vQcg3a2j1sOaecJNxfPclprs7OwzgVrwJeeWOaXW3+Zp9XL/GL0D/hY/GWeS7/M0wcTfro7YS6cJfFSCjvBzAcsBo+yEd/gv+j2WNabnNFi5rOSuTznrJkhgxmK048T5Qb9rkN3epms16IvEs7VYobVR7glW6jqWdK8ZCNcR6qSnqVxzxgQCklRCOLkEmN9Dk3qlLpGyyrQNZ1ZbYrQSr65cZYXKgZl5pG5c9zQQRgPCNY+yv/w+AZfd5uUSuDNHHDe/wrtpIdDRGIVGFrKqBQ4QlDdG/OZGwf81Od/FT/P+fVrGse1EN9qE64WrFVvI6IUI5XU3QynapKeGCwfz+KkBlFhoguNTHgUhYlrRTw78yXa2ZtMay3CmqBrtziSI1Itoh4YGAhKJIsVi1/wDGqpJLRtjoRLJqoMqtew45JMVxRKkOQl47aNayyi4iUKpbAqFVKV87De5+3X3iIYTlm+vInzaIfqRzdp/Ff/e9pXf4LIG/E3n/5R3r5wBqO9Rux1yMddvN0fxbx1HnSLQh1TzTIcM2CueYXzOyv8pfibNIxdjhdX2WvtU7YP8bObHKU38ESbnnlEWUg8T9FQrzOf5Vi5wiMgrAgGCxZPBE0avSo+IR8ZaVyR5wiMEUbUpr7/Gdyk4MzwCu+b/hBLcokbM/dp+DlX+hdw++vkKFplG6kkhRdhZBmyyHGqBXt8hDB1ybWUlqOTp00gp2oLhnWLvJ0jNUXhNOhVZxlkVR7qZ2lPXEh1zmYlh4FP4c8grHlq3pBNpTPj9fj44j/kxx57jbtaHUtKBsLkRVfnKLCIIwVlijbJuGEK/u6awYLu83Pb3+L5xQrKOWYu+0fEms6xmlKaBnoZcqYqkbpBd3EFczKhdG1uzXgYdYdaIdBzQW7WSHKJdbiPlhRoWkGpYGNa5dl+g8qxz06ssFMbZ3GdWDeYek2Om4sMTZPhaISvaXiaRtpsUn4fq3l/FnivdELLC+QkI8s9BrMbtPr3yPQRXhhhlSZlqTA0SZrlqDCiFkypZqf4ZLgKWqWOkShEGeNrx+RRwmw3QaZNVFlB2z9B+CVzlkWpLZCGcyS1lE/Er2PJkNLYwav6aHZGpWJTi0asZn2WFydo5SKWkdB0jnG1DD3IKZoa5oMuzTKhY0n2NZO3PMknvW9TSXPOJmOq6hCZ9xBFBW2xZJBX2br5MY66HZYrp/haSCfbpf7PTaoiR7+2wc55A3QbGnUSt4ax+TQVXRCFfcaVIYlRxRIXGNh1HokdokqDgaZI9ZTjvIth1PnozEdxEgfP8JD/yiPCp9Y/xWMzj31PvlMhBJZl8cYbb/Doo49y8+ZN+v0+WqNBur2D3m7T+HN/DuvSJbSapP7xRYzFCtLWyY4CjDkPS5oszi+wtPhZjo9sbGOBxxZ/itB/lYvLL+O6hyhNkNdc+kttNAmROiFAki+d44nxmzwd71NXdUoBrmOwRsal8UN60ZAwvEwlepT/P3v/HTtrdt53gp9z3hwqV/1yuL+bb3ff2/d2ZjejSIo0JdOyAqXxeO2xtbtjGLbHmJ1Z7ALexS6wGGCxGGB3sR5gxh5rx7bGsiSPZMkSKYpJZJPsZudwc/zlVDm8+T1n/7g0RSVYGg4VuP0B6p+qwgHqPadOeM73+T5xZCGChF++c57mbMJPHmp+bPY17FLQnGqqyub0Rp2PDH6IuLnIUTFAzIb8td/+t3jDXa56D3hg3gFVIJKAV41P4tg5cZ6SeZKe32RJD9gzapg6xplO+FbtI/RFB189yiN5k1QVGFaBXn+N22bE0ZGBXlxEeX2SZkazqrE8m7S5wZKc8tTgLCe7Ozwa7fHL4X/Evx68wKuTH0XLOrkwGWuT54ovsx5/A5PTFDrnteYCD5bn+JcnXd5dWcKsVXnm+DqRaZNaHlU1h+kecc+uQdXHsEfUnJK5O48z3O0DoKTmOB0gDYlSJW+99RZJknyn3835ecxWE1mpYLaaTF/8Ov2f+7n3TN5/wPmzWidq5RBfx5iZzWLZYuHoDLPIJpyaFAUUaUYuLDIRU4lKRrrgsBhyoG8y7HepVKq8kZxDjo8p3IjYGGLt3yY2XITn0vQ8ut0zfMswWZ++QTXdpTe9TpmMoFTovP8wFco2kaogFyMuRhnXfY8jFXJR93EltOSIWEk8s87nux/hZJxgZ4K5YMJl8wAnmRGVVVLDwPYCZl5GPb3EcpbglG2aKyDUQwsB/UyVg0uXKIoNxEEDq/sAQUleuphjSTV6g3LB5XDtfYS6R1bOs7Vo0JePcThe5V7zPpNCU7clvagFKiLRM3I15tkwphimJN4eNcfDEAKnBM8QhKlFI25hADIVlDWb6w2D7UIhCo12JKmAqczZVduUJtRUTHt5/TvBO5UIVFFFmKAzgdn2MKo2Rs2hHKTIP0RR8xcfA6USSO9znMyYK24xKXIG47fZmvb4zaMu/Sz5Dzfz7xGCxtIKi2fOYbsejgdlPmDtsUtMeseY9sM13qtYTPsJfsXCC21q1ZDFaki8tohngF9kPD7tcWVnE6P8EJkOqYsdlnWTVe+Ivu2yyxxLs4i+cjBtE0+scXB8RFYkyFqTNMv5KfFFnkxeZsmNOBI+keOwqX0SbeG7ktdsQf1olyUKDv3bNNUOm+JZnh1/nUp+C3dQULoFBlVCU3LHvse/dV8hdnNer71L4N1hJbpDEHSIRcLIuM+Hy5LQcdGBzxu1FV5vn0Irj8osZVaaHOchVQUFNnhNts0P0FPnGQYuMjFYIOEkGc8lI7QrsDOgzFG2gbQNLEuy2fomyo6+LyPiz33YMQei0mfeiXlk8BYf6Hd5/MZv0655zO9t8tLjK7w1f4LlnZjOB+ZYqh8xMWf0Rg0OM02SlZxNE26feZxfem6JB7TZW4Vbi1V8TzAuIp7dv8mpvMuPbe9y4eY3ee3co6Shy6ZT4UPxF/nrWw+4oO5RV5skwiabODxpxbSCUyxk+9QnIT+cfZlL8nWWtUU9q5GlS1QmS8wPhzwePeB0GeMCpZhneigZ3XucodRMo5zNzGMzK9jpXyQXLfp8mLFYoF8JuakTNibzjJwhrnXMtupjkkGeEkUBWnschB5pYPM+8z55s42cQGg3SEtJNjHInCaff/JZ/h+rK7zpTrhb1WxMNSMDRoVAWDu8U4YIMUFHYyaeTVscY5QFZlFgzlJO34nRK0scnT9PszA5qs9Iscn1u3gqJTAdSEwG5gqldkh3KzR2+8jRlHWvS9WyUFFMam1Q8TL8YhNJhrb3GFXe5kvB05RzBqt1H1tLbEuQFSXdxzNeMI8xypK3Wxd4wzlPMk3YWXyWleYc/+WlZf5zv8bqRDHffGjUZhU22SSjWA1BCUbjMQtbLsagRFgSIQX2UoXg0gWe+am/wf/5Ex9C+3V2L0Ltr3yGoH4CNezi2g3G98Ycb2YU+ghv1CRUy5yttFmvGCwk1xm7X6QIt9landGqHjMQPYZiD0N7HFpDlJ/RcW6x4X2Wy9kArcE0FI6Ad0PBnbqHrRSyrOJOewRqDzdboWfWsAKXUM04271IOGizOFrj88bXWeo2WN/eoN59jFI71MdLWBik5pC8HBMX7yCNa2TNTbRUOI1DDHOGm4S4FFjpiFotobhwwDtLF2lPz5F6LSxDMXrXYKMXgOUyf+gxzI8QSBZdm7X2fZ6RBn+5eg/XFCzot8Ap8CoOsTQ5UB6JqrBoGKSJZDxIaCSK53KDjz+o4nQvcrGf8e+qF7lXvcyl2iGJZ2JVLSxZspApZGmxPddhxyzYWVpkUOToe69z+c67fPRLX8R9e8I7waPkWYqU5cMy4LZFMM44eX+R5sTAijpobWPQwdSSplfQi1zqXo3SKIlGM1pGB/2xj2Gvrf1ZT3Hv8b8AOksI8ohZ5TRKlwzUHUYUyNTAUQ5VYWEbJjkCz6yg4jEpU1Y3HxAcPGCxFBixCWXM6mCVM90UPx3hUvJg/dOkhYUhA7JBgJVpwrzP6e0dLqhbUE3J5R62P0XaOVZFEOuCvqri63cYdc9QSg0ywqlsYEY2aSBRkYfIIixb8bbzFNotaBh3sCOLd44/Se/gMaSGMvMo5TE38xrW8W0uTnus2U2a+hbm7g7uvS3mpzfonngO6V2AWp2yJshMjyJPsGWOFdqoKtTKKt72lKIywawNqAcVivEDUj8lN6BRa3KxcpFiv+BHVn/k9zzjlcoKDbfxfetD27YBuHTpEk8++SRvvvkm8tv+FUa9jpASYZoYDR+zoxEIpGeS706wFnx0qQj8gCtXPsxg8DEatRUquc9gcJNWM2d17aOYpsdxe8bQ2ANRkpcjpCpZuv0K+dtjvKOUStmgFdi0dcIjY5vl9BomKV+L/jq3emcwg2NE9eucsfaYmCNOGAmGfw2jMaKSmSiZY/uP4BYV3jl7gSSGn3ox57IqeHTfwjNCTKugGRiMZcLXZI0bqomR5VzJ3mJJHSDDKUfCxRQ5VhFxJTviqLhMVDp0H3QYTm0MIyTRX+XNQuHVDKzWBLX0FrEzJpwNoUwZNDqsyphFlfP08TU+eudVJlJTepphuMQBj5FbAYWwCNNjKsk+RCu4tkvLgN+c0+yGMWbFZhiEzFwLfzaBWUqgFinTiIVGm8gP0cYQz5+iEsmXX/0tijxDSEEBBH5API159913mU6nZFlGlmUYzSbO+QtI18VoNoleeYVsa/s9k/f3+L4QSoGvgUiyNv44K5MF5uw2NRViL8zjGwIpTKToU5EusYqpmIIHKxMOOtcZVPeJPEEUO2gjol8O2M9zpkaFwLEY50uooor2K9x0ZjS8RQKhcUdv4Xk5m3Ydag7NGNKkT2yMmASnuKWn3LdX2cgeEEjBnLpFy1S0ijYPhnOMrx+itWR++Db/iZ8QihqTXpM5C0KhEXh0Nius7B8xf1Cn1fosi8sVsD3S9Zii0ee4copBsYTtpWhLkO/dp7/7ZUbZiNeyx3g5/SROf4utYJ7NgcPw4HEUgtjZxfWmdDyDSX0exyw5zFaoonifnJFOS4pySNXy8W0DR4GpNQ7gmjaGEJiOgVd1eVVJehqEIVgOLKoVyWeNGVMzITHAlM/iV9c5e/YsADorUc0L4M+hco3V8XBO1TFCC2EKhP3n/gj7J0YIAyEMXB3hEFONv8Uw6fKVG/8fPnfnl1lzbaJvmwP/8dsU36kIFTZDbDeivX6CeDzC8Q2CuosbWkwGCScutanN+bRCm6crdSxh0zraZba3jR1N0L5HoWEUlZyNb3Cyt0rTHjOTBokOaCtNQR3T9HDLgCJxsI+OiRA8uv0tTlnXQNsEsmBbNWlXZlhGSWH5OKHPUVhjKy4psoy2Dcuuop9fgGyKKKeYRZVwegWvnMdXNeaKFgpBaQsse8ZMHxPKBmm1w1SMyExF4NQxpMMssMh0hjAtJkaNzkChTIONfJ5mlpOHDQ7OPItyFY20RV3UODmt0Zgp2k7GVjhi6M2Q2mTiR8wsQVIq5ioWU7eH735/Uu7+3I9yKy5wyyp1f0yQ5MTmGlfOD7nYnme9v8euU/L8OxFyqHA7JqGX012tETs2eXMFbXhULTgz6zJxBUkl5WozZy8oWREZP9ON+FT+dZ5y7nCy+E2uL7zJ/bVFKsEQm5g22yyU+1zKf5vDdAvtHnLB7VNXLrQOqYiUSl5wOd7lo8WLBIMF9HCJ9I2zdAqTU55i9dar/PX7dzDKkoG5ykFjTLWWY7oJKhszlAZ7IiY2Qo6dK6zMmpw3LY50yrvlERM14Rv2FgO3oOO6PO73cQ3FgjdAMuHZSZVTic+33KcYBjWmsmQ5dsgzxaIyeMmzMbq3mRsd87p/ip4sOZNopCso6kcs+QNmOme77ROqgrLhoJObuHmK1Bojz7G2B2wvLfJzT38EdWmdd+2Ckw7EymA+nfLJ6HWK2jy33fM4wyGdQLM1dLiaP8axOsdqL8bLIiaJT5M7D6OR0uXx9EvMV49I/TY/El1hVdb4N6HiaM6iK+GfpMfcbt1h5Ep+zfsgny1WmC9KGBWEXsjSXJ0lBPOezXrVw0jBNE10WnL7zl1kDtksQXVTGBUI89tDXoDjmdTnAp5efJyl6jw9s8fR8x1C6SKyjJltclfvI2YuhVdQf2kR+1sZKr2Pn1WwyanKlOn4JTKhMNkjLSMaRoBr+CwlAWrlDlN/RDCf8zOjz5NojcocCgXXQsF+aPH1yqPcnlxhkPS5r/dp7nyUR/QbOCiSYoGZdGkGB5zVIV7UZOF4gyDpU+YBqBbV3jqeXVKaiq21MYf2A7qzA64HBwwQVJo3KQxIphJbpTi6JChDJms+0fw80+kZ/knxo8R+lbyb4MxmCN8mecPC2H6A6R1zVh7QrDygWmpW73+U6tZF5pMt/tPaP2FlaRNb95j6JkrNWD4+ojqDdJiR91NeH8wwBhYducCjieRznVP8V6d+ktPhMW5TsRC/jYmDG5uEAdQOv8Vi9QQiyinLgqPpjEv7m7gIimCF5rW38FWJNBRC5rihR5TM6E7OsFSs8EhZodsYstit0S/3UO4+jxQdKqZgzzyg24s5FTnQ36RM0z/bCe49/hfBFnBi1MWqh4zqiv35kMrMRhkaqywxRhm27FAqA0dXIE1xJyOCQY8wnWCOU4QXYuSCpUEVhUdpTrHG79JIrnFw7lPYcydJBvOE/R4Xdv9HPvTOb9MLhjTnp2hRwbCmIFPkvMHQhP+mmKBHHgtvvEYeReSmRWFNUDJEiAFvnNbkOqIk4Fs8yZJroopjdGFT606R6SLCEBSRT56NGMRV1u5/i8t3btE8WOCE1aPQHqUTIrrHxDgI1WKyOkffmuBYFsOgICalNASrk7O04ivMKi7Sucpn01/kRJnRnHXZC/ZoeR5/ZXWJyWRCkRScbp/+U7vpBjhx4gQ//MM/jGVZLCwsEEURmWliNhsY9drDLwmB2WpRHB+D4KGi5mAMTEFpdKFwHIePf/yHmZub5/r1Oxwdeqyt/k3OnvyHhLbFimVR08cIKVgJT+AIjfngATtNwejBIeZwihFYVKbH6BgCNaTjxxxEgm8oh6P2F6lVfpv/nfw55tQUZR9yYM6I546QwV1m7dvcy58gqYS8ebKON/OpZJrXPnCeOWuZvNB0qgucqEX4ySEy2ueeqFERKRfdA356/Gu82nyWkfS5Xy7RVn0+tvllvtR/DjeWpFGKn8+TFR5jV9PTEcIrkVJwoK/x+t5bJGjKSY/ZJEPaDWxRctGOqQ0HuEkX0xyysvN5ZJIz9E6Tui65VeWa/wIidjFMySOzYz79yld4/+tvEeQpyrQYAJU8Jc4VN0yYdksWMo+paxPZR4Srt9DV17ihN3n1tTcZz2YUzZADY8D2zSG9Xo84jrl+/TrXrl3DWlhg7j/7Bw/9ahoN1HSKimN0WX5nXPz7dKn3VDY/+BRFweuvv86NGzfY3Nzky1/+Mt1ul1u3bvHGG29QluX3NA5EWaEaOdi25NpgHdexuTi1abPMqGnTMiWmlASVDGeW46F4RFTZyh5gFnc4SD7P9tyQaamACaXQHFmKvnaZJCVJAXnukuRVfk6MiXTGgrlGkArqToTSIe+bm9FulqjSwvZKvjR+gZGhuV2bZ9XoMceE9+t7NPSY09EijmNz6LaZYWNrTZicwjWrdG+CLyXPDxVaKYLiOqWZI/NN6oMa9Y5BuvYco1YTzGOy0sEqIqxQUSrIhY1YdRC1EdMVm4oFO8bjvG7OkecGMiwprZiwfo+gekRgKXInAAOOZqepSpOkqCAJoNDMpRaBJfG1wMwUhtIIpdGZpgDMwCSf5QhDMEtLHEtRdSLuCwPP8bgy06wfnEIVv2vIqtMSFp8k956EXGO2fYKnF5D+t0tw/wVLcfrjYpoVmsEaoR7ixO8wUzb/r+JvcK1c5ol6nWn+J1DUfBdCSoJagJQxQa0BQmCYimrHpcwmZFHO+fctsnqhQc2z+NByi+WzL/CzVY9sdwshDa5bBaPDB3h7D3jm+CaLtzPMzMAUBXUxoy1nKBlQSp+41PSdBZRQFIbEj4a4scW9PYf+5jGDqcGyt8cFf0yGRWbDKL7EoarjKIeP2O/gjlICNUfmvgCqQMozNO98DKMIsNOA/3TyE1zMLjJLTTqEpGYdv9VhYG0T0yc3FZPFCYm2+dwHa/i+xqq6HNfmkVGOa6VUj6CSCQrbYjO8xKYFwazAL0wMx2a8dcjOMbzjlRyuZmRGQdca0isiZmj8QuG555jl35/x+Od+lBeihqVs8sZVpsXf5VHzDJXGjPr8OtPqPh+4fRsYYPsZ8esPyMqIezWfr50/QdpaxdYWN8SbPHe35AP9HdSjO4ysEkulCJ3wmbs5c837GOYuffuYGX3GQUnHPGJZ9qlZGaK4TlQM8HQbIUrqziHh+AJFGWE0vkHWTWHcxEy7dAYe5CZev4KtcpY8uNQ6R5h6KFNyn4Tj6pihtcs9eZdhf59lv86cmzErq7w2ewFTKpac1wn0FqZh0BMRRZGRZzkLRYvQAdet4hcjLogZO/Mt4lrMFFidWvRVzt16yX2hsGczrGmfT33tczx+uM/b9QWqpUclUZRGwVz9ZdrWAWbT5teXMwJRor0+3uw2fpGg0WSupDff5p9+9EexTIMoW8L2nuVJL6YU80TjGefGb1HOvcBn+ByfuvqrnHV2OS4X2J4ucpQ8QxjVWFCCqVjAz+9TmFVe9v82P9/+Ma7bH2J5dJnTsyWWqj5RYFDULLLAYEuu8C8mj/LrNYNXDwuebti8v7nCqVEL0zQxAgsbcKs2ZmBBXCJKReIUqHGCgUTNCtIkAcnvBmq+C2kIFpsNynSO/8vb/5R9sYv0Qg4sk92lAkf4KEeg7o0RRzn55Ba1/QnSlQQiJqsbCGEyEBNSClbHPv44ZvGtBG/rLvuDQ+7GH+WBZXA/S9ETyXysuR1IprbkmuOya5zEli3G/BRlZrLa/RJjGTBQS/jVQxZPfBFPbPHs4aeQzmkM10EkmknvSWzLRUiFNBVH1S0O7C5X53a4tXCLd4wC37vPYVLjAJPElLheC9dWGL7ANhxKBMcTg03dZrkEK4lIywLRHbOyNeZYbXFJ7qCVQalC5E6G/U/vUBmEzJXXaKu3aRiHtOI3UOa7HMdvIfsZxiwj6yb4e4f804smw0qNLNKYZo1z02V+vfZ/4JvrH2fgg2y8jyP3SVrGTYbdITXTIBk8oNlao28IWtub7J6+yNh2SBwTKTSmpfCqJV6rToJFrgLsqM1SMOYwF0zcmDnmULLLUxZYucG0mKCmMXUrwzt+k8n4P5zr+x5/EVAckCF3v4YnMqaNGo24hyGnmJMuZWuFcmZjCEkVl9BooYc9PHPMQnsfGU2YF33W2/tUY41hZHjVQ9zaDSh6xH6dLFghFjZekRKcHuBcPkAvSpbN+3hbEUZ2gC1NdMfgRKF5JNWsbpYsbG9iDQuKtOSad8he1eEAyfTcEt6H5znKOkxEnYnyKdOzbBkNlgYVhvk6hbBIxh6ljilmIW6a4OsuzbTP4+oqtpWQe3WyIuWgGJOZBg8aDu/EY9Jqhb6ZstfMGClNMZiy3u+xOp7S7d/hKD+ktMbMzdUQuaBpV1mr1RmPxw/nVuNPV1Zeq9W+kwZhmibtdpvj0Qhr/QTSe1gGXAiBtbRIvreH1hphgop6RK9+HWkbqKQkfvMtOnlOpVJhd3cPrT9Jvf4spuHi2gaPmjf5pPUKniyQ7hq5yPDR3HNn3FuP6C9I9kTGyuQlcmvIrUETyzxgNE1AwSRbYM9q8AXnR/GN+2RBTBbPsyM2KSq7pMaMpWkTUXFQ4UnMVDKt2JyNYtqsU0yOWbBzVOtlVKrRpU1Wb2A2ff7xyo+xHbXg6hG5dPns0SrzXkGZJcQjn73A5ZuX3o+b1ekNPfqc4lzQQEtQhsFrpsM3T7zDYTBAGSn56B44Fpkw8MwKe81VqtOIeUsTdPtcLzyM6JBWMSaRNb6ZX8HUh4TlgPXZTdq9Q0KzSm00oJnETCybWGtcE8zpiOE0YTLYI3Ylpecj/ASze4fG0RJf//pNVCMm8VPuzXbZvH6ElJIoijg6OuLg4OBhgObbfS7DEPfCBYxKBb4rUIPWjD/3OdTkPT+xH3S01rRaLb74xS9y9epVHjx4wHg85mtf+xp3795le3ubnZ0dPvvZz9Lv9//E7QsBNSk4Q5NRbjG2EtyjESgXXbo0R9tILcAB0R/RKTNOqoA5WWPe6nDeXmDXHXBtKSI23qHhNpm2JEr7xGnJNNGIsoKK53g6yzmc3SePXYJsjbobY+QOj6ZDenEHiUnbj7g7aNEQHbIyoMOQNjHLlqBhzXhxusDlxTG7mUlKSXCjQE4SLEPQ9ZsUCp45niILRekUFLYDooc18ChqI4r6o5TmmFqtS1o6SFUgLJPiOKZ0cnzTwpMG4XgR1+7x5fyvkvUvIaJFUA6JlaO1plJ9qC5tbc+4a80zTs5QG3RIIhuDCpQec5lNIEpqpsYvBdoSqFyR5yX7ScyLO33ULCdFMQGkLKjIQ3yvzU/VP8nFQlIf5GilyTbHpLeHqEyhW+eZTZ9EAxgCIQXCMTBqDsL407tI+NNCCIFjz9GsnueUnWDplA/aN3i8WuO+OMcp32OSPzQZzpX6YxkLfzdBo440Chw/QEqD+pzN+qN13vjczyPlCMe3kIZECEGl6XDndRNLzuE4LkG1TlyWjLtHlDONMVUU/QRnsExVz+joXdrWAbk2OQiW2Vo8gVWx6btjYm9Kb11wPHLYL9sIxyEuFM+09nmqOmSUC850SoKWYCoXmSmDx6ZvUmQh1anPOPkbYJYIvYYxCyl5qMBv5CNeOL6EN2xwovsE/ahKWToU0xa5MnANm1/PBA9SQbee0apNkb7JPadJEvqYzpDYFfixwCXDTsE6uItxfEygMrSRMg0WuakX6GoPs3TIREohYnS+BWaBnSgS8wTC+v5UG/tzH6hJqaKykqn3LY4rPaRhImSNcejyS1eGtOSQC2aFRnPM7MEuozRhOXuJQW3G4dpjuL7ByNrjtF2y0bnGAYoBJVJsMckeoGRMXLE4MlNeNuFiv4GjjjkjBvwl9e+Yn/Upg2PiUuONHseZrmIyxkgDjm4uUtx5hluHLka8gJto3NKlNFIWKycovCmG7rBuPMJI1zDkl2joHc68cpNda58945hCKT5IhQ+kKXahEUWCb+RcKU8xn+0yMSp0y5gFcw7Tc7nFhJ7dZK1ocOQaRKsXeCcsKHoDglnEaeWSh1XenlvCljAZRnz86jusTGKq+1uYls37pmPiPKeHYs7ZxraHGJ5kZI4Igz715DrtQY8LvQeYpmQSKu5+6BSfTF/nv9z8JR4Y51m31zg3PcIoBflcwCqbfLDcRh0K/KzETQ7pllUGSYVpscyOe4bm8JCpalEIwY3gKd557Cf5162P8mC0SC1ucrdmQtWm1nBZkQaHdUFna0jRdvjmssV6N+f/Ot/kkbBDFR/LMJGBhZuVeKH1cKMeFUR5zJ7ssuA30K6BmCkmOiL3gT9iYg8di3r5HNPxGpN6Tum5bHXgJWnym7mBwMaoLOKuXEGvnaQRW3izLu9/dcSPv1NnyayQCY+qU+N9mzPq23eRnuBQKEyZcziAa85Z9i2LRGkee5DxiQFMhGZgCSLRoGU8yuXDDtVZlbiUjLXNulpm6cov0ZyeguqYsN8mFRbacWA8YTpoo4OYYS6JhOLQOCL1JY5rckrU2YqOMaKcKLPZGsaYucYYL5DUIlSpcbMGoWPQSLtMajH1bMag7tJfMwjqGY/GFqsyoBHvUIkSkpnLNLrNuO1RzgSvRC73J3s8Nzdh2v8sgdUlDaYMj6YsOhEyV1hpyXVPMNUZPVfyn19LeWY/59Cr0sPjfzz7k/zy0+/j/3Zug37TYbuxwtULOZVQMV08g3ZcMqW4t3KSmasYteaRtoV0UgJ/gghyyrABhkXFD7GcjKMo4YtrX8e3OghTMWlFWIaFH7g4ZQnKwajUsGr1P9X57D2+PxhZwbbjsZtb2OkYbzZhZe9V1i4c4ckxvhlgKx+pNaeW32X19AN0EiMbNsdGgG+NWJ+8Ra16i2A8wVQH1ItbVNsTorIgIieNBXk1wkm7lG3N8IRD4knc4jrunQRmQ7ysQNVy/FLxv+mXVAuTyQzkSLJjrZGfMnjHC4gLg/dNbhLs2mQi5GfEv2Bpcpfh9qPsizV0YnOvXCCZNckij1I5rJo+WcPAmO9wxm7DvQXCRJOG88SezdAsKYuSJEs5FiOObJexzNi1+5iui7JNrHjGqdgjzB026htcfv4yFy5ewMgMqlYVz/EYj8c4jvOnqqb5/QghaLVajLOMuf/sHyDc371ltdfXSW/eQkURg1/8eXSyT755D+GaqLggfvstsrv3cByH2WxGmmqUeigpd10PW+/iFwGmKAh7LlKbuFLjVXzi+Rbvnl5mZBcsVCpMKsvcjzrErs3+dMJYrPPZez/JHecMW8VFpoaLbY04PXuCQ3ZJ/B0KPaAy3keUE2oYtIOcybxBkVRwS5fFyOR0ajGrTNBByHJpM+eauFJyz2ryy80fIjze4vHFER8ON7mV1viCfpbeXsZtew5tpdiJQWGmrKQBp4SEWCOE5nqRspCtkZglfhjiWwLtH5MLg73wg1Tm1ol2JfZkBfPkh3jxyOL/qX4atMk0eBSlPV5xHDyhuJxtYRgK321RRjOssqDhaBb1CO0YnB9sk2Mw0CnHVouZdNhPTcpkQnPQJI0UN17+PLPhbbysysFOl45ZZzqZMB6Pf7e617eRQcDC/+kfITwXXRS/OxjKkslv/zble0H1H3iklNy6dYsrV67w/ve/nytXrvDVr34V0zTxfZ8sy5ibm+O5556jWq3+idsvDE3FkpSlSaJLXvdfxUwlejCGqcKaDcgSkz1VEgqLJhYjaXCiuEAelexlGZXoPL+TP0k8vY4r4YFxwJWxolKW9CaAtmiNn+UnJi4rVpPzSYM89nnSNlGpxM4KZBHzWK3PP6x+jR8338ZILazE4sXgCm1tYgx/gr+cb/NB8ToX9Dvs1dbIyoRG5KKnA4SR0gsqdJwxi8a/YS4pkEUNmZv4M02ZSWI5YnX+Hk2ZcnnvHYIsILAK8hlkI4NR2CaXHkXikw1D3MVrBJHEuueQzapslwkHpBwdPIp0RriTNgvDOXalZr9vsGraKLPAkR5GEdAqXa5IsERO3TdI3AJMCZ7BWm2Lo1GPGtBo+UxLDabiwvId6p2QM7LN2loFYQooFflRRHJ3iM5KpG+hkofzhJDfNtw1Jf6VuT9gJvyDwtLST7HWeobPyF+h4s1zJfsNPj0/hyUFi47JMEt5ZTzjt7pjvjH84wewhRBU2x3CRhPTtjFMg6BuUp8zGB/vYtlHWO7vPtOFk3VOXemA9hAyYDqQaMNmNhpi203EOMcRBosDm6oY8YHyBhvudRJVcN1fpkQxnF/m3rnLDIs+O1XJVbXOjtdh64zCMGEtfMB5eZ9ppnA0JMYBcbVDnFepH0cMbQejSCimEaWp0JkPuUFG/lBIYCQsTJss52eoTpbplS0UHkpIctEiNH1e7bUopKQtU0K7x3LcR9UDhpUm9v4r+NYuWSGwzIJwFtEe7eMkA1IyrGSAbdZoVAow61R7jxJnETs7b9AfXkUPbjDKIT+YoGffn8uEP/eBGlkKRNpnc9tDm69hmwpo8Xr3Bm3TZtGeMKdclBhxPFJ87XCIGNyk2Fa8VF3GiSFUNr6RM2cesJ83kJiU8R1qOiezJtSTGWE+4XlM/rdul79lvs7l2btcyl5iKzqLPW9yeXKRk4PHMafPY6oKyVgxyGa8e2+f3iSC8Rxi+FepFBeIRUyNDsfJXUq9hPRvsTt/lSgfkViKq/Mtlu53aacCLSzmZpJLWciamaCrCX1viGX6mNLEw8QyHURgU01tVoSkkx9STVK2DMkrHPAzt/97vCKlHM84SEzeXT3DO5U6HbOkiubU2zfISxd3FvDRL/8Sy9E3yc1dNAqzOMLdDehc01gyw+wMUOUhjcmE577xG0itSUXG/WdrrM5usSG32Akb/OXdL7B8tEtQzJBtsC2DDw+/iNi2uBw+4GDmMp1lqNIiKeDm8Qvsls8xMTuUssLMNsmWYlaSmDw6QShsXjwa8+J4xjcOx3x5f8T/d2/E8dTicG6Fv/vUSf7R6hyV0kYOC2QOonwofZdxgU5KhCkpJxkjMyYLIcgtMkwa8QIjHRNdcv5IN3jfNjgcaarGEuNaznGQ8uX2u7x75HGoPUy/SviBH6fxsR9Be5ri3BMIzyJf8zi/rwlig6g06FRyykGJ0d9nsjzPl174DDdb6zBa5BvWKbqu5IGEoh/zqbsJZCV2nrEybuAmp5jphL7ts+M8TyZdZsU8M3ME44sY9gxLGRhSkngGs8UJQbpCJGekeUlf9yjNgu6CQc8zWFDzWJlP5cs1BocH5MMp1V6PdnaTo6yHlB7KdBnIOhuVCo1nRnz1U49w7Umf8rE+erXFkpR8YuYjlUlHB+yyz2vmt2g2T3I8VGzmBqMSHPuIuOxSsoPvJxhaseYmZEC/0yY2baZeSR5aVArF7eqMvYakLY5YHvX5K9uKZ3olA+EzmFvkWrjAlZWPcmdhlfb8BontsGfbOKWg4QRUDXDzGd40QjqS0vRx/BihTQxzRpEK7uldOsJkQQW8IfYwDYsr2Vmqlk+pHMbThIIfzIX+/9/QwmJ62uP+Rz5GIIcs3r5N1j7k+MJ95JkYdwTN5gGL8/vUgpfxmjewpaYMfa42LrL4zBcJrdtIu4eRDXjQHpCfULhGSlHGdBcyIjHmWN5GZiPGnQVMu48RC3Qy5Z5nkAkHMoc4SMllQFoaTCYRuhlgjASu00C7MctBg5Za4MKwx1vO+6kUJQ2peSP6q7zce5pXj84zK01CNKpvUqQeqvSYq3ZRvk3QeYxqnKH7KUHrceILa9x4+hTlRp1cKeI8IUtmPDJW2EmGLQULvsu0UcWo1Hj6hWd54sTTPL/8PH3VBwsqZoV5fx7HdEiShEql8mcaqAGoVCpMZjOstTWE/N152z59GpUkxK+9RvSNL6Bnb1N0j5E2qChHzSJUHOM4Do1GA9u2ybKMKIpJ05QyT4knAkXGygh8GZDPRjTKGvN5GxOPcblF5neIKx1S6TC2NUFVMKlVGWQuytDofsCIBo7OaE4tWqFBUcvYWzjmn5z+JWaqS1hkTM069abDaOqDdljtCZYZkZaSlfGYs/t3eWzzLt4wxClm3Fk+R9OBxcEmq/E9Ppc8xlfjDbyKz7a7yP/q+Ldpx/sUToK7cIMFK0VEJabKeFouspQHHMgRJ+Qaj9beT9q8hdI59fQIESZcLrtcKmOkdjgdxGQth1tZk8OsxV2W6AoPJTWXui8iAgvLlhwHPq+duchSpWBddjmoLfBv3vdDaNtlXFYY2g1irdgaz1NdChDRlJpuU80CBpNt/PIEUpnM5VWGgyFSSgxpkGf5d/pVGAbW2hrSttHfZTislaI4OkK/Z/z+A08URWxtbRHHMb1ej62tLT784Q9z+vRpDMPgxIkT3/lfm6b5J26/MGICWXJslcw7KTkhBTUOXLjXjHjQuchazeK2GuI7TRasC9wzbFLnDHryPuzSojadg0kbnY7RuUtZSC52j+nIGIHAsQvujhtM0xXe51zix80dlpJNwnSHsvCwypyOkTDnHdFROYGQeLpCOhW8ZZzjdH+bIDM4s93m8uw3aR/usVVdZNnPaAQeZScibr2Llsd85u6/oTP5HZq9hDRbRqQBVhagZAaJzbz6lywNu0hpcnqc4MmCTDYY2ifpcZY8S4nMJYyFGL91izAfU5ubImpj0tYWiZlRRgt0S8HhXpuWapL2HXozyXklCCqKijYJywaV2OJDhUagsQBHPEBJQY6gbT3gXCujUQgePd1kZkluygmuO8VxTCwEZtPFqDvoQqGigvxghk4KpGei8xIED188DDh4F9t/qEL+BwHHmcd3F2gbGbXaZTqdj/N4vcV/vNiiYhgcZQX/bOeY+3HKTpL/hxv8LqrtDvWFRYSU2K7P9tW3eel/+gUWz17ADcZY9u+u+7W2x+mn5lDKxq3M4VXqmLqFlBZBZRV9kGMLRevmS9TUDh+8/3Va6UvYaoxC0FAxxwsL7NZ+iHtn/hY146PMWheY1Mb0uYslIC59up6NVooymWLKGUPTozAWiA2P4SMxWeOI6dIdSgllpNBKkpGhhQYzRNo+j4wew8hCJlmNbbvLPXeTpGziCQdQ2KbBh6ua1do2T8yuk3uaXzn3AsZ0ylO3v4LWObGaYkZT1qf7yEAQC5vK7k1WCkXLv46f18m6VbbkEVE0Jpn0ybvHjNOC4niIlX5/1qg/96PcVzCzTc6UuzwSv4pXbrE2Xacz8zjvePiVKbaCk8Mlgtzk5mifWPksJAU7LQMvg7O6ipM62Pkxs2IeWVSodxM+OJ5RtIZYUcxcWeP5kYU3TlgvX2FuZmHqOuE4wzWPCNIOwaDD/oGFlTWZ5DN8JyXPc0w5w5ppJluPoMctXhMVRuWMQTYFZXBgzqEaU65aH6WXe4hag2QcUUQJlhsgEVSUx7oxQtpdDs0BV6MtkiRm6fAqc7LBsRPRli1a3gqiN0CiiCp1+lpwOBFMDQsPk32leTSLODfTGPEEZgNqVRfDcbBFhXB4TKV7B58JtTKFSYBzQ1GNc95/26EQNRrqPmfnfTJhklouubNGzAZr8QivN+Fydp+z+V1C6VAvRmhbcVycptPvc5pjvnZ8kreGy5xuxpiUQEmSzPPa+C9R6TSY2HVSy+fE24f8xJFAxzWEYdCzBV/OUp7o+LxNwccXYv73nzyP69uc81yakxJSKCcp2oL8YIaKC/zHO5TDBK005SClemaOlTPrMC1IDU3dtjECh7SivxOR//0Ejsn97gyTCpOmYli1GOYjlLaZ2AFdUm7VZ1jBPNKz2GmG4NSpnKrgN6Y8djVGDaCKYjDOWRwcMdEtTh8YrJghSTFgee8eyiuJMjCsjCIr6SC5OJ4xM5eIZx8CZTGOAm6EnyK1JW9W66TiUSZ6FVsV2L7CcDSJNOlZI+zKLZb9kFruUylczoxOElPip4rFvuRyfAJ5rSDPJgybDZRhMD94izk9xO2mLD/yK6zaAr8xxWmNSdwRhxsz0kWPvbkWXtvD6sfYus1GUZK/9StYZYLHjHcPEx4LbHJZoy92ce2MhB1yc8ZSxWE5NDmFwBGSU0XEb7UCHniKvi8Y+zvsWODpMRePbuP2Mlrjgj1rjfT0aR64G7j5Ch/oJZypXUHZHr5KaMgqC8c9CKA66OG9dQ+38B4qJpx9hFuhUFPITcpIURuPOJ8ucNs+Ajye3T2L7Ul0bmLnU4ZR9qc6n73H9wc9p7Au9TgxeJ1PJ7/OoqkZPVVwjb9EfmaE8issnH2RjaV3yO0BwjTwTcEtM+Nqy6VY2KN0U4Q9xnT26Dub5MEeyjAwfYHpfJNmW9Bpvcv4J3bYXpxh6gJrorHHARV/HsOsUlIn1UOmehlHS1LDw13QaKvE9XrMxBp1c8Ju0uZq53mm6jR2OqNIYXf0CEMko5kmMQW7hxP0PYe8bKPLBo59DddSeGmKkw2xRYK263SrATc7Acf6AaaGjBwpwYtKsnzKKO1TC0PsIuGxc2c4deU8f+/5f8DT80/zz6/+c76w+QUuLF/g71z+OxiGgW3b1Gq1P+suJQxDptPpH3hfWBbhC88z+o3fpBwNKI53wTARrkBNMnT0MFBj2zYNp0pFe0ynU/b39zk46JKVDn2d0jEmTPp9xEyRTIasdkacqWVYogW2YMfxyT2XwnYpXRf7rM9ecETfGOCIiIpO6Rc5MlvEjGrU5ARlDij0kOvZPfaNPtV8yO6pUyyqIW6iMMIWpwY+RZiyMJxQRA/ot2uY3UPCqcfZ3OZjwwGVCE5v9ahWfaaFyYKv+Bn7JZxowqPja5zwUurCoWIYOMIkj1J04tGSDdZW7zAz+7wj3+GmN2Cr94Akuoctpmin4LF0h/VkzLRd4cn1CWfdW9zI5xkUITfzAD0L2E49rHKGVx3wuPxvUE7JZnuJ4FSTqoz56YFPKANsWdCioDAc/LhL0jeoLCeo4i6mvo+VuczlDapiCcM2+FL1Je5O7jNsDPGkw/Cg93s8aMqyJDUMytnsO/2t05RyOPo9773HDyaVSoWf/dmf5aMf/SgbGxt8+tOf5sSJE7zwwgt84hOf+I7h+P9cvLJktdRs5wVjEdJOrzBUFUbtKTvOhFHYYKPa57AcgNvgwvJVnq0kaFlhdxzgaIc80ZRmiO9UiMshjeJp7okKhiWo+CWBk2ObkuviPAeHJ6kyRuqCOH2AXbYp4oQ8jwn9KUXiYpc2S3KeyK8w8WuM3ABhF2gMzFSyNLDpli7LwQS7Y6IrCsM4YrnS5zy3ULaDP9wk2hTIyTKykAg9Q49XscoBvrYYVk3WRjGuW3A0t8G1uR8hKppUnDH9SRt3/haluQ1+RLe1h9UxeLNs4YYZycBjHJ8gX56wXBY0cokjDKqGpBKYuMrCyuYoM4nSCgwQeYHR8kgKxdTV+PMmp5c1qhbTWPDQjuBXjgd0Sw9bgGVJrDkPa85HlxqdluikpJxk3w7UfFt59+8vD8TvLWn9g4hhhITheRYX/ipLiz9B2zL58fkGnmFwnEM3y+hlBYO8+CPb0FpT/j5/r/baBk986tMAOEHA3s3rXH/xd1g4dQ7bFQjxXalUArzQRiub5Qt/ic76PGGtje1VyMcdxpvnsMhoD3pszHLE/RJRJgRlQVbEVEnZC0xEYSIsn3ltkLlNri8K3CLB14rxeAWneYht5gTJkDoRE+Ewa/rsnJpn1jmkZ32L0cZrSENAUiBsiaO6mGIfJ3eYmZLmsI6d+0xGiri+x5Z5QDqdxyktLrQ2CRwDYae0vS2eeuYLeNWcrg5xXZNYzkDEZONDisCmOu4xCRyKKCPYuYtOJEOZEQ43KO2YgWlhVKoEoU9W26BmSbyggWO7v78L/hfhz32gJjVTXhIJC+qIwqpwfHqPHVny49dX+UlxklrnTQL7mAoaPb9JaHh0zIyfPvErSEYEkWI9czFSi3pmoj2BM67xiF7gh4oeprNLkDcwcYjKOpnvUsgJE9dDUGEpNbBUSo8D3qx3CdTLNNIYZsecM+5jmoLQK7AtRdVo4BQ+PSkZMiAommgRcK1YpfC7fFFfZlba1LrHnBjvIQ1J0GohTc3A9oiLJV4ozpAaOYWh0BrmjZJG0mYyLpgrKswqgkWzRVpMEUGA5Xpszwz2hUPuCb4Rp1g7cKW7Q2cWcUq6bNZrHHRMmlaMqWyct4YE4ymWIdk+rJFs+2w/Idg4MPCPEpZMi2bbIjM8Dj2Xgd+iX3YoZxH7ecjP3Ps8+AVWMaWaHSAMgwfbCqeb0xtYHIwESoMVWiivSZFrshSGSYN43qPvNLifLTF/v8KcNjmqmmSW4GLTp58nLCd3+XCjx9PrNZ47Mc8/XJ2jdZRQTjLULAcNTiOg7CeUswx7OQQN2faYMspZO3+C04+dAymIzZSaYZDMXIq0/CNNCUPHZLM3Q5UOuzb8yuUfwSwUhYLcCdmLxryS3IGZRLYt7jxeQ5cuipSwfoZL39zkzGsxG18ZEnhVWknC4+++wzoJTlxHF/c4e/NFGv3bKKUp9IyjQtFMNI+lkq6t6TqCWnKEZxVcbY+5H/R4t2LTuPGTZEpgCoPW4hDpHqEyRa2hqKz8JqF5gJu5fOTmf8Tjo8fx0yrnDhJ0TzN37KJMC8OGg5pHt9Wk+KFt2pUuZhlg2m/RlPfpLNwiii7QKHrURETJKdLHJ2y2Ht6UFvuKc+Oc+f2c0N3AdDNO6Bor5TmklvTKCWt2SsXKOZnO+C+0ZsG+x3nTomNbPL11i57a5fD2Xf6ViHgrPM1RoZFygfHiGRatkmZR8PryI1z3W9Slwc58h2bpkU8OsK0Ka9GUiqpQT3PKYsz67X+L37+P0z/BJXuVMIgoDEGJRmYOH77TwT+OWc1W6ModBlYFwcPsNy1cVmshFfO96iI/CGjp0Sr3+VDyIoVZwXwiYNQ6y68Vz1H4JVSPcXaGONch801Cx6dhpcx32iwvvERqjylOO9iyQ2N1jO/P6EgDbXoMTy0yqve4cWbG+52blHNbhMYBYVRgpQHBSz5nsh5OYJEXNbQ2uDe6zHQ8R+7YHD4dMH00QBVdtq0TCCOixOXN8Q8zSubJU5DTJsszQUqJzEri4KHSq/dWhe50gdqtKie/cZuqCDkSGdJMMBsmOqhQYFExO5RxROA6xGTUKjWUaTKqTLlp3GA4HHC8sMxTz7+AYRgEVsDZxln+2oW/xjvdd7jy6BU6YefhZ0FAGIZ/xj0KjuNQliXT6fQ7h3itNUII7FOniN96C/fS45j1OtL3gZRynD40o01TwjDkXLhOvWuxv7/PZDIhyyz86hoTx6AqhuR5Tpxl5BRoo0/DiNkY5KwEl9la3ABL4rbanKg1WfIiTLWFUcZMY5uKs8PMiqE/TxFblNZdskmIScmS3+BefcqHdgKqayfQtiAUPmmrzXI+h3QUT28nXJ2POepUsKdjJh2LhcTmh/cmLOclW9mY//b0pznlDTndzrgQHHAqPUDJkJvlImo2x2vTDsIIcTuCDXuX5ebreLqL4494M3gb4+Rvk8xGTON9UmPGqNcnqi1ScwO2gpLMjHl0tseWeYrt0XnyJKO0Bnw2/RS3GpcprQpfqwdoy8YkhXLEYtNgTnQ4pQ0szyGcdvnpL36e1jRhrneI1ypJowfo0S5WYTA/qtKIJmi9xQ1xj73umHvcYyWt8+bbb6GU4sGDBxwfH3N4eMid3V3UdwXo1HSGimYP33vPUPg9vgeSMqBh+MS55nzLhrRJf9Fns75Lbtj0tabtjTFNydvtHrGMEKbH3Swjyaos2quUhSQTLq61gSgDdo6e5+ucpcDCtxU1ywANm/ZptiOfLB4hHZdqu2RJacaiTpcKblJFHTexkpRhMaNjlkS2z9DxUVKgcKg/WGNuq+Dvxfd51riGWvTRVoZv5ywEO4jmgKP5s2wZf4+RCtHCRRAhygTGYBQ5bmwxtU0yeYzSUya+QbLYIFEtQvbQpSawJIU8yZsLFV6JW5huyitTm61xjmGFjKdr1IVkqIbUU82KZWJLCHOXxXIVuflRZnbIzFcUtoFtCLLTjxPlCte5ire2wDOtiJ999Mssn/RphJKOMeEr0UlanoVhSPzLczgna+hcoQuF0XDIuzHSM6HUD9UzP7hxmT+AZdU4deq/wDSrSPkwFVkKgSsF3ULSz0t6ecHe5D55PkZrzX6SMS1+198r15r/bvuY5Lt8bCzHodJ86AvmBAH9/R0+9Nf/NhuXn8ByBFprZqMhZZGTJQlFNmE2ylClS2u5xemnNggbddygjvBCRDShPZ3y6O9ss2teoTSb2KJGImLqswN28oDckWQmuE4VuxgxpUIwLmhYioMHLubhxkNlTjGkamUM6kv86vhpdht1sHtQHjD1uiRyiJYJvcoWzfQu1fzXMVLF0BoyXz2i5ZbYjiaqTRiH2ySxxJiWnDQ0Sq9QJE/x+uZf5phP4MgZzXjEzUvwhQ9Jam4XS+Qc2zZaKw48i7ntb+CkExgUmJMG7ekcKhhgcZb5ziO0jBhtODRdgYtD8Sf0C/rj8j0HarTWxHFMlmUopYiiCKUUWZaRJMn37NRvejbDRLGdNNhZcUmtm2TBNruphd+voo0+nnFAUb3FZOWrrHpL/KXheebN+5wz71JXgk7mkPpjqqPzqMLmE40j/vriv6ZXO0C5A5zxBzDSOUbnDsgWFF55ijQtyYcrGPIF7LSJPdmF2j/nUWuLytEUJhOa5hBhWvREhbfFEr6ywJU86o4Q802KeptxdQt/8DpviJRrziG5beDv7hLXm2jTxCjBkjA0BJ5o8Ho4ZVwk+KZH4IfU1y9gViZ00NhCcrJ4lXZwml8+f5rErzANatxdfYKovcBY5gzLkkE85vXNGZfeucualrw8v8q9+jxH/W2y5hmM/WPedkMSYZL1c1Ri0Q26vHhOs/biiyj3NDOjhYFJRkLqeETRjGAxwarbXBy/QxI6UIxZVn0yNWQWj9nqLHK3OI0WEqVMvpR/mm7jcYSQ5BiocI9vdkombp0VWeGNFZv+2nU6kWJ7kLDSz/jhEw4/8r5H+Yd/7ZN84IXnMaXk465P/tVddFpQDFNAYNYdEAI1ySmnOf6lDiopQWukZz40FrYNyhCKsmBqSopE0u122d3d/T3jUghBxTUxDUlg+exMp1wr5qlqk1xpTL9CL9NM9Iyjw5K8mJF7GVYkUMUMfaWO+juP8/y7iurBmHA+IXAnnLx3k3njbYjbeL2E6EwVNd0EA3Q55qAb86HNjGeGJm+Gkp/fsPEsTWEkvOkbfO7MHLXZS3SOTXpiH608VhbfRIsdZtJirtrBsoc47k2E6aKLgIqcp5Uss5R6qHHM1HRRUiClYMFNyMoCvAnSMJHdCsHmAtbcJtqM6fY7zFbXWLZa7GyeZWz63JhfYrrcRg9LjMzAMHwSP8BuwsUy4+D2HOlsgV6h2fBcFm0LrxzSYJu19uf4ZDjAdxS76iorgz69OOTAFKzILrk+xk8znjxaRrgeTaPkZn2Rmp5ybvI2V2tTpOFS9G4QJlPW97s41SauaTHwT+Je/nH8mqQqGojCw7Ya5GmOUB1QNvWJhxkpdsuIsTigXc/Zm9vHzx1Sz0Kkz+K8p6b/gSBKNVVD80Au8rI8T+ofULnbIxAZWli0Tn0Z4+0MHdfxEk1jNmPRPCAO5vhguIUy58kqM6qJC0GP91VgbmeGVAm6NSMhpi13aXo5Ix0gtYFRuji4WF8bMcq6FMMJSeZiKpv+SJJYixhrY7ZXHW7Mt1B6wGP6JlV2MQzNaGuOrmWSWk2s3iKdbk5RChZKxbhI+EAEuTC5mvTxf/kOwbUIP65wGEoKx8Zq2EgDQjOA3OS0Po/nClShMbEZ+CZ9e0TX7XJ3+y7P1VrULPM7t5Ce5fHc4nMY0sA13YcbQSlZXFykUqn8Gffow+p9URTxq7/6q2RZxre+9S0ODw8fftZqY83PEz7/PPbGSaz5efo/999SDGYY81cwGiew+orTSydoW3X29vYYDockscH6+lNMpCRwZlQrFcTcEo4fEpgGXpGwUBoYcpG79RDDdhgbBr2BYO3O21QnWywmPoO0QrjwJkY4ZBYvcSwDdF5DTU9gCoegdNhlwPphnRV7h5cqHo5h0wtMpk6HEy/tsXg/4u01zWvVgqk94bdWvsKxqVjYHOId3UC1FYaZ8r76MV6cc7t+inbR5WX7Ob40PcPeVp0bvWXiWZ36wgGe12M42kCYIRtLd7BOxEwrIy6fmdA8kaOEyYXq86ws/TBKVDk0CqbaZcG1+LC9RCurUuYlrrjNUbxBodbIC81V20LIkv/q/v+bU+MHCLdCSMYpkSDX1znRO+LCG68QRYIgGaLcOaxmC1GmWImPG3s4oyOm/bdIixxjp0V32KWdhWT9iOl0yp07d7h37x79fp9xUfzeQM1sirQd8p0dZi+//F71p/f4n43jJ7hOxpxlck4PKXMLIxgzNgZYwmOcGrh6Ss32OK5E5KrgUIUM4ogmAfPjDpm2KJRN2vswZryOSl0qRofxTLDhHTCNbdK85CD3GMYWk9LFcTWPNDb5yfI3+XfWR+mZDY5mkn73GeTgiKicw59N6doBo7kmmeFRKhMrllgLDU4f3OSJJMVVMZmRc665x+XmAAtJlp4g7S+h4gIhLRAZhhI40x6FUcEYaQp7HqW2UTpFeou0Tr9F32phskdtevthBTndZDcrSXODW8Uxw0zTiyyUYXMnCVnNTGZOwXIJj+cPYyZO38JLHZykxtTKScucyDMwHLinFbc6FpUayPoy5ngbX6ZYnoMd+vxQq8sv77VYDB6aAgvbQNgGulBopXHPNiiHKcKWCMdAusYPtILm9yOExLZbf+A3u4akXzoMckUvL9gZ3uTo+HMA/Kv9Pm+Mo+98N1WaL/TGdP8I1Y3jh4wOD1h95CJhs4GUgjLP+Pov/AuGB/vs3brOZ//x/53DBzsEdZfFM6dZe/Q8thdQ5i5Gw0f3j5jJh+f/vUobw6gTlxJtK9b7D6iR47uasdRE0wwrj/B0lTD2cewC3ypZPHybhhjz6OI3eTJQ7JtVro5aDEZtkDlGMUCIEYWTEVY+y9i+i3RjbOM6lrXPlnedE8Y/Zkm+hiUEw3RK4h+iaruYiSQ57BCPasxkwnZa5YFhYRnHLK5+k8NGn3uLPWrlF3GtjB1DEBk2WzhURnsYtsDIU07fPcUpeUCu+sTHmlwZdLwUNR5ixgkfVVV8vO/LWPieAzVJkvDiiy/y8z//83zzm9/kl37pl/jKV77CL/7iL/ILv/ALDzdHSUK32yXP/2S5dADRcMBWBNveaXreCDNdQI8f4ab6Cpn8OkLOUbRuoudfBfOAT/kG5wNBdXyRZ4odVnWMNNrM2reIjW1CLVko71Id1RH2FlGwD8NzuKVHZrSYBAr66zjjHPfqs4SzkKAIEJnBx6IKe9Mat6J5ctPByafkueJNVsjDY8zcAikYlEfcqLpcc/o8kPdpv/Vlbo4sesWEgc4pDYvDVFBGKZ3MIpQOyrZZCAyO5YxztZPERUIoTbbHA25O75AXKZYYUxzf4FeXHXbn22x5VYLS5v7SGfbmVkjqNrmUHBBgOYLT2/cxH3yD4Vybdy8/zo25ZTK3jpaSUaPFyUmfZ9/sI2yDRGrunXRoTGasv5tznJ4lNCWmjGn7OY+oQxJbk59NCOUxY2sCwmBZZRRC4bcE+55glNnYTh238yPU1RpGbOCGLolpM1Lv8Mqsx4F3GiPtcOSaWFurPJ1IlNKYaH7sA5d4/NIlqtUqUkp0WqJm+cP81ZpDOUqRtkRWbBA8VNlEBc7JGuGzi0jbRLomwjLQgcXZD19k9W9fYfmRZbK4YGtri2vXrqGU+j0bvtA1Waq5eKaHLxdJM4ckLzAtiW/O8zu9k8RFxBvbN8h3Pc7tvIrTz9Bpyqh1HzWvsM8u459p06gXtPwSpESUL5Mu73GxF3FsDdBuTprkZPkQacXUpimLvYJ/dFcxtQSJv4Db6xLGNZzM48RoA2UYvBne5fPNM0yaX8Uxm+x7ATfaKVmyjCVzJBbaKMlmJs/qswhxloaV4dgPo+aBaLLuD0gSRfBOlWsvX2b0eoF83cf17xOPAuJYsGQb1EuPcVRhMFjGqUDh+eS0iYdjVC0kc11Md4Q9K3m/vE1FKYZ5xkmzxpJVYjkF49YDfMNk3tontPpclQ84Op6nb6U49pgjOcQUQzr5S6wVO+TCRQhwyoKT8R5r0ZRJuUdq5MydE9jBiCgbMW7U+drlD3B1boWjxfPcvfgEVQFTO+bocI8s1ZAsY1sC36mRJdd4e2mfzJ3nQeUe2u3SSutgKbKojfjelNTv8eeE3JZI0+VtcZ6eUQFzSDhI+Ye7/5y6zshUyXRygpHn8/LAJj/sMbtoMfUllE/Q6NfIZESlMBDhAUWZUptqippgu7VFXOacH96j13Hp6mfYUctslSEiLZGGRJptrIpiwd1hoatxo5BuJySvLBBmLq7QpMJjfFQlSxdom10mpuK3rJREzDGLOygpcPweP3b2szxVv4obxwjXZVYNGc9tIMs2Zm2RiUwRXh1R7zwsP26aeKlksV9H41NQkpqCu/MVYjvmlHWG/nqXk1aB9fs2fVWnymKwiGv+rmT3/e9//58LRY2Ukqeffpp6vc5gMOD+/fvs7OxwfHyMcGyaf+s/ofKxj9L6X/8szb/5NzHnGmQ7A4p+A5X7TH5nh2KQ4pc2eZrT7/eR8iLz9Q+wMb2IZ6QsLi2SV+oYto8jFEYc06wadKohtlQwneBmA9b3Ryy9cY2VfkRzVnJ4Zx4z3KSyGnN3WmU/F9TvN7gTDdmOh1yczfOUgMxNSWtXWa561KRBZuW8+PEfYlir8xtPzBNWfKZ1MDODhcoqiHdJhneIsl3iDvzdu108U1Ib9dh2F1jVB7xoXWRLtHgre4z9zaeZ7DaQbo5qJoyTDYxagGP0WVJzFLN1HLuPdeoGrlOlKmEnvcuEAV0VszN5hp5+gnNZm7o2ueJ73GONam6hJja6FFTGq6SqZH36gMDymOKTBwd08k1unnmcxtGAeG4eYXoc+E3u9zaYzK+TiZzSt9CGj1A9Sj1kTa3gJVWiKEaHBo2FFps37rI33GN3d5dut0skBMVg8J1xUE4mmPPzJNdvMPq1X/uzG5Dv8ReeXImHSvUS7KmiRs5j8iZB/iRNFhClQVBIPpQsImKXF3c/wNff+SDV2OC0V/Jaf4mp8ClyiU7aqPwKLTOhyH0eV7f5ieFX6U5LDJ1xHEuGkSSeBgRJH7c0eay8zyvxaZww5v2Te0yLEHM6JY5b+KMZCQbR0hKjzKIwPcwaTD+8S25FuGQ49oxD6TLn3aVFjpm1sGcXiR2LcRmitEAXCabh0PYnHOePoEqHIrfxnRHSSuhbS8SVTbbXrrFfW+SgtciOHzBISgy7wBAFr8/6eIFJIUwO9RC3tLlMHUqJTDTmuESZkio+RqExNBSFhZ3YJLZBrlL+1bu7vFOZstLYgsoiDDbBdDFsk1OX57hQFTTyfRYsE+GaD9OZTPnQj6bUOBs1vAtNhCmRvon0vz8Vdf6i4UqJEgZKl/TzHDu8zGD4OqVK2c9ydtKMf3+yKbVmP83Yif/wFH/HD5CmhRMECCEwTIvZaMje7RvMhgOSyRjLsVD5iBOX2iydPc/S2QtsXH6Wcd8ktxVF3iUxJcJx0HaAjB9FzUpcqWgzYkGOCe0ZYwH9QGNJzTl9glPO+xB2ROfiXb4Ve9haIqN1zmWHxFnGqXafW5MmpZzjK7UniYwlSqNPmL7JI+m7YE4YiB/GKn6Tdb5A7Mzj0sWRFn5eEpo2I5kztk+gbWiiyJlQMwLa+ZQlv8BZ9RiGY+Zdm77vs+M79KwpI8Njs7CxVY4IfAwrY2KdBTciFymiUpIX0LQmOPmM0FZQQvx9iiN+z4Ea13W5cOECjuNw//59Pvaxj/HOO+8AsL6+zt7eHt1ul9dee+0PzTf/D1HmEabK2NMW/sSmc/c2vxPXMOsJQzMk7D5F0rpNKd/EVxa2/RZF8xZWssBfvv82S51fZLj2FdLGPVS1T8tOqNq7ZOMnCXc+gDNrMUs1X7pzDvv+xymFw8HbcHStIIkjZFZh/mCIOSqoTgX9mcHdWKNLhZ0bVEtBddkl67zL1I3p2xOmLoj9A6RQ3J9JHAX1gwPiFKIsp9b0SF2PwlvG9pe47RzwhdYhZRCzVangsYTMwRrHzPIxa/mYUs/4ViPn1xqXiEXJ6aN9hgjcRLExGrAtPLphg/etPaCPYqMsyMOQ7vkVzO0I7/iYnlfFn40otWJiGPzQ4Zs0DntYJRRmg11znt960qZ9GHPp313DKmekYkbT7vHJ4iWmaYtJdUoeVim9GtrwaUyHGP2ncFsZZSGY2AWaNuKRM9yrSYJMYYYOI22SBi5tOaUZLVAtFmFSUB3anDVAmaD8lCC0kd82jsx3pwz+zW2SmwOQAqPqoGY5wjUwGy5my0MnBSrOEZ75sHSfIx86zUsYVGz8jo/TDKg2A6SyGY1G7O7u8pWvfIXkuwwLK47FSvOhgfP5yvPUXY9+WuD4Bi0rJdMXGOmMF8UXMbNz1PQrHJpVcqPBtLxDFO0x+tEE+7THCXmBpqF458qznOzustp+g+Bol/mdMZmYonRJYs0Q6mtcdXa5036FxV5G5hn816drXNOHVAqHVpQRlitECZxL5rmX2Ey1j0zrnMw2OaGuE44/gDvdwMLCrCfcDm4zatzk+uIxNQQduyBq1xibMFYjVL7IuLjC/I0+sYA0KpHlCHp1UCZtPaUsBTOzQ5yEmNYUOysx9Gmm1TastxnmiqQYQCR5RN7ik9FtPuwrOpnLh90c3/QY1+6wOJTE9Wt8yPt1EntEUokpcoeN1GGfFENP2fJXOK516QtBISRhHvNEP6WWP8J+pc5/f7ZFQ9+nLCb0DcVhGHK7s8Zm4DBwDIrgJHfdknH3HYrxEdXcxj5axDFzskRxu+hx15yj1fkMx8Umy0mXaiYIRESmMka8V0nkB4H5JGJxdEy0cIPXm7fRVsS8I3ju4Ks04xELxzm3z7b5VrvK58uY3zQDRnMh7zNeRuUOw8hCqYSbpkG/1qUzsplPYmoqZcdSlL5Lp3VIYihG+Wl+LjnHF2Owp32sQPKttuC2Ixg6Izr7Cb40MJbv4W6dxpzlGLnLNDlHOlslzhapmRptKOKy5GjreYaHa3QLxdLOJnPTiDw6TTmLWPQ1z4Uj3njfj6NaC0jTIlsN2XcLYIU3rEOSPCMl53Yjw/Y9pCWxPRvtGsxcg09d+DGuJldxHOcPPDdLWpxrnsMzf7f8tWmafy5uLoUQbGxssLGxwfb2NlmWcfXqVX7jN36DvCgIP/QhjHYbe20NWa1gLTTxzpvo7B7lMKEcpqhpjiEEzWqd7nEX3z9JnleQZQdtwcaJdVSeYy2cIDQMRDLlbPNreLbCVQpvfEyYdTH69wmWBPOTDifZ4Xw2Yni/SkKfxLHZmU5RY5grD5nXTR4VEU/4A4rGAaWVct518GWB1Alt/z43n7rI1ZMnWfE9citCeg3mlOAo+RK75S1Cu8LJ9BStOGPxreuI6ABjNGNBztjSDkeZxTWxjmE5BMWMN2aafTvn1sIFRvoYKQtOhLdZal7nyLGYiWPqTpsude5HNvflb+PqHMuMyR88gh26tD2TnxEue/kcDQtGQ8G66ePFFVoqxkEzDdaIteKWvI4/OyTWBYGdMltsc7KMqYqQ/YlNVO+QBx5HdYutxQDKPdz5edZ6i7g6QOUGqV8yf3KZr7z6Bd6K3yCfpfT7fZwzZ5i+8w6Dfh+lFOVgiLWyTL67S763D99VEeq7/W3e4z3+Q+gUKnrEYnhALW+TKsVtr8304EN4RYhXutiTOfJKhm8sMoibLFdHFKrOC+4esSrpGzWEzDkclBwc1Llod1FYPG1vcsnaxhElc8aEKM3wDeizQTUfUYnBsh9jlSbz9Xu8Gi4T6RZWYTCe+tT7PfzxCC18YkbkZ6+jDJfUGWOsnEIXQwQDMiMB3SCb1BCjCkznyMOEvcoGuXTJi5iJFxJaQ/YaZ0km4G2/gC7niJwuuj3ENUecaN7l7s5p/jv5Eb54tEY+VkhjgOcf0ZUGvp8gZIWoM6IhbGRuUrXrUAK5oJQCSxuYzkMnStGtYJshpuOixRQdHTKLR9gO4LdgvAuGjTQla8sh5f4c/8ePLHE2cDGq9kPPGUM8TH1SGhlY1D658VBN41kPU6DeA0NAxTTomIqoSLHMACUs8mLKcZazl+TfSRHNlEZpuB+nf2hbju9TabUxbRsQGLZNb3sLwzCZjYakUURQb3D540u0V8OH86wQPPWjn+Dxj55hMDqinBwRlSWm6+I7LtOtOURW4glFRfR4Wt/AokuKpm8LdHuOjdkJ3HiFhpth2T32nvg4ZuhTTlykimmZCU82X2E/XiNNzvNbs0d44+hZtMw4sJ9mFscU3asM0/Mk5RM8M73DXqtBScRKNs/7Bk9zVrQ4jPtc6R6TqIS0dg1xdIpLcYfJloEyUlKtUYZDICIOai5v2wuYlmZWb9PDprBMymoNK+kzcmoMXJ9MZEzn9yiVjcoLHJFQmkNmhSIu/9DH/D3zPQdqptMp/+yf/TMWFxdZX1/ny1/+MufPn6csSx48eMDCwgLLy8t84hOfoNFo/Inbt12fC6f61DaO2ItCQjGj7KfYNU0ctsi6p5l4kixwqGQhQteYWfdIRYgzOI/SBcrok9kD/NinY9ynzGzq49MU3VW4KdhM3qS5fwurp5CzFWR6TDSYEeURZWwRDFJCXdBXEVFhMt1PsHoFydBifliwccrlDdnjpbmrvGZuYkibkT7kxDCh1Bpx7jKrBynztoFjzlh1DsibLXLDZTMQ3PAnOPGQ/XyLnXqLfSW54G2wYM3RCgK8YowRKP5F2+ILq5ex8gn1m29RFwIdJ3SSCW4mGI46PNL6BkIMcLr3OdiwWH/sZdbqMCxqqFLhRSMy1yIqCvTMwI1yykQzMeeJRJ0H9TH/9hPPk1gu+ajLUES49pileJu9u3Um3Qbbyy0mswY5glHf5u7NhMqCRhcWcxvnsf15Gsc5slDkSrMjJbljE1y4SGu7jz/KqSWSn9jNOVGbUJcjupT05yNsx3648UpK0vsjktsD0gcjMARG3UYlBdIxkRULaylAJSUqfugMLwyBcE2EKRFSUMwFmN7DQ4dftSliTZIkpGnKm2++yeC7bu3qvsWFxQqeZaLzFpdWmuhsDqe4yvbgS6xXLqF8mLgRRmeJwurz1ZNXGDlnELJAyi65vY8MS8wjgdVXfOvCKWZ3V1no38NedHlydwFDa7SvkX5IMj0gixVvlZqp1gzKlNd8+MraKiYOTw99bjZTBnbGWr6GN7hJY3Od0i9YNwc8Gt1F3H0U497HMIVFP9jm1ebv8FrR50bziBEhx+kqr12YZ6+dcWwdczducU2fYTE7IjAyUkxEtkaUdihlAGUXlXW4FbcwRBslDlAY9JNFRq05Xp9vEBWKnbRBasCDVZ9nb0oubxqU0icoA+rAVfOAl4uIqH0HYU/ISDDD68xVtmlPK8xnPfLsiONKi25rxswS+DE8l6acPT4HqsGh6XDVkdxUj6Ojgt1WnSNHcxDWyYVElilh4bBvRBizLjqeYGUlHJR4OiLNMsZmzunjHo/uFyR6kU40Ic1mWOqIBWfMQlD/XqfA9/hj8N0Hqj/q9b1w35nnm81P8PhklVL7KDuh1jwkly4L/SHrsztcf+wM79YqpM4cnw3nGFnLKGdKkStso4pUBnvRiLiosHRL4+UxXpGRoXjEHyCcPl6h+Zv3f5k5lXOoInwVIQMD5T/8DVPTI7JrOPUxJS3ujD5IWQrsTDB6/T8mH10mj1vYoyUsB2pVhY6ruEaILVOev/U66uuKAoGRzvAcE5GNOOXM6K03EYYB2YQ9Z8AeiuNsTGTkWJ5HEE0gDJG+xHMkZ6ME7XqcnjvPR4rnaFp/cP0VCP72Y3+b1crq9/T8v18IIVhcXOTu3bvU63WiKEJrzWg0+gNmkkatinRSyt5NyknxUG2ZFMjAYqO5yrPOeaphhdFoRCNs4ViKe/fuYSQxdrODJTRCR2h1yKzo46iS5aU15iSEU81XFo5wZhEGBY7XYjwN2R7N8Voec4+Y/yn7KBe6Ea2RQbV1lV5rk0rwCwSphR83ka1DBJJS2IiBSYlgQ/oslhH9akJrM8caHzKjS2mEPEgP2DU2mbtxn87mXcw3r3FrskQxM6g7JrMowwp9lss9rHjK3XGDYZ4SlQFeMo+0pkQSvuiETM0JV/1vET3+W5SOIBp3sAoLx0toBgbRROFpTSXXxKlB3doBd4G66vEoOatRH0PXafXbpEYD0mOGukIYxbx5apXbc03m7j3gyWt3cXLNdlynNAK6fsCsU6LKlMWFDWqzOkaQ4MgK7+6/zIPhLfr+FEWOn1nEkwh7boXx9g5f+NVfZXw0JL65jbW0TLa1RTkYoNLvOnRozfAXf5FyOPzTH5zv8ReOij5gPr3ORkdRrd9BixLyD2AJgySbEUpBLFooJyU0O1jCp21vk8Uhd6crNOySnczAMId0rIimk3Oy89DH0rUkympxxrBZFH0qxKwHKXedZWqmZjHV5M4qP7P9LlfEG3wcnyKzMTPNJFMEmcLuj/DjAqM2JFp6mUI45LLAmF9DlGNEeYDdSFCTBczIwcpCZmONJSZ08rt0HUnXltwNPWQ+5AutZ3jNeZRZr8H27BFKA3J5gEtIQ/Yx8xqFlMzGHn33DHHkU8xa6LJKad0hmnrkCBxVkmQp5CaGI7Esg1RBWmps3wA0aWWGtkvCYUGl47FRBZ1FyKANYQcqC2jTRmeKohdThM9y4X2fIsgVRvXb0mZTorOHFgbCEN+p6iQDE+m/F6gBkAhqpsmia1EqhRASaVZJ84fBgl6ef0dRMysVZwOXzST7Q/dYtudTbXcwrIfP37RsDu/fZeWRi0SjIWk0w6/V8SsmUgpuvPgVdq+/+3BdPn2Scx/7BGI2IVElKBMrjpiNhqgkoWqb5AuCj09fR5YZDcskdj12/AprgUFiWJzyS+JY0B2sUMtiJocjptKmGRacK2OyfYfdvQ082+LeoMNQrvE/CBhlMcqYkOJQTB5lHC4xrBjkKqaaejyW1HlcrUIhaI0TEhnxZuV3eHtQYE5i3ixvM2NIzfKQaFw9o99w6GoDdMQbjz3J1PFIpSAJalQmxwSqj7U9ZPXwkEvFmxi2z8C9iFQzXpe/jmnfxCr/5FlDf7w+/x7xfZ+///f/Pk888QTPP/88n/70p/nYxz7GT//0T/OZz3yGZrP5Pd3OWXbEY0FCYLXx4o9hly5rR8cIx6A0I4rSIZqcwjx2uHv0AZrbP0pWRmh1TJE9ir73QRr3fhRrvIqxfZa/OvtV7m3OcZgus69DXtmcYJvXkbMDbu7coL59nhP2lLIosGxNWRakxkmS+Wc4GsUUpouwqzj7KTe3W4SHEdenZyCvsyN6DIxjLrz4W7g6Ia+3iE2bf/n+56kGT/BDdoJnSoSTI9yQ2E05qJjo5nl2G+d4tbVAN7b5HyqK+5bHvL/GRbkBheCdpSXOPXiN9tEuKhri9bqc2hyzNNiherRPcGdELfLwxJjT1SEVZ4Ld6NEUtzg9e5VynH7bTX3CTiPHzVLy/oSiVWPLb/G2vYJjN/Etn1ZxzBunzrFQDzlRrdBMjrATzWRUcvTuIg/IKPccjusWr5efoXtkkMY9ylzwWq9DZrX4jRXBzNbkpkTYBuvaYL62wb2DCt1ckHUk982CewsG/twCzz21yo984iMIIdCZYvS5++QHM1CafH+G+LaiBqAYpuhMYbY9VFai/3/s/WmQZtl93on9zjl3v/fdl9yzKrPWrqVXdDcaDTQ2EiBBgKQ4XMQZSZbGGnk+jB2yxzPWRDgmbEc4wl/GYYUjNCNTMyPLksYaidJwwZAEQCwEiK3Ra3VVd9deWblnvvt79+X4QzaahEDOmJQgglD/PuWHzIzI9548997nPP/neSdoTEiBtA2EefL1E59Yx3pHhfdqFtOjlOLY48L5i6x1znF0OHh381psOPyHHz6DY0r2JgmXlhqIbA1d3eYvXfppmqKD4Womxpwy8DDTDl1qJMUaIFAOFGJO1ciorr0Gq5qN1W9wv1dg/saI7ExEWb1JLXlIe7jNbOk0rmPjZIpYCu6EE2pD+NBcUK1fxY0KbuVv8WIz4uV+Rh46uNMGxahJZc4Ig5hCZPT8e3jKxMsCXgq+RWlOqYgYGyl3zZTjWY0ofUApY26ZN/lO8CK/sfab7NcmFJEgzH28X6sh8jZHiU3JiGjWJK408dzEsmbEhcksaWDWKoxWhJCSt48Dxl2DzAjJBjnONwwmlYtZBFxRKV+ezvicMBkXEQN9F1916Dfv8mQrZFHd5PLkIX62jS5zbgub/zoK2UtNZNliQcx40H6bXbdGXcBv1c+wu/EodzYvcnr8JnNHEVcV3niPXA9pvPF5Mh0T6YK551EOJshoRFWvk9QUK7t34LaNP64BD7k+/T0oH2CWbyHCo3/VLfA9/v8gTVN++7d/m1//9V/nrbfe4h/+w3/ItWvX+OxnP8s//af/lDiOT07Pyz/dkUQ7m7Oym9PxI97fEoyCgNt1i8RqcUcp/qugxo/f+AJqss+p6iJCXWFiLxAFDZqjYxrlFENLDrMY684F4ukmOk8xtORjjsULRY6fKXKl6Wc7nE8OyIuEFzurPLhcY2FRs175eLHBRPaxOneYPHyGg7TF3GtipYo4rJEcLEPYI91poHwXGbgcZwWVEJxRA9ZWD2kkO5TGLv34baLeCpdZxzQs3mh1iZcXIIrAq9htWEQi5bCcM67VKZTBtCzZrR3wjfLrHI+uUXd8aq7DL+9/kqW8+32fmxCCrtvFUj+8M4CtVgvf9+l0Orzwwgs8/vjj7O3tfV/OmNHuUBwfo5OQKizQeUk1zzF6Hs7NjMWkjud4jEdj1qo2vUaTlZU+WmsMQ1IWEUIm5OWYg+QBtUpTOHU8w6IT2TxVLdOqCkrTYivoMDA0v7+fcXh4wMNgwo5e5MXsEeyowc6gxuK2JmqPMMoKrQccN68R5RFP37zA+s5trrgeV3d/jsvuM9zZKPjo17/EJ7dshk7FgRyyW73NVv4AvbKKp02+c+kDTJ1FksGYVs2kQJB7DvfjDcxCsB8XGDdvczBdxox9mns9jqJFmqrENOBIQSjfpnW6QpoW/aV9PDunJjSHckSSlhiiYlEmLOQRabVAP3uJZ+a/Q2e0RRg8w4xn2VeL9FzNTurQmox5bSNmL8g5qHcIogTPkKg04l5k0ZzO6FtHBJZPbSpQYYUcv4zSLm9vX+PN39smtQqSJGS9s0I+T0gnOeX6GvZLL/PgV/4u+y99E+fSJaowRFgmOkmo4pjk1i2q2YzxP/tVyj906PIe7/HHUUoPQUXDL2ls/hoLvfscH/U4V5eEeZO+VbJ9/8MY+SJJ0mRq1PGsEWnkIHQTS+dEmabIPaQo+fGNr/Ns9/O8X1xjQQ7JKo9eatCxKlomNBsW98s+62qIyHsULNK1BI6Z4nZSWmdewRQGk0JSP/MCdn2JtUmK4c3J3BGZPaUyCiqvQFFhFim2P2ZpT/DYNMVUPgdRirrzMvXxLpURIKXDZGuBL0/+GtfVGrvGKuP+b7Mnu2SNdWbViDxcYZ42mOY2hk7p2wmvlk9RpBZGIVkoznOU36IwBM3RCk0tUQWQQs036AYmlYJRUaF8hVaamZGSJzNOR5rTl89yoalxiinS74BQ8OzfgPXnmX5+i+TNIVWuQUjKWY4KTu4/wpBUcYlQEv5QQ6v7SOekNOQ9kAKahuK0V6duuUgh0UaP+1FIzVAkpX5XqJmXJauOxawoqfh+B2LQ6fDUp37m3Xd0wzKZHh/SXVsjmc9JwxCv0TgJFo5jXv3cZ5kenzwzN/oLXPz4J5GuS6YUYlZh7e+RpgmW1tRNk6JWkQ5yRFSyaCgwHGqhhVY5maMIqh0sMyXLBTgOSgssS/CzG19h5YsR3ShknLeoWxWlFkxigXvPwp9MMTyNLiTlPGVc+lQqY4ZLLbFYzh+SjF/lQvU4C+YCs+YefiPgbvsuw1nOkdpHmzGG1BgIPFkxcFwmzX36wesULhhKUHoOA9PDfXiTsw9/k8U7W5zb2oFZSqFhqzyPLGNqw4zF+LP0/B+MQ/9fWahRStFqtWg0GiilqNfrKKVwHAf/nbm3fxXMoaDzypMcvnKB4aygKDTpNGI7PosttrGKHbLry9RHNsbRIeP9BgldzHyHTDdZyKbYRyuYOz/B/m1YeAMWw4wb5S6v2yVGrcZ6fUJoG4yU5PcnJS03wDIEhaUpDM2w+hk8PsgobBIKB3N1EeXUqJk9HB2ztnuHVmLxgcMVasdTGocHNAfHHFYpue3whmXxyHBIqwRHOMyWrjK068Rlwv1mk73ApDvY5maty+AoofQE3/It/qvNNu20yyxrMhYeLjdpDo8BcNw28vCYxvSAZBaRhCWnKkFgFKybW0gzxfGGhEaPL61eJzELzqxus1Av2G9ULE7G1MMId0Eh/ISsSDHNNq7V4T/Z+Wd8zHqL4JmKvpnhVybBLMH3HLJxwPD1C2wmA8bhGkezJQyzR3G4TDzVSOFjuauk031cCoQjMZKCpaRCDASZVrxhTBnZE46tgpFM8M4t8Nhji9R970SoyUuy7TlVWKDaDsJSIEA1bIQhye5PKEcJRsNGZyVCnlgmUfIkcMyQ78xbynfXn+UZDB+mDG/CevsRxFGf473xu+tMCoFrKpQUDMOMy8tNqALOLtgs1gPSsCCTGYNyyNDVjJ3z9HKPYXyKqirJjAJbb1I1Q5yPf5Lw6SEd+5BvPFmw16lzsLyCZ+a0jkZ085v8/nKHegb16RQzd8DaZW26z7md2/yvt3Oe3B0Q7DVRaZMvrnW4XfdphR3SvI1bHCHMGXecF7DknI65w7mDRQoyAtNDeSB0zu2OgZfVSR2Iq4RFelyorrIklhkttnkYOdy3WqjDCe39I4Zljao0CfMO/WKGkS8wm51la+cRHFvjOAM2l16i5cYIpYkvCiqRkzV9RObx5MFZfEYsyX3+YwGnS4/78ZxZKbnUEMzUFk84Qx7Z/AKmUjSTB2SjgrfiRWarDruGxI9MjqwVPtd6HxNt8Fg85MXzT/IPn/00Uc1jz2wSCLBrLcL5Mczm+MKnXF4gpyIyFYxCnHgCqk4VmXyp9zRuqhBYFPEDZvEuhXuHxH+DonzPMv9vAsuyePbZZzk6OuKll17iQx/6EF/5ylcYjUa0220ePHjA/fv3+dVf/VWOjv7k4llDJJyyjrEa92h599kTOb8qS7xqyl0R8rIoaLWmLOh97OQMTeNjFIVFZhScykbMkoy8hD0lWI5j7tvPE/kbKK05585Ym/jIXCCLBse1c7xef5yakMzr6xx+QhE4M+47m/xu7QXuOZdw2w/Ioh4EEl22IHY5qilSoLh3nuHuVYrA4sgyeStMqLKSmp1QtBOcVsZaeIRtRQxqHkdiRD2xmdkG203JJC/YOT7goJhTmIJhFjIwbKLZlHg8YmAW3BQ32ZX71O0A1zEwTQtp/fkMYxRC8OEPf5hHH32Uy5cvs7i4yPiPcFCobofi4AChoMokqnWSu+M93qMcJSjLoNlosL+9R3vHwpQOa2uLmKZJpQuEMMj9GSVTAsuikWSMdvcpa4uUOFycSQLToRgcs6o0jdzh8sMmK1ZEEJTkzSmfzy7z/0k/yJeR1Ma7jO0mE+HBYU5RHVAE1zh/nLHkKp5JB/TGTTwjQ5y/TPSxDj89/iRZp03cEFAOMcqEQCwT2x1Gi20amz1O110e1n1yUzI2JfusYQiTQ8NnN+vxpemnGaTrbB7uMck0G7YJyqCxMMfzj1HtY/SiQ7d/DWWNMDKYmhF3m7tMxYxLdoyIIS1dzHJIU065Uu5zXK4zKhts0yJQmrFr4Zket4Nljjo1/vGnf5EoaPHN9fOsWwnC9nn+5W9z+cCi445R4luM6wlJfIQsbSJVEUxWabY7hDKiVguYZCEPoj143/s4fecO8Te/Rq3uYW1sIH0fc22d4viY41/5exz9P/426Z07FIeHVLMZwHtjUO/xP0liOFSGRJGgdR3PnFHMKy6KiEla57Kp+VZc5wtv/xRZ1sFRFTVPYSB4Qm/xs8ZX6Zs5lnZItEVgTmiUN/n33K9xyrhLarpYlWRBpVwyD+jWI7ajACsbkRw8S5mtI9tNtCVJ3BCjew13YZlYKyxpo0rNxdsjKmOOyQbjsy0qVZA6A6RwMCsTnwGL7FJL71IVDnlZ4t69weuex/7EoFuYnN4fMaqaxHJMvXOIU99FXniDve4VanlCMrbZTU7xctKkLAwaSUq0b2GUBqaQZLGNZ0oqCaLyaGJgICEtWQgECxqkIZmUIBqSSuZUhmaezlhREtVtsuwk1JI9hN89qdVeuAobHyHfnRO/OYRSg4YqzJDBSf6MUPIkysD6g1dTIQRm33v3oPbfdgwheLrhs+66NE0TW0reVE/zf3loUDcUFZBUJ22mYVnRMhXVOzXdudb8/nj+rpBjWjb9jTPvPhco0yIcj6h1+6RRSJ6lOEGNMs8ZH+whhKQs/sA1Ih0HHdTJDYP29oDgxhu4QY2m5564VWQIs5T6ULMgNONSYVYms1FIXMXIakTNyBlOZ0S+5kJrhlQaXw6Ru0d082P2Zga2jABB7MKl/SG2NhBVjq5y8tlt4hwkCaZusuFIUFOee2vCT44e43TwYebWQ7xSoqw6s+UbuI5BSkVaFLRVG19aHBVQmYc46UMWk2N8E0Srzp50QIKSMdlkyl6jzx2mpElGlLi4vsAd5gzlMtpu/ECu+Q99PbfhSVSnzW5ngf2dm0x0Ha/V4vyNFG6b3Hnj6wz3X6UeD3j4cJc3J6+RRg3MpGBXRBgcoHRBMnuLPblDPp5wfn7IYOdrvBWNOG3u0tOHGI5LVo45rioOH1qISLKTjdnV97hlT+lMbCpOMcltstJjb2mZoABxapN0dkgg2ixsT8DwefXpp6kpjzhLwHZQWrPVWyfROVoa/JPGkxQ2CNsm9H12Azg1eZt+OKNZVLh6xm79JJjoettmvnKOrp4ysx9jurKJLAqcRLNfHROYU6IkJy9KGsUxNgaXrB2a1jLXDJOteAElJLLxOmeXXqfRGlAt19nce0AwH1CrzansAVV0B2X2sb2nWJsccEXuoYJj3CJleKrJ/fZpEtEB4ZAPLPzKRw8fpcwcpNEk2P8QjrWMrV1SaZCFIZ4hmfYMmrnGqjQPdkI2gpSx4aMqg7zvEtQCgueWMfreyVyl1lRxQTnNQIB0DJRvguZkjlUKqvik/UnVLRo/sUHjE6dACoQhcC6237VLfs86siRSQe10wc7bY5JpxeHWmCz73pCt9bbHv/vsOk+davD8kzfwvZCVWpM4qRilc8Jizr0q4veCj9IfnOHc0RJmeYlCpwTVFRK7hqj3wRAElc2D9CHW4z/L7nqFbZYsjUqa05ucnu7RGU4wy4xW2uOtekiV3WPHeoW3tyMoTRbHFn/z5ut84u27vNkyuJCvskuHZnlMKz3N8tYTyHCToPoCXuzzV4sP0pWgDGiVDZaSBl3DJ/I6VFryzPGjrE5X6c36NOwnyOotrj1zkd99PqA32yITDlo0uEFA4EEV1rh7/wXGSY3EKcjNYzSK3sYe6x8/xFkdkpUL7L6/jrkSow5DjNTAzeF86rJo9Sh0wajUnJYTPuRM+bxxg9A5QFtjulJwPNTcCpfo9mMWWzGPDHK+2DWwbAOfjNXJEVVl0pDwbDQibabUdE7lugzUnJGqCLqPUta7+LUmji7RGZhVTC5M3MqiVuY4eUplZoRmQDibU929Ryu7i+YHY1V8j+8lTVP+wT/4B1y5coVOp8P169fp9Xqkacr+/j6NRoONjQ1+4Rd+gV6v9yf+/XFmErsHKO8m26LFvaTGjoa/2+vxllvnY8kK/00w54PRjE6UM3bq6FmJ1iOKKkVInzT1GeqSC+XLiEqRNhZRWYaZw8zLKDyXqrS4XrvALdWnUVacsx5wLVFsFS6HosZmOEEt3CAsThNOPQbTEnOmEMIjywvGUuNNQ9KJwB0dMjUEbd+kmBaM4kMir0de99nYnRM7ddKq4LcaX2HbHGC5Dod2RpKV5HnOPI8Qvg1KERkWblAnmU6ZOF1G5YhjPeR0UMcyFDKwEKb6AVzZHzxCCOr1Oo3GyUOQbduk6ffP3BvtNsXhIdK1EIaBNBKkfZJn1vl3H0E1bfrdPgfbe8hMoIRFHE+QSpFlCVo6tKwaJjlrusvlvQc0owFbZUocNCiURbPTRUwG+PsD5NGcxmHFldo+j840x+4dDlqrWMc73CszbqrHmec591KbdFtyenaMs/xVwuWb2A44xyn1UGPELQxdUNWmmGabyXIT2Xb4yLUC43iEbfexc4EeltxoLeFsLjLpWEjXwJMZv8ZpvpFeZCsv2SnaLO7tMyo8KsMjlwuY5YiKBt32Q6SRE5V7zNIphr1DXhwxykP2RMz/s/8rPHB2uWJJStnFad9n7l9l7p/l0eQtZphM54q7cQMzGdATewTjCc9lj1K2HyGtOaRrj3DfrpHoEjtooKw6x9sx/esPsLaO6JgPkeUcK4VkeYmydCizililTGYTzjTW8YTDbpFx/2d+mpff/wEePvks0vdQ7RbW2hrDf/SPEIZC1etEL72M+/hjlOPxSa3s7/0exZ9C6H2PfzuQMsTyDumPY2RhUDNDzgnJU/oGlIIngKeUwTNlm+Mj+LR1i7oqcGVFkE8IzQ5tO2WtcUC3OMaXYJaaphzjejmx1aNeQaO7xcfO/Q7mpGCHkmVnQFEE5EkX3aiDaVOZI2R9ynDxElILDKHBdZBGQGWHyPEa8YJFRc7Q2KY066jC4MLtN3CTGbLapiwCKjSVA5N+mxkGhZbk7Qo8UMYEp3lAYdbZnXQJ4yZSV2h3m4NRwGTlUQqjRrNoMZ/lGFLjGIqUkpYTUCEw8PA1ICQKcFWFrTWGazDWGnW5hjAyHDFFOBUNAeZiwEZD8ngjPBFqAIRAV5y89Dasdxueqqx6N39GGCfP939e71X/JpDAX1/rseqY1JTCU5J/fqzZjsYYAjwlCYvvCjUlLcOg4kQXmxYl/3h3wB93PmnaDtF4RK3dIYtCyiLHcj2KPCeeTqj3+xR/6J1JGIqy2aFQEqfdojIMNi4/yseefh/Lbg1lZajhnFM379IqIooK+lZOmRU8f+oruNYIQwuyPGLs+bg6RJcx0WhA5Fv4QcloVmLKDFNKRr6mffA2EzdgTzb4hp1yPLpLnicY5ZxuvsxCuUdqDmk5fTbDFco4YKFY4X3HG/zlvce54X+N5aJLmI4Z5BFdJI7wOU4k7dqEwhVYeo7vV7z+hORWc4XCschaAfNaix2zjluUNEZTqtyh8kHOEqalJir+6NDmfx3X/IcaISGTJv/jlad52DvLN6rHeVB5xHsZx1/rM68E0jIoLI/S75Dmmu0vmcwOY946/DxvH4zQVYmTvUxoOYxSk8l0Trj4ApfrC/jKQeQ5zjyiSBM800A/PMaIC0Kd8/ru77NVDhGZplU/TWY4nBpGlJbJLLDYeuRRFoUgkx2m6T6ZVyOuL5KUGa2gSS4lVwd7lKZDrBZoVSu4acGsXiNrnWY9D7irJHo247k3v0o7DclkRU1KPnyY8389bfE/PPEop/IDklkPSwtsXXJQ75IXPWq4aMsnzWKM+FVkZtK059jljN3smHGm2Rx5fPruPU4fTKiKlHoAV3dv4pXHyOaIx9oZOh3wqfldBGcxkxg3PEKZJiovSa0Zb+cQJgVlWYEwScvH8KMPIuQEw+sRGW0C/0MsJk0ODc1B1OTR2ODmMOROkWMUFfkkoZ/PqfkruFmdn3xykw8//wF0UqKTkvm390m3ZlRRgS5KVMPC6Lqolo3OS6RnoitNlZSUowTpm5hdF1W3TxRhKfCe7P+Rq9pyDB77+Bof/OSTjPYj/IZNNC45ODj4nhO4v/jMOp+8vIhtSkwzIS1T6pZHS/lMM41pODwcDUj0CsvTNssTn/LoJ6Bq4HgblFaf0jg5iegPPFq6zobucsbaJW8EtIVH7XyXn/3sP+L3n/0QkorOFBasPovpKl7aZBAV5Eri5Nep3Txiad9joDWtoskdb4Gasc2yNOgctHDUA2bWNjN3gbaSJO6AvKrw8zYzZ0K7nmJnG5RVhYpt9oIHuHbAUcPGePwUV2cp9+slqZ6SlQXBwTJnb90jmDygymMqYaNNi0jkJBomo0fJZYNg2qe1e5ZJssC+kYKbsnN3n8OXWrQOu3izgEvhZZaUgV0JNt/yuHps008n7HBAruY0pwGmzsmngrmsSPt7rI1zxlbBBwaay8UR0yImjHJM7bE0W+ctr2J1npFXmjuB5LevnsOvdylmCQ2/Q1tVjJZs5g3J2K5RVw6PXP8azL5BrAPG04BSC2bzDuQ5svoBpX+9x/eglOLjH/84nU6Hj3zkI5w/f56f/umf5jOf+QwvvPACi4uL35c58ichdQTaSbEqh53DHq/MNX9jUmBWJW/IlF+IDvhb04pPljkLxoBDIXhUFqiqws8lmwd38bZzVKSYzC8SZy4jx2OebvJa9RQDX7NV9JDS5IHdoaVsmiVoPeCBXuPBvMnS7RWCe2covH1+zX2Bh67FgQ1fD+tkwkfnFW97FZP8JkaV0Du4x5X4kJ8Y3aR0BFUU85p6ghvmZcxwRLD4BCKpmFdzXmtMcQ2Tw2JEVVY0mw2EL5jbEzzbIgt6TC4/TuX5tOtLrKkV3J5L262djI0G5okz8UeAf1mo+a6LQvo+5WSCcCyEqYlf+SrCU6AE8p2/P7B9mkEDmQtM6XF09BBlmFSmAmlhCI1A0m65bDy+jDI1M7NJ2O+D0Dxx9Sx2q0UaHQJguT5NFxaXJLqEo8igl5csGZf5O/OfZCxWuR02OfJXMAqDcNAh7L9M1rpHVC2iTUWDhCU5IPFiMtfH8mu8dlEjLJuzW3OOmu8cThy9zE1rzO22Yjmf0FgPWDFjLjzepu86JGWMXwtYUgNiXSGoMIQiKxNi3QYHCh1g2xnCmpCXDZSTc5gd8KrzHRYNh7A+xZlXLJgt1nqKYfbXOdKf4Fr1Eea0cbXADpr4xhEfSL9AJ9b87+78BlfFMf/HrV9hvPkoqWlRGII1a0TdFUSuDZWJd9/CmGp0kRPMJZmsKFM+oQmzAAEAAElEQVTB0WCCkIrB9jHJbg3PcPn83hdIznTorJxmZBoI28bo9bE2NxBC0v4rfwXVbBK//jru449TvOOwmn/lK+S7u38Wy/I9/hwQVXUyucO5yS5kitO1mI85kquz1+kYIYGpeAGTz6SSX27f42w2oFMZrNYEmQr4++P38aS6yYbxgDVxwHoZ400+TD0do0RJ0pizLiPeV3+Noq5IHy7Td0f0zWPy+n3GZ75AYpkYskOmd5FSMpcuhqrQ7X1KXVIIg8qOiLIF7NoYRID0xqSyyZiAxCyZJ8uEhU9ldtCWwXB5hW9uriP6TYoohvIIYRc4RolwChLDZDL1CLMhVWXgBRMmUcCRNlDCojEPkFWKECWmYzDNS5pWQFFq0rjCVoLSlBiGwEhzzErjegbSkDhGhNZz6saUykyQfQ8VWKw4GT/nvgL+H4zc6qzEaLs0P3MGYasTR7zgJCEXQAp0XCB/RO5VPwiEEBhCEChFy1T8L1a6/NUFwVPyDZqmgSsF8TuOmlnxvY6atNKMipLyj3AdCiGwHAetNV69gQbScI7luFRFQTybUmv3vkeo0VJxcPGTqFYba3EBo9MlGjf4+Poa/87SItIsySrJ4mRMu3ib9eiIq1/9DY5NoLaLbccIo04/MAjdHmH5KYpCMK2tcWftFIUSzOIKU5aYWpOairzZ4FpDMhZ1brp10jSmNCsQCXnRx80PyRlgOpLK8CjMiI8NzvN0cpVN2eR0tMja3jnKxCacOziHAUXuMCtyQn1EoirMMkPJhOliztB3iV3Fbi1j3mpy5DS5eHNKY3cXMS+ZqRLlGIxFxiQPfyDX/IdeqCkzRRrnDCnJgwZ78wwzLTDTlFl3kXmrh7ZbbBVXCYVHnGkO4zrX9iRLLcGs1qYwYZqUlLUedzjFtaqDJRpsmoqlxlOIrCQQNqZfo2OnmGlC3WsgHI8CSWg7zCXYzgKcfoLmLKPlt/i1Jx/nK6d6nJ1vU80jBg0DbVnk1Bj1l5HCJKtKKqlYti5xu3Ga/9EEczrkrtdE55JuKDlKNHmcc2Y65MetBAyTTHo8cpjzS/dSxpnmK/oqx1WdC5NjumnEAzPAzgVhqtFBE88yaOYlVSQYjBzM/g3mxByPptTMBk+9XeB+vUE1CpjlHcrhFoNGSOBFnLfu8tPyIh/f/gor8x2KZh8nHVApn+u1C0w6EeFxitQRnjEjsy7x+vhTVGNJaUXkmWK31uSthxvkHcHBpkFZKM4m8HzgYtQtbEtyMbBY9yqeKx1aOzn9tk/g+8y/tkP0+hHJW0Pi68dUUY4wJOZSgLQVqmFTHCcnY01SICxJMUy+LwX+uy96f9TLnjIkVz90is5igzwpWdxs4Ms2O/eOvufnTSVR8uR3VPpks7MMk2XTZnz4PO3qwzzYnxOLOfW8hDzkxkRTn/w1VHEKrW1yMaWsUtzkPE+Vq2hvC6yc+3XNKJDsfeYKn/vpHi+unUPFU0QEOkywI00rXqbUcMv7Gm88OeFh7UkSVUMDM1dyu93mP73wV9k1HbzYIFePcuT8PLmycA8vkZeCLCv48OQpJv42X135It/pfIk2XWJVMjLGdKwmFAWVLRCqYpHNExuiqEg+P6EWX+fJ/bcx3CGuNSdTJl/LXZLEYT7tsLNzlbsPLiMHBnlkYroh8eoCbuuQ7s6cyRuaaXGWC7tNzhQZtbxk4QuHLH6nTvt2SSz7xFWKny/w4cWv8JicUphNvuzMKI0pnzJ/h4/fH/N/uP13qETEfJ6zNpc0I8k33QtgO4xqXZxzjzFpdrDsOiqFHn2KJGIsQ653HKZeiWv6SLeDzhKctEc4X8FvLTChT+htkKofjFXxPb4Xy7K4evUq586dw3Vdzp07h+d5LCwssL6+/m7T258WRylkalKLLIykySzTbEQGPz8ZsZSs88/LX6YfC8wyp2clLI8LjLGNLi3cCuppTDeO6B+VbA8DcuFwVLOYts/jJx7z2OB3hhOyymTHtzhlucwWPsKB12WWnWK4t8Ft/QHeyjbYLa/S3mpRmtAPHG4NznP45vN0ZEr94AZpuYftlixGI5b3t2hvfZn7nYRcJ9hs89AakR/tsSAXsYSBJzx21YhuHnAU7VOWJfMk5NgesGXcQwlNiUfYXeDB6iZPr72PX7Q/TUREYAbvNub9qAg1pmm+m2f0XZH93r17hHAi1CiJUAU6OUbVKqooAji5l1SCx688hioEttFkOLyFknNawVtUwqAiQ8g2RTGlSxezNKG0KISJrApqzQb52gLz2R6bTzyFYdvshgXVqRp5vYEpS2qlxknOo7KK1wZ9Tjs+ByogFB2aUcix/TKxmGClfQ7rU2o6pC1DSsekVIpNo0lkDXh1Maa7H/FbK28Q6JhF5xVeePFFGtOSF45NBk0To9FmJxD8hHwT0zQwNzqMtcnydI84j3l0tItHm3uTJvuiQtBEqhLPz0lTHxkI9q9MScJ79PYsci9BERAIk+bhJdQswBicZzt5P7PMw5FgHfvcKJ5FWkusGwa98g1OHX+H8/PXeNAKOZMkiHqNW50zfPvUBULb4fDUGXSWU8zn2FR0ZzWICkozZRYnCC05nNwmmUwxc8XQGZKIhLeyW1w3b4Bh0f5Lf4n6Jz7Bwn/2t5C+j2q3KA4OsM+eOwkTLgqKo2Oq2YwqDN8bgXqP7yPBZVaWlAt3qSrBirHDI9YcU45wZYyvclxZ0aFk0/A5GDyJN/J4wg0h1myWBzzr3+WCjmm4goUwoTp+AqPKMERB2Xobp5ZQygZGZtHz5nyoexNHR0Sr30b6r2DYLyHKJiVzgnKD9bUDFr2EavE6NQ2qFMQqZewto9UAlZpotU9W2bxc+yR3N9qMxSmO/HVyOpSG4isbj/H62gbb3RpyGkF5BHaIyGvMklVyDAwzJ8pionmNYtTH9iS7usKmRl179KwMVWbMTcW8qGgSIIDCllQ6pTQVlpI40sRUgmp858TpMB+TE1OzUkp9jxe7BkgQbhOVjMFpvvv5V0mJcA2stRpCgM6qEzf8O3k0QgnKsEA4Pxr3qh8kdUOxZJuc9Rw+3l/hUWfOqi3xDcW8PHl3mZclTdNACUFaabJKMy1Ksj9mb7RcD7dWw3Rc/EaTcDzGcl3KIieZz6h1OhRZ+u7eKhDMvSWU65Oee4az//5/wvjIh6wkMB2kMilVnacoeDz9IoVjoqTg6wsBN9wOgVORaZ/zpuCctHDTs4higYe1DUa1DtMwJTMDDJFTpgV5scTOhbNcb+bslwEvJy6/cvWTbPdXwTZ50O5DMUTLEGlUaB3hid/hI8lN4nyOHXmcHVykNl1DZgYTHZHffwSdVbSDDNOQ5FLS9EOWi5fJxBbKKwk9n9fWE4arHWZ+k+DBEUE7Y/Xgq7w8DtAtm8IQ1I3mD+Ra/9ALNanR4LjuUErQdoCYT7l09ACpBFIUKNen5p7izdkimetja80gWGFl0eB96g2Grs3UKAmrJhv2MmUp6NgRnzAm9KRC6jYoi/2VTcyVS7Qsj62NCySnHkVbDsqysGVC4qZY9i16D+5gJynr8yaHtSbT+QShMso45h8/+QGWsza+3WCoNZMoIVAGB8JkF483ujYP2x1q9jpXUotWGOGGBbWyIqhCfCeju/sa9fmEcF4giopTw4SnIvBtn55dsTk5wtEWwnfZaA3JSkGKpG1WpHFIGWcMbjq0vQw/rjhOI4JGxbRV8YAYdVwQGi22zzbZXa5wDZepv8RmadCLj9mMtpnWC5zymGGqOY4V2C6WU0OUOZ4JVbXO64Fk5Cj2dUGZCw5zm8hR/B4595EEGjwE00WXJz9xmnbP4QPdOp+qX+ZS3Sf3DXRegYb8KCK+doy92aCKC/KDCHMloBynJ1XcbYdyliFshXANjJ53osT/ESNOfxzfFXCkkjQXPBY3Gzz7iUdI9t4J0fyX9i2BwFAGNauGVJIzpUHP3EJl67w16nIvvEGYjNhxhnxN/B437j7CeNLHwiA3BhgyoDlZ5Zen58mduyxkHcJmwYNFg7939DUuFsvUpYdtZcyKAL/KqUa7qNhDWCX+dgymTSItDLeiCkv+9mWb2ZJBoRcgWiGyYD+pUR9cQBoV24FFLHwkCllkNOUS37a/w7QYsZDUwZOY2iVJMrw0Io8TZnGJCl200HSLgrkWfOnRAiuOGak9rHyA0JpcKJLoSeJ5E6EMJrpFkc7RhY1tzYgX65RP7DJ6qmLUDpklpykH96ikSVdbqGlJsg31xGaSr5PkCi86RWNY4yejERQpr8xfYq/1gJjXuaeP8YsdHL9koYQP7mbsNGw2iinvHx9wLinZbUQk2kXlNtfPXsazlzHsgjQeM/Mkavu3SSb7WJnAUgbNewbpPRCVRZxLlOnj1t8Tan4UMFVBGUr82MM3cuqGifR8GlLys6HJcScn91Oup5/kghXxl+Xv8nZ/g1l5jmqeYUlJ2w346KkLbPc/itOYk7ivk7Rv4Xkjvmz0uV9WHMcGhhCcvddhRzxGIlo8/fZ5rLjBnm/yLzLF3z/+i7y4n3DHq4irjE5Ds+bVOCNHfPLON1iKSpSXYlQJq+Ece3zIHXuGXmnRca8SBiW57xPWNIko6IgOrTLETiR5nqJMSZzFiAVB7Kb0e0ssJ4K6afBKd4VHOqd5uvkUw/AY3zzJifPfv4TRcf6sL9O/FqSUSClJkoTr169TVRU3b95kkiTIIECXBRRDioOb6OnrTH/zswAnVvusYn1xFVGCqRq0Wl9mY+NLtJsvU+UarVPKsk6WjxkfTrhy8TKdRoulRo2GKImThJlpkps5QkqyLOYrpy/zX5uXqbwGvj1FxhHrt038umTn4DzeZJ27xSJvJZs0dc443MBMVtmMWvSsBwTGAUaV45l9fFtzXtcJBAyXNgCTI7PCkhFPDsZ86Guv0RJDXgsjikKzPxhAqXEKjZAmVcNllyb/38kz/L3q53DTnJFe4TjtUJJS5n3yMkb5IaVqo+wpVvs3WB4rsnlFWBq40sVEo6cOhSup5QZOVrEVOtiOppNY/LfJpzlW51nLc4zyiA8OXmSv+Sh+8SoXsoS5MolNuLt2Goli7l3k1voZxklCzbLpkrIeXYZ2Qj02OR+dZ3z8kKp8Hc93mZZTZsmMB3qLPfYoAf+ZpzkYj9kbDgEwl5exz2xi9LpUsxm6LCmOjsh3djj4L/7v6Py9sdb3+F6iXDDITRADAtPCrgyM9hFmMcIRc4QYEJBhSoFIA6LUo5ydpmneo+Me8J+7/y8e927QDCWm12UxllRlh9TrkaoSoUIcJyZPHdTumI2zL/NE4zayLNDKx4sLauIlqrQGVYA7PU3D+SL/59o/oSv3efzhLm7dIJE5UdQk0xOs3SlC7kMmmUfrzCvF0UTxD9Y/xb5aRlsGPb/gCZFw3ZTkORTLHvXVL/O+8nWy0kQKG9uoiKOAvcGz7L7yGbLJOUZJjiMNrvoW57ycrqrIbQepoZlv4mASmYJMVmRKYAqgEuhKsyOaYBmYxYTflSFJq8E03eM1XZx82G4Laotg/EG2jE6Kdw9cEVAlxclzvPwDR00V5Sctrn8O89T+TXIxcPgrKyduJcNo8JNLZ/iQ/BZNQzHOT67BvKgIlMRTkmvziMMsPxFq3nHc/MtYrovfbCOVYunsBUzbxrQdyqIgCUP8VpviD++rAqRUWG6A021RmW3iecXxwzlHWwlSOExFg/2VxzDSkNIsKNBMlMU9vYSpEqrc4MeE5m/eyjlSgn7eRBQ1/EIjy4LCdJF6DkXF1w+ucuMpm53uKt+w389hoik3IwpXMLMdfjsryEyNYZZoaRKY2/TVARMn4e6ixBAG/sJ5KuXx18cxT+vT6MTB0GBbEcueydzzeLF5lX4vZF5OCJXg1QvnCNcU+aLN3HLJ2zW2HrnBYMXkjqgztiP2xZB48kMaJvyDZte1+HuXuiwohaKiTBMM2+Co2SPMIiq/x5Jc4OjoDi+fu4zbrDOx26z7Y+bHimg6ZS5zZkWDlURiBy5yAxZ1yb14wLxQTK06m8Ypanafxq19Xr30fl5dW8aza0R+nSOjjVfZpKXPvW6XV888QikC7HlMLZwxqzXpJjGNPGbSWmbYCdBSYzoSNZvQMFx2OjZDA7KWT2a2OHf9syxXN3lgwEo2xrMVs/Yak2zMI7rBcjJEiAzhauq5pqnGOHbCVJv83qTDXE54cumrlFpQiJKuSihqmrIs2auBeW3Cyu05oVtghvcxGprthYJomvKlcx/gxY+eYr7okVUOX219iKV4n2Y55335Q6bGlEpKQtmmyCFPDBzL40DUeEucoqpMvp4mXJMVjzY2qAdtTi/0yBU8CAuOk5J+KdjxJStxxRMNj07Px51UtA4N7FTjl/okh6Y6qeLO90PMlQA0xNcH2KfqFIMY6RiYC97J5m4qpGNgLflIxwDzT758hYAzT/Torgb01mtE85Q3v7XNfJx87/chcJVL024igKZpEOhDnrs8xrTvoCbH/E7rG7y2lDHwuvy/yxm7aYSFJPbu4HAKVy+gw4sY9WMauw+4cK7H4HmD3eE+e8Y+fVsh4gF5KTBGt1jMdhEzH9NNaVlLtF7dJcljpmLO0jQhqEq2pElTQ1Sfca39Nte9KWmWcsOb8XdOSw6EwsgVZalZTs/yMW+FR8xNlrducRQc4cwaZCplSkJSlphoLG0i/RoX5vexrJyRlaJ0ji1g4O7RFlMuqkP2txZIYoVC4WQtHHpo7SBEyHh+RNyIyc/HjC+uE41mxNd+nyrz6KcWZtuk3DmgmRREMwNd1AnSOuPCxB87rI+PscpdbnSvUdoDyrVjSsui5YYE05DUKrhel/xvHhzxyM4Ol8KY361fQWvJkWPyL9a7vLnUJquOUIZi4WiHlc4F9g2JVB6GUMhByHG7j4PBzdOXiFITUX5/1sV7/PmjYIZOuxDP6LRCuo4gr+cc9dusWSFXm6/wHfURbqaPU+Mhm+Y3CAvJdPsFZnWLynVJfRezvkc4XaDXeYvEkBSlSZVXTMd9Hpl8gGFqsHDYZuUNxafeblCL6jRGTZbSZ9jWmjzTOBODhjNk4SDmA6/9D1wxvs1FVXHVbLJe5ZxybIpOiq5Snt6eYJnwyfkN+p5FY7rEijhHfOFJ7rDPSM5p5k1ElnNTb+NWHq7tkoucy6cv8wnrx/j41edYQtE2DWqGom4qXM+nKisC66Qpw+y6PzJ2ciklSimGwyHf+ta3yPOcMAxJswzr7Fmk65Dd/jxVPCK9c5v05tsnP2crdFpQRTmgce0NNB/h6OgjDI4/SjpvoAtIdZsoHvDm7j6v3LxNlaUEnknDrfj9e79HlklS12M6OCYXFhUB8UxzVdiY9WsYSuMnx2TdfdrRPpNxmx26fDtaxS9z7h/0COYtlvQeXa4h7DdIyiahrlG0Q8zMoGG1OGxvEj35U4x8C+UaPHWrJLA0RTJjVkb4VUg6nbBVSt4UZ6m0zaiCHdGlpcecMY75nehZ/un055mkfbqy4E25TiVybC/hqHCw3JCmjGjLBUxMjmcH5PMJVBGJTDksB5h5yaZT0TAEppPTjzVgMzRWqYkdKlvRzga8KDa5On6bxawkU4JR3We0sIhZb9OpbbB9+WMUFXhOA2Hs4hy7lOY+i8dDNiZdbPcchZBUQjPLZ2wPtknchEk+oShyEIKDgwNeeukloijCvXyZ+qc+hQwCqjhBZxnFaES+u0v0rW9SviPovMd7fJeuqPCcGJkPaKYerUgRl69jlCE2EwpxiFmVGJXA7dzEWvkWo9BDtN6kxR3i1jKCGmq4yUZiYCQ5FD6/3v33+NryUzTyAKuYkOBRiGUC+w6uO0OWMCl7lGmFVexQZXV02caZnaMMHnA6eQMlZpw1XyJY3CKXII409tjmbDLB1TZJaGIcFRAZFDPNF/xL/H7NJ9ElgbxDc7yDO60YNU+Rtmw8b8bCdEKYZmhtYAqH2bxNLhxMZVMWDqYW6KzE1HAha3BquooILexK0pov4QqLodZULY8ysPAdRakhrzT3U5NCJ8j5HkOdYbd7+DLH/m6+jNtCN9eoCol+x+FRxQXSNUEACKp5jvQMBO84aqRA59X3ueXf4/uxpaRtvpPtIwTL3RdIJ98gIGKUn7hN52VJYJzk2PyXW4e8OAmJy4q0+uMcNS5+q4UQgv7GGZbOXUSZJmVRkIZzvEaTqijQWlNVFUIK2istnv/5v0ijGzA5iommIa994WtsvzlDCJs894mLY6qp5lR4n3t+jVQKjtUpChmRpTZq2aDyBDP9ALvosbE1J4hLakZBhsAUGZWw2JkvMEy7HLb/Aq9bp+gGmk+ufo22NSTJFQ90xrFUBJWiEALPH6GKGn5e51xqQR6h3CUS02M5i3i88jGUha8MeqXJmhMyUBUvh0vMvAFRJShlzhfPzni2YeFWFpHlcnjlNK+fGvNrqzGJqSiFIGzwfQf+/7r4oRdqmmXFfaFYKyqc2RTZ7vFPfuLnuHv1EqHt8LkrjzJoCtLVNe41Fxh2V5mYTXbFI2wbZ0l8j1AnMBtjZfdJmh2eij/N1OvysDgis6DpOJyOp+hQs19b4v7KGXZdm+Y8ZlZr8urqOgMxI50HfGN1k1efeoJrLc2k2cCvcu6qZfw4ZjUWfKXX4OWaSeG6CNtDRDGWMnjF0ShLkliSotylWTtg1M743HDIlf1blMpmbLVQp65wJQw5N36TxBiS2DEDqRkLg2c3/glTN0YjeKQzo2kfYHdTfuzR32K1/Cz7G/tEgcW3Vw7gyOXM3Cc0U9xpgrk0x1qzyWyb3WCBh9kETwu27Mf5gvMU7ek2XpVxen6b0mtTuQ102ABlM5lsYsk689JgHpxDVDbPCJMg1axoH890aFQmH1QmVxybjpCcMQxeLgse3c8wP7d1ophX+iTVPcxBQzE6aTtRDQtzJcDouKiaRTlOMPs++WGMqluoloO5FCCUQHoGRt87CcdUfxqhRnD60S61joPpGCRRxstfuMub39j7Pqu0a5wINQCOb+BKn5VgEbs1xpj3+W3/a9zwZ+zce5rZvGR/GKONR5jUv46zs4HXWcOtDIRxjGWfxuABy7Vdfir/AEdigGg+IKkiXB3R2j2iv/UqpnkH1zpCeYtUvWVs20BkJh+8/4C/8e1raC2wjYSvLrf4L7tfZ8s9IAsKrtZS/CpD26dwVR9TNOiWAc84R3yqrenHEa/o79CaLzAzpuw1KlIhaHoax7CJTINgPCQzcmYyoTJtzKLghrFF5AhEOidXUMqUMhfk2Bz676OsXGzhI60CoSAvSkpCkvER2gQKB6+smP0lTfrvNPCzEKH3cayQjfUxR84RE6PP84M9nhdL7Bj30WZM2zzguHMJw2tQVgX/bDrhTlEQREuY+QKrsaYoNFiary8bfHIc8c0Fl4NkD7O+THV8BMEGpfKxgt5JFok159oTH6bwnmBp/z7XFgLCfP9fwy71Hn/WuLFN9eBRyFMa7g6XPc3+Ysn9tkNqtgn8bVJHYi4csteeU9hznKwim/scnIt5aekK14vnEUaIV5/jN7Yo0ueoygbkAud4mc7h47ycPsKi9xJWq8AzM0RaQ6QKN6khESyaJrPBlE+2bnN1WrG2+xaf+MYRVpbjhzl+HOEkFUfpAKXmLDa66PXLBEdHLBcLRGbG2qyHc/oijTMNIhVhJgZBGWAGLqY28Q2fQhZc7F/k05d+nP5Ch8dOtznrOTQNRU0p6mf6+G5wMvr0I4YQAsMw2N7eZjqdkmUZcRwzGo24lWXIWh1hm1inTpHevkW2vQPlieW+ikuqpEB6FkF1ka75aTrtK2h9if29M1Sl4IguliuITZNZGJInKblTMChytg/uUWUGcavB9oMt7nYuEkwz/srWV1g5jpGttxD9TdL0AUn6OgvhXUQcYpsGt8ZLeJXEsUzAxjLeQlS3aSYlGzs1ptgk7gGyqhMYC3TrAdbG82jboTRS3GlMtJgRzW26peSX3n6Nnzh6EZXPuOGdQuHjxTGNNGddHfCYe4/jTHF91kXqAC+rUOkytm3TsDXDpELLYxyRsrKWsn6xJIqPOCh32A9vc39yDW/4HUozItBDNt0ZtprR9wVrouL+vI9jvY2hIzIRcJQ1CIqIzegh/8HgnzA1DWIpWbcU31KaD2Y5NaPCjCTRQYWe/h5+doA1jikGQ6p0jbTI2Cq2yXXOrJphWgamsEirk1yENE25efMmg8EA89Qp/A9+EOl56Dimms+RjkO+f4AuCuLXXkcXxZ/tYn2PHyos85iF4k1kMkdY+3QmN1DztxGW4rJZUXhjqDSVUSKDHXrdHVYu/fesWODJEdouCSeXkH4TO50hCxtJwXB4CUdGXLi9R9OMQLlY7ib+ayOsLANpcT91mWcCMx6jqx5V0kBO6zjJCm42xSIif2wHr/YvOEwCZDRndd/DSmxqmUcWu1jHU5zExZrOMYucfHpIiaIsBWRjgvkRv9H5KIf9OnmwSpXH5FlJmRnMS49wGmCGdRzboCgrFiwDs9DISlM3Aszc5/xUUVOStUrhlJqdsuDQcpl5Jq4QxP4c7Ij3X+iz6IbIwW0e7bgs9noEIsM2JDqv0LVl2Pwos6/ukW3N3ml4ypG+cXJiKqCcZ0jvu8INJ2NQSrwn1PwpMM0W7dZzJINfZydJeXES8jDJWLRMXCl5bRazlWTvjkB9l+/m1wA0eotceO4FEIJ6r8/TP/1zKMOkyFLyNMHxA7SuiKcTXvmtXwdd8fSnNlm5uInftBnuhghS7r3y26RhhhQeptVkOrhPMXe5OrzGq489Rtsv0boiETbf5hn+uVzk/3bBYmLHFFvPkMxX0IbCyhM0+mRNeS3Gmcth2EZog7q5T9sNMSj49p1nsWclkSy5FwtmHLDt5NjmBJFLzKTPcnbEQS1GhRWFENgiwnfuYDh1mrj8L8cf5P3OEUu1MefWv8H+zpykcvno2lv0aw8JUo0VQWFq3jq7AGbCHcOh2c/oTeBsHGLbP5j7zQ+9UINIWcgjTs0zpNbcvfgUb/p17rTazM8/xrKheckz2Vq7ysWt+/idZ6i5fb7oP8o91QTHZ2rmeJaFmBxSFBWzrODL+hapLDjwLe7rn6C8+zorr3+OLV8yMVMq2ybYvstkcZ2pqXjJ3ma0JnBtCz0peGCMMW0TWh365RI66FLKHg8MWDYEoeXxuVObpH6ATObckxWnUwilpogP6TghN7wAp5hSe/AaibLYMlziNMEVFQWaW8WbHCZbJPOIahCybk45s3iPup1xVb1J352zuXad3F5CLh4yNgfsmQmJXVHFgu5UkFY5jWmfwprRi1zcfptHi4JDneJlEf/dynNUhkGQHGGIFrV4l9y0yawm86jNdfM0b8+fY1KtYBk21sp5lOHwiFbvpGVLDCEp5yVeoQmEpFEJrjZcdlzJK482KaKc9P4EpMB95KSVSTVtylmGTkuqsMB/auGkQrVlY52uY282aP/iedxLHVTNov6JU6AE/vsWsZYDzEXvDzb3P+mSemcMSimBIU2yPOXB2/vk6Umw7HcFG9f8w0KNSc2o03LaSOMux+GUMDeZRA9p1G/waa+kHBtYRysE6ePotZjBqV8jX5xRlhmltYRVdNkMH+fHyzM48wVIBXGRUEv2qQPedMrGm59FbF0jnwVIdwEVCMgEc+Gz5HRZKFNi9vm2b/EXRj/H0x2Dm21JRYY5nzM2N/G9JbQMkCgs2aUmX2Hr8T4udeqyhl0ckvsJlqeoN4+RUpA4NitaMLcq5jpjql0cXZJbFfuNANv12bKWMaUHuUmmFPfCGpgmuV7A7Ni0dYNit0OVKez6iPgXT8QwVcuQZo10M8A3akyNkraXsbDyLZSdMrQq3hI3uTw5R6wSEBWJtcW3+x/g66LHyLLYnkI6jJkYPkKUeKVHf1KhdMmtuuLHH1S8cARffv4n+c33f4ijU2f5R5dWWelewKOHYVtIa4/E8DmwFrHiiNFMUOL9q+9R7/FnToZFWtTZcrvYasxVo0tStkjocFucpykygtYQq7FF5IZkZoSnY9zmPr1ZQOU+JGmFZJam8eiXKWu7qJtn0UWKaRps5Kdw5m3eOHyaaaGwrAjDm5NOG9g1CxGXyKykX1ZkRUbDGhIEQ6puAzetTl4YowziOTIr6Lsr2F4Dx92E+grnxRr2MGBiDclkSWNsU3gFqZHSLxssZT3spkUlKuqFQ9tvcaF9ge6FZayex489s8bzrYDmO64av9eg5tffddT8qGHbNrdv32ZxcZH5fE6apgyHQx74PsFPfBJVq2GfPUO+u/eOxT5B2pJqFlPFJapuktwcox/EJEnCysoqy8unKUtFMnMQnmZ5sYunUhrdEZqKQdplQV1EWnB7raK48hhRrUk3nLEkutSrNrXI5HprkYklcZIC5yhBZvcwei5qHiLCgsWqQOAwMTSJkWAUp5GDT7KrPbLalKQ5picdPqNeoZ+FdLXDsRny9rLJqCY5k4X8/Og1Pvr6N3j/jZtcSX+bwjjikUGP06MD6vmEM2KHmdvh/eXrlNOS8dBgMHk/P/ngRawwRVQjlOGgRAnCYel0RrM9Jq8itvU+DyavcFzmFGKHdPplsrTPQpnhJHfYsBXva5SMi0VI5iTC5lXxSzQSm1re5InpP2Ol3OWsrFhkzuq8pOFJTuf7NG0BM4HVfgRn7RHCO7dIrZwyHVBYktzWVEqxpFfwmiaWNnGly3w+BX0i1MRxTBRFFIOE5OYI6XlUaUq2s4vR71McHhC88GEmn/1Nwq9//b3K7vd4Fz0S2Ds2RiUx0xSjiGiae2SuwdnYoGpMKStB2DzCCDt4w3NId06XgsCeEjpd2qVm0bZIWeJgyUJ4h1zSYxZzC1mYLIg38HROS5voPMQocyrLIhIGpeqiZJdk1iG7cYVG+UU6Dz5CRYCX58h8h97eW3zswTUa1RZGmRNN2gRTTYGPiDPm1zdRkxkBms7RfbQ0KGWL96k3qTFAqBzXksyzBXKZYXsmSSyxpl0c0aQauxi2QV5VLBgKF4kqNKY2sG1FLdPUlGS+G7Hq2wyLivm4wG3ZGIVmXI2wil1OrdZ5/5Mh5uG3+Kn1s6z0O/giwS4qRv/8FpXRh0d/iXwvJLk1QqMp5/lJi6s4cc+U0wzpm+9eH6EEwpAI5z2h5k+KELCw8BnOr/wsvzuc8V/c3+cnuw3apiIwFPOy5GGS4SpJ+odGn16ZRnzueAKAU6uxfP7iu+9IhmmhTIM8SQCBaTtUlSaZz3jt87/F+GCPqky4/uUv4NVNBrtzmgs2VT4inR+hZItap0UynVLMfTqLBxxvBkg/pS4LQtXljeAM1zPJa0nKUGegBYNkztysMKhhEyBLm1Fm4ZoxjmHjJhWLfkjNCgkLn1ceLsFAk6LZ0U0yAva9DR7mx+Q4ZFUTUdxmZB7Ryyuapsap5sjokGW5QD2t084lLQy0CLlZfIu5GWKWFkv2LldnAfXJBC88omanjJ06jjSQWYu2NeLCjTEfHhiYP6Bykh96oUbM5jx+tENnd0TmB9xtL1C4PnUk+6ceZeP1V9hvu0SOy4XxhLlvoVB8efMqk43zPKg3mRklueWRTHOKSrLbMLnfbNGzWrzm2QzTdWamy90LmyyZy+RFHTEZEisFTsCjd2/hBWsc5yPed/c6C/O7FCJnY3LAPa9FJgXb9RY7leBiUfH8zKEh2/ipwWpm077/BjiCs4mmpMIIB+RunWtOwMX6DLfShKZN2GwjygojnREoSSJNVBqxN4p43r5GHi1geiWf2PwCPvdwQ0GHiJf2HiPpZqQypL9vslH1mJkpjmnjFSbiyMUOu4xUnzc//CRXdt9CCY+2VmjTwO8cgluRFGcpnICscvjm7C8ynXnsu4vMZmfZGq7j+TUiSqSvsBEo38CXEpGVzEcpdlpwSkh+cSboIvE7Lo3H+1iLPjouQIC5WsPoOJSTjHKcUs4y8qOI8KUDkjsTylFK7YOrCEdhLQcI82SeVXnmSSr5eg1zyaf2wuq/8tqSSmJZNmkWM0/GJPOT2cssLnjtdx/iKZ+6XQfA9k1e6H+Ei+2L1I2CWuM+Knw/x7OCRjBlt3ud+3XFjdNXqO3/VRK2GPIlynqCyK4wyRZp7X6EenwRo7dNL+9RDE1yx6aWvYw5OsCsG3SjkFYaEXUCasUSY/OQe2e+xN3+AQO75ML8DcbFQ+6hCVSHbFTw24bDgR/QLTVGeZ4r6WMUOkBpycJohWL2CImreCJ+jiUz5JHxAdJ28Y02teYUMMmCGuLobeY1gWka5Kd8zHDOSqz45Oe+SOl16ZQjVOmThILCgKyqEaYlSdamLKfUB3O81wPSeRuaI8b9BxDOKY2I6VwyFBamVkzKOZ4co9VtWs6Em83rRJmiWT9A6wQx9cmcHSz9Mq+XayxWGTRMCDPu64rC2seaz4hHCYVtcGwKvFzx4dGEv7X/JpkM2F9Y41bNJF27TN/oMjhzjm8/+Sz9UlFiM3ICvO/kqMP3Rp9+FEgQRLi8bgdUWpJNG0SzJjfGS5jNm3iHLaT7ELdzE01JyQyrjDFrE4bJBWTsYTTucKA2aXYm5FbAeNgjzVKUAc6shlWA7VnkUQ3XjcjyY5JpwL5ZndiJjxLOKo3vz9ju3Gbz0leYuj3mRUVVpFSWQGcxFDH9qkZV63NkztladOj657HDkDiZMNMRaq6YH0woTRNRKfzUZlfukpDQkD6bC5u03NYfZG8JgS0FpxwLX0mkkPTcHray/+c/vD9nCCHo9XqcPXuWU6dOMZ1OqaqK8XjMHDA3NvCeeRr73HmEYaAaDar5HJ2HxG8eUOyHqJpNMU4wS8l8Pqder9Nud8lzyWgqKesrNLJ7nF55i1b3O4gh7OpFZrqJ4ZcsNn2yR54kb/qszIdMt+7TrAzO5h3y2REPH/sxdF5RVQVFtEMntPlgfIBKxrywv4+R2BTymMjIkfNzLEwcpF5n3rzNrPUNVihYE8eYmeCnwydYDJ6htfpJxsEyT5a/y6nZV9m/conb3aus33wZM8ywR6s8+53Ps8YxK3bIfdXDN2KcuCAID/ji6Bz3ZjOquccxAw4YovIGWvcodEy5fZUFFqgqxXB2TKQkrzdOUwz3kNKjmvsIOcZOKpbSgiuqZKx/nr9b/FXe1Je4lwr+dv5hXnI+yKvtZ/jocACljZn6dO0IKgPT8SnbTZbnCdLRFDWH3X6E2ZqizhxRtJp491d4/vBTdF4a0ps5ODjsTB5SVgXhdIppmoRhSDlMSO9OELaN/8wzjH/1VzEW+uQHh7iPP07vP/qPmH35Kwz//t9H/xF17u/xbyGGiXBcpLSwd/dQeUbluKRKoIRHZo3QoiRpvYF3dIng/hVU5vK19uNU9RgrfpTcOkCZEmWaDJsTDgObjnWPcPcUid/Csx6wOr/F4vTz2BfPYYoGheWQFxmZcMmNJbLcIht4ONl1dKpI7XWMZAZZnaJYJrKe5AnntyjNhMm0RnMYorFJAo978zZyNqcmKuz4gMp4SK/3+wiWKMJ1agKqyGRvt4+0SxKnxrXsIjpukxYbfFVbDFwDxzPoSEUNjSpKirhESUnHVDQtA0PDaaXwSgiGGbtRwiDNGdoK5Smko2gsN9HhhCpvg+lyYanJB5VJ9nCGzip0oRHmSfmHzqsTR01gneTPGJJykp44ar6LFAjH+BPlT77HdxEnjXhuj9tRyt88vcgnuw1A0DAU5z2HgzSnZxlEVfWueH1tHnNjfhL98EeVsSjDIEtiEGBYFroqyZMEr9Hk3ivfYevaa9z46hcxLEGRVzR6NnbQIhzvIKoOtlPDqzfopT6ms4MyKnId4aE5oMZceVzc7GB4NlavQ+omtLwaoSERdoZpxgy2+0jt0rSO8OUBci7pO4dYKmKSLzKiwdfffhQrcSh9h72JzXbkMUnHZH5AtPMAr7rFlfw3aBgFCzrFVJJq36epLdysi1mZ1HgOq/RJgLRR4Bo5ZAOeiWpY2RwlClzT4/polXFymVZWp/NgwnRjhcGzBqLl/kCu7A/9f0Ns2swHM46jOdvNLkGWUCtSOrsPmIiMC3g4xzvMTItTTpNxXHBlMaAvC15rdAnrTWZNl7lpElUFN06f59u9JjPPZS/w+U6tRdRzuLvYZ+T3OCtWkY5BLc+4u7xEazrAa9nElsUUk02nhzsaUgRN/OEYSwZM/JzQc4hDzc/ey3jkgebcw9t8/NqXmBctxMMHPP36Pk9GYOmSLE75b53P0JYNTscHVNOMPQxSw0JpQeP2Fmku+Fx5ln3VJu1anBNvMp+4mHrIYv06TmtG84FJdc9jftRiZ6TJZcSlFwec3hdEZsnYLjFyQSVd1BsBs6zLT+39M3559Ks8X4zYKGM+bvxTns2+RaHq7KmKktMUWYu94SrxcUpsOByqhPtuizsXzrM7isnNkjyryCQUWYkyHOJpildqrtg2V8clRZTTCCz+wlILd632bu2eteTjXume2Eujgvj6AOkomp/ZpP6xNeqfOIW1Xvtjg8SEOEmIl86/etiYkOAFNo2+j7RLZsOTzWp6nPDWN/a4WnuMK90rADiewSO9i2zUT/N/+sB/zkcvLGLpLlm4wWqvziviRb7sFXx2FPLfL3cpZwVCGRR6iJE10OUiVriMly+RqQP6+AyDPTLf55bvYo8GhM89yvBDp9ltN5GL36S38irF4IgzR4pVYXNvfA05f5G8HBNruNU9wI0tBh1BlfY44/apiQbNWZsod6nyKa2tOc34Ih/STT6280EMU+LGM+JQ0XhwkeT4Gd62b3LHLyjGQwZ+TtNqcLtxgJhPuXLo0bm3h30I/XhIKg8ZNnKkqylTlyRuMzzeRBMTG8uoxEEX6xSbOUIZlIcFZVIQTkyEkMg85z+cRDyRuVS4XKi5fKfxeS4kZ1D1OzSkwc69kmEecuo7Ozwxu8dzaof3H17jyfoD/hsj4184NmXuc9qw8HOTvaKCssC1DkjCGCczeLN3Htsx+eJqm9w2uN9oslXzWdMCK9OMF1cwDI/S/NEIWP23nVifjIfuKwNRGeSTFuEsILrxNPLmR9mfPkkhYqQZ4ZZn0aKFVcUgpnzW/gxv77+AIYbIfBnUISJXvNlfYNdfJJ4FxFMP7RtcyWaYRZ2iGmC5R+wbC2yZJXHLpLkYc2Zxl0VzxlZyiMhzqjIgnqWUszHIkqrIyMopfV1QOC6RWZIWNtOa4GD8NYSQVI6gdOHQmtJ0TmM6PrGZcd+4j2VZLK4u8cxTz6LU92bOmELwn24uvSvUPLXw1I/k6BPAhQsXeO6556jX60ynU2zbZjwek6YpeVHQ+Jmfwd7cwOh0sNbWyA8OyLeuk7zym2TbU2RgUo5SjFIwm82wbRvXdUF4tAyXojqDWV7DcSaUpcfo6AhtOIR5RWxE1JXDLB7QziOmRcV0dMzk6G3WyzWWt29zr2fREU2kbVIlc3r7IzxyBJokSqlmkslSwLzdRB+tUrcGPHJ4gaq4h6xCGrFDWURoWXLu4Spe7zmuRu/DkxfpTe9SnPMpcpuL566wrC5wbnbA83d+n0m+TxynXO9c4nWrS9ReJo1S2kbMW4MGt1nENjoMZRc/N6nSFkLXMJ0SKWpcujxAdOrMFyy0oRkaFodnNrGNEmVB1JEUArKJhc5NhukVDorHyG2HQi+yo0/zxfk5utMuHzh8m8TuElstivyAXNUoDZ/ZYpczYhkZgffIKcJmxaZ8jHtRj1L5zL09ilBQH9ZY2zVYzpf5lbf/PrfvXuP+N34P0zSZz+dUWUk1y0BD7cc+jrRtrNMb6DBE1etYa2tkd+4w+9zniV955T1XzXtgGybK9RDCwpxNkHlKJQqE2cWoFKUoqPwM7R3gTtYxZw7+Njj6VXQVIw4WSBCo5bcIOt9kYRAyCDPwj5DSpzRNpDWjlVqYaQfdmGHMBYUyqZcRWmiimkUhInw3wVRHHLcHlIaFHRcY5YmIs39oUM33GY493qxd5bXoCa4FT/Dl1Ys88DqEgc/5/BjnQ5sYjRjfm6LtEkuA9OfEZcDXD3zqzRF3Y83r0VWOpMluZtMsDD6XRJRS0CwhkAIQVGFJnpV0yLmIpNmwaE0yGrnmoKX4tYf7jLXmTmMT5+KzJ2JK0Kc0NykTC7wunWf/IqdsG6PloPMSnZZIz0TaiiouTkpA7JP7ljAl5ThF+X/gnjl5tleIP0X+5Huc4CtJzzLYdO13hBdYsAw+2q5xlBX0LYMvHE/5zjRCa83tMGH8PzEiqpRBnibvOmx0VZFGIetXHmP/7i3e/NqXMR0XpSBo2PhNhRu0GB9MGd36OEd336beX2Tl/jGd+DRP9C7gFEeIpOBYLuHHCZZVoEzBXl6w44Ys7u5xq7+G8I7xgkPMdou+bdL15rTtkPnIoG7OKSvFOHaI3IC71joH0wLlzxjqgCQ3MIoZ81KTbW9Rm9+knd7DZMamlVCYywSOgyUVRlJHFSbB/uMsHV3msnUBjAzXiNFugVyJSE/ljM6cpVdt0RQwHX2UWqyYCMmvP/pj5FWBlD+Yg7Ef+v8GqRRmlTNXIceNLk4SUZuOkFnGwnRM7AQ40zFCCvwQYldy3DD5yGBIWRRIx2eCJl4/w+jqM7zeWeJrdZPT0YT1EPwk4YFcYdRfY95uM5MJ9UDTNhTXLj3FvbVzGFnJkd+ipl3Wsy52rcOG2ccoLFYKh1GVEiqDoDCIkgqdFSRBi2laMinGOFXOU9EMR6c0ioy51eSbYReRT5CVQhgWY2ViRzNCEXPbj9nKA6bS5a5weWHyKhwrokGJzBOsog7awowF58L7nC0nJLmFkD7mrGD5uEL4PkMzo5X5RKUishw8L0EcVFhvz/mpcsKF2R5eecRqlpMqjx1hMrGXEEVAWdjEYUGmTHZUye2Gx7Uzj5BqyLTkqNLM0xIrMOk2TppFrIbNWakoq4r9KGeh5UKhcS93sdbrJ2JNqdFxgU4K3Ctd4uvHIATSNv4n67V/EAgh8Fs2y6e6lCpmehyjtWa4O0cowaJeY622hhCCxTNNTl/tYiqTy53L/PIjv8D/6rkPIdLTnOq0aXgOKwcpPzE12Ekq/OrDdLsfI+zeJJss4Zfvw9ZtjKiJShxOLYZc8d9EGy6jXp/Yr/PSk0/z2rlTbF14mvfd+BLKeRupY+TuhI0HE3pHHqfGNT5+16QuKqZpDaEthnbFNDBZzT28UuCmmiISZDVJ6MW0YoeVJEAGFY5hYTZsqrKgUpJv6S065SpSt9i99AFuNUJc7XGtdoxtJHTGKbIseezVz9Hf26a/fZ8WEw7z++QMiecBs9ECYHKr3ETWW+TRImnjkH7SoBQNjMLEzDsYyqTK4VRmUIsFQejREyM+kj/NBTmmrM7SFi4vKo3WOc7hAf/+/J/zuPsaH27f4HT/O2RK85IOGJQlHxqWXN1OkbkmKhKs5DquMJh7MAk8sqzk9YbNuGExbdQwiMiTkrhjsbV6GeU8g1bNfyNr7T1+sHiFQf3wkFP3DjBygzTqc7N1hGN6uHLA3dFZ0nyBXHeZxWcpilUMNUOKnHC/RhJtUoTn8QdtklJypE7TmVb4x6vMwzUqpTioKy7X92Bqo1aHSH/GN2cu/SCl6QpK71WyOOZnlEsvX2cyTsE1MBYa2FpAliING5EOMG2J7XWZ5SkiEdysjih1Ri4VscwYmxG7w2OCOKLUKbGZEsqQxdoCjXqDtfW179snhRDUDXWyhyL4pQu/9O7o5o8aUkqEEHiex3Q6xXEcwjCkqiry/KSRSQYBRr+Pdeo0xe4u+f4u1fwB7V88h9lzKScpRinJsgzbtrlw4QKn1i+x3Oyxdzeh0T4kNFoUpaLSGQ3PJEszGkEdMzGYRTvUkxls1En8Jnk6Zbx7n7ZOScwGaXWWROUUZoUfhwhHUNoBmdMiVDD0D5niYCZdMu8GF+5L0vA5lGnhR12UYTE581X2Hvk6riqxPc1muYijQ+aLGYlqYhiajljh/MsPWIsSlm2XjjT5nHGOW4fLfD54HKk0HZWxN3N4yX+MryWbaPkUz3lgVC1k0SQvt1lbvYZbv8/89C4PzwWIrosUFbfSjCpPcc054+acu05Bqn0M+xjf2OXnjDEPE59wXmchEwxTg33dwbLv4CmLN7se6AitLEbdNTY6ksmCz6Gr2ZjdYtHqsXro82PH8Og4J6s/oPR3kH4DEUla25v4Rz2++o0vUs7GCGA6naLz8t1CAul5LPxnf4vGp38K4TrIeg3hOPT+t3+T/v/+Pyb89ovwnlDzHsKmtALAwlpsIasKWaZgdLEkKBpEnS2sbBGRQ5WGNKPTXIhuYCUe6eKcyt9jtzHArT+kOzwiSN4gKW8zNQyK0CMTOWoGReRSiG3shyHFlsFSkiDKkFntgCq7h6PmVHIIzl2GhYE1rtEaX6ZSNvuVYuieYydp83KtTyQ0r53qsh0IJt1lbj/zHD+W3USIGXdrMdF8k4Y5wqsfU196myRrMMwlBSPi8jRnZMo9NySSFav5SYXzLC/5kFScMhSVpTBLyJOSRiX4WWnz7CN7rDkj1jzBzUUTr61YWxM8dqaFu1A7yZFpnyFu/hKgwArg3CdOwoB988RBExdIx0C6xolQU1TI7wo1SlBMUmRg/cH1kSf5NO85av701A3Fx9v1d4OGAZ5pBPyl5S5KQN8y+a3jCb87mFJo2ElPmqD+OCFbGgZpGL47BqUrTRKG1Ls9ls5eYPPJpwnaHYSERs/FtDX1Xosiy8jDgDyJWTx/CaUcTrl/mce9NrVJj2jgMTIvsF4WHIyOyNOEicy5N9qlvrtL6nhIq6RmpZyNPew0ZclN8CrYP87oei668pini1Dz2PPrDA0D4XaYO+vIrKCmMuJkSlJqshyEqtD5mNU0IRQLzETFCLDyPqIykanDufllzh8sUBcGDVMRypRRZpMkPV6aNihnGYUw2ZrUMNMEh4y91EBTUiT/lmbUmEVJMzqkZhYcOXXW04SPhiWrfo/F7bvEDNHNDrbMKAKInJy5UXJuZrAUh7TSmCIJGZLyWtNkI5zQCcfY4wlrlU1vMuKOX3Foa4LA50vLERCTWjaB6vLXtsCPEyZWjixLamXGcecsHVqs2X0eSQV5liKFzSPK4GGekouSW6rPnaJBGh7Qbq/RrUZE8S61JGRUW0JkFaLc5dhbpVNbwFQ2K/MZrm1x0G1zLAIumUNWWjd4UnwZS0eExyVpscHgQYdwa4VsPKMhC05Zb+KZJl6xjJE0uFz6zK2cZLHDT952CJKCPcPkUb3F7LE6Bx9YptOrqEsBkyXcYpFBq8OD5ml2GgmqtBGlC06D0POIlMdSZXMxcNBAiGbaMjjOcuymg+eeLGi/7xOEJW96knHXZtm3mfzOfYQ6CQ5DCfL9kOiNAcI1EOqdkSZT/pkp6OuX2mxeXcKuScaHEVrDaD9i87Eexzvzdzcvr25Ra5+4L4QQrNZW+bHz53j6VI9Hehs82j+PVUkOrw3JZjn/3fb7uDU5zVF1jVf1KnoskGkdNXNRZY1u0+ZcNmGufab9RSatDv/YusA/6rwAgcI6W2E4u9y9eEDUqLCnN5GFRxjucsc+pCMnzFKTSFms0CBXktVxzsa8YinVBBVMHZ+B2keoOQku884EI3UwV3qURoK9MuOwGtPEwE1qxK0fY9wOMBKDYyulPZ/TiEqmpwP6D96iOZngGiZlmZELh8wdoyuochOtHW5NG7zZv4zOG5TSJL7fY2dyHuF2aDUfI80dkkaDuL2C/SDFvB+i9JQPz7ssb30RW+2yqHJudTNaCjQ53niOWvgWzTOHuNqloGIsm/hrr/OhWYGLYNG3yFoGZXWAY7dxPAFK8HQMSgqmXQehLTbDknFH8qVLNoVcYNI+TW69VwH5o0CpfOR4xum9GkXlszNp8Pn5AdtL3+G4KWhmCVWiiUcObw7Psf3gScpqgDQcrElGUflcu/4LzO/0iQvJi/o8s3FO+uoag52lk4dHR+FLjS4CZu4+mZeT14+YMkLlBzwftamPazSGY7zpGQYDi4NOwv3FGdpSiCzH6K2Qd08xNTqs5UtERkHqVIyJGNoOhSkodcmXmq9RJrDQ65FRUCrNRrlC22pi1d3/2XguIQRKqh/5ilPf9xkOh7iui2ma1Ot1sixDa41qtXEfexRzdYVsZ5dyNEZnKaphvvviYJQKwzCwbZtms8XFC/8BSwsXMSYlXuBx09igkha9hQ6BqXGE4MfPf4zGxMeOp9hVhl4MMeuahu0gpjP+f+z9aZBk2XmeCT7n3P1e391jj4zIPbMys/YqFPYd4K6lKZHaTerWqFstU5umx2Zslh8zYzbdNm2m1o8Za5k0GpOamha7jZTUEtkkSIIklkIBqEIVasuqrNyX2CN8ve5+93PO/IhCARApqiUSBEjkYxZ/wsP9h98T957zfu/3frbw8OclVpqClBhXMvWPmMmM2LIZBV1u5XdI9A6vxBKF4p80HnAk9ymyGug5btpEIti1etxZeYm5mjHuDrFqIVbTJWtOyQKL2qzJZtakKyOK9hKPv77H2YMdZgOXu/uSQx0Q+pKOTJBCMHOWeWFvneZeTEd7PLo/oqZ8dvY/QFlN2a3W8Tq38Yhw1m9TE4bSr6PyDKMNR8k2d8Yv4nlzWi99hUAMWFaKxjzGhLAoCkYq4v8zXKMoUtziAX//RJPYsfHDd7hzukdZ3+C3lju81qphFctcKs5hOstcUBHNLKJ1L6F2dJeDxghVOISqxcb8JDu79yBNcSuoypLYzNg3Rxhtjos9vo+s1bDqDaxG41jIe+IJ7JWV49anh0LNDz2KHFEUyJnEtyWObONmAiNaOLrCyl1mvW8SzB/B8ge40QQZ/zhi/tNI49Nfe4W95grL6Tdxw9vYzDm19FW8VsFqDqpqkwQNtL1ENYqxZhVWH/Jaj5rW2NWUwmryVHyXkBht6izOt7H6DtW+YWmkmGYZ86jB9PQiaqAJs5TWyoQno9/m4yufw3FnVN0KO9ihP7N4O65Rzc5Rt26y2rvG0d772TpcYlZKklKSZg41tc/IUsybBTVHcD5weVa41HNDiKR0LRxjsGxwpMF3U5r5bbrWAX9p3ea/fLbH/3Hp65xY+i3+xFMdoicWcddrGLtB5T96/K9ljofemEIjQxtTadQkx2q6x0HuswKjzXt7fWFJpGMh3W/v/YUjCS73Hjpqfh/ULMn/9uQy9nc8+m15XMRp2hZdx2YvL7k2S7k2T9HGIBD87gO7QUhJniQ4vo+wLIzR5PMZbhjxxGd/gosf+ihCCHRVIngTQUxntYPtQlCXqEqxcv5pZL2OXevwflPy1L0BIpUcVmts7Gwx05pFN8fvGtZqNUx7g6kfIhzNchSzrnxaMqPTnxNONJaYI0TKWNSYlMvUHIWyp5xoDMlKl3fi08S2x2I4JiVjZ3mRF3p/ku3gBLY9Q+ucqeriORrHAitpgrIZ7Qw4GZ8j2rFZIsQWPWalIptFbL26iF1GNGwPmxRlIMqn1KVGC5vAt/HM96bF9gf+v0FUBavVgCt1G69UuPMZ3sEua40O7SDEN0MiY/HUzk1KmdLeu8bG1uuEsQ2FINrZw01zdKPJvrB47NqbfOLuNexKEuByPgs59CvmgcuFI8FQwAyLSlhcmQrauYVlS5o7b9GwGohgmx/bVqzu9blQrPHIuKRbCD6YwZOloFQHGJGym3sMCGjkfWh1uWVtsbP7TQrLYuQ0aaUF7bzgrbSFHbRwBhrvMMZWJSad8cHN1zmjb/NkdBO7NeTlyEEph3J3ifG9OtbbDi6KXw+7qI6hY1XIXKEKRfdwwIGv6NQWefooYWU4pmy6rAZTxhsps7MFqafJA5e02eSrtVXelj2SsaTyZihlqLAQ4QJOzefCSsSjuxUbuzs0DFSu5EVyOBkStH3sUhMag9P20XnFtZrkEz/9CM+uNsmuD4/7UzOFsxASf/4+5dYUd612rK6HDjJy/oMmOP1BsLBRZ3G9SdC0mY0zdm6MyOYlZ59eZOf66L12qN+Ndujyf/+TV/jMqY/wt578T/HaFnM5hXSXL6iv8HPf3Kefhbw2CsgmFSrV6Axk4SMoaDszPv6X/wxy/SyTXgtb+lSiTejGlKcFrmiiG3s0RY1ycI/EdTl50GDRX+GD2ZDcCK7VclZTSW40naHmz+wWtDNNqKGfzojLXWr6JYR1n/bqSyw6CjtqIII5wZl/hd9UqKoCBxZqNznr1GiaJoGo0Z3bePt9vrGckC+eo6kCivYStmUROwuEk3W6uUYpgap8bH2CRHko3UHrFfaLsxwULeL5OsP+CVRioz5ZsN/dZtEOUL8d0Ly/iKPuYrwZNbVL2ys4W4W0C2C9SdaZocpFBtf+IluDDr6bE5cxs843eSXcRrglm4nm/9sK+NcrP41lHCJHE2j4M0cFF0t4rSaIfZvTTosjf8i+W1DXOV866XH4UKj5Y4HBRlqCOD7JuFwjtxNyrcjJ+OqazdXTd0jclGz8GHFiERcBxpqQC1j3ErKaQIdzjgYb/NzW32F7ktPOCtrbd2lNdlG2pDGtyKZ1StFgwb3FRMyZNX+TxB1yrfkl9uVNXCvFefA2k9SlpMmeC4NagJEaJKSPP8v00T/Hiw2boZxS+Zq5X2CblINWi8qyaJWQzSrijZinP/A0xgZHu/yU96Msj+vUu43j5MCHvNf65Ps+URTRaDS4evUq29vbOKsrdP7yX8ZZXqE6OEDP51jdLjpJEK6FDGwsy8JzPTzv2CYeRWfp9lap19usrf1JDsMnUMJieaFLXihcz6NRq3PKbdIaCbIgwa5chKuo1WtEiYMpKz7x5hdoTw/w7TaOshh4b5GnGZW1wHZtmeEE3pw+wlVVZ+glLMsxVzvfpKP7zHWK6kxpx8uUw8v4NkTtnLx+l+3oEGf5BMFUQXmNQ3tAPYE07HEjWMIaZ+g05nBcJ3INNcsQBIK2ndFouIxMyKJf8NLoNDPRZif1+e3sPG8ePYK+tcD1TBKJklC5dBpvE3oBpR9R6JJBWiM5XMIe3qI9O4BJH4ICJ4cPDe5CqCisKataY/lzBmsFP3HwKh+dSPYaHQr9VX58+OsMS5e36jZz2yX1z+M1FUQgaxO0F5BPxwyHfR7U98nDgtPdipX0iKBSmDyhm2WkScrb1i2+4H2dIsvfK6gIy8Jqt7FqNYwxVFWFsG1MVf6u68cYcxz0/VDE+aFg4NkkGooqIhjtgnYQeYKuApxyQpBOEWqGnfYIvTeo1V+A/ddp3H2Gyp1TVXVu+qdZnB7iiJIssvBVhlSa5axi2z/FkfmzTHmCKtUc6XMkdp3+0ikiB2rM0fML1E1BqAckaYtZZlPdmDM+lAT6ZWhmGM+gvZS6gfYshlDQZotz/mtc7r6D491A1W4ySiXzMqScr5IlPb55+Cm+tL9JXDr0nICs2EDnDXq2hyt9Er8k8iQnJwlP5gJTga0FmYDAlbieIHBKQvsAnRjcao+PfKLFc+sdVpN3sMp9pOMfF1ctCZVGuJLvUmrU8XhtU2qqcY7V8rAih6qfIV3rvWeXcC2stgff6Z6RguCx3n/woJCHHBdpHPk7OxN8KWg7Nl3XZs0/djH9t3f3uRj5uFK8N/npd/u8Mktx/QApJEJaJNMJXhgiLQvxbkFo/84tbr/8eZK4jxeG2A6EDYsinVOVBVa9jlWvUVtfp3f6FG3PY6do0N3dYW4suiJj6ncJ1tpM/IzDsEWw0uajSy8z693hdNphfM9QOzpgoz7DZCmeEPRnDkvFmI6X8tnNN2hlW/hNyHDx1YjYCZjUI6rSp9iz6Fr3UN49lFsjkjFLlFh5hNAOvtPFMeCUPk9YaxwVZ4j1AqUz59WGZDXxEM05p3p7LNdn1K0D2lWJ5VhY9TaEre/JNf2BF2pCz+GR+phw94D1ewUdsUrT8bDdklI67DVWGeY1VlOLrEjoDo7QVcxcDggch9ZYMa9d5lfWL7CWJLxv+x6eqfBtD2sco/OMjZ3rJG5Iq/CPWyMqiTGwOZ3hZnPa0mPcWaNxeJt7ZclekjOb71EqxYQcV0kWijleXlLE7/Cqb1FKiVVr4k4PmToZLz71Ye5ceZajsIGWNkaCKD1GhSTzLRLjsiXaKKUJooSzi19nubtHx5ni1V1etRMMivr+Teoa3rf8gFbD5wvhjH5YsKQSTJlToSm3jviQF7CWzfDDOcF4xvlsD+kbSr+HkilGSO6tdklaFc3WlFoWwt07lNac3FRUdYc5NS5n8BezgEYKp24XXBoaXp+l/EnPZ3ExxG55BKXi4tNLeCdqaNdCBzabCxFtKcEW5A+mmFJh9wJEYFP/5AmCKz10pjBKIx3r+3ZjFkLguA6OZ+FEhtc+/4AnP7MBXkHhjji4ezxtwhhDmVcopb/rve3QJXIiumEb6UOyOeBGtsNqbxsp69yavp/9SvLVpascuQPwfKzcJ1MP8OSEeu1FfqZ8k+SzDj8yHvDxySFdZxeNhZPYSC+hq5to32EmKhb3FO+/s8RPX69Qts/LnRU+didjog3/8KLPz59wEVIgbMHtlR4Dv8bYirDsb9IWr9MVObaa4fgG5d2hdGJGrTEHC1t8Y+EdVmSEn/k0sibzR06y9/5n2DmzwdblH4W5RsxiRFlyojrEaaQU7pjczCgLl05cw2jIKbh19xJ75dO41Vn23vhx9u51wFgo1Sf4eov69B67588ibmTYvImqp7SPHGqi4q8dNPCmhnKjQdawSMoaweIht+TXWBZfJmi9zM49xUH/dZ7bvs+fupFwr9Jc08uUhSGsKtoKnGnJczsZX/Y1TZ0QlTFxbZnS9RnkB2zXJR4PN+h/HAgVrG6u0jaK/buPYKKKujmLN4u4Mf0SX4mu87WqxqvDi4jMJnNd3MaMXbYoJ7DvKer911BSMO87mOQOSZSTixGDvR2uujm1MMXMI3JVw57kvBAP6HOXIh7w428d8cxLW4iDm5ReSKUMAjDagdrj5IEEWZE0l/C0x/3iFkMzIbFzYplgxwNW79+jcqDRH1BVijiM6XV6RH5IO2pz4eknuLR2jkaj+f3+un9g8H2f06dPU6vV3hNq3nzzTW7cuAFCIBwHWa+hZzP0bIazuISazt4Vahwsz2bBbWAPhu8d9uvtDu6pM6yv/zlOLT5J4DcoyjlxVmGExc3JlORwF9dI/NqcM8EpjOfwoH+I60YEtiC8vw1lQCVrlE6NxX0Hv6wznJ7hMOyAfIzXDk5Rt87ySujw2dLiXv11dvO3uFlB2rhNrDo40lDpknThK6jGlzloXic3FkfSpmcrJt4UK9fsSs1eb4V5b4kWOX/lxm9x2ZuyuXeLD8y+yIKY4jcdhklFQ08JZ/Cb9lP8V9WPszNcpZ+HnJr1UbqiKS1qtosVThCdGrvNLlkAmbXF63MXwiYWNg/Of4KDjfso4bFCiWMO+QY1LsmKBQqGTs4z4y3C+zO0X/Cb3Q+hhU8aZOz5Eq/RpcLCt2q4eoLu/QKmC36ni1xeZ+jlzG2PYm/AtL9PrbCoej62A5PJhL35PtdmR/yDr/4T+mn/eEFYFt7FCwj/2P36ta99jXmeY8oSo36nvb/c3mb4z/7Zw6fADwltUeIVFYW6DGmOzjVoCzELiLjDwvQO4cEn+UangSivM7SnDIMxvWSO0QvI3U9x6LfwcptWukZpXGY+BNmUMJ0xrzdJ4mcpRmfo+13G5TkOl5Z52V3FK2dUosv+nQBRzvDDCf/Dxb/Ef7f+V1D3D+kXDcryGlZvhHGGTO2Mynaoz4ZoO8X2+jSkpunt0w0qhpMOSdaiqJrkhws8uP0sr/fb3Cl8BnaH867LNDtNOA95f3mBSNvkyqLR8Fg2FePKoDwLW0NpCSwD6490aS3UkTKjykOknCHdAGG5kI3Ab4L97Vw/o951yJhv2WmO98rSPxZqjh01HrLmUvXT43yad/f6wpU4C+F3CQp/2PEHP0y4UtJxbLqOzZnA4788uczfu7jB395cAqD6t9wEhZAIKfFrx3l3lm2TxjFeGL37+nHGUf/BPerdBbLpFDeICOo2rUUXrUrKfEb4vmexl5aB46mNq60mQyNoHvWZKEmjTIlR/HKhOEj6zN0IpxsSZjalB5v4ONKl52n+/Nnn8VLDiekRyyZj2UxZcCVX2i+h0phcQi4j7Lyg0pJ+lbLc/ybdJKGRfI5F8zkKSzAUIzyZUHNexXIyhN3AUhq5so7rO2zbT7Kn67zVSLnWuc65hbvcCq/x2PoL/OzFf0l97XXqlUIAR8UCk2z2Pbl2P/BCTV7YZJwnLnqMBhVXJ1B7cJU3piN+bb7Mq6MmO7lFqFewC8VerYPfEQzllLVpTN6CcgYnc8laUdFQmqzI8YyDnuwRV1MOA5/tzirtwiVKM0Kl6aQlrTzBIHlissClo332vZAXnQWG9WuMyj0yIZlnY6pGjeJoyr65Q7eY8j+OYla0wnUCjIF5mlO6IQPbw8WgpMAVGv+ODwaGtk9e69FWExr1GRun3+Ha9FMsLY9xghblbJnEzphXJUYb2st1fC8lbvjsOAVWsscHX3FwM03RCKkyzSYJS+xy9/Ip5ktttJwhJChsdFUihcukJQiqgsWkouWsYTs98nSRTGtqNZvSWWB9CBzlzEOLcs8jSjTYEq84di1YdZfoRJ1ux0O4FlVgkdrHU0jUtMA/3aLcm4EQ2B0fPStxVqLj8dxxTjXKjjdP38cbs5SSkydPYi/M+cjPnqexELC1tcXe0RbZrMRg0Mrwwj+/xeG9+Hf9DMeSeIED521KppxMXaw04Mu7HyULNF9tvYJ9oo0pDZZVJ5f7GFExnH2F5vyb1AanWRy9QyP5Il1/iwJFUsCH+j6NumS/t0TckNily6mX/zXug9vkdZsuknY2Z25p7KpCy5yJBU7X4X5jgVcch2F5kspr4agpVuVjtMKWFU5ag8pw1XuNUesm1Cr2C4egCjhTPM5hax23bTGVgt1mk92VLqt3bxDYNbRW/PqJX+TV9RFJnpDOO6gsQlsK5cQU2QlmUxtoEoqAxcU+lucicoX+akYhA4r5EbP+8U1OLgbwQoKcVUR2hpAuZWjoFy73/W1qp/5/nGolVP5dPr58nzUvxZ89IPdyFsqKAM1+VqLtJmemOT+6f0Q+r3jkoKKTG/7G2/dZO9rhKJB0bYd4pcPUKvGKh9NA/jhQqorCrWOkpJFUGEuxGT1GVNZRpWAuLB4kbZK5h5cETL06wp3hUmMWjNCu5sL1fQKdsjaIWc7b3F4vKGZj2smYmdQ8ldgEI4OcGjr/ULN2v0ZPLnByeI/Nt3d45O0+a6pDtfAYtrEpSkGFwLMkiWtQg7ssJKvYaUlrNkNrwY7sMymHzCMPd3iHa+slG/v7bM53EK4gdEKaQQPXcfEbIe2fOoPdfRiA/Z08++yzXLp0iVOnTtFut1FKMRqNUOp4VKYMAqxWC50kWO0WejpFWAIZSGzH5unRKvN/+HOYogCgWa/zkWefwZUWf/vsCS6evEBRzZkVENXq3HnjdcZaIpfHPLH8MmcbPS5c+jil4xC1O3RW1pCBw72nr5B4AYlfw446WEJwNb7I0LGQ1UUq81F2957g16YuVplSz+rMTMZUekzZZVh2iNUhuYak/g7CjbnQvcm0lvFqsMhSr8QRoGyLfi3FblkcLm+ypjIe3b3Jj7/yPGevXmV9MODa0idY76bERUUxm/BM+Q43Dms8SCIOY4dpFdCNHIyaEiBoBRVSpuT1LTZrQ66G9/jG4m/zeuctCLukVo0D7wzvTE+x64+Qlo06SvgMPmc9B5kX9KtFtLuDFgW9vM9tdwXX8nk9SpC+RnoB8xL8+SoeGVF6j3pY0u08woW1JzkVdbGcCFkqyArUcIrq1YkPHjC1Drk7vodM6ty6t8OkOB4vKxyHhb/5N5HvHir6/T6JKinylPhzn6N88OC71k6xtUV+89ZDR80PCbZOIY5JvzZgMjhJkfgwCTDFjJY/xutrsvkZPt/Q5GLEYRRy/5TPUfkiOl0iHq0zt5rkMqXWnyLyGiPRYPlwQKN8EcuNmSFR4zlvNJZppEOkk/NauIRXpvQmOcE79zkoc0J7n5eWz+KpMTgaqQRDu07lVXjhiBk2pfToeRbaNTjWhNp8iZ4vaXlz2laNjt8hLX2SwsdVi9Q8F9f26OeCs6Ig6V+maTnUs4q2TLGlIKjb1KVLXhdoRyCVYVYabGU4cbGLF7hImaEmGhF0MLIO0oKwB6tPArw38t5UGuG8G2pvzPGPBuFZmEKhZyVWw8WqORRbMVbz22GrzlKEd7b1h78IfkixBDzVCDkZuHyyW+exekDXtXGlODZC/dscNVJgOQ5+rX7cYmrb5PMZjnd8Lb8lrBVZSthoks5ivDCkueBR7zoE9QZFGlP/7GexFxcAcF2XtXYL32hsoUiTjHCW8tfyf4VqR6RLl1GeRWFlfN76j1DpI4S6wJY5QdCg57/JbOrwgextPlq9wfLwNifKPkoUpKaOFIaEAFkUOAdHKNumyguKtMKoAZbqo3WTudsGeYhnvox2Y5gHOFJyo33AyBKYaJVD4/FONeJs2GIv3GJqFwjmoBMWW8dn+qoo+e0HTzHKvjdFtB94oQa/IpWa1K5zWGa8XVQcNutsx4qjDCYlPEgrdmozUiflkaMdzlpTjuaHdIoRR12Hdi74318tsJTFaHENZQyV1sRtl4qEAz8gzCW2sjiTarppjO/WmRiYqxq1qWKrFLxYePg3vo4d7DKzc0o1553qVX7lhM294VVeiB+wfX6BWlPzaW1RGZsyaFK4bcZ9SVjkuGVBpRV1YZi7J1itWwxMzkpHcGpyG69xxP34CV6+dwo9G1KZKVtvtZhkJY2GYtne55ud14knM+69k+FVNaw4Zfm24sLVBDt0SBe67Cyu4jYNB4+6LH2sxD15kgpNEufMxhqjQiZ3foTJjY8zeXMZ55RP0P4xJg+eI6V9HEhrNTGOx36hOVrxqHUCli42kbZgLXD5TL1GenVAcLlL8SAmuzGCboB0JKLSqLjAXgrRsxLhSGTdxZQKq+YifZtyf47J1bEi+30U0IUQnDp1imF8SNiyOTo6Ymdnh7SYkafHlumjB1MGOzNGewllrpiN8++qzjmWJHIdnr85Y7mRMA8WmQYpB/MRhBkTMWU+nhI8uohVtcjNIbZVI8lvUVoHBOMaUyfmm1xlV8bslfD20qNs7ELrqy9wdGKNODT0L36S/Y1F0n6fuScRh7f45RP/mo71Bj+5N+NEMeFOy+KgKSlpcuQ+wW2zSOXW0FRUOiLQUHN3mQz7nBLLbFYrbBQ1HNlnZGa0nYqNxCCzEHvP4tQ0YNjZ4uefvc80KtgcHtGLdzgwu3TxsKTk4OBRYtdiiKIK5niqh91K0NrF69/kafsf4AvBKHV58Mgqb7mPUzVPMXMbKLtAa4E58nBii91OA+1ElGZOYwpZ2mNXNNhwDecbYwLrHeqnd7n+zJSZa5MEE864GQ98KO2Anzp4h58afJWL6gadLOWvb5Usz5t4dNl3YFkL4sglEBr3j8At8CH/bjIEV8WAfuQR9fu4uUteexZLSz42Ostf+2LCuQdzVhE4cUQ/ikAWqDzg/vIDPDkmrBI2+jf4xOAqK6NN+mNwqoqWVHyqYRNpQyEVQium9ZDTd5Z4JD/P6ckDrn/wJNtnT9MWC5RuRV0LAp1Ta7VpiZCZm5End1DlCFfl2HnOkZiSBTklJfnKGv3VGt3WBcSZcwQnzrLgL+BYNg03YhAPcZzjFtGH1cZvI4SgXq/TaDR47rnnaDabrK2tUavVGI/Hx38kJb3//G/S+5v/Gc76OsXWA0CDVUJlsGMbNVLkt49Q8xLfkpwOfYQQBJbEdRtMszEiSPBrHsbzGWFRD+eURQvLusp0mmJ1GpTuMqXj0juxwW6kKLyQJKyTD0YU813SxjJSePTP3CarKaphzCeHM2Qh6JQ+L3o2FTWcvIB0lYHapiqHDP11EruJ7UBhTZlbKxy2HmDZczwZUHUdhm7I5y48g5cU3D95lvQDNWqDITOTEh9AVs5xHUEzyznljUgPJview41EUUgBOkVXc1JZsBQa3CokE6/wY+m/or32NgflGpfSx6hd3CG9/BVa7gHjvRY7q1+mrE3oTmc8XhoasUJMhqSzZyio8WflP+X89Bb7okGoS8T8kJPDbbIC+m5EWRi+cmKFfx58jF/YtPnyI88xn8T81YMdTgUeQubIvKKMp8RNn8lCjtjd5u70DqGqU05hMBu89zyW4XGV3hhDmqbsJgfsxTskL75I8vIr7/2dMYZyZxcdx6D/bQkND/njhFtWkBUUWzeY3LBIx1CVkkxsUTdHWMS8sGYxtmfo0ZTlJOZx8QKn5K9gG4vcllT7CXFD4iUFxB67vUVeP3sBoW/RGRywPOqjteZgcZ2Tkz2WJrsEBcRhk9pRn7ws2Q9WQSRsYRMxw3QC1BWD6tpkUhCGU9L0Itu9E9xZWyUPA6TI8LNlXMdFdgwBJXM3JdM27zQsDrGoqozIz/iY3WdV+xwNAyIhKJSgJlOCicV8nuFowYZ1m0Vvjm00RWXwIpcF10IrgZAFZdFjNvsgVV4HYcHZz8CJ92GA7PqI6iB5V6iRYEl0rqiGGRiD9CzUvARtEN5xm6nOFP651nvPL2c1wt2of1/Xww8TAvhPTyzyWD3kZ5Y77/3eFgIBlL9H65Pr+bhBCIBlWeRJgu263/qD9wKHg0bzXbdNiFaKqshpLi6SxpP3Pgug1Wqx2u3QsCXqzCaeLigmFVpbnFzrYn3w/VS2IDEVr8oF3LMVVvsaa72roJsYFFLXyHAxWUKtmLB4cI+qcKn8ZQQwMwEaSeNEwOJJSa48RpXDKLzItHaS2OS0y3NIcR9L7VEIcNwKO1BkWvGlTFAvfeY6INEVnVnEdrBHLBKKKkVpj+VGhD2dUCUJ46JFO/zeFNF+4E8pwp9hnb1H4/zXcNwZKZJMlRzlNrbtoL06nrQ5qgyVY3Nm5w6lXaMXtbAiDzP1UFpCZjgwHg9aHrZt8VKh+XyjQSkUXUeyXEhy6XDS+GwMt+haErRPXiTkWUI6Tnk8e8BJp4k+2CaOUqbZXZJGnR8JvogdGobNM4jWFn+9O2PTMpSlZOLUGckayVzSROMWOaIy+NWcodvkYneL7vJtPnLyy+h0jmcNiCcOncBhfK9O2c+IxwfMTUYnOsIKBXfViLiKyHYSWs5J5nOLsB2w2C/wAph3G+jQ4a6/SOYKvGBEvLHBob3EfOcSKo8osybDW0/Rv32edNRg++0ZuZqSVy1M1aDlSDqWRTuBZJjjbUQ89WOnWHtykYXIYcW2CUpN8SBGTQvc9TomU/j9lL+60mH6q3eP3TK5QqfVcT9qzUHW3OMbt2dRHaXH+TT+96/16VuEYUiz2WR7e5vPfe5z3L17F9e3ydPjFO+DuxPOv2+ZuJ+yf2fC28/vfNf7BfCpiyeYjk/wp5c+xiudJxi1Cow9JpNj+mrCYFMzuehimRqoCkvaVHpG2ajhGYs7zhaZVtxVQ0zhMZuGDM+c4t6ZNXY2mgxWu0wsn93FdbJSE2NYmMZsFe9QDv9nuumUqbnJG8s2b/VcbAybs49xaXiFyvIxVhep67jTBS6kJa+ajAVt84npkzSrNq6vUH6GWdthd3UP+/zXGOonCZPnuFb7Bqk/46CWsPTayyzdfA1LwPLOPu1KURlDXDsktQWlyDF5g1wW5KUFuuLrpkmRKMq8xtKS4mXxKFa3hal3qXoaHee41YR25dJrzXCxcKuM1nbCmaFgknlsODYfjlJOBA2wBY3ujDe6X2H/5K9yzlynURnIDKuTmFfM08ytjKa5xuP7E2TponXEtmVYjyuEsHGlQbnu77IaHvJHDREWJOGASaeDZQU4WcVhVmGkw+ZuRXfjQzx2O8NyDXbpspGUOMrCyls8UDmWuE0Y79EpXyMoJ+w6XRzpIl0XG4vTszmpnDIRU5pWRtHrEnUifjzZIkhLXjm9yZ3VE5Seg3EKmpUhyDPqRBCX7Flj9hsFv+2+A6GN4zjsqQEzJ6HuN/EW2vzPH6lzbu6Q/9X/GGfjMX725M8iLMnqiTVsy/4d47gf8m2+VdVrNpucO3eO06dPc/v2bYwxx8HKtRrBlStE73sfyTdeRo2PUP07mDzDqgvs5Q8w++oh85f3v+sgb0qNY9ewTcz5M9/EDgfMhIXluyzbEw72z3F4+Ab7B3sUUlF/ZBNWN1k9ewk971OGNm6ZY9DEGycwh58neOVlYvM6C/pzfDCd4GcThPL4YHqda6Zka7SMa5o08w5XtMLFpi6GdNQSFhWeqbhkx0xH52hv3kHVO1xd2mC98xrPXvwSVU1jb86p1vYoWj1WLc35L/8q5w72ODXvE5QzCq+k7VesNg2BqPAtg9I5ZaU4VBUrwQ7F2CMLJjy/XNFZOqKTRiwuphyuvMP+4m3aq4q2gCrYYXZ2ytnZiDZTIlHxdAhXdh7jXvZTLBh4ZvoOprQIkiN+Jn+dJ+69ykSXfO7saZ5fCPh/ra/xlcX38Zq/zNw3TCg5CFZoOxFZOsb3PaTt0Egj3jiZUmeZeHxAUNVoVl2+8soLbG1tsb29/d71U0pRFAVfff1FpuWMajAgff2173LPlFsP0Gny0FHzQ4LRFdpYyJpDEWe8015Hly6qipDlEUIKRvYDfvrlX8MqbdrJkEw1eCt+hjEfRNrgbw+ZZwGN4Rb5O/tUImbHbjCzTtL48h1677xNZRl26gs0poc0kwG1O3f5+cbP8kr0J7i3tsG48Em8FhNhUxMZ19//BPk5m8E0Y25W8YKS+1shrf6YcDohNQUGB5kuUCowzFCiQEuLQgn6SjNMU0Z5iSULGtECei65iaKlINWCrBsQdd/EZClu6BLld/BMjONIslKTFIr8pT1MAdJRKLEKjo/O3hUxH/sZaG0CkN+dUI1zTHEs1AgpmH19j/Gv3jkODPYs9LSAd7NsZM2l+WOnsFrfPsg+bHH6w+Vb2TVSHP9867sXQCAlifpusdoYc+yyERLH9/HeFWqidof46BDb9d57v/WuyyZoNEinMa4fIATk8zlRq0cSx2AMs9EQjOHRRx/l9Il1arqkVAVNx4KyJCssVpyceLlFJQWZDDmSLnG5TxHt4wSaIvewVEhdtFn0R2SF5EwnpxcUGBNxvlahvYACC2W5mLMTOqffJm822fUvcGPwEa5Hz3C/VMR5l0C8jV0OsIs5XedXaPIVBJsMygZiOmVQ1vCdCDP0GZlDJjomKyqyyiOz2phshtCaTHsE36MQ7B94ocY2NjpICRr36flzLjQV4ZX7uM2Slu1iGY9HIoNdliQyIigSDsZtlG34sumRWhlalxxiuCOWeSTq4EmJcJa5UzXQlkceW5ycFoxzxVq5SHuQ4g8TUksyUfdJHY2djGgUGru5wnwrZ+xMuTZ8GSvscK7a4bGVZ1gzCS1vRi/YZmZl+IUhXTnLiAA3K2jMpnhFjqUFj/p3ecS7xzOL/xPd+g6tdB9PTnDdgjtqiciak8426L+xhN8Kadk1Cr/GLHb5C7/moPJNOomLVzuLnNnoAHozgeenHH5kDcu1ebl2hdBSFKHFbHeJt27/DPPJ+6GKGPZd/E6f9NwdpOUy2V4mtYZoYZOmLTyhyUJD2xKYJYfPrLY482iP08OCM7nBLQ0qqZChTXmYopMKWXNwai7NuzE6LcmuDZh9bQ+dVMeOmsjBarjHCrwtsWoO7moN6dv/7oXwh8DJkye5c+cOvu9z4cIF2r0m2fw4qX58lLJ6rkWWlBzej5mPc76zsV0IwftPd/kbH9/gSnAGJ+3h2wndxpBMT5kUKf9j0ef//KXbxLaHNAGU4Kv14wDRIKKUJR/nA9xLcoS0aeCxH8A//vFPMyej326ghSAMzlE2FpDKUFcLnB1/kEcOAnYm19mbvcjbYc6eL2hrWLULOqJFRQlVG516HB5cZHEguOW5nIvGfMR8BScQGNsg7Rmv5dv8svg6d/wJ+szXWVAdojLFcS0OWmAlmrp7gmeS07SuvcHy7g55nuMWFVrYFEUFUweZS4xleLC8yY51lvFsk+vNLl4dXC9EmJxiOqQyGtVfwe8KArOJZZXIWYUsKpwE2vaAeQEhGXXVxy9dtBb8SEtxtnebLNxhI69YmjxgSMowWOFa+xqfF0tsLTRxRI7lzpjPSvJSUTMCZblYRYFbpt+39faQPzh86eIIGGtNRZN8ntGIM0LLot87zd7CacIqwg01WpY886UX8RJIppqmaUN+SO3Es3TuXcOkEwLra1wc3cM4NnMvpDWfUzJFuIIVUcNEC5RJxupewGFUEVYOTXeJichReUZUWpikIDDHk/IORcJrGyvk3Sb3/ITQdhESxm5MLWiz2FxArf40/UFGc3hIaASbzU2EEKxe3mRxaREpf+Af1993FhYWePzxx1lfX+fg4OC99ieEOG6/XVpCeC7JN77C/Ev/FKoUM7uFcBLclRHVUYKel+j0uBoc/9YDZO7R65R41gDXbFHt77K6vEueOqTzLloXVOX83euTs7e3yyuznOVKMvZ9lhhgL7WYnr7E4PQVDlonWLllWI81gR1SlhPuT5f4WvUZctXBEm2sqoWf1OipHGk8fD0jrRSF2SNMBVKv0B4+hhY5I1uytLLESus1oihlr2PjnjC4tZx5Zwl312c9t/nQnuLc7AG9LMbRPn+5+RYfnr7Cso7Jk5KZDHjS7bJXpNSCPaqJz5ORix1I5rpiduIqCys3uDfp8aAa043qWJbG8yRZZ4vLumKabiHVlA8UFp1U8hvFGb4++whHrk1pT3Bux6yzxULVZ03vcOgJdNTmL4y+yqZnaCSSzOSkvuTvnvmr/KvldabFETVXELgBG/UNNtUq1XSZtVmbULcIyzp7oz3u3r3L1tYWcHzI0FpTFAU7gx1yShCS8vCI9LXX3xNzqsMjhOtiHjpqfigw0oDtUF58hHGzxRsnr1Bon/58GfIZYlryd67/N3zk1gsYbVF4TZKizS3d49CcxAhNaFqURxcZF6skukVqHLZKny3rz5HQIbMUZeiwJ1xsT2JFHqEy3ElyhkmKNz5k6HS5XTtNXVq09JwXLl2kWlLoBuRWF4wmjyxuryyT1zxilYJpkc8bjHNDMpVkZYR2nXfbPAzKCiilz8jS5P4yeWnAkTzleRhbgqfJ67fISpcqF9TrBkmG61nEtmGSK9Qww+qGiCg4bk90xfH9sFDH2913D/c6LjC5whQK6VoYpcnvTI6dbKVGevZxkHDNQQiB9Cz8C22EfCjM/CASWZL5t56VHN8/r80z/tHW0bHA4we47zoVzzz9HEG9/l2OGstxyeZzwkaTbDbFclykbZPOpjQXFymzGdvvvMXn/ru/R5Fl2LZNZNucKlOyo0M6YY2m57G2sI5npkykhQAyu0XmBkzzPrm9S9h1KRs2dtXEKVrMZYNqOuQJ8TIXwm3mrCCLDF8ajKgoLJ/SnaCcJs77bnAnDLh+GPOC8yNMxBrbThu/3AF/Gd/ao1F9DU8esOJt8IHRs5wYaxAbTMsUK1xlWiTMdMog7XAzrfMbSUrSCghsSV7GTOfD78n1+YHf+TnGxhMxOHMuNo7YaGwRixDhuLiZIdUJZ/x7kMdMc4u0vUx9d4c7xubFtMmuO0J1KpxIoa2K+WgTV7TArjE0Dsp2mGwbzk1nTJUmnxY8UvZYnlm8k865psZcCyy6zAmckDy0cWohp2oXWF99hIohfjnHyjKu2HtcbCSMGzGFCOkKCytLEEbwyTu/ycabX+N9WzdwlGJ95SrPbbxD24npFEPWb49orUQoBFrMUNUBKR7Ca3Bx+ZAreQ3nzZxrsxiERB9pGsKmLDu0xpoHTz+BqyS2yem0R+zNElbmr7Msdkk9hR/P8Fyfk2IPqR7Flj20v8dLmY8SbbJZh8aCoR01kNVJVKk4sCvqkUQLwxXHAUDNSs4piUhL1Cg7Ht12d0I1TDFKE1zqopOK1k+ewT3RIHxi4T17pAwd3BP1YwXelribDZyV6Hj07fdZWRdC0Gq1ODg4oN1u89GPfhQvcEiTjGxeoStDoxdgNOzcGFNk6ncU4eqew59/+gInz3c4341oVCnt4E3SaoorO1x/EHMr/Rpv1+YoK8CyVvGmJ8hEinvyJf4PO3+FzyRPgzII1xA6hgNvSpEv0s5bpJZhfirmlr/KuHGZmjYkySJn957i8Zs17sTfZEKfobtDdJAQpimF6uM7Pqq0kP3n2GXIK/UOv7z6f+EnzWk69gQv38HhJqkqaFgp677Dx1s+qnBweyk1Aj40/hiPHT2G6q4xWTpN7Cxz6WCFXhng6wpjNBhDph1sSyC0xnccsEaMI59YdRlP1nAPn2aUnaWSFYUqaLiw9kKTwO2QbS6w1+8QU6D2xpAoRBrSjgt28jl5NcG1VsgyyVGh2CstenZOy60wrQGj1i7bzjaTLOCq8zn8s7/Ez9Og8CpGnRBJTlQaGoVm2xFIeVxNfsgfBzSetBGWDW6TVp6yFs9ZPDxACoVSJVcvPcHFW19Ct+c05vuI0kWVFkGmKe0B/sITWG4NK4v54JvX+Njbv8Jp47BW61KbTimKI4SsWNQ1ouZzzBsdrPEZ7pztEmQWa/4SI3uOKSWRDpCVRSQClKWpPJg02zxYP819e0qdELcWcWCOyDJDM6wz8R7jE73H2dnZYXt7G9s+FrCjKOLTn/70Q0fN/wqEEEgpcV0XKeW3hZpvISV2t0tx7x5Ws4awc/T0PtGzdcrt26AS8tsjxr98B1Nq8jtjiG06nX1m0zNIDtALC0S1MbtH6+y7LYrKw5IzoKDMtyBNuD5NWRxkJI0m404LE0XcDbv4kwM6wsVPa5y7V8MJm1hBwf2hR7pdUMseJYwDhmYdPw1InAX6VURSeHxx73ESTuEUDc4k51gydVKZMF/N+ZR9FUEXsoKXnl7g3sIujqOZdQ+xrZzZhUssmibvO7rKB67foJ4HPDv8X6gd3ORn3W/glgmxqPGYf4b3NXxmZsqCahEYw4o1Za7mqLSgbhk685MUSuGkCbkeYssI4zl4m49wNNsiUwn1eYt53bBp5/SrZf7+2keZ6+s4dkCUjfiY/Qb/161/wLP5HbYtj0v9b5LPd1gtDJkquGS/zaPmgInnMC0HuIUgsJoE5hxP3TlNw9pkbbyMZSIc45FVc/r9PnevbxMfTUm+eYhSirIsSVRCTgWqYuFv/meM//k/h6rC5DlGa2QQ/g5HzbcyOB7yx4up02C2sM6vPfYRvvxn/zTZ0klGskk2itHCJZu4+Fphh4pKOIz6ddy3x9zv9Uio8MqMegV720u8mD/O3//gX+H/7f4dXlGfZTSsSJKKtO5T1EJMJVCjOca1aIqSC8k2lTF4VcncD/h/rP4V2rMpzXyEkQFKJeiWAOFSlTUGJ5q8+dQaxamAYVViRicYFjVSPIyqgRWRWArfyxlWChOECMtDWymLSuBU8F94NTpGgC1xZY0PmMucqkeks5Kg28C2FZYlueZpirqL0QZnMUIGAU4wBF1RPIiZvbD77S9Rg0pKdFZhynenPmlwliOELY8Dhl2JGmXIyPl2ePBD98wPLJEtmVXHYnWqNHOl+UdbR7wSzxlWGsLoPUdNc2GRT//1v4XrB++933Yc8mRG2GhS5TmW42DZDvlsSr3bRVUF157/wvEYb3W8565Zkv8kAFEWdMKISGmWF0/i6iljDZGqmJoINGReRllPaS16pG5Gp+9iOXX6dGh2FxnWThMTMdm9zHa1Sn18iJCQiJA0j9h65zLFbIltJbm/soHXv09oBEa5xNazZO4VPPsBlTiB7eQ84gY8emeFvzR6k5PGUGrJqlkkTgsCy+XIC3h1XrCtC9LPOtSdinntG8zE755h+vvlB16oKYqMMs3R+zafPvFLRP6UX737KY5mHVq+Q1zaRH4XYxS10Ta//tSHGPk297M2KypiMt9kpgbcqw05F+6yWks4I5dJRIlXk8SEjIzkutNnUpvwZX2LL6NYMmucKQ8xnua3fJsGKYQBpaNZulJyUfRY806RpDeRMqc0M2bTd3DVEkNrzljZnHAlfjWnkfZJgjaF36J75yaOUbRbM2rRFiJ9hOzgHK1kD2cNZsAaNwgd+OrFp3hM7zLyXc4ol/ag4qKK6C762FsHqGUPp2rSEnV2lhQEOdKkbLq3sIIxTfsQWY0Z5Y9y132WYTNHzHOmR2egaiOCCcMs4GCmqcoUXVugaW9QHtUoXEGRKyINLd+GXJGVisNhwpkCRHrcj2pKRXWUoGYlpjK46zVkzQFjMEoTPb2E9C2suosMbRqfOAEcJ743f/QUdi/Aanm/9yL4QyIIAtI0JYoibNvGcWwqVbF1bUh7OcR2JRuXO8wnOZYtfsdm7ltWzu5KxN/YWGRhLKn8GcbkLPIxLEpw7zPwNft4qGAdS9aJ9CJ5/U1MfYQ/sPkLLahMjFFzZn6Fk+Y0REBYb7ClM56/ZNE0L7Iw3qZRKRpZQm+UojoWG1mNp6d9rmzNcZIpJ8wGD8QhbP0p8qNz9LKCtpG82lhCWafQaspO+xxNN2VQKeqkPFWLOC86pEqzUTTw8wCv3KBf32ZryeUXP1vxYKnP6oGkxQJ+lmCHFjc732ABRa7ftdGbBBWMCOjTCEMQJSvFJtdnF0EqMmmxEc9xNgwHtUVu8yFGQxdvz8fMK6SWNEVGZwj72ZhY1yjNKm50kl+fWRypGr7U2CbmK8HX+NSpX6X0St7xtyjsitX6IYUYsRe+w75KWLJzekZwNtYsKc2R5TOQ0fdvwT3kD4y8LChlied4JK5LoDVraUonnVNS0ogL6t3TWHJMGdzAFhWULrZV54zvkJEjrJDJQpNaIOmsPMH2pSfpBl0anS4yyZj37yMtjVUMqayUqr6As/JB3GiDlmjiVh4HrXen/RmfvNnGLiWxVzJpVTiiwTfdBvdNSYMaen0FoQwqK1mqRfyfOl0uGpdnn3323fvPsTgupaRWqz3c6P57IoRA/xtOCQHYvR757dt458/jrlVYdY27uYmKY9TokKqfkd0aUu7N0VkFA5cgWGHYv0C7Icmfeoqi7pAEi4zrbaqiSatVstS5S635JUQ2w3dd2jfv0xI5+rE1VvwFpOtRRF2WjoZYRlNMBihCVJFR2QFiPmB07wmK+/DrO88hMpsvmlPcnUFQjskPp7wya2Go8cydGJ1k2KXCXv8ntNxd7mUJbRNwov5xaqGPEjZfv+Tyzz61zt5SD1f6NA/2CWVBP3Mo4oKR0+LooMCrSqZWmzvbDnmywVX9YdY8G1u7WJaHsg31yuFeDjY11qqT7DQOKIgRKNL5HNFcZKbmjJNdZHcNtfwq53VG3WjuFnM8d0p02sXPC/pVyD3vUS6rXe7YkqVsn46aslDlKGPoZbe4PLlFaTnMhMEJFnHf9z5m+yM8o1n0mzTnNRpqRCQETWUYD4eMb9rsvz0muzVGVwopJZWjSFWGKSu8c+cQnotOEnSaIjwPYVnflVFjjGH2xS+ip9M/5BX7kO81Wdki7izxy2fPImpztqKII8unvbeHchrspRfYs5/G8wriqMvRXYfqnQPixQUKqWgMD7j8+kss3LtBtj/g9ROnUZbHgIjC2kO1LXTdZy413SqnZIlSNqHM6A1vM69K7JpHMx6T4HN6PGKlyPCcCLdogWWoMoFWXUxtTMs9pNfqk0sHWQWMioyl9Dym6qBUSK4mNNyKflGRYCMQGDMhKlKMgMUCRKlRtiTWLZbnj3Gm0hjXwu8t4MoExxKMMQTLx0M+rIaL4/eJ/K9ijKHYm6PG3x66YJRGJyUmU+hCHU/Q8y28kw2Eax2bFx0LNSmwag9by/8osOg6HBQlxhh++XDMf7/TJzeayLL4xcMx3id/kuDdaZNCSlrLK4jvcPhatk2eJAT1BtK23xNq0tkML6phjCGZxtQ6XVR1LNQIIagFPp4fsBKFOLffZrYfY7JbDMuS0M1JWWQ5SdBOjqsO8W8NqEUa96jkqEoYFQ5W7Qq/aT6N5dicn90krlwuuNtUxmJiahz11yGTDMolWF2gXMo5b94kzBSlUdxyP8ueeZJIbFHIDYQa8/6Df8xya49Lxf/EFTknkjU2xh5OZbFkLRCLipGaMVVTsk7KsjfClocE5Q9p69PYXuTO/IOM5gv0D87iv7zFf2S+yE/XXyeMBHgT7sZztHaJgCrI2FlYY6YDnrAUo3GDBysWW3pATd7Cab3JyqTJIKvIA8F9exXbtbkhB0zUm5jsHm+6IS87OfngbS43j4grQzkZEfsWSlW01+/RX7iHFJKTkxxkSd5IMPaMxWGHjpIYe87jZUy7jOkWIw5lB905h91aAEokCbBFfOCRTlao2RXr7W1uRSFxFJMVc3SSc7A74MudR1iYJiyPU04mBY1ajhGK/pKLN5igpcGv3aJoaIRtKG2F03Wxuy0Mhqk5i6MCdNHnwew0s36byYMadlighM9OyyXmDvenDuG84sLTy3RP1Glpi8W6x0VpM9uasvvmEfG0oFEZhG9hcgWWQLjHlV6TK+xeSPTUErOv7SEsgdX0CJ9awmof96Z+KwzzPTvkuTbBI93v2/r6ThzHodVq0W63AQjCgDzNuf3qIWefXkQIweaVHh/+mTNUSvHW87vHLVDvorUhiQswIF8b4c5scitlZXHAeNTCjV5nWS9xR9v8wv4pRiSMm3v0Dk4QJhqR2Vj1mFZQg/wi18U1AmeRVj4lm+8j9Ygxgn3H8E59yDPb91jJ92kcXGUerbIUJ3z4pQnrD24T+TfZDgf4VZtfa3ydZrGJZ0VY8xkbg1uMpKCw17CKijvLHZacBR7MBKG/SsdM6eZtUjQNLTClIq8qcm+CS0DgtClCl8bBEf4CSFvhigZ9PWWULHJUbSBdSFXG2FW40ZyiKMnJGWQHpO4QM0spdYfhOOJtTnM1OcluvsogHiCuegQ7Cxinji0qvGGCq20Odx4nOCiwxQ6pLonEmMJYZAhylbBqHTFdfMBs9Sofdk9QdzJ+7NQv8c/CGi/0Y8TCN7hg32SQlZwuBXalmX+/w5Ee8geCFBKrIfCkDWtD3NCmLuaM2ssUWjKtZpi9G6RLj5FlKdapDzM/+lGEatOxQ3pVl8z1ePXKFbLlRerhWQ5Cn73Ty0w7TbRnMwgjbFEhTExWTqhURdq9w1PFFZQxhKXkSJWMgwTHOMx7PUpbMNEFYVojrFz+1o6k3enhFxafuLBJw6oTIIlcl08st/AXQzrdDj/5kz+J+zA/6T+Ybz1j1Lsjmd8T1IXAXligfPAA/9IlsneuAeAsL6HjmHL7NsX2BMyQ9PoQq+PjpSe4fOq/5v0bJ+mk+/hySGE0VzcfY3lpkdnMIQhiOrUBnusReWDbDpW2uLatqQWwcv4i59++yShYxOQDmE2xPImeg9ECpWeEQUhoSmrJhL3pnAIYqTrK1PG8iMdXH7A122ff00ynF3i99NBZhVuOUVmfQHbxHMN5pZlUObs6I2q/n9TexZUhrnQIPR/Od9jLUq7VHkOvtcjjGEfC59338Uqxwgs3nuUL6kfom4IpAZgFAuGwtmK4kTtcb96m4c7ZsY9QTR8QCGuRiT/BavgUoWFuax5UFq1CsbZwG+nu4aiYaadEZmOEE1KWEb35HhUVnWrCI8k+4ewIzwhCmXMu62OZglyUVFabLzWWyUVGWpykF1k4VZ1q54s4o12q0qDmCY6yufV6n9vDnP79XbIiRYYWhVAI30e4LjIIUXGMns2woui49aks31s7pigY/fzPk9+6hamq73rtIX+0canYmQX48wlPj1/lZ/u/gV0TSGkzDzskxkPsjHHqsB+0mLd63L78GEmvS07F85snGdV69OYpusjZnO2zme6gq4q4yslVQaZTYpNjlSWDaol9tcwgd8mLFoUlMStdGjEsKMFjo4TlfIPHxQGhMphCobQNWnJK7rFkJzTdmwjRQOp1tJT4oxWK+QLpaBWjt+naAUZAJgQ9U/EB12ClGUVYoUyFyRW5Lejci7kwGsMkx3gW/sISUtzm+S6UgUVjIcAKHHRWUW3vYuvbyMChOnhXsP5WTVIdT3bSpcKUCulZBJd7eKebWHUH4dkI59hZI8MfjFiDh/zbEUJwKvC4kxyfZd6Zp/zi/pAN30MK2M8LTLOF/D0cvdKyqIoCL4qORRrHwXJsstkULwxx/QDX9wnqDarvmLTqBiF+rcZfW2nTm0/IR002lz5DP5vS0DmjwSKb05jEhChV4Y48emsNbm0ukZQVvVoXL7dxdYQnNE0zIUsrWjXNnIjDssa9rTYNPeIXDz5B2Kxxdv0uVSNm6Af03QJTPyIXEiu9T84KRo5pzb5E071D6a2woscoU5H2lml11liy2wzLEpwYYc35zf2nWajtsmZmRMn35lnxAy/UqCRh7+0+17Vg90YLu8pxplPCKKZqTGnYYyyuInSJJ1YI7+5zaxrS7LxCqB/gWCmH8gGFJ4Ep/eW3OLJ2mboVpia4O4HVhsWb0y7jwQHShUSm/Hp2h3Gywxlzm0bWJy8VUw+kp5DCJbNihBacmIBxDFPxAK8JW2UTVTh06gegckI1p570cYzho9OXeOTZq1xs7iKSEF1azLYnVIMtSltjizm3Kp+50Yi54IOzffJZxl2G2OMUJ8mReYnVEmQLLjdbJVe2H+B4OaF7H7PQRXgWaeJRDE5SDVZRqsbUWyUQCbXxNqOyRmm1UekG28kiAo+3pcf9qENWRaxGDu/77BnObHb5pOvTilxWjaC8MeLN57cwguOsmejYNWO1fOS7AUqmVAhH4p1uUh7MQUqwBM5KhN3xEb/LoVjY8jiz5geEixcvsrS0dKz21iOsQHPpg6tE77p+bEciopz+4Ijb3zxksDsnHqQMdmbMhhkv/IublLli5/oIz4mwHZuoOeInnhuw0JJcXLnA7nzO/sGz3Jl1SOMrFAur2GmGkTlOmLPUfYpnsr/ER4snKbXghHfEhEPeZ/4JvSVwsNhvNIj2r5M1tnDWewzapzj76h5rd+dM0l3yo6+zFAueb3kcLV0gtD0c36KyBfW4pKHgnvUsXxJ/G08PWIkv8Ulrg+VyEVmMWR89Qy40pShRYUUsFX1RkqiM5nARO6njj3couzOEXTLw9tBOwrJzn/VJA6+ujsPuuk2SbI7j+RhPUYmCTE857kB1+Mrac/T1Ktg5eZHT2t5hPrUxN1Jm8zZvT5cRqaApu8x2Auxf38ZRA+qESGUTl4JracGzrTpDE9BoX+dU+20e8TXoCZ5zB8sruGpr9v3nOS1ucNsoPraT8dkHOW750N7+xwGn0lhZwqrs8Ez/UQJZI8mHfHP9kERNsK0A19gcWIpJPWYYtXG3JL6ISOYZa/k6Iyfn9sqMw9Ah04bS9rCCVUZCUYYuRasGRY4uhhTlFFxD0rtHc14DrbGEjaMkt9y7OH6D1A9JZYn0XPwk4Nz6Gd5vQn7yzHlWHjtJZ2mBvLaGPnuZer2O1T4WtaWQdLvdh5k0vw++1QKltebGjRtMJpP3XrN7PbBtgitXmH/96zjLy8ggQOcZ1eiAYmuM6t+i3IlxlyKEtIl/8T5nCo9uucTm1hg3VxxaPo8udMlLn6iWUZQO88TB9yrmZUXpR1y2NPZNwbjusnA4ZX0/ICkSyrKEVhOVJZgwJJse4fkdujLHm43wRUxuSUbKRtg+2Qys5h6XK80b033K2tfZt/r0TQ8z+gR+usJH7n6aKG1Qd77BQXaRqXeZZ9OQsMjplA5O4LJ/6QneObHA23P4haWfIVoVSCHxpORW1mTktTCWS208oTk7pJ4PMYnFiaxBr5ox6dscmrtE/hTFCO0rlFEo6fKafY17q4KBB9fNW9zpT5l5Hm6xTWIvkImI+7UKJSvGosm9vMHSbMKCybClx4nBFm58yJKw8S1FwxgsITD1gGHX517g8Wjrq1xs7NBhF9tepGpFlOaAyngcxG+CfIv9wz5bu1P+h2/8U3atPYxt0I6H1WqClDjLS5R7e1SDAVa3e+ywyYv31odOEsrdPfLbt5m/+CLTL37p+7GEfyhRSnH37l329/fJsowbN26QJAkHBwc8ePDgdzjk/n3RSmLKy/zs9hEr5QrzvSeJHxXMOx1GVsjcSOTdHWwn4zDqsN1q8f/8U3+BrbBOJjVjG7TrIOI5xnf51LUvsJAPqLSizDPyNCfNtzic3qYQHpOiw6s3SvJGi0WvR+H5ZFGIUxlW04pe4fCSuEyQPUCNwYwVqSUpRhusqHucUu/gyykya6HyNZS2mQ1b3Bs+wuRglbLwWMgieqFLYgwb2Hw6a+FVgqEVs1cZqtIwwlAvbPo0SAOF0/bxTj6G5b7Fb+zfZX2jwaMfXUMnJWqcU00ssEOE76ILjc6/I7+kUMcCTKWPw4RdC/dU470MSulbx1EH7nEu5UN+8Fn3XfbzktIYJpVCAZdqPhaCQalIlP49W0Et57jV2HY9HM/Hto/Fmmw2xfF8WkvLLJ48g+N5lPl3CDW+T9ho0kSzsLJKMpqz3HqUYaXp5j5bdsTG8Iit7DK/5P3vsPUJfD/BtG9x5ewDFpcOUIFP5LqUkxlDv0eVp/TdHjMCflF8huncpmdP2MlChM5YdG+SNgJ+WzdoLb+CiF5F5wGmSimJqIIAm4K2P2RulqnnR4yqmJ9bsxHWCgu+x7SAQk9AldyNG4xWBbWFHNn83hTXfuB3gspOGG906XU93HREuNAgUxame8jFxht0PEU3zXBqhlp3Rqs45NnmLT4r30Aevc77zD5lscXUtqk3YWBsXt3+VVxHYYfHmTCNtM+lUnBkIvZ6Vzjt1ambFMsPKaXDOrtkOCRFgnYmVLKOlhmqgtphjBA+aXGEFSqer2AwsLAadzBRyEy77DsncaTg3mkHxxrxN9Q/RRRtpFmmmwW86e7xm+1FvmY+wz0lafp93r8Y86mtz9PNbJ69to2+41MKjzzPmQVT3v5gnQe9lCdvvsnKAniyZLjRJosMRzcCsmmALtqUJqBftVCFRzIXTD2YOJI0EbxwbwOdl0xywxutxxGVj60NAoEbOZwuBRKwGh62MUSVZqnuYXd93PU6wrFwFgJMZY5HcrvH05ukb0NlkNGxmu6dauKfb3/fJzv9r+Hy5ct0Osej66Io4vRzTU5c7pDn+XuV2SRJKIqCyVHCcHfO3q0J994csH93wnB3TjItKHOFQ8DcOAxNxHpzmbXlZ9g4eZ6d6YA085hMl9m4exZX+7iqi/L2qeQM+0iycjThsfE5asRcib5M4GvWuYsXDdlUgrSzgXbaZN0TcLFGUV8ib7YRrRYMCtIix88123Ubv1rDTQxSaVSjQ7Z8gmZZUt+dc2F/je29/5jk8Cl+zBrw6HSNoFqjfrSMKRx+znqHrd59HFsgBcyrhMqyodvCSob0k+cgD9iz77A4z9i497/gNI4YeCNcVXD6aJc4XGZmQrIypumnNBxJENZJLYuvdc6w7bRxPY+e67NoeoytT2N3Fzl6q804BiUXaclFVAHMQM4smqOQfvwUji45LCNOiBGdVyKW7mj6uET2EQYFJmXBPmDseeRRwJK7xU5NsjYSXMkC6tVDoeaPA6WGR/snuVQcZz55VgtRKU7nG7ScFo+Z0zzqnGSopyxqSVokSFfQ0dAuI87o0wycKcKHyWKDsSuwbYtZmdF1V5BCYHkOWJo075OUU3w/4MBU3LUOMY6N1YhQq8tca41IwjlVYbA9i5WgjuO4PPHUU3ihx6XHL3Pho4+yWFvipx/5GR5/33MsLh479oQUfyTukz/ofEuoqaqKt956i+FwSBzHGGOQ9Qb2Qg97eRl3YwPv4gWE42DyAjXcR01z1PAB1ShD1hzqH+pR/8QG1bCgNjjHxbsCN4cPHm5zrh4RNNdwnAGCOlkeIYKUhpQ0Nzc4FSrGW2OuHrxMXs+J6gFO4zggcRS1kdacWdREG4MqQz4st4kCl7qZkFmGaZLT1y7/aOLxL/OU0/EQZzrize6Uc/ZrvFbU+Gr1gM79H+ON1j7PW6+SRveoPXiMmezx3F7JleQkUXncjvqPP/lZvrC0zIqwefqwyclRE+k4aAktN2Bqu8SmznxH0xdrqKRHFtusv6OZ3XkOPalwqhzLlEiZo6qSooTxoKC/dI1Y58R5zG56h7BWsWNS7soLVNYiTr7EjaNPcLexyc9Vn+GetUJbfZTT6YTE7lDTE36y/Nc8m34DIQzOdAJaMGnUGESKsdQYe0TLP+Cb9hTbW2PWeYSj5hGn7qTUJiXZ/AH22j4jb8jXrNfJvAyVpYRliNVsgRA4q2uUW9tUR8dBmcJxMN9R5a0ODvAuXKC4/4Bqf59yZ/v7t5B/yKiqijiO+Rf/4l/wG7/xG9y8eZNf+qVf4pd/+Zf58pe/zP7+PoeHh7z00ktM/0Na04SiZbXpTC36w4Bpv0tUjTCOjTvOWNs7OJ56ZOakccmthVWGUUQ6T5j4NhujHTLbRgchdrtJI53iYiGFgPmMPMvQPZc3zp0jrEocx+Owd4ZkpUv79lvIhiSvOUyikMfTgvVWwcC+iSMLsrxJqRuotIHKG7TVnLBMMbhY0xaTkU2Ze4RWHb/cJJt2qZINWoVgMXSJtaJpLJaLDo4jcdsaKQXaEozQPBIGHCLR6wFP/NRp7PYS7lN/nqQoOb1Yw3UtdKnR0xJV+RgrQLg2Vt05dtNoQ/4gRs1LrKaHKTWmOC7OfsvBaDW84/2/FIjARgYPHTV/FGjaFpnWTKrj0Oi/vbHIE/UQIWBcVszV7y2QOq6L7XnYjosXhFiOgx/VifvH06HOPPMc5973AWzPo/oOocbxA2rdHlVRENYbVGVBKC0y49Lt9DhotFhJZsSmzmv2Crl3krK6j1DLVNYeMniNqmFRkz5365d5rXaJQlv8gv4AGS6vO4+gLY8dsUDN0lQOWMKQ2ZLDImchGOCUhkqElE6HWHYZiscpwqfosMsw6tLMpzxpHmEqU35i+lE+kD7KTx38GD29QrsIeLIz4vn+GZa4iG8vf0+uzw+8UGPbdeL8CSzhk/s2iRegS1BuzGZ+i8t6jxIH9+SM+uZLrFlvc3J9n+JAo5KYy/vf5On9iogA207Ru2uIPGVBpMSBR1DzWJxtc3FyHSEtAqV4sqjTSg+5ufg0L5YnuVy7S61TJ7VcUj3HVBGlmlFWCj8KcUyb0mQELQ/X8smTHjPnOtniW1i+w0JWsJClzBo5+cFpmvEQM3AZX1uh88pdqprgHd8nzCxqyZxONuPTB7+GFydEhcMH34D12EY1OiglSXp13jxjkdcV0XwH1ZwhhOSlEwUHC4pwc4mReg5TdlHCAR1hqYrSlNxoGNaNha4O0UJyerFFXmmO5hUXlUDkCpMrpG/jCdDz8tjGmCsu2Q4tBM5yhLNaA2OwF0JkaGM1Pazau+q5JbAXQ+xO8N7h449C2vu3HjbfyoKo1WpkeUq/f8QXv/hFrl27xmAwIE0T8jwjbHjMhhnTQcZslHF4f4ob2MRHKb0TdeoiJNUu0mphjgL81p9gbncYZwVpbnN3MuKL0SGUPjK7QN57i3JxB/2Wj56OqaYpXSul7sxYbBhs7ywtecBaklNZHayli7Q8g1r6Bpm0+dUfvcistkA9NhS+IG9q9kN4QMW+NeCmd5/ScsCu0apeoHs0QYxSzk48KGrcUOe5kRs6u5/EbozJFRyWmteiV3CdlGblUgvh0D5gL7yBCSTRpVtIZTgVb9CeW7RSwetrv8KXev8SREHv2jvEqWFWHQdIT0uDa/moPKFSFSc6Et8BjwY36yMenP8wg26Xw0c/zKXVjObmMmnqsjiKsN0aKuiQPahx4RWPp492CDHsZRVlmnHmLc32W4rtysKyJ+yoJimbRA4Mcw/pebTlhPthxX/V0vz3qxWZM/8+r7qH/EGQNJtk3gnC1GYabtMwX6ctCj4wPMNzcokOcyYyxkHyzEGLgpwqbNLMC+pFxclpm8Qq6dJgyhE7UYznubzJfYZFTG5BMJ9hHMWbG11mjQaRDLmz26Bwjl0zTt1heeMR6t5JlMr4eHqarono1BvYUtLqNnDX61iBg+U7BHbAf3LuI/zoQuth/sz3AMdxSJKEo6MjxuMxX/ziF9Fak1sS0+kio4iFv/WfEz77LMJx0HkOlAirAj1HOlD1dzn8e/8tds9DZS7VqEenKDhz7jk+1q4z3t9jsh9TlQcYXWM6rRMsjenYisON83Q6bTzXo98/YBJOaQyusbF6Fqu9gq41qcohqmujtY/d6OHlW/i1FmtmC6s8IK9ydJVzUI2Yzsbc1x/iRfMxvmI6bMpD5lqyG1xFdl6jsA+JhUOYrfFIV6DxaM4nPGEeIy+mFGnGh5w3qNcNJ6YzHk80vZ0a2kBes5kKj1ljjVtll7nn83fNn+HqmxFpdppp7DP1AhwlmJRL9IsOniNQeUqpBcZrE7ozulVEUrNJowaNxpS+SVmuIupVm4/FlzDDS/zXNPjY1OYT8jT10QZ/fet5yqrNqj6gkAGXRl8ld+sIk6GLgjRqomoOExlyFPwptoJ1+iQI15A6y6izj+HK0zhzD+HbjOcD5kXCGe8ic+ZYhcIkAtlqMh7GbBct5i9/g/SNN4h/8zePCzDFtx01xe4uwZNPoOOY6vDoYVbNHyKu61KWJefOnWM+n3P58mWOjo7wPI/l5WUmkwme59HpdN4LW//3wakdEmy+wljPuWk2aUmLhaPnUJ0G//zkn0anc7J6G23g1ChmAUlbCxa8gO1mjaV7r5OYgnxpBXpLpLnN4ZHC8nyMH6BDD1/u8tsnz1FXKeVzdzhcOUPnrT4VHvVmH+Pe5leffB+19nVk+wZl20bbBUf2Mtdba5SZjzEBXtnlxZs/y/7sNHbWYJJpkCET1+ENx0VID5EtUpeSTMJeUdGUNvUiRImSWg/qjkFbgsoyrGvDxHNZ+IkruMsRApBP/DkWTpzj0krjOFC70qh5icpcsCOka2F3AqRnobOK6Re2UKMM693gYVNohP3tY6S9FOJu1BFSfHvC60N+4PGl4ITv8i/2RwRS8tNLHVa84/PcpFLM/s1Q/n8D2/WwXQ/LdXHDEMu2WT59lvloiOXYNBeXaS4u47ge6WxKnhzvu5uLyzz5Iz9BVZY474YVe4AnLVr1GiYMWK7XSByXAxsGvQ2y7A5HRxeZ3/7foPImul1SU4IXvUu8bq2ihMX1aUBRGTzfQtkub3GKS+aA7XKVF/Z+lBSLRLkM0vdjqpIt1aeQTZSoc0s/Q9/axEvu0pch64XDX9z7NM35Ozwx/XVOjRa4PD3H8myDKPHwOUDIGDGYEs8mv8e39B/OD/x/kVtWnNl6GfPiBLTLcFZiuxHtImPzxh2WD7bJdUmr/Qa+GyN0QGAPKRIfXIlxBK15Tvv6N/GKkux+hyAIWcn6tOcjnpK3CSf3kMURju+y6GserTIW0z2yRHHVPc+am3Lh8RlvBhvUfEiPcoStwJGUF84iVBthl9iuZG3WYjpVLFyLWZs8z0/Wvsa5+g4n4ru0ZznhA5c0bPL+2depGGDPU3QAezbMqj4ntc2+v8bryQcpkhqetOmOS8LxlLLRonRajHoWMZrArqNOhqiORgiPzdFlnOJx+r2CvbxHMQ8Y3V7mst3CVRqpFaENF0RB5fdJpc9WYmFZEteSdKREJxVqkiM9C+nZ6FmJ0Qada2SuoNDHgWN1B2e1hnemeWx5bHlY9W/bvqInF/E26t/HlfP7JwgCkiRhe3ub7e1t3njjDXZ2dkiTFCzNwmadslCMDhLiQUqZKVqLAQf3Y5ZPN6mbAEvWWA2X2Pn6jGm/YF9JjGng2C6vJ1u8GO0xKLo8Pz9N3D5i7H0FK19DRWtoLWmYgtCd0+ztI5LH6OoRF2dTMt8lrM0hOyIRB+hKsLr3SYy7woruMPELZm7JkTAcOHX+mzMhLzVaxJbh15ZazOPn8f05txr36GpNvWzxivfTWKaPN9hkbL9KWT3ADyBpTFHdt2jbFY9GMxJ/wro+Q3nyNCZLyEVJaGzO7y2zFNdZHa8T5A22Qx/V2KRZaEZukxIH5QRMC0GZt5DCYqk6wBYOIqljVIOjoMmsdcSh16AnMgJ7iVFsWNx2sHGRusna6zUeezBlY76PZwwfemBROzyJ3ezQqiRrxQpGS4ZFj29kFq5VYtkQkFBTIy6Jm9zYGnFvppn5te/3MnvIHwBtV+DYKRgwpsZamXKqdgIrH7C0l+IVMLJiWp5Pb95CO6Acl7BqkasCJQWqUKxkXXqVzSAdE/kelVQkVc60UUNrTWkr9nVOZgc0VUit3qfeqLBdl9TPeWJlmWenlziqRWSuw5likSAMUErhN0LqH13/rikYUgishyLNHzhCCBzHIY5jsiwjjmPG4zFKKV56802uP3KR/nTKrF5HRhHYNsKycJa6CKdE2AarYZG89Dz5zVsIodDeOlV0BdXaIKl/ko3NTV5//XU2l1Ywpk6ehxTFKToLC7TUHZYm9wmDAX7Do0mb1B8j2WVyNKHbuQTxCGEn2IPrqHYEboKc5eisSXBQoFVKnYzWIONkZfF/iy0WijaDcpFXJpJp5eKqHQoTMbNvsqgkj2U/QW67nJ1KHj80SC/llO2ztVhQeZqniy9RBLd5/aymqyuig5yGZdMVMyYEzA9h3esT+jHy6Ig8PsUb8Wle3XyaW9rDUlBVDXbTZVrNmLXNe+C7DI3kjB/z6IWryBXDTjdHOnvkdslC1uDCvMNKscSVzGapWsfxJ5RZgjc3TPuPszs8R2gSDsQ6a2VGu7KRlATFnJ3NJ7ndWWVZ5sRikb976jy3fQtLpuy5K5TeOnanjtjYYC8aoNM5Qmg640Uqp8JBUFYawpAv/eYLXLuuqP3ETzH91c8dizAGTJ6j4hhTVdx7cIf5mZMgBeXRIeqhUPOHxnQ65Qtf+ALGGJ544gm+8pWv8LGPfYxOp8NwOGRzc5Nms8nZs2cJguDf/YH/BsLyUFZ2fDbwSjbpUtv5MInV4oqzg0Qx9+soJVnY2aM9OaJV5PSw+VwXjtwYO88ZdFfRQYO1RkVDlNhACpjApc6QsCxYsAymfUTlV4SOgzr/BHUxw3MKoqoijK6yFzwg8MfEYoQubWJnRhr7gMWgUtyYafZjj8pqkNglL0cet43idpJhSUAKGu+eoQsBUQoi9ygpcEKBqyuKwGYgMupJwT4aN3DedW4euw5/5PIypxaiY9eMFMdBwdrHOHVkYBO9bxnhWcctUYMMlVTHThnzbtzBdwo1vQDvbAvhSMLHFxH2w0mFf1T4q2s9JpXi0XqAJb49pWtSKabV7y3UWK6L43nYjoMXRkjLpr26Rnt1Des7BFXH83nw5qu88Zu/hjEGx/No9BapihzX94/3REZTtyWtwKfjuiwtdJlqOKVzrkc+mBHd22+wUKVYqsbcVzipwrMMNe1jWxYeBqdKWPcyDuwe+9YJlqsJ23OP25MuE+1jhMNL2ytot2KuDRPnEQ4rm5eLEXMZQLpDPxMsVB6ras6fmfU5lW9R6Lep5xFX9DmurEZUyZyz7T0qqSnF98ZB9vsWar7VDvJ7/fx+8LSgKdbhbJ2RO6auDLmuEPOKOBYkRzk5U7plTkQFxsKd3iQIXWxX4LgZu09Ibl25yOROyKwsidoNTsW7fOKNr/LE/nWKqENcxJxeeEDXGxBkGpEkxJaP35lirVjUFt6h6Q5Zauwwvh/jeyn25jUOFpaoCp+g6SHMnLXJgKVAs2GP6TkTVtwDmsXbPJLeZPFaRGAFvCEe4+XqPAcMcI3BFSUKzXp5jxPp4Di8+BsHFNsT5GCIUBpLlxw4EbHfgPQEJ+59nEa1yPizDbKlEsoG0fwEr8w+QJ5ktIs5RVpj/MDnYGsP37KpdxZ4rlFSrxR3gyUWgg4t3+XCcp1Ly3XatgXaUI0yqmGGGmX4p5vHI/gkYEDnCrvl4W40aHxm89jqGDk4i+G3A4OFwFmvYXX83+/y+r7yrSlQBwcHWJbFcDjk8PCQLM9otCNaiyGOazEdpFS5Yjab49Vshjtzems1an5A5LT4S5t/it50jfIg5bCqiMwavUaDdLaKliG/NfT4/HSVm9v/BZt3fhY37/D/Z+/PgiTL7vNO8HfOufu9vruHxx6REblWLrWvqMIOkMRCUgJIioJaUms0o54e64cZ02gWs7F+mHno6YcZmbWNjXrU0zItQ0oykuIiCtwAAiigUIXal6zKzMotMnYPj/D17ts8RCIBtMTmBpAEkD+zMEuPuH4zzO+Je8/5zvf//nnqomsa81FIUYyYFpt4kzYhOovRDr6tMbMgse0etn2EMeujeZLQnMUJlmlZz9E+OkGYF2Q4nLn8Flto/Pdn2uybTTzzIocz7/Ol+m+SlRGiFIjY4ESwj+H8Gm+UC/SdFRaNiCV3iO8eokyfuhmSGT5n/DWuPvwou7szJEpHm+Y0YoWKBjzeO8XycA2rLrm98CRl6rKZKnpCcSSqtAwHTXokaYzIUo4ilwKBWcwgKlNUYZFpBYao0bU04rzAPRiRlzmFAcbQp+sJ7KGDSjyeeGXK7NsLmDLlTJlzMTyFVDFPqiqanDCQ79J1+jQSHyPw+a+Cf8kvVl9g+SjALe6XPv0oINKUTERAwbuGy27YxCxc9DQjVRpBZpDnCfl4gF6bI9cMElGgxxZSt+lFryGLlGf6Z/nJ6afoWjMsFUusVldJrIKBTJi6LomhQ5FjForWRGeuscO5c+vohsEd85DZjsViKtDzgt2Hqmh1C9t1qFQqSHnsKrvvnvmLQdd1Dg4OaLfbjEYjfN+nKArCOCZeXubNt97i/fffv3e8qtdQjSrF4DWkZyGdERRjjOUlyiJDVio4J0vatQYPVRbpdrvU63Uee+RxVvy/i0pWiLOS/T2BbcW0vFtUa5cZFyMiFRLYEaeee5CSgFE+pGh30d2STmRy67mPkCifIs3oLWYUlIzckscHL9IcFjT8OudGfaYNj9pcjVSl3HJPY6Y3ibMa/zTzKOtHeFynb/iovM7CXoewvU2w9MvsnHmBg5UYmwMc7pCf6HLdhqDaoYZOJ7xDOglwsoDuYJOkOc9i2CerPcpwMuKfL36MdxcexFxboyZ1RkkF3djCrr6DYVfZC0pEf4nxqMKicphJF0iNmFhFjIyCJd9CKyTXnQOeLT/KnkzI8wFCJvjBInFqkept0C5QCzKOfI0sy6gZFi9U53jRm+FUMeCFZo1DUSXSDZQ+pqwIxqlgoAVMOg5xxaPV26RiC7RDHc2UiCLF1wVjpTPcmzDtR4jZ09R/4RdIypQySSiCgN4//sdE166x9/zXCChBSrL9HsV0er9V918QlUqFf/gP/yGf/OQnOXv2LF/4whe4ePEin/rUp/i5n/u5P5M4891kpUUiInQKVDBkO79BHF4nimAmuoW0YCx0ckzy7X1sU2JTok0OyfKUiiPQpxOGWgmlyWPtHVp6iC4g0TQy10R2NC5p7zMjfDALcjlgdCEhbCV4BNh2wQeCCVW20ewethoh8jrFuMpesAiiTlnG7Psm/bRgmijCuMJOdoKbAbwXxwRZQayVZHnJSc3gXK5hGgpDSsIM9tnFMgriRPLujEavFkCeEDka2ne52wXw+UcXqds6ZVYcO2fCjEJ4lGYHYSrs8y2EJsn6IUWQUvjpcUZNWVIkBXyXUHPPka4E9qX2D4EV4D5wfN2qmuIfnZjl52ebwHHshQCCvCD4Y0qflKZhWDa6afHQJz+FZugYtsNTf+0XsCvVe8fppsXR7ja7718ljSL2b16nLArSKEK3bBACVRZUNEVNV8xbBo2T60ghOBuNeMuukGYV7F7IYTilnOqkekzDjVhZ2KcWg0GBV+S4Rcyj029xR+vg1BTEIRsDQT822I/qLNYTdrI6t7JzBBTs3WpzK8p5N0jxfUWKRpraWOmIJfGP+amja0zyn2VmuomVCz4WPMRDqkFaxkzG+9iVGlX5g+lg/Of+M0rTlH/7b/8tV69e5eWXX+aXf/mX2dnZ4Ytf/CK/8iu/QhRFlGVJ/sdYp/4oLF2nRRtrmtJUKQ9uphCZbB60GIgmwnWZdW2KiUWQNSmKDEILpY8x3QLDjrHKfbZmqtxOZwmNAyoVDW00oFIcslTXObV0gsKsUXffxdUnGHqOXq/xmC5pmYdQuwZawNnm+zRv3Ka4U0HngHj2G5T2FUrhYFR1ijLngvZbPGhfxxcncEjQCTklfeaJeTtr8fpiFXnkIicZk2lE1HLQQ53Z6TpFHrEoD1mZ9mkbGaVpIjSNjdYsW2uPQjniyHAY3P44JyYnWDeqJBWJ0G2knpNFHmoUUxEm1fCQMrYovWViDGwl0KtzPL2+QqE7nKh3+a+NCn/v4UUeW2lyYaZCXdeQrk42iAje7CFdHetMk3wUH9+MNXEcJFYxkJ6OPuceJ76fa2Gdb2E/0Lq3CPnuEqIfVgzDIAgCoiii2+3eE27iOKazUKfSMah2bJIwoyig198DlTPcD3AbJsuzc6zkj+DsG8wttViYFIzynKjQaGmSk5wg90/xfpnyN8yr3DyI0Q6XyepD4jjCzt8HjhBlTE0KrIlFTzUwrNtkuUTWEyrzuyADvnJex18oCfU6UW7S2jrN8mFIkcNzd4Z8+KWXeGgz4bmDjF/czJgvn6SZmbSlxeUi5bIfszbw8e0WfrDD7cTjUJ9jVYtYNyYMxjZG1qYqTTxDsls5JJjdotepM66mlHqEpwkkfaoL73My7XJq84De/DUG9QnTrOS2s8lB2eJdJNdNSWHY+GnBXmhR6iVKmRxFAwxVIShzNrXnwNoAkeKGMa5RIIwchmPcs4LhtZx0x0Tbz8m2drHTHg2/RNq3UKXCVrc4byYseCk/vf7bOEnMFyc6bzR8npp7kYoxpvgz3pfu86cjTVOef/559vf32djY4Etf+hL9fp8rV67w2muv3evO82d9TkRRRNyGXAwYtBqMzA5eYqIpk5FpEeYpc7t9vDJDSwu0VJGqEhlsYsUB0fgOmBp2pCPi68y4DstHDRbr56BqsKuFxKaNEorOeEIjV8wPMzrjHgsLy1Rd59g141mYjs5IScJzq1jnmlieTa1Wux8O/BeMruv0+306nQ7D4ZA4jonjmDzPqdfr3L59G98/tmAPjo7Y9QO0mTalv4WqV4ne+jKNn/8ZZLVKGcfUHs+wjTdQloZKjs/xmc98hsWT55jJHiUemKRuhaNhjqaFuN4WeTGiSpVLjbO4uUdhGlSW20QVDdsWROU+Rl0S6BqD6jkSIalPBmi6ySDVSQf7zA4s1vrz+Lmkb2UsDC8jtTEb4ypTo40QcKdMwehjmLcJZcyu6lCOF/CNW+j+IlWxjtv9QyJd45Td4JH8BO8UBaN2l9woaOcJ6dAncj2urjzN4sEhK/4eV4SiH7Sw9nPieoeBtUwjj/DjJlneIInmqfkDanGTGxsXiPM6mBGm7tDXFFpzixv1GyyMSyL6fLX5VV6s3aAV+GTEDHSDjhahqwXu6J9mLngIUczwnqiTlQWLSqMrQoTIsCYh33ThiVFMpVKlJt9mxXuZVDNZN/bYS8ZoxTx5kZPk+9TsBcI8Iol9Akdj5+gNmGZkYc7RizvwzOP80sctetGUm9/4GsOXXyZ46WXC/hFRGFJqGqOrVyii6Hvad9/nB8d3l5//UV9/HgpZktoBoozQgyFb5RFXik2CQnFl8xkmH6zg1yC3TFLN4CBPkWmIDEZocYA1t0Pm5YzqLlkuKZTHjH0Kk5xUSpLSA+8Ev7D1G5y4/AK5SAmSlDibEIohugOmkaMsH63cQyv3qckYIpBUGI7OkggHUY4w/EeZd+tM0nX8rMM7cU4vyXifnE6h2KhI4rLASkssIbANhWVoZI7iSAyw914kSgVHOrSdjICUkSxR3y3UfNfnWmYFwtIo/JTMvkC+9NPHbpm7wku6H6BaFvk4QToaZfmdBiL/c9fxPj8c3OvGK8Rxi3VAE8ctYNK7QvUfZcBQuo5h2wgpmT/zAFJpCCFYfOAimvEd8UIzTUb7+wz3d3n5t36NP/wX/5Q4DEiiENNxEQhkWVJRioamsWab1BYXcDTFajxhX+gUNHj9wQ/zO8sn8GSLfDohN47omNvMTm5hSEEzD2hqOUvZNkcpHBrbGJrEUlBgcRQ6LFQOOdLu8NpgnkympKbNNCuJpMMUjUSvEwmDIiuIjRWcpCD2l3GznNAbUB9J3NhBtXNSLyXyN8myH4z78s89c9R1nfX1dcbj8b360o2NDQ4PD2k0Gty+fZtbt27xK7/yKxwcHPypz+/kPbrqGso9Qz2JKYdA7OC/7RHnszhJRMXsk04MRnQRWkLuN9DtjCLzQeZ4YkSsB2x3Z1F+n5plIrICz9rGOfUWWedLFEJgeg3mbI3p+f9A9ZLJT6gFznohAp08aPCgdpOVOyFarFEEF9CGn6ReeYc8BmWEeJrCyXZZCF/nQF/AiDXGZo1264B63scqRjhqyom9G1S3fazUYbLcYTFs8MALMc7XIuZ369QzweGsw9uP1BGGwf7cEu+d/Cz6vEfkGeRFieWkSEKioKBMHYoiII0NTGFSrT6OcA2EDhtRlZ3QxHEFfmZhBxr7js5jXhcrLXh0sc7fenKZv+d6NKVEa1nHynmUY59voc86FH52nOQuBGVRohz9e5Rz59GZ451i7UdrISKlJM9zFhYW6Ha7LCwsADCdTnFmMwp7QmvBw2tY2BWdQsVIvaQELFdnfqbDg2+u8d5vbDC7XmMhl6R5QVqWNFKNJ8ctysTgUEz5V623eJsd7oiQQ1Pj1yoa2pxBwRGGMOkoDdvP2e2/RmJdpzKN+HfWSW47DpnssKla9NIQf6ZFsHqCM/2v0r7zIs0s5tH39qlFYO+UfOBgyPKtt4kKi/ltg4vXaxymEQdiyro/5V90f55XzcfIc8mT41OspBWuRiaDfIIznKWTdNHzlK97r/FN8S7Z6rtMK2Oam9cxpwW50aSsH3H21h7nX3ibzeIb+GpCmChyM6KipRw0VricWsTSIZMVFhFMKSmijBINcg0EXN1b5evZI7jrLZJ6C888Lk9QUqA5CeOwRN1xyOZOUGz1CaRFEUjSg9ukWYavUtpCo63FzJUpqp8x0ODrOIhGA7P6TbJy+Jc6xn5cUEpRliW3b9/m+vXr3Llzh9FoxAsvvMCtW7fY3Nz8cz0narUaj37kCbLJS3x+wcOrulSmEtk9hS9nKTyT2mTM6Ze+iW/lWJpBIGKKySbyzlv4ZYZfq1JoBWF8k+LOFfI44i1Hw6k5qIpGPU1wRyMaQcDD86uIKMAz1nCdFmTZ8XxW11CeQSRL6p6N9+QcXq1Cp9O5P2n9C8YwDAaDAa1Wi+FwCEAQBAghqNfrHBwcEAQB4/GY7Z0ddv0p+tw87rMfQHkVst4B+sIC0nEJ33qL7HAHigRpHec1SCmp1WrHJQBhjpxmyOmEkAqmPaHWrJAJnTxJGe5O6EaLXNna473FCaUymaQjBhb0wwPKg1tc7XYJlIZzOMUudfLoFnmWUA4C/PYcfavDaPQi2fQGQh2ihRNyWaWMB4zyAWm+R+L4DFOD96cRFhb26CwMTzIufK6qfTTlMitcFsLTbLo5R2lJTSbMu0NqlSNq8g4fy1xOv/cWq2HE0UKNiWGSHx5xmGXsJxVqEspJlWx6ies8zInDq5xxd2nV9jCMOlKNUc42Su8xO3eFHbXFybLOOB3TCurUfY3SsZiWPlPtCLuYYODyRnSSJJXkqsVQNghkhdObr/CPNn6Jv37wBkFvjJGNaGTbyDzndPEiS9P30LWcZ7Nv8MnrV1n3S0JdZyh3UKHFI7d+ijO7F4+zA8v3KMjxXI2vqNf40ubXeKk25J1Rn8P3LpP2DwheeZWiVmd4dIhWqSKjCCHVfaHmRwSzqBx3+aqV2DMdhnqDazMVxjKiPdPDX0wIWzmHrTpJpUooJeVkAOGESp6g6gP882tMHZ1cy7k9O09Z6JjFGM02mfPOkssUXRvC4IC8zJnEVZK8JNJS9qouSqSk5ZRSpJSZRREEaGJKbpps904yLCS+NeVrO6dZlYrD8Ry9SYPrSUpD1xmlBc8og4044UlNoiiZ8yyapoZKCiw3ITACnP1XCMjZUyVds2CqBwhDfY+j5rspswJpa8e5M65Dnhj35vRCCrLDEGPWJR/HSPu462uZFj9y8/77HCOEwFEST1OkRUlYFNyJEn6nP2I/yb7nWKXpmK57733ffY7vfq2bJrE/xXRdRr095k+dZdLvk4R3hZrvKn065Zj8g+UOdsWjahqorVsYacTWtQqX9RmOXJhtn+EPW6v86qpDJT+gOeyjWwZGHnLCSdn1zuCaGpk3R62aMG+nVHSdqKhT0bZJihoHqUJzcjZbXcYljHNFaDtEskYuDfrGc3yZz/BN6ycphQnC5JbaYksrWTo0ybUSO5/BKD7Cgf6DqSL5vpQ+9ft9er0enU6HEydOsLm5SRzH7O3tUa1WOXHiBD//8z9Pp9P5U58/0RuY4Qi9bNPsRaSNLlI6aOIUWnkJWxU4LZ8oVEyHOco06e25mK4DoiTLbTqmzTQ+5KAxi34UYlol9UqTw85p/OYRrjalVS1wqi30xh1St8eMozD1nHaZ4B58mNEtj/nsNkpPyKRD5WaN1vYEM/ZIppCMU2pcwDAbFGXOr8+exQ9jDswV7pycY6pMvIM3afjvMhlpTGKd2alBf/40CwMNS0ZsehrmpsOpictlO2HvYoSwNKptE0sZaJdc0hULsuOOCxoR6VQh0CkKjSSBNDG58bUHyaWG7iScac9gZWBVJUGgE9wacb1tMhqByEscXeHemaLeH0KQorVt8vFxsF71w0vIioEwJJQgbQ3p6Mjqd7JofpSVcyklp0+f5vTp06yurnLx4kVqtRr9fh+v4hFGAY1Zh+VLdZRZEhVjNBPqMzZKE9TnXGZqFmefmWX2RJWGoVGmJZaucAyNxmKNaaQxLo84tG22jYg3a7f5Uh7yUpgzlg9T4mAyiwu4mESxRmD1mM2+QXvy29TKbabaHInQGeQRpcpRukF981Vye4b65BArHhOcegShmyhlot9+DxH7jP2QJLd4u/MiY2vEyIzYyzym0SxtX7BenETftXhnPGVoTFCBRiVWjK0tIj1gfrLGZaUhH844L0d421tEnkM5XMLzr7Exr1Hp97l052W8bEpNVXny9u/QGG4wSBSa3qCMl1nMdDZTQVakKK1GmmeIyGKhlhPkGS8sr7G/NoPUFX3VRdbaGCIi1RTh5CJHp38GlRbcUQuEmUCO2hSJgxMqrKKGi8+WZvDfuhZLA5v20KBfppT5NlL++azU9/mTIYTAsiyKouDxxx/n4Ycf5vnnn0cphW3bpGn653pOWJZFs9Omd2ad9mwXa2EeEcQY7RqTUlKtdpg7+Rz4Acmsi6VbDOIx6GAbBkPb4n1dJ80H5J7NzuEBw84hoavxzHPPYNoGZW8fc38fezyme2IZrVNj9eH/LdXqKvHdTgbf7jbUUvBE/ThUcWlpiQcffPD7/ZHe549B13VGoxHNZpMkSahWq/i+j6ZpNBoNms0maZrye7/3e9y8eZPpygrWpYs0/7P/DOk45KMRsuKh6nUO/8f/kfEXfw/KAmlppDsTijSnzAqKMIMwp+00sDSFLGepOCkVex5DwInVa7SMIwQZvYOb7PUU9SwmTyLemzvNeGKyEJZsaqDZHq3Ta1g1l3i6iaZrpHHMvtnl9eIx6vsVLMOhYyR42S5mEqGlMUEeMxWK35hkbE9MDtOElhJke0/w/7VfxxebcOejmDd/ElFWEBlcLw+5UihatceYby9xqblHl7d46GiflaTH7CTkdDXnoryJSMcUSUE+rvNhXWc/8fgftp7mV5yfpp8uMKxYzMzfoa2PcGoRJxZeZMXOsewhVpQRZAnvWTdohjM0y3mm2YR+vM/h+HWGMmBYmRKXCYnMONzJidQi23R5NP0yDw5u8ck7X+Vpuc//cfufc85/iTgPaAVD1klpagmVcIcTt/bIlE2kKfarBxjTIRe2ezSnoNtVjvIMhE2lhFeid/mV/h/wjHwW4ZowmVLaNsE7b5O4LtPxGFWvo+kGCEF5X6j5kcBIC0hLCh1s1WSqRXSQhFlM03yHyArRO5KNmVUCzyHVdR7d7qMP+lQRKD1FGjnpdEpq+mxrOYazQcVKaJQ5y3aLzOmTWjZ5xSUvUvzYJMl1HDvHOE4XoMgjyngVklVsM8D1BvTtjMOsJBKSQ6eBI3Qu5BZp2mSSSpqaYkVq1EvBJ4Ti/1RYrEU6Uim6nsFyxcLMcwyucGSPMB76PEXT5epRiItObv42uiFRUvwnnRFlVhxvyGoC5eoUQQbad7oQFmGGqpnk4wRhHzsmyjhHaD96c//7HOMqSVNX5MDlacT/7cYO/2TzgK8PJt8zdizXpTm/+MeeTzctNMPk0kd/ksc+89eYObFOf2vjrlDjHOcmFQV2mqCCKbU0Qek6tTwhvnOLSuSzebTItt4gI0R6bXS9yYZRZaoEslLQntugNARRLtjMW6y5CdVJgGkWfMT4FkWckeYmruaTZYsMMsnC6muEi1tMqykJOpHw2JYPQ664XZziD9QRG4FFKQSl0Ikz8O3XKPWSURqTTCz00RmE4/xArsP3Rag5ceIEa2trOI7DzMwMn/3sZ/nMZz7Ds88+y9zc3J9rIZ+WJnkoUVGFStmit7COZs1iVJbRTIGyTaRRkiQV/GtjzKzK4R39eIHrSnTRYEETLBkZgWZjOBbKjJm54LCcFYR3Pszidsl5c0wWTpmaV2DwAHUj4M7Ff8XX8j6DrSVG4zmcIKb0NHSngaFD0B9jDx6BXOPEHcVWfIKj3GWzOM/JN95hmAkO8xl+o/Mp4sLFTGIGyQ495bGxcJLFzZI0PMXMbh9PCf7DYw22F3+B7rDCzqpkpT4leVSxemoTI0wJ3RB7voOmJKhDDGmQhB6FGJMMLxEKF8wmhRUyt3AH3ZhwdmiwLhWlnjJrVyHOacUllqEQAoogJdmcUKY5ZV6i1S3KtDhObDcV0lDH/1YS6Rxn0UjjxyMgTAjBI488Qr1ep9VqMTs7y+LiIpqm4boucRzjVA1Cc49xuU1phui2oHM39T5u6Fz7cItHf2qVmZUqFUenmoFrKCwhcVoWo6kkt3xOizYNo8s1c4c/jK+yO46YbACFhZ7MoeUOaaHxX2U/R1hYPNJ9m1PiLTKpMcSkIibH3UzQyYVFcGKVYLGDp3JM/4Ajb46Z1XfJmi+hRILT22TLTvjy+qNcnYHbXYt3vD5HpoaaX8ayFGPR4F/NfIFFc53EjJGFxAoLKpZHyztkwUl4f9jDsDWOLpSEYY+hWcLQJRYWYvkJfuGbOh989RanG7+B5fiIvauM49/GtXKWNzc4kxySFx6UoLsJsaUzEAbB1CbXp6RlzFA4xGGIONoncSz8+iJoFsPuRxiFSxRZi1KZ3DmMyNEJjxThe+sEmzMEBxVUWbKbT/jpVOPkuyadTY1rKiCoCIrkx2Ms/2WT5zn9fp+DgwP6/T5bW1t89KMf5fTp0+i6zsrKyp9f8BWCRucitlGj/8B5es0qet0kMRSeX5AvLFB0OhjRJsl4QpYVlNMjDD9g4LpsuDqj4iqJZdI9OuDUiRp/44llWrMd1k+uQ5qh/CmWlKiag/vMI9jnLiClQkpJURT3Qmy1ssS9G6So6zqm+YOpXb7PH42uHzs/Pc/Dsiyq1SpBEKCUotFo8Oijj5KmKbu7u9y4cYNibQ21tARKIR0H6bpI00TVaqSbmyS3NyBLKfwhw9++Qbo9JdmZMn1hmzIvWGrOs1yb52P7Z2j4Fjs3cwI/xrLfwvD2kEoDS1HxqzSSMbbvYzQjsvUaYnzAZ17bo42Ft9YkzxWRP8Fw5tEMi/nhmCx0sW74nL/p0UhzNpbHpGOPO+4DdGWTO5nFIBfYmc0jvIgTbxAUMe/me0yTlBOjx4iun6PvuxyoDZ5Z/T0qK9dpcg6hKz49/Qp/254i1/4d1TLGsB0mpc/IdenkYy5t7NAZ5DyWHHKUWdwauqhRwlvmOfqjGmWSUK2+S805wFVDGkzRZJN2EvJ2sU2k7VFbfZFYHHLIhEwqgjRiqqbEpCRlSqRlbIpnkVsJXXGRqTbLe+ohljKftaMDnhu+hxMcENcM/NymkqfMpj0Sb47kmUeIHQ3NtKnupsT+i/jeLrJmUk/r7DtdRGHhapLBZMJhHtC68xClVcPKFDc6dVLDJlWKQe+I1HIoXYcS4H6J7I8EeZqRZwlarFPNaqQiwgpCNK9GKDRKO0dVEw70eXafXGDcPkllWMMxbao0kZrGXNxDaHeoNm4hbQ3bu8KCPaYwJUnlkMhIiCyP8JHHEFIiNIM07eDpBW6RIYWBYSRMDs6Q9j5D1QnRtIIdP6HrFsSlYDdq8nPK5BEcHE0nzAoetkxahc9Dro2VFFhhThCXSE3imRoPLtRwNA3PfJlh8xDr5LPMrjZYbDjUmh1s06fuHHfyKYIM/+W94wDhu5RZiTA10CXS0ymC9DuOGiWO1wUVg2KcIE2Falrkk+S4NOo+P5J4SlG/Gwa8Gyc8P5hiScEbk4Dvlq7rs/Nc/Ogn/9jz6aaJXamw9ugTdFZO0F5aoX/nNknoH4cQS0kWR1x49avc+OKv87Vf+mcUUcgHr3yL+XaHJ0zFy+efpHZinaoOk94+TpqTZAZfMz/CGxdP0Wp9k1PuiCBXGFLwkcVXeXDuLW7ndeybPUCS5AWWSEj8lLCARAQ07bcJ6xtULcUglGxba1i1ffKiQJIRFimRXlKWGpWwTtt6jXdth4neZCZZpjFIaKXJH/sZ/Fn4cws1SinOnDnDAw88QKPR4OzZsziOw+zsLKurq3/uuvxChJRphH3UZ3/xJ9itL6BXlsCuUNgWw6UL+NYSmt4iGeaY+zmVcEyJjTQTZqJF5qIcq9QpbI8Ty49j2jGVik8ltJgensJ4L8cNx6QDRZYYbN3KyaxDDs1dvpkd8tX8dzjpxtiBQHoOV2cf4F/XJ2yXGtqNNYJJyaK4zdDrE6ka1yYf4uxLrzItWmyPSp7PniERNZpC47Le5I6T8+aDCVIUZEojdzN8Wefh9AzpkUHIBVR1hqo3ZvRxn7jRJ41L4mmKzPsIGVFEOmVqoHsOeeqw9dKnCXMb267hmxO87u9i6wl936ajJLmZc96ysQr4QLvCOcekLEpGv3Ob6L1DiihHa1rH9aZZgaqZIAVIgX2hjbA1pKejGiaoH58bs5TfCf8UQtDtdlldXcW2beI4Jssyrl27htXJyWRIZcbk0kcWjxcIpsYji3XU3fbkbt2kHZfUDI0KgpmGhakkk+IOP7//JnYueUu7SSxc6g7c0CSl0jHTLprs8FszL2B4OTsTjWvJDC2txMksfOGwIrdITZtchSTGmBfPnmCrs0VUFJCOmWpNTO0mQ3vEYafBXDhlq1llp7PEqPEEz5/o8Ko7ZqQKDlydoQhBXONQrHFq+nmOZIayNbSywdPmlGXboF6/gqccIrnEG02P4UyN2NHQkyGhCZuGxdVHn+btx9rok132yit404Su0KkaE4z9TRrjTcZTcPwhpbmHXvYJcNB1nUi7jK1c7KnB0u19ksxl0p1la/kZdsQ5hvY5xpUuWaGTVWqYnolhW/iTANNP2N6Kcf51n6JX8F44ZoWUthHTnOhs+jlVLaGrZ3/MCLjP9wNN0/jUpz7FT//0T7O2tsZnPvMZlpeXefrpp/nEJz6BYRh//En+BMyUNQxdZ7czx7VuG7NuYrctjLqJalSQ8/PoR3uUE51Fcx5L07GDgCLLmMliVBmi6g1m+j2ceoX5uo0QgrW1NeaW1xiunEOrVDEWanhPz98TlxzHuScMmKaJUup+Js1fMrquU6lUME0T13Wp1+tMJpN733/ooYeI4xjLsu4dl2XZsSvK89AXFkBKtGYT69xZjPWTFP6E4JXfw75QI+tPyAcx6X6IdHTmWl1O11c56Hg44wc40/8w3c4sSAOtOiFNC0xRw/En6K6HiArmWmOm3QBZSoQKsetNctNkhATPQ6gVDNuj2k9Ixh6WVyc/mCD9BBmFnLrtUld1ukmN/dxkxVTk+ZRHkm/wYrHLpggp8hkOC0VqFJBl9OI91Ood5u2MZuuLBJ3LZPoEbeiR1a+Qu9fx6jZas46W9ZDVOmvGFU68fYWZ6AjJmA84NzhtjnGHQ96Wj/LOnQa/3fsQY6UQ5RGFP4/IPFwfuvOCVIt4XEpOVTYJxD4jfUhoGFw/UdLTQwIRE5UJ22qH7a7Ay1M605P8hvgCoa9hiIhueYRlKSr5mJlkxNHygziEnA5v8o2Zp+jkkkbhYOoO7ZFFPh2w3d8hToZ4Vo3dVBKlKbJIWGKVU8kZ8rGFZ65SnYT4usKvV0gE+OMRgzAls0wKyvuOmh8RgtgniEcYsSTIG2zoZ9A1A8dqock1hAlGxSQN2yT1jP1MZ2zp2FaVh6II3Upxgj1WL2R4zREt2WAmOeDZ9A9JXI2ovkOQLxLRYeRZlKIOsiQva5haiso18qyLZsQQt5kZzWAUNhQVJpFOjZgoE0STCrVcUg1yZvwcXyt5oGbRqZRcch2OLMm+WxIkGUqXNGydRxyLHLBsg/n6KtWGw5OfXuXiYo2ZziztE5d4cKkOQHYYEr13dGzv+TZZgTDk8eZsxaDwj4UaAQhdIp3jDMuyKBG6xD7XPN7EvS/U/MjiapK6rhDAXpzywYbH57pN8hJuBfE9V1YOCKn+2LGgmRZuvYnSjh1ZtZkuwWjIcH8P0/NQuk4ShtS2b3Lzha9xtLPNuLfPioSPfOE/Z61IePj6m/zv5htYVY/eK6/SsDUq1UVG2nne1OcI5SwiH+IaOq6YMuu9Rlc/YtdYZKmr0POQPB9gU6CVBZYuSAqPzbeXiaIaNWfEoEjIzF3M+jUszaaOQhcCzJwildg2zJcJ9XiLJ6ttqlmVsDkkDX4w64m/8jPJUR6ShnsESZU0bLEUjSlQYEJWQlAIosOnicsIpVXQ+3CynPJguEHH9zFTD/vaJb5w62UqQjKjOqz170A5YFqeJS88jE0dGfqotE1190PcSRWbFoheHWWepVPf4qL+Ou6kZFqamPFV3hC3EPq7pP4/oxYccbV+gfP7r+C7K2T9K+yf6vDNScY3nRAO/iUHRo6wq3T3C3bmLjItLbZ+6gJCGqiza4xnWzzRq0EiCUY1zuensaRFriXkiYPSBYZZx2tuIrUMr10jjV3sWkoUnYRSo+MKkmnKXtLBHX2aM8EFLMNkfsZGNWzqUY5WAoMIkRzXlgpTUcQ55AVlVhLfGZMNIvT23ZIQAe4jXbSWhaoaKO/H+8bsui4f+tCHME2TNE0Zj8domkYYhuR5Tp5n6OaxAt3QFJ/t1O6912yYrESCGpJqWLI+47HadFisGMxkJlW9Sq7ZTBMdo7rH1ynx0RH9Gnk5w6GZsrMjyQOXW36BnhZcngxJojssl3fY1hsUcy8wvfgOB90mKhfM5iPwBMFEIp0jQjXlpj7DzDhkc/Uiq/EUP5/hgcmAsLuOq1IO9AppxUEPxjx2PQRzlqnQ0Q2XNGuzkmmUgU5dn7JqNvlqEOPmn+a9hz5O6hbEN29TmSk5feYOkWdzveqzPrmIl7k0EgM7TDEYkg4GFPEIJTMent4kNcDKDLIStJpgkIGRO1QDm16njS8N+kpxuRyzn53F0nepLH+FsX2E9rhAW1lmx3qSVLZp9qdUtnXMWCB9Gz1wmRws00pLukIjGmuUUU5Rpn9ZQ+k+PwD0BQ/lGtQNjcLVcToOFz6yiHO+hdnyCNIUYzigub7AJXWK7tPPUO0f4E6nfODKZayioDm7ghMEiO/qMNJqtfjIF/4O7qc+h/2hDyOrLsrV7/382wt9OC7D0u5ORO7zl4emaXieh2maOI5DrVZjMBjcu05KHU8sV1dX+cAHPoDjOPdK2KTnYSzMgxBos10qH/s47lNPk27cBmKsszNkR/5xh8TDEOkZkJXUpMdbXobVO0claFJ15hiW50hVTlH3yCIwdZ0bSYE/u86No+skUULFqhDbezTOR7z/rSuEpk3eXUbac5SaRpKOyeN9bLcNlDxyu8WDt+o4peTi7ZK5aZWtMGDZtJlqexxpJRvjjFw/QBYNxoWLP99nZuYApbvkxvO8NHHZLRwOVn+PRB7R09ZIyWkMP4F4osA60+Jn9F/nY2++xNJanxutFpoqyDji7xf/gpVin1WzxeE04rCxQD9e47+//DcZRA5/GH+cF9OPseE/iuNtc+7Utzjdvc585FJqAeXcLo25HhuVCa86kqkoiMqMzWiH7XKDdn0WIcHyPYJwiV9qzmHqD3A7eYJqPGZ++4CvdB+mSMecDm7xm94FlBEgpU5cbZP7E5zVdcx2g2B6QNR0KcfHi4rYSlg98niwf4YaHq5YpEhzAgpeenQBX4RkScLb1zKmQpKXJeXdcXGfH24Ms4KjqrilwdW04CB1yROFWdqUhiTDIk00xLSK5uhsjjWM9Tew0zGn+2M0pTAWq7RrI0yzQBc6RllFoRE7JsHyDsWwiyUtNHdKJluYKqMoLCwzRlM2X+89Rx8TM6/ixDpFoUgnHkI0WazVSIVBkpUYWUGWlTQ0RZaXYGvsazb9QUy2sMlXmhNiUzItCxZmHC5JndCfYpiKT4tPMEMT09H5W0+v8PDJRRY/9Y/42UeWAMh6Afko/o9LnwyFMDVkxSCfpvfChIWpoRrWscveUggl0ToO9U+vHZdH3edHkmNHzbEz+CDJ+F8udfjZbp2/3q3zq/sDSmCaF/y/Nnpkf4LGeIZtM7O6hrzr0tEME6/RIotjau0ZNMMgDny8ZovTT32AU088w+71q+iWRXt5GanprO5vsmoZaI06+3Pz6AdX0Po9ClVlqRxyWXyawXKdh1d/h6qxRTbJMRHsFlU61ojT2RUqho+RFlhkeASE1PGjksD3adi7hKaJsGNQI4SULOU1HN1iIBRZblJXKZW8oBW9R6xOkSQ2jZmXcNX4B3Id/soLNU5mI7KMtHBJE4csMBCTmCD3iUlYSXf44N4Gp50xhjJRo5CVIKSQH6ReSqjW6E5Nnjp6lcV8RCXexAzf5baxz1tkRKWFClPiwqQsF6nvzbEyP+Dl4nFav9MnKeeZGi57XYO0cMmlx0FngViPEKnCuyFYSg/4l91P0XOWebG5wLR+xJszAfVpydX6Hgt5l8CQjMyST94quL54jid8k19vf5YJdW7NPo2+dJop85hNjdjsIIceXtmhiBfIozWcekJZdMmLBKkk0rpDmrZRsuTG/iPUZ+8wL/Yo04SzbpPm8Dmc2OOSq2GUJSsPX8QwDATctSse2x/TXgBFSZmXZAcB8Y0RqmmjdZzv5M+YiupHl1E1E2n/YPrE/7AghEDTNHRdJ8syfN+n2WwynU4xTZMkSb7n2O8u59CqOp2gxMlKskGCWzFYMSz+10/9LfKlf0BDc8jzeQxtBt98j5fjmA1f47Zc459cfpS3BvArcxqyWKFIbLo7f5tH989S+lusyTZte0it/T7SGrDVnmPeL/nQ9HW2Hl6kkJK8GqAXR+B0ONd9gOeu3+avhy+xUh4yv/Mqt7IOnhhzzapzZekSTEpmbk/oG4pUmOipxVa5gp4vkMaSvKgwm59nLE/SDB4l1RtMtSlObx9/VXLT2aQw+0zqktowp42JkYDpB9TcFHc6wJEphpnTcEredK7wjc7zHNT79Mt9hrlJLhJQbSzHphnHFJOcVPMZJjP0Zh1O6a/jFxKjk9B0dI6KDrMqx7w6RhxB3PTo3unwkZHHzduS8nLAotNgPS2oHT1AGrh/WUPpPt9nBAL3iVlkRedCxebi00uYCx4Lpxt4j87inmmTmCblzi4PfvYcSz99EufsCVSesajrzO/tYAc+sw+eQ/e87xFqhBCYHY9feHSVBz/3s8j/SS1ypVLBso6D5EzTRNN+vO+TfxUwDIN2u42u65w6dYpGo8Hh4SGWZX2PE6rT6XDu3Dlc1yUIAgCsM6dxnnoKAZgnT1L/uc9jnjpDfON9vOeeRWt5pDt98lFEEWZI83gyWxwEiGiPwq+gDBOZtImci0SqQr1lIKWgqNYosgxb6qhcsmQtMjvTJY0DMvUS5ngHTZPomoZfH5E5NsO6R1mOyYu7WUhhjioVyqlSf7dPxXfoxSFGYZLrE7arOoE2wOUPuKgHxLFg4OyAGzI3XkYrPVQGX4k0blstIhXyy9rHmWx9luK9Cub4DKO5TXRjxNzmZdrqfTqzE1aqPQqZUVKg+VMuHeTUZueZVjyWrDt8pLKLn9rYccKvHT7J6wcd5OQs9TsF2XAWRYEb9Jhvj1lqX0fGIZ4+YqfYY1xMiaVgxZph0wnp0+OkXmHfi7imTKLgYS73TlKbjBFhzstiFi9IkLlG315lah5yq+Xx+8trKGnSqi2gNWapGG2ytMEF38HWSnIVIXobOKOIbsUiDxymFYe0KJDRHCJ2MXCZ+lVGc/MkRX7c+ek+P/QoaSKKDo5d4XKWUeQlG6qBr5skRkwSupj6Ilnh42mSIrAYxjlC83HKjCJ3KGagJIM8ZyR38KIGKlWQeRxEEcV0ltzXUN4+iWqjqYSiEAgZgTC4Nm4zzDL0xCZVBqWQ2OkiXlJnXTSw8waFMyF1IxJPo1fXaCmJV9U5cB3stGA+e5N+AYWhc5RlVHoBwVsHUEzRZMrq5ixOfCxIVy0dU1cIzUDenYtmRxFCk5TpXadYCWWSI4xjIUarGuSj+F7pkzQVWsNCGuo4SPiuS1xr2fc3JH6E8ZSkqWsIjoWaWcPAkJJzrk0vSXl1HPDq2Of3D0eEfwLXoV2p8sTPfv57xsyFj3yCZ37uC0hNQzNM4iDAcit86At/j8bcHNOjw2MHDgLT9Zg/dx6v0aRiWfQfeoiqvo8qBwTDIafCDf5d+TDXXI9qMaDi7RKZi6BKwlLxu+ZPIavz1K2EPBHUrZRWJWKaNrhef4hcGix7I3YTiMohmhXzfOU1nDjHThIOs5xcudS1EFB0ZJPNyRQhayzEfSztB+O8/Csv1JRFya4ZkWQBJhG5n6CNAzobB7ip4EPZDVJlcGLQ45H6TRbEDkdqhv9h7mHSuQ43VpdxZcK15iUujl5Gs64xMee4mU7Zr4wZTyP0jmAzneeF6jq95GUeGb3Mob+I2VcI5pkaHmO74FujRfzBgNg45HRuUN0YYdY0NCF53Vzhv1n4+/x2vYGvfHYaJSYFbalzelRhwoStekYvanGt02H1xPt8PL2KkYY46QZ6FDHNUlR9TGR7pPkc14JfZOuF/5z+rccwK0Oy0CHYXkETOqX2DmWxwPjG4zBcJR+E1CJwhc2DYYk5So5vxH5KmRbohUY5TY/LmbISihJtxoasOM4HmXOPe9jXDGqfXDl+fRchBfqMg9YwUbXvT4nCDzuappFlGdPplEajQRzH90JR/yhyV0ObZpyLFW5aopuKpx2P5r5NYJ+jrusw/TBlax2nnrDQvU4sbP697lJhkV6geNUKmTaamKpKY/siF/wP4hbzrArJ57z/H4Y4hZNs0XE3yMcJ/uwBN8+UFHWJZguyqkWpW9SAT7z8Ldbk+/zcaJP1SY8n3n8DPb3NVS1nX1m4ugdawZaMMAsdFSpIZ9EOnuVUCLVgidbhLEp/Di1NsTs+gRFTUHClnfDlfkJRNJm6Ds2kz2wh0Jwq1VThiX1msgm6SDDsCcWigzASzsdn2DYvM84FUSbB6RFoOrfLNYbmWTJi9NzjMFKMZYvB5DRT/YCvuk+jgpzUaTMvepRljaz5IaaqwBimrO8FFJMYOQxgnPHRasGp8Yhc3i99+pFBfEccXbdNHlxvIZ1jZ4vQJZqpkzkOZRhiN13s9Rr2xfO4TzzJ46dOs7i6gphMUM0qstVE2d8bNC2EwJQS9V3lkN/+frPZpF6v3yt90nX9f/rb3ecvmHq9zrPPPnsva2x+fp4sy+4Jat/Or6lWqwA4jnNPqDHW17Efeuh4N1lKhKYhvAr2hfM4Dz+CtDTyUUA+miIdHWFIRBky2p8QHm4SeznGUoXB9iqivMSmPkulMiCsRhRliUoTvCDi06MPcNbusbg4S81soVsJqg1GEkIYoZsp4cwi6qSDbhsk8ZQizynykjxLKUINhCDKp+hSZzSMqYUx2zXB5skdxnrOT02+xTnhU9e2iPOMyniRYdHh8ck8H3LPsKcaCDulbnrUb55kcvtlDvpbTLy3SK2IyYML2IHi59rv8tzyDabyAWKrRtpY4U7RIwhvsebdIFMV5EbGJJ3j3J5Ja1RyOw352uEZXqw/w1eKD9FzoGMXdDSXwExo6iWQkxghXt0nl4JuUKGFx6HfY1XGnJQVnus9gGYdocqEzFkkNmqoA4HIDZzJR7l4ZLFva/SaOg+U0G6f5EJRpeq1eaz7kxSTGiLySI7eZFDskuV9xDTByxJSY8LWmWVyTWHlDgKdMlHk0iVaO0VoVsiT+xk1PwoUecGLg8f5936bO3qJ4Q25MqvxzVQRywiRzNMfKybhFF1PUJZgnBh4tSnezCZ5YRPrO6BS0AIStYseO6i8oGrliNJkt99mJ6uAvENQtpAkZBRkYo/R1GOSpYwSiyQqmcTgBwZFNEciYOkgZgIUZkrfFGzYAqoG54ycD3Y2MCqCMsow0iOEoSNMSbthk/UC4o0xmg1Cr5ANUv5Ii0NRkk8StI5DGeeUZUl6EBBdHaB3HVTDRJ/3AO4JNfq8i7lSPS6NcjTEj1H8wY8zFysOn+7U0YRgO06o3h0PlpIYUvD/vL3H/2fzgJ04Jcj/eJFCCIFmmN8TJ1Gb6VKfnbv7M4NwPEI3zbstvx3C8fg4300IGp0OtldBMwxcTeEvncDRBgg3Z+Tn+K9VMLKYPFtgstFEq4TsWivEAioqw6JkaC9RNX3eESfw3ISW6xOMTd5NaoxDQTW7TmJWUTJAqpg31WVGxQHaZEhATqEcnHzEqIgIM4/m6D1O6A2MIiUxfjDNSf7KCzVeNMWxHXQCpHV8I9JljtvvUUYat8z/gi+WHyYrH2dr8SRXmhfYNV3e0BRCL0hrEwptwq+3Huep3ksEMuRfVKv0Q9BFgoxGGNYYEU6PbYSOgZsYPNTbwpykPDXaITAM3hQVYnuJ0HyM88arPJi08TTJ9dWLvOg9SK5VSeOYrv8ai4MmRXuWnp3xTHKO8y+9y1ZbY/8pndufe45h1Waoz3Bu/zYqE2i5TZ7GKAuEq5PqEYVKCd9RFBWNwW4TZW8SBVP8vo4hLJQ9oZwsEvbOoI409NCkSGNMBNooJp4GZCI/tmSXJeG1AapuYZ1uHKe4l6A1bYSSlFmBuVZHn3OpfGgJc62GdP7jHWFzvX78/vvcc9SMx2NqtRpKKTzP+58VamJNEIUpK5qOZ2nopkIBr37xNllWcC5R/M31k/zfP3KRc0sPsWV8k0nZphdqPBiDK7poA41rZomDxQ29JEs8rHABNbxOTI0vxj+FRcAz2q9htIfk5g6F6jNuDMmECbJEmSY7cZ0jd5HCGPFgfEh3EvK/+Xe/wclbrxEXUCsF57QuFUPDzFIWqGAYJmZsIfoNHtLh3C2X7pFOJwanPCKt9uivVHjx4w2+nh8SFRlFCQMtxyBjvp+S1et4hSJgE72qU2Qx5O+Qv/ktHnzvkJOTGqZxyFDqlEVOszHBa+3hZvOkXkRaRFiyQixSbgwjXs+XcFSX8aDKu8Ui0hSkvk5iNJk4i8SuQ3GYYPgWD2z1cWqQDBI6MuGRlochfzDt9O7zl8t/qhudEILIsVH1+vHCWwhkrYZ16SJGu0Xt7BmkYSAtC6PTRvtTJPgvLy/zwAMPAMdOju9X5s59/ux8u6PYt8eBbdv8xE/8BAsLC8DxeLh06RJzc3PAd4Sa7y4HuHXr1r17upAKfWkBYVsIQ1GEKVl/gN6yIA+ZPv+b7DsGA9skVdfQFhzcV97nVFKyaa3i6++x4d2hnB6S6wZn8jZP9s4zUx7hWCWddgulYlTHJItzzNJDQ3DOWqGq9lFGTuJPkEpD19skQYyOjunOooRBVTWp+ueYDTO+boQM6fNVJ8VB50QR8ZVwjzysEOUFt/wR5mCbeXXIWLUxpM4jpk7cVUzGW1zef4tBOUBGiqsP1rjRuUhQS+lZgnc3KmyZLYxpyo1yh+Bwj3XtGzzTrLJWu8Brw7/GWvIQi9Mxo7TJbx3O8eX0FC9ENca6Q2c14VY85N1wxHrFZlIEaLpi/cR1lJ1SUMELXfBMrKAkCwWaYzA49yssdbqk4mdIspLnpi8xLCyUb3Iqi3jZ8Pn5g6/ydL7LAzNPk+UtRORi5jpzbYXQHNLJNj3/Dq43S1KWpGrAwH+B4cwKWqMOYUbp2SRlQeKEFNLmtnseX1b+wsfvfb7/ZFbJVgpfCWKa9oRQxCSiYL+oEOiCcP/jDA9OYUdr+OmEqjdAyBk6c9tE3V8lCQ3KIqcgQYiSgiNkVEHDZG7xDzH0MTuYvDGYQRYxSTCPJKIsII1b7Gw9wbwzIM4Xid0qb5QFw2gFf9ol0mAzyBlRkJHglxrP5yl9leCe1ZgZfZWfPfo6ZVagkSAMF8PWWOq6FFGOalqYnS6J+SHySfIdt8xdyqKkzAqyQXycQ1MzKKKcMs4Z/8EGziMzGCtVqh9fQdVM3MdnkXfLe/V5D33RO3bcONrxhu99fuRp6RqrtsGn7kY4GHdz9xTQ0DTuhAnX/IhTjsk3h1NuBBFhXvDuNCQvS/59b8g4+5OL3Jph4o8GGPZxRYdhO4TTMVIdO1ZPnDxF7E955yt/gE3JVpQyftmGdJlsOuXk1jt84vYVyrhCOGlRmgm12xH1/T5z2pjZvU1qIqOt9olUhQXvkCWrx5XJOsNEEkUZtSInnA5R0YC0NBF5jopCVJmj6yUoB1nuMxQl+4bDx6c5F9DpFDnxDyhJ4a+8UFNkMGefZWF8k8w7Yn8mpbdskrQ0ZKlxmNh0+pvsp0/wz9ufYywMAsdBTwIy10MTBxxaQ26MX+Gf136WL8sP8PXsgK1kglnucs55H0OfUE19ylDgHfkcvQdP7r4DpuTj+69xpCRfinT+2dpHGUWzHJVDbjjPcbVd4eW6y9bgXc6UA7xszCSPMUUdhxmizir0XexGwsaHH8cw5hnGObZIqDq3KTyg1CmyGnlqYHg6udrndlTl6rBJeuizPbWIKRHaLrJcgGIBMdHQ9IJgGJPEJmYCdatCmRY0KwbOrItwNFACvetACdm+jz7j4DzUQdoawpAoR6OIMoSpMJYr1D+zhnW68Ud2XxFKItRf+SHzF4JSirIsGY1G1Go1bNumUqmQJMl/1Pbw22i6ZBRm9A93Ueaxo6a9VMGtHyvMxW7IX780z7PdGoudj1Cd/3le3Ps4cmAx23QwxQzTOxbDZIgvE/7bYMKmHKL5VYbmDba0DtesN1FWToUp2okcx5A4YsCrpy4zDqEQGao64sYoZb92hkxlFMZrLMzvU119lo+/UtDIctwkYzc32ZuzMKRJO/G40XawspK5aMrebps0CukaNR4qHSQZEyPhFTcgPrfPQT5iPutyu9zEE11em3+Kh746ZVTVkEXKXnSDol4hLidsq7fJRz1mbx2h7Wwjs4BYUygh0ESDP5is8ka7z0brHQAM4VIaEaebB6SyJC0krRGgYuKlMZt5m6K1QqRVCAwH5QfkWQWt20KdMDAzjfIlnZEqQN3fKf1xQdM0Vh96CG1mBnHX8SKEwFxfx1hbwzh5EtVoIA0D7+mnke6fvCxOKXWv3Ol+l6e/mgghWFhYoFb7Tm5Yt9u9J+bYts10OuX1118niiKSJOErX/kKvu/fPYFEFAWC8rgEwOsgLYWs6mSH++hdk2rxPueKHOtol9w/oHowZaa3zySrs5Tf5EPdA86df5lx28VMJJNKhhZVeeX532G//7uUWkRncZ6iKCDxyPyM+shjf8/CnfXJsoyi1kVqTYoCyiLEcqtYeYvWUKN4+YBnDlPs3OHZ8AR/e0uSN56jLS32kz4EIJVg4JdkfkyNgP2ihUwrLHs9bnk5/+/P1Hnx8U8g/WXMHWi7s+iiiiwK/KBAHbgUVo35xes0tzWWrykaTsxScYVcJGRDg0ialFrMx423ebLc5dZ+hsrgFg+hvIC4MGjkDk0V4Zo6FhqmFqDMmD2nILcLSsuDQjKxYyJ3h9jYpGeOOdB/nzQbMpfuk+pzlGWF+nTI18se8wy4MLpBNI24FveYNTrozgazRsql6ilmq8to0YSYJXI9JxbbTEZ7CD/F82YokpB9R2dqlSStIelEEqSgWfeF1x8FLNcjNRv8THuHD7R3aVl9sqzOs0aF14/WiYcN1qNznE1Xsbc+hq1iSgyUukUhU4yii8wdpMgwYh09B2IXmbmkgU1x9RcJtJQkXcSIl3AGTWzNIM8U3Pg81/0aT4o1Jr1VNoIaL2Uhv7fxDP962CRyFJMchlkJpY+hS35zOiGfbnC5Y6Idvc9aeBslQas0meSCg1kD09EhL2j//Bkufewsk7c7UECZfmduU5Ylye0Rk69tEd8cYpyoIR2dMsqORZ6KgbFSRUiBcnSEAO+puXvO+m+vCZSn4z4xd69l931+tBF3XcpP1Dz+rycXMOV3nDAnHZNnmx4/M9PgybrHf7exz2/1hrw69vlvbu4SFyVfH07I/hNroT8KzTAIhkOMu5tkumES+z7q7nzNMC3GvX3e+N3fxswzbkx8jNGUdDCiimAunvDQK2+S54ogbfNv+AJfqj2FkwiWtT7z+zdZMd7nrD5EzDc52ewxJ7a4PNKZd6BiSFp5jFVPyS2dr/c+yll3hmYZEXsmutqnRHEUX0a6FvHckAfzlNY0pJZI8h/QH8Zf/VW31PDiJnNbbzFVVxl3rjC2jugvGCRlzttKYu/GjMholjpdJZjUBfYo4E21wGr8LlPVJy5GBPkbBJ2QqVZjvv+zPBUMuTB4nbJiU1E5upZghzmb0xbTicbtVoYXBIxKRS+LaGoT3s/WeMe7gDZuMKlUGdkbmJMjVpINctUDq02i5TzWNDmsnaU2BGkc0jJLjMostfnXqauUqqYz9Y4oCkkRVynSNkoLKc0B0tExbYWh1amnJlVXZ27wCfRkhqq2gllYaEWFqTBY0jU8AQ1Vw8LhTN2gMuNgWzZ6fiwm5GGG1rahLNG7Lu6Tc8d2befYTmafbWKt1zHmPcR9pfxPxLcfXEEQ4DgOtm3jeR5JknD79m2Gw+F//B4lGOiQigBvRkNpkrNPzbJwqoEQEE3T44cucLpS5bGZJXrjKWfiAaYOKu8iEws5GrI9NjBrBm+mLU4U6+T0Ocokcvo6Vikw9ApL4hpVq01HlTiWy3SiERURE32PUn2VqR5TqDpB7RbRfMBNU/CNDzSp5DEq7PHLcyGv1q5iZNAuPAZIamGBr3lc1TxGWkI7hw/vJRy4Orv+lMrU4QP7OrN6jQfp4pdTVv1Z2g+3GSzOcL2WUSsNHjnwCCo60+yQ2bFibuqyOq5i9/u0lM2RSkglBFmbA19nK58yZAC5ROQ6shKhpxM00+K2rlOWbTSl2I0PeLfzHNmCi5VMCHOXsdvlSuMC0cMPYZ7VKe9soL8TUkaHCDX9Cx459/nLQinF2Q98APfJJ+G7OjK5Tz+NfekS5vo69c9/HqSk8Yu/+KcSar6ber3O+vr69+vXvs/3kf+Uy+rbrx3HYTgc8vrrr/Pyyy8zHA4ZDoeMx3cDAoXkXj9bJbDOdMgPXiHduk5y8xrWmXXmt9/mo5u3cfd77PzSPyVuL+MEMc+9fJPiDxX/JvoJDrU1TogeZiE5Uj7St5FWSTWRqKKGluZQqZPqNapmFaeAemSj6iMK2+RgZpEiM1CaTeT3SMMx3iTi8e0lpOGy7y/zxOUmTd3F9Bu8na/zZnKCLzQLTEswnhwynkqK3KGS7FGWNkzrHIR79C2TsqKRWR9E3fwot2cfYDXf49zNZUbXH8L9rQRjGlN791kuFK8SLHpszq9iay2mjo+1fBmZZrxST0GaPPuttzk5vMHJ2oiKGbEZniHIAurGRXaLT1MQM9cKcGUC5ZjSGHFt/tcZr73CVKSEWkJZwmolJy6rbIkeA6NOjiARFxgOHibWPGSacCgE+5ymHs4S5ynb6TZ+OMAxbuPlEbVCY947Qz4coDkz5CZcMadQeqT7R5wqTuPZkszUya2CTAvJVIe4sAkJ/4JH6n1+EJRIBpGgO3OLSAwwtRI/sHlcL7h2cI4o0CliRSvVqEVnMaIOQaCT5Tqm/wylP4eIuxRJFxW6aFmVWHowaVMMT1MLWkyTKbFv0dj/RbReg7qsogqDMraJRMGZ3EAKh91I4uc5OorPlRaPFyZCwDgpaCiFpxXURMKjo9f4bNNBhgMcp4Iuc/RKE01TGF0bpR9nzWhNC9NQCF2iz7sU3+2oKUr813okW1PS7SnGood0NHI/pYyPN2u/ByGON2b/J+sBoavjEqj7uTQ/VuhScNaz72UcAXywWeF/tTjD/2FtlvOeTT/NuBHE/OHhmGGaMc1zkqLE/lN0v9QNE384wLwr1ChdJ/J9tLsdNeXdBgCRP6FZFnzAUtTHA8RoSKdeo5XnzG3fxIkGBPkMqrDxmy0St8X55reolbeoV76BPzjJB/sv80j4LvV8hGPELFsRXTth/esjZkYpkVnnlb01wsSlmu1Sb2yit/8DWSqoGgH2xh4qG2LIBFdNaboltUr9+/3RAz8EQk1uuyT1VQxlMlDbrOeLrCQLXG32UHlCIWJG7gJfrcV8/p03cLKARD/HXJjy241nODl4h55xkamIOCx3CQ41ToWPsBxdxMh/ChFWSW1FqcNi+ibWeEppPoo2muNw1qHqh7TCMR+7LHgoHuNOYe6gytp2A791jr6jaBc2C0dv0g6e53P9A/atCq28zePmNu3+GOFlfICv8wBfxzCGVMohRdaHXEEpKaIa8aRGWvrcsc5RaZiEmkaRu+yawLxJK6ygchBZFUO6WEmdRtWh62qszzrUtBr1WpdyGFNMEyhLzPU6lHczZrouSIF0NFTDJD0IkLaOUAJV//Fquf394NsPqjAM77V/dV2XO3fu8Ad/8AdsbGzcO7YsS9I0xZQCWddBS3ngwx2ULpFKoBnHf4aGrfj2ffCDjQp/Z77L2dYOHz1f5c25EdNIo2kWNNImM9ka3VmLK6ZkRZymGTR4Ihkigxg7rjLOTQ5j2GGRosyoyBIl2kRFxi15h1sz57GaJYWwoGwg0ejZK8wEp6iFPt7mbSIp+V988Tf5+//+VzkdnObpyz0qQcTb1WVudi6xIds08n0aScLrlosVevz97Z9GbJqQ5Ci1yqrZRebgeh7XTy9xpeNS3xvz3E2Xr18oqJcWM32JAWi6oJYkNMoKobFPJAVfzt+lWYVURFSkjRQalCVTOWLijQjLiLezhCNaRKVLSYGvSvatk9SnG8RymQ3NZaJbXE1XKUSIKMa4z3gc3v4QZVL/Cx459/nLRLXb1H/ue8PshJQIKVGeh/PoI8eLd/XHt5r8o/A8j9XV1fuT2R8yLMtiNBrRaDSYTCb0ej3m5uYYDofHDsm717MsS/zAx/7gPO7PfIxptEkZ72NduECZH7f3rn/ucxx98iPc8ko01eLjr77OyvM6l/bP4bkP8Bgv0XRjRtoEI1vAqSnU/CxpVmU67jGjt6i2cxxDYUuw6halUWCaOsnKCaaNCoZdocgC0mgAwwF6qpMnKdfGLfzIozj0eWdH5/0e3EnreFkAMkMmUwZS0DM9wqhCs3DIJo/TnNTp5JIHNIPMmnCttcLV9ikm9hYqrHPb8blhSHbqM5Rxg/bwszzQuc6TxhEnRxbGredwxU1cYwvj/TdohQEHVoKnhfzNhQNm3R1q4RZ5HvHqxqN848Z5plJjWC5gmzlShthVwWz7BnnjDWqnvs7+qd8hRsfXjohGdep2wVDOoBs2h2KevfgEh5YgESlLcg2xd4rR6BK7dcVQi6CmYRa7FNJhFJe4msB2uwyrTYpcEEiBYa+R+9tYuYVGRKlroBQrcodivE8qJwh5vz33jwKHacZhDJbZp1W/Q1koEqHhGQGOGRLlilGWo2UF2wXUkGSRjh+dYb//MMNoBnP7Z5j2T6MXTbSiRlwovP3z1A6fwi4sZGYwTQv60wq/mU95oPEOKZIDXaOTgekaNBoWN6OECYLSqHAqLZnZT7AKKAtY1dvYxMwwZqU85Kdn22B4mFoNrUhQ1Q4V22R9xkNIeTzPV4IyyfE+sIDz0Mz3lD4VcQ5lidAERZAhXR3p6hRBShHnSOt++P19/nS0DZ01x8SQkjlT5yfbNaZ5wUGS8XDVZTNMUEIct7X+E6IZBtPBEaZzvEmmdJ00jtCMY4ey1BSd1TXmTp7hKQP+y26VMk2olhmz7TrOdIIoMjJ/SOEuY6Ya2mjI0YGN0ncpz5pY5oi38osYScr6zg2ibZelPOIBz+eMN6IUghVxwF7extIyen4Lt5bhRJuo7g43a5s46T7DAw1VxggK8sqQcHuTsrf9A/ms/8oLNZlmI+oNStugJ8asZBqQsGveIdNSLP8Iy8y5cDih+far+HKCltdZ7O+QmYL/x9p/SV+cIlIZ0nKxby9x7vApJq3rxJFBEjoItyQ2DeZGX0dLAvaXTuNLxWiuxWByknr/NE+8OmH5IEJkgiV/hjS1uNm9wFjT6I40Zn/9TS6Ja5y6ep0vPvoIhb7DnHNIqp1Dzs3jEmAzwS5TznGFNI0pyjbKgDQ2yCLFlmrwDXedpfOd412dxOSjVZunNB0jtKhGHcLQxjbqdG59lsdSjWrbYtlW6KnCNF2ELrEeaGGu1ag8t4DQjy9x+E4fY6kCUmAuVpCWdmzb9gzsS52/3Iv8Q4gQAtd1uXDhAoZh0O12qdfrHB4ecu7cOabT6b0SqKIoeP7551mSJT+x3qQ+41GU+b3dXM1QSHX8sP3Gr1xnuB8w2vLRxhJVbDKdyflG8VsgQ+pmnzansZMakSFZzeDfpUcMZZX1vXM8njyNnDS4fmTw9qTFf8g+Q1AWzIg+RzKBUpJpMYeFzrjVY2Ro3N77HGmySje9yoIyWcwSbFkyH+V0bx+AuMOa9iIXb78GZUShl7TTdZTzFJp2kyQpuV6RoBtUMpd3DmaRRwbz1xOM6IiublEGDdBrVCoGWpJw/VKH626AqevUUCRVG+mU6Cri5EFB6b5EWB2wo7Zp2hGeHTDvFuiawTQakSU5Rm7gpzpZUTBRCuHXcBwXraIxDDxcc4yyVpjMPERhgpJzxGIdY71NoDUQeYgWHf5lD6X7/AXybRHmB/5/3BdpfujQdZ3JZEKtViPLMnq9HqdOnWI4HFIUBeXdcLeyKPjyl7/Mfm+fo3qdWw+uMftf/+8x19aPu6fkBZWPfZSoXmPiZOSBQl+Yp/HoJ/h8z+SJXY+kcUhp2+iLEi21EUlCIWPCpAIiYq6oM5tapDJCZ0i1dhXT1tANg/c7M1w9+zBG5QxKd8iyGKWbiPEIKQSapiNTGN84RJkWWhph6QZ5KblSG3I06jGrzfLmXEwqFM/5X2N7qmEom2y0z89M52mae6Srr1OqnKA45L9rfo0dbZ/ffaZC2q2SlTpmsMZzxi0+Wku441X50vQ2letNOq0pX9HbPFSU7LRTAt1n3xBccR8h9X20TFAOM7JUMEorvLrXotQNpG5Tq42pqoKvjKv0fBhVb2Kd3GFiR6R98IycQWkiHYPUGlB1Q3r2hDhLWA9WaY8mDJNdbtYL7KpBLRGkhc9EpShXUDEjWF7gsGLjpJKZ3hZU1/Haj+HYNdJwzLz0acqM2WLCYcVE2C56/ie379/nry5VTcOWgtGRTde9CsLDtCOCpT/AkCN8Df69lvK8nvO2meHZIywJm1sfZXM0JrNSjEGXPO6i5w1UVkMkBfZBB6vo8m8NQSVvkgAHZOAMscUeKQX7LZuKELzWkkS2ZEvlYCoKTaIJGC0XTLsmUgouGMuYmqTjmlQthTAc8LqQeEjNQp39NGsdj5MzHujiOMxcSoo4R1UNlKtTflcAdhFkSM84FmhsDaFJpK1RhBmFn/4nMynvc58/KWddi//z2hzP1F3+7kKbVdvgRhBjS8GfZipkV2vopkltpguApusoTUO/W0ouhOSZn/ubzJ06QzEdUwY+te4clcmAVVvHiBOMC+fREp/Y3sLYHaDGE3Zv6gSHp9g7v4RhZsyEQ361+Vkur5xmpM3x2OhtTqu3+JjzVb50/sMs1/pcPTqDqRRh1uVgzuCw6vHG/hP07CG5tPCzCjk+iSFJ428RHphE0x/Trk/CihFejG9rSN1hMRxRZY+pXRC4Bp1bA2rDW6iJ4trMpxnVn0PkDdoHR9hZj76WkaYp53YFWSywKwbJUYV+c4m4UMhggKntEHLIt8oZ9vR5BqZN3mlRDz7M4aiDO/RoTATOLZ9canSnBipTHBR1UhHBOEarPscTU4WKbS4e1UmPTpA2HQ71eZK6RVlKhFC4ep0P5r+FXqwQpzbSSEnzEs2AO9YaN1yDpfNN9qOUPFOsxCVzSiGARtvGRtIxLMxwgbqmqLYdSAtU1binoGe9AK1t3wsC05oW1pkG9gOt40WErVH95Apaw0J5Oqpi3F9Y/Bl49tlnuXDhAkIIHnzwQebm5mg2m5w4ceJe95DDw0O2trbY2NhA5TmW06e2oBPH8b3zaIYkjTM6KxXmTtZ4/+V9vvpLV9l6c0yW57zde4dhcAOpj6nXh+TlEiM5Q1op+MCyznDtLX59KCm35/lc/zGqh09yJdJwMhM30SiExaraZSsfodBpWjo1NWVvxuEdvU4/XuPocAnjUpW55u/zsxtX8bOQFd0gU5JrT8QUsy/gP9PlnfB3UYNtxgj+1cIqvrNL4f0224akq06T64I8SXhy5wK9nXd4OHH4qcMzHEUm71SrnKoGeOvL9BYEvkwIyoSyyBi4Dok24BtPaJx9c4vH+xfZszcZiT5VfYhhDHGUgWYa2BWH1HVhDBEVWrpg5AaEsUVheKSqJM8ENxZMenPb9KonCbOE2PLZtM9TvTBhJNbZbSpS+36Y8H3uc5/jDKOyLGk0jgPzx+MxMzMzXL16lddeew2EoCxhOp2ysbGB7/uMx2Omvs/WwQFJnqEqHsLQQUqCICAoApK9AcbyCtXP/DWGaoL2rT5zl/8uWglmZZvAirgYn6Mz8zaRnIUywBYWdQSGUyJzHc/JUXoVoVuYWYaZHZFni+jmLEJUcDoXMayHkdIiSwqKNKMsS0SlxkLocz7pURYO12ODYbuKNtaR5TZofQyOuJrf4NfX/5CrxTXM/Rg9+H1uFQqZjMjLBkfSoJEOWLOPiLsR41aGDDPyI0FSu0kRlcjBNkVssmYdsqlV6Sy9z8HjBoeGT127yseMV7l1tEIQVbnoH/GsF7IzbbBUSximFoZYoG37bMQBMhX0dhdJUpOK6yKNQ6JpxG5zl/ri2zhzu1RCkwXX5HZxBxCcKS7hO3tc3/sdsnLARE4owiPKcY+b5mVG3hA9P2Cn+QpP63/I3Owc0zTDt21McxlXSRbtEU9MX2FuepubVwOqmUGhHzsy7/PDjyhLDAGGWqUQipGziGEeMjI2MGKbnsiJdHhB5bwYh6w1wMwjxkmFYRIxiCP0SkzhN1HBPJW9pwhCDVGW+JrgldLn7doetq44EgKZVIjjpzF1nYFmUrUEh/oRc0WELSWuqZEJULrkxpkaL14qcT1B4wiS9gL12VUqngtSh/oy2VBDSBNpNvg7z6xyouUiNIkwFNx11EhDIQz5vY6aIEXaGsaCd5xFIwTSVJRxfizUuPr9NcB9/swYUlLTFH9vscPDVYcTtsnlaYgl5Z8qtaV7Yp2f/Uf/F9pLqwAoTUc3LfTv6tRo2A5uvUEwGhGMR3RPrFG/+ian338DrdGgnJ3FzhMmRoI2HAKCuVqdV4zn+CfezyC0No39q/zsrbdIbJ1tOYOWT1nL36F/pPhyfop5ucf2pMMkrjH0bZKKxUv5Y/zq9SfJzTqR6qCZBqUtGBYZrf63SAId7B/Trk+WmSPKjLL1IKfbDzJ2q7zXPiJLNaRWRWEhptuMkwXa/iZhsk4ZGlQPp4wm1zkM36WzP+JDL41pBvNca7/GcG7KVblAnAZMqia+VWGvDJk/iLnZ6VJmGlu2QZbPMqmdoT7RoVpD9AKoabg+1LWIhShHyZCtuZP0ak+h5EOM00fopCXjcYfJZAEKncSIgZS8tJH5ASKr4A0+hIVE6RFlpDBLgwkOpRTMeCaNioFmKTRdHivjApYutXmwYSKn6XGNfNfFWakiDIWxcBwmXGYF8e0xWstG3H2v9AycR7v37I1CCKxTDVTVQFjqXgu++/zJ+XYbXvntFHSlsCyLD3/4w9RqNdI0Jc9zvvWtb/H6668znU5JkoRpMKFWPw4d9n2fXq+HbijCSYpuKFrzHjffPMBrWQSDlAfOneBy9AZBfIhl7DNyrrET7XOYD9HNiK/5rxAd7XFmdJ7D2oBOrlEfGRwkR9SnJzDHPqOySj27g+WcRKQap+UJzpy4wcOt/8DiQOdi+AqZLonmIpSzScVKWRjvY4dXiComl6s99KLNbifijexVVo03OOG9zXUp2NdzQvk+tdxjKXyIduhQSUp0w6NZW+OM8UE8fYwdTAjlLTakTrz+84ylw1j6DNMxR0ZE6poor8HmXI4sEx5/e4fuTo+P3QQ32UdwxFGwTmErRlaNN8wdkpmEqZPSNmKwd3h17W0Oo4J+KYi9MYdNgyAcs20HlBREss/N/TVuGc+wVe3ScANM7b6l/T73uc93ukTVarV77ppOp8MHP/hBBoMBRVEynUzY3LxDu90mDMNjoeZuAPF0OkU1mkjXowTSNEWpjHwSIr0qZVJyYuddlLGAMVyjyLZoV+9w3d6mTBoIoTMtmpimwJASVyYsKxDSwLMFGYrmuYBm6uPoPnlhYLUWQFSIJ3XS8ixCVslin2gyxrAbbC9epDYdUOltQuJipF2yvESGFvWJw7ac4Jcpw+b7fGD3VXJzRBB5BOGYW6nFfjhFTT1qu49B0iRME6LuDb6xusGdeYexeoC4dpXlazdYS8cc6QZYByxVrqG7LzHnNYm0jEa0zXleox96bKl1zjbrPDB9j4Owyxn9FpOkIMublNkeyCbt4iyWXkE3be74CZ7mU+0WuMYurtdjvn6Zcu0FrtW/ybS+T6kpzMjlxkJBPm9wvvkVTskTHBnvMw0D/sD9Gr9fewOKBE12WA2GLGdL8NRHyRyoiwGygBNLNuftW6h4hKalROOXsfIh1fuZ8z8SRGkBRYHlLjCJn2IRl6raxS4NOkpwWyvodnR+0TAReYHZnadmCUaZ4rDWoo+G0GLCyUnKg0eJdi7yG1mDfUuyVeT044xYCHRNklZczKKgWVskL+HmKMXLcy72r7ES9XjWsnCUpBckRIbCqlbpZJvMFgeIo5ijtsVat07rQ/8FGC5c+DylcwoNIC2wdIWU4lioMRUIKJP82F2jK8o0v9fUovAzlKtjX+pgX2wDHK8PspLcT5F3sxHvc58/K0II1F038bJtcMWPsNWfTqgRUqLp3zEOCCkxHAfd/I5QLoTAqdXxR0PCyZjm3CKmZZH6U7SZGXLPxUwi+uI4Wyep1Tmo1dlc6lKnIIsqlI4kDUdAQeaGzJ32WfC3uVwskRDjyQG/OP8t5pwprtQ5LE32yhnm9YggnfLm4RJZFpGbkkEQY9o+oV8lUj8YZ9oPwQq9pMglew95lKsVVH2HmcLivNugnngUps2w7VHaBTXrAGQJRUlVNzgb3iKL32OatlCNT/Ho9ilmNl9ht/IO/+D5f4PmR7zYeYDn+QR+zeGBmwXXz89gZgk7eUaUmgy0Gc5kDaY1l8gwMO0SexDSTvaYHfWpaiUHSw/itVz6W5fY0h9mYfl3UYyY9pap2xNycVzevjN6gPd7D8L4JPXwFDITaHqMSEr0UrBQKhwp0a4N+Yhp4bk6UgnycYIwFJqpMGztWLgpQZ9zMRY8pKtjzLuUaY7WtCij/Dh3RgoKP0Nr/ce7QUIIhC7R6tb9BPfvE0opVlZWsCyLPM8Zj8dMJhP6/T5RFN37qtVqJEnC1tYWv/Zrv8bEH+GPYupdh1rHpshLHv/0Kh/6G2d4dv0pfGPIfHWRdSYEwTY5Ew6yXTzjiK/VrzNrP0NdzXKr9TqlgMJWuFg0ixx3+A5+HLBfVLnlPEEZ6zRxsWpbiCKlMxLMxrsMgpBYv4Y0SvxORks9hD3MMeZX6VSabLkV9vUNarUl0G7j23vEAt63l9mQHq2ooGf4HBT7dJpnsK0GC5UPUkQdcvdLfCr8fU5Nf5e3sxHXbZ8xU0pN55sPL/PCEydI9QJLO4GUAcKJ6I4nzPYzfuqFgIcGPWxL45s9m3cqt7hsHpFpo/8/e/8ZLNl5p3liv/d9jzfp3fWm6pb3BW9IAiBAv22nOb3tdka9Ez0zmpnQhKTRhkKKkPmqkD5JIe1qZzZmV7vbMdNjetqR3U0DgiRAEIR35atuXW/S5/FHH7JQYBFAE2wCJEjmLwLmZh6XmSdPnvd5n//zB0dSEi9QlM/Qc15g1/02pgoIk4Suu0pHdBmWAjw1QndMchER1ra5MDxLp1ukxDomwU/7tJkwYcJHACklpVIJz/PQdR2lFIZhMDc3RxRFrK9vsLu3y4U332B5eZnhcMhgMGA0GtHr9YiiCFUusz3o0+12ybIMTVcIXaEqU2SDCC3ZB1lE2Vtsuia77e9ytW/T1pvsb/0Gu/0F0sTGtPr09AQ/dMh1ia4CkhTM8pCj+9c5538ZZQV4R7cxXI8klQh3jzhykUrDLU+T54qNapMw7JPFGUKaeAG4G7s0szIH40WejxTf3T1BX+9Qz8qkWsQF4y62RimDdMgw2mCgoB7sEBQt3hQpzwX7fFk+SVsPqfYPkZBj7OzRbO/w1cYVRsZV4rl/R1awORUU+Yz+BGQSPehyonodQxvg54q5I1fpxgXqXoBrw9WRJM4yFqRNNlhmS0wT06cXdRCANbWOpwYEXZ/dvUVM9ybuwgtU9BTSnOlcY9W4TtLK8L0LLCqPq2aRf3WwwlKesB0PGWk2M71l0r17GHg7mFrEgeAFzHQXMkkQ3csr3scxqwWsxQphYYV8/yVENPhpn54TPgCCOCXLUhLD45vqC4w6Q1pOGy/18dM+fTtiv2DzTFljN8nYMnQ8ETJITNL5Q8gkJSakkArCIOZZLeG5LOH/LgP+20EfQ+hksUUSprSjHfR4yPKhI7RTkyTNyMKUpzdTtjOD30x1kihjP065YUlKjoE73KKa7hI7ik7J4PceWGRm8RBIBfXj4DXQNEmevD3B9FYZE0AeZQhd3RZhYOymSfYDpK8jdYU01O318jQjHya3158w4YOgqmvsxjH+j1tmLgSW694ufXoLp1Bk1B0LNbX5RR77/X8MUlL81V8h8Vy0Xoe26+M36zSnWlyUBgccDy/XibsWWkUH30FpOluVWfLyAC0Y8mbpKE1vHz0PkFfanLWeo5p12BpM0Q9TbCVoS8V+qJElfTJMLmuHSPQKw9hmkH04kspHXqjJopyO6rJee556sMqw9g0Oyjq/vfsobmqQaia+FTAb/yVU9lHpiNTXyZWN1d3itII9q4ztecxuvMTZS30efek6ATdAUwABAABJREFU5SvrWJ0RmzNH2No9RX64xV9//kEuiteQtkQkJiKVjFIdBhDM2txsWNh+n2FeQt+8Sj2MOJh62IaLZ8SEmwWON75Etfw1lNhnsFfHMHcJkhnC/ZP0ts/x4vVzrD1bhsAiSxTSCFFK4Ngas3HOSjtBPbXO+XZCQRMwTMiGCeSQdiKyKCUPU/I4pf+tNfb+zZvoLQet4Yy7RS0XUVUL5Y6Dgu1TNdy7mu/63krPwH9k7if8if788lY2hZQSTdO4fv06c3Pj99d1XYbDIVmW4bouYRgShiGWZTEMBoy6EZHs0RnscfzhGYo1G91UHHKP8nHnUyz6S8hDTU5PneRoOEeraCKjK4SGy3+oHGMoirxq5KybKReLTVyqXNPXKKQD0rjLv90N6KAxzQJXSs+idU2s4QxrhS3abshB7SCFuEvWmyXW9skjn+KwQUrCTG7x+nCEyjKc3scJ4w12XcGsErxRWmbTO0BzeIGLaof29rMc1A9yNl6hqDKiLCWwD9Aa/gW65hBoBZ4uf4e6SNDQGEgL3R3QdkBpMxSieTK3iLu5yVxHpzfTwL50mSiJmRJwNbrO9XQTxx6hSfBWX0dd+Ta7zg5HNx3qW2v4IkRzMpzIxsx1zHwX0zPoD3sMg4T9CEbdJquizn40mUmaMGHCmPvvv59KpYLv+5TL5XGG2K2SqNdef504jtne3mZ6eprRaEQURei6TrvdJo5jtHKZ1f19NjY20DQNqesk26+S9qtkYUqeDEFEKD9g+3uvcTM8zl7zIFa9wskbi5y9btHebZHKmLywh9qvkRoSkXZIYoGQGnJwBYM+0smJbYuo6WCWd1DxK2R2itdycaeOI6QiiIcEWYrmV0iHA6y1pzEGEW43wO2P0EZTvN6dZmjADblENw0ZDWJcQ6eWruIPpnl2GHO39zLCv0EPRVctkOszBNEehX6TdHiQfqGEc2Ob11WbER3OFsFr38VI67CzeAVj4KA2ejzOC1iaS83pk4freLHE1APmaxe4tF8nxWd5sM9Wu8KVoY2rj3h49lU2emchaPKdG0Vu7h5kexSijUDTL6L0nDwTOP7LNN2r9JshaabYqn2dPT3ANPr83e0+5VGNVc+kEtbpWYqe8XUO9feZSmxe9jyGhsl+XOZ7wQK10nH6pYhOIoniMkGW/LRPzQkfAEGckiQJO0i+a7rU9T2OFa8S5hmJlvNxSydMcr7ijxhJwbU0xSCirwvaSGLboKMPcMs6X1OSv5IpJ1uKkZJIBNOOhYbLTL3Hc11J0RSUyxUSJEGYULQSAmXQ98pkuiIcJlRLFv9tHmCbCjfc5wtHHd6YdygUTQwlb3faydMMqUkMXcKtsqYsSkm2hreFliy+5ahRgjwdL9P/zgaDZ9ZRnnHnpKw2Lo8ar/Ph5rZN+MXC1RRTpkHF+Ns3ZYDx6Wq5Ppp5p9nA8nyC4YCg38MtlmgtLpEkCe4DDxALKCche5Ummi6Y8WyuFOssxQI9d8hGDpEToPlXSK+N8C9t8XT1MXb8GTYLM1TsVQrxHs3RdRo7b9IINnl+cxEpHWpmQi8TaHEHKhbpsMJ/6p/neriMtDQs7xfUUdNNE/YjneC1ZUZPDejLNfanwdxtgDsiQyHMEdeia1jVHiJIiIs6cSypDIeczwroskdx72lKwQW+e8Rk7qXLfO3u0+S+zr4/hzEs4A7vZWbtBPeks/jWLqW8gCEjHC0kMm0iO2G/aWM2nqVTXEDkA6TQObqjUyPFsXpo/X0w30DTiuiFjHjYIaxukI8eYO+1zxCuH+TjaYFoOM2ltiRPbdbCKrqSzDZs6rbOmb0Eu+WiCTjm68g4GztjwpR0Pxi3yxMCoSv0KRfvvmm8B6Yxl0vYJ2roMz7uXU2EpYEUeA9Mv2f9qZBiLOhMalM/UIQQFAoFXnrpJebm5qjX69TrdQaDAUIIbNsmiiKiKMLzPDJSht2I1fXrXLp8kVOPzKJuhUDbwuWe7uNU8zq1Yo1/cd+/4JRZ41dOHKPTfZ2QEv/cKjEdeNygxH9T/TZPq6fwZJkLsosR2mSjfbIMKsog1g5QtK4w3DMp79/Fs9kV/utCjycLzxJnTcKdg1jmNRr3/yHFI3/G8LM9SqbHMDWppRXypElWMAjViIoW0XLX+EvvLuykTU9AXs7Zyl/gonqRC97rPFMPubD/AN/UfpVRXKatCjwSuszLIYNoQE2WKeg9/uTAJtdXZvAGdbomiGGfwwOPxHXY0PawBkPmshFVwyB3LrOXbrCaXebQXoXpwCJP4Z4bczjrm+RiQOYMGVpD3NgmGyZ0jS7KtAjCiLa1TlraI8iNce33hAkTfuERQlCv19F1nUKhQK02LhGQUpJlGe12h4LvMzc3h+d5RFE0Fmc0jX5/7KK52GkzLBTo9Xrouo5mmcQ3XyB47QLZIIV4iBDbmMtT2Jvb3Nj/FK5Vo9H+Fh0xxJMuxnAehEdYvgSxAjsjTxOGw5wsFVSre/R6ZSqHXyIMIDZNsnIDvXUYWc3wFi5BZR2r0qDqNUA3iAsFctMh7l+mUJ0j2t4gH40o7Av65jp7ImHTnifVBR2jQ8NKSMOr+AOTMMnJXY/deIeFXODLiLI1w4hryJHi0t4n+IbWIQ2hm9usinlWjJRuexqlcuzSS9Q3n0B356nHK7R2D9Cf/wr96/Abja9QuDCLMZpmqzOPpixCYCtKEdYubm6Rx9u8vLvE7mqNy1uwF7mYbhcFCCR7ZBRmXiMsvE7Ti7ALAbt78xSsy7hpRDFe4HKygEhtXjA6bMUddqevczWfx+jNYMij3ChfpTf/DQbaHv0Q/MFpGsNNhrJH1ztCpJt/47kz4WcDXZPILGEtSdlJU7K0R0HP2RnkjLIUZ9BnSM6s6OPoku00RwlBqx8hb2wz1Fy+ljfZKBq8rqX8gZCcKlj8bqzzjxODQypDBF2+2LjEamDg6TmWSCgbKXk8ZNp+mYEwUZpBnANhyuGmz1TNwdcUvl/l2JkT/I9LBguudce9eZ7maIai2nLGk7V5TnS1y/DlHaT5fY6aW3k1pDnkkHUj8iC5nVn5FkKTkGTkYYr8wfbcEyb8GCjghGdT03/M+2shaCwdwHLdOx7WDIMsSRl1O1ieh26YpHFEHAbEQUDTstjQLJLdLWQU0ivV2PvqX5F2c4L9Co3adWruKnvP5NQvrvNVdZ5nG3fhToPRGpc9WkGbYCvFjPpYic6R0jWWtR36qUSYKdvlBbZWZ5GqwX/XewCpKwzd+PFe73vwkRdqnMRGhUWGez1GG9ukozLGqIeWKSI5JEsywnBAGiVsOYKRDKhrbSKvyMpIx953UUaHrDfEzODCQZ83Th1h0CjTX/CpxpKgsoEKW5gdk/nuPN7MTXzpYJp71OauMDR1IrOMp3lk5VXwBcNagTjNmbE6GM4eau4i1ZVVguU+Km/hVPbxG5dJZA/Zr5CMPCwMFgYVivZp+oEgDktshRqaJpgpm0xZOqeGkIUJAoHjG+TZOHdG6IJkPwApEKZCK5uUPn8A51wDVTQRhsR7YBprpYRztgHibYfHRIj5yXPixAlM06RWq3H06FHm5+fp9/tIKbEsiyRJCMPwllCTEEcpQTRkfX19HAJ56zPTTUUcpJS6LaacBiW7wOG6z+eOrLDeu8a5jSL2mz1CXSfMttl2XuR6cpHUMpgq15H1LS6FbSp5mWov5UVjBT2JGUVlevqI7UzHkkW2xA4vx4e5snuO9uY5vhEF3Fi/jyBuYZJQbh/HFBKnbBOaEsmAPOviyDcZWhVqVzfwqin7n+9y5fHLbNRvsDe6ybeMPt+W27zSdUhCnUXNYTbcxlIRh6JFlkZzTAVn2HViNhu7WFhcs/uMWj56d4QZ+ay2NA7sdMDfoJnfTaBfwFZDJPvU24rW0KCAxmJvhJllbFjXCZIBa+Yal8qXiLOYV9JVrpgWgSbY9jfpG5uMREI4aUs/YcKEH+DAgQOcPHnytkMyTVOyPKdarfDoI5/ANE2Gw+E43NAwyPOcvb093pCS9q1OUZqmodk2mQAhA/IwQRoCvdJBn6mDqTM8eRe4Av/m/8y/XlZcKqUsjWbR0pRN6xptf4dEa5NTJEkMev2USrnHqOMxvTeHivYRMidMQkZ9xfSRUzhTOoXWyxQXM+6KLlLWMzoxbPjg390ASyfKQ/JMx7g6AO9ZlID+/ohcy9hy1mjpIaO4S2l0k5ap2MxBZCbTsU/U3uX+vZC+OSQ3YsSWxk79IfrFCnFW4OnugD+L72UrirADg9WRzjAug3WC7VDj4MuzeJdPk192cbq7VPwKz24cJdciHLVPLhW+mXLYuADBAbSsxjCLCMU0mlMjUUNitUzXqfNK1MAwBsjaN+mWrjHUXFJ22Q+aXEXj0MzrHJ65waq5ROaFXA+36MkhQe0rFCr7DMWITXuLkrPMsPptuvkmumYiIo9v2PdiWRFJU5FYE0H/5wHP1DBFwvUkIwa0rEMrGxLJCpmmg0zRdMl0pUnBEOxjMFI605lE9gJahsefb9t8J81ItT42ITdVAs4a82ZMywjQdINvHnic+qyHE+5g77xIIe/TUHtM8+cMsFFCwwhTHCmZKdn87z5zlKql4x/7z9BnzlA1dFq3nHy3SXN0W+PEPS0Ix/EHwcU23oMzY2EmB9IMoY87QJGNYyByoPTLKyj/zkGkUII8yciTHGF85IeCE37G+N2ZKmcLzo+9nROf+CSF+p1VIZpukMQRURhgWDZSGwuNX/8f/iXtzXVKEtw0Rh8NSff36Go6+cYNsvYuo4GJsenBy0WCfsTV2Xlm1Rr/cephPH2Pvm6zbR0gKbQY7mYwCpke3GS7a3EwfJlUNMjmSvw1x/nzS2cpawE7XoXYNrDzD6c74Ef+26mkR83VUXmC7TXo3ywwuPwMkejT2WmDhDyX5KmgM8qIxQD2rhNYdZbe0FA3Z6hGF8jSdPxPeZn2QYeVzZfYjm/SWo3Zta/T2VfIVNC9OYPlr6OngtJcG+fUl0n0jIvmcUTqEZoalcIL7J87SphpiPgImgWi+hLauT8lKkXowwqu/yJ26TJ5JBF9Dau4im8JtjWNKdOhKUzaWw3QNXTfII8yZsKcltLIhgnZKEaf8VAFA+dMHekaJPvhuEtT0cB/dB6tbt8hxug1G+UZE3Hmp4wQgmKxyC//8i9jWRYrKyu0Wi329/exLAtN08iyjCiKcF2XNEtQugCRkqYpURTd3pZuSHJAv7FCwT6B0gQI0FOTolZh+r5jSCXI9y5SD9t8LDfoZQlOucHAKXDd3eSJ5As09hdpDQf8kRXwSnI37Ujjgv4CAsXDW5/icP8onT3FplXh2/H9rOU+fdmjb0Aqd6jsHkVTIAsjQkvHykMWNrfRRZtaluClOY7oU+cyde0NXjh0itdOH8Bu3mBby5DhLplVYClNcdI1ynKZ4xzH1BSH9yyWtHks/TJ2YnHDCYjnyuT9Nr7TYK0qmeqmDAsdriWrpKMWHhWKooymujAcoWOS9zZRjs7ITtlUXaY29plf3UNoEk1XGHqXbWeVmJDMzMmFRZR+OAr4hAkTfnYxTRP7VgeHt1yQhWIRpTQMXb9d7lSr1XBdl2KxyGAwYHt3l2EY3r7WS00jMwzMAzVk9xWM4EW0Zh3z0CHkE0+wMxyih21UuE6iAsTWaxQTC5Xd5Gp8nVfm/4REreG178NOl5BpGTvOySIHZ6eMo48giRmFfeI4I9xzUBKcwmUqB5+j5T6Lp0n6kcGro13MVhvNkJhugVzqFEIbPZAcvjJLJRcoLWfVv4gvXUpKoyI8StmQbmGfJKiT9WfQ+ibLScbQDMG7QGvhaeZmFEGripQW/WCbDVGln41IOqd4Ia+zTcDW2gJ/bFwnunkJ4+ZhDFODEUSt72GWv8d5tYaWGZj4/OrsX3G69V2uRAPohxwqXeZy7ySZrBAZMU/eOMkzuwf48kaZqUKXPNfpDA32d+s05JAB8+i9o6QbSwSyglk0SNMOpbBEJjJKaoQwOyRmm53yk5yZeoPU3CUo9lGGTWLn1FMTwxKc9P+aar72Uz4jJ3wQBHGKocZlTId8G8NWkNsMApM9x6NZDmlMucwUyhRtk0AzGEoD2xJ0Yg1XsxmlOVc7EeecDhf1NdbiPsPyHnghjYLE9Ktc03xGBwu4RRPzyl/RyHf5nbqPV6gwEDaakJRcnWMnahQdndmyzUwMB0YSE8WJvRjj+e07jj2PUoQmUI5GFqWQ5WSjGGPWG8cjZDl5PnbKowR5lpNnOaQ5xrz/zqYhQpCn+XgUOBkvTPgAEUIwZRr42o/n1BJCINU7y6eUppHGMXmW3Xp+fG5fef67dLe3sJWkOuhQcmzS3S38YIQrBXT30bsdNt+cZ2PNJhSCrXqNA9FVVmlRTK4Tigb/z+jXuKEOIFSOHe6ilCIMNGwdgtQlM0NWhcvL7jSe0SYQgguDNp3O3o/1et+Lj75QkwrCrWvUt69i5oqwo9PZHbEZrxKmQ0LXYjNLSRNJNPSR4jrDzhUGVpPr038H7ZrEHgyQFZtACCJ1lqLeQ8uH7PEGSRIxdNpkeYZTaZPnAtPsImSCXQhIVUCidLxBgBNoeCrDWfkGhYXXqBtbRNsnqBh1YrFOmlrkuYvVqRIlLfytsxST0/QHCV45Rw9z0jBnTpe05guQWFQcG6toQJohN4a8ZOfE7WAcFlx3MBaKFD+9hFY2yQYxestFlSy0sjURYz7CvDXT+pZoZhgGW1tblEollFJkWUYcxziOQ5Yn6KZEM7TbWTZ5npOm6VikMRXb+zGOYRCEITt72wS7GYvZCr+7fJiZA2Vkqvg/3/+/5V7/E0yPlhldb9HJiqwPApbbB9FiC5G9jr31/+LqTYe+0PhKtM6S9ghLozorWcxadpWXD0VcOjQi0Gp0ZY/rYo+h2KfXzYj3S8jiTXKpYcQ5RSPCi9ucubFGVKziEPCi8Rme0x6npoYIr0/ZWCXwKgTdLqNyiRPtp9krSmYHczzWuQdbGej5DINoH18kWEOdNxoBw4dnwMzJLJdOSaPYSzEym256hVPGET7/HZPZjTo9YqSmY+WKkZ7hZPsYdkauRtS6IcWbO+QqR0YRUXITR1vGiB0QEt3UKEwc7RMmTPgbeKuUtdFoMp62zlFpQKXoc/jwYRzHoVwuMxgM6PV6mKbJ/v4+juOgNA1sG32xgns4x7DaqFqN1DCgVOBSu4PorKNbkvNaTvPV53lT3mDo7xIKjcJ8jZR1StfupjA8jDM4yszVz1IVCiN2KdsKgxilKzKRoJU1EmzieB5hNdCda9SNOSp5i0VRxGadQmGOqjWHLorMqwUObj6Kn53DXh0xt2nQNjdRq5+iEcyQd+tEuykbZo+4XaaZDVi2Mw7JN+jma+TWiO+43wXjDa7ctcXJJMJUJv3RDcglN6IVNvQmXz4+w05Vo1OWdORNwmSbkR5ytVqkp73EJ7ynufu1r8FeAxJJVbyA465i9j30zGOxcIHrUmOUN3nDfZPQyFiNTmPIBpbapb3X4vqF41xfX6Eb3YWeQ1Ky+Er7CNs7FXxvm2IvQEQC3YgQOWR5l04Y4hRW0cVr486H1h77aLxauc493RanB2dQqotG8ad9Gk74ABiNEoq6iaFbnHQNjILHNXUK15rnRDXhtHadj9kWy45LyTTIdEXbNOjVQ6TM2Qp1nLrJ7s6IjyUXuZGuMop1FkrH+KPRgNwToGvEQpAbBg88+gRq/yIPFvaZ2zcwGsfIlIkpJCrLaFZtCrfcWiu7MfdcHuKMUv7RRo7oRHccexamSFNDGuO22nk6nr1XnkEeJuRpNtZbpEAo8bajJs3fs7OrUAJp65OGIhN+thAC0xmHAUulQAiyLMO0HZxiCcMwWNrbYMr3Sfe2KXV2aEzNUPE8blYbZIeP8G8+8xtcOnUPsecz199iO9Vxsy6Z8NGEzc1A4VYVKtzjnHmT307+Cl1p9GIdfIXtByzXhhwvraN7I/bnl8h/3FKv9+CjL9QIMDyboVbD7Y6Iew79rYT94TqoiHYs2e+lKE2SxxKpbpAlO4SFNtddk3r7e/TaCc6UTmxIPt37awrJLl5R43gWs1H9BgOzTdWXeI01HH+AKQyEHIG+Ty5MYqOE3NvGGkm8cMCoKHC1i5hWRjtdxN7zybIIP5nFyivI5QN8vfq/oaqdZ0pfpN/LKTSBVOJrEnPGw3M1mq7BY6aP4YxzYgaGZL1pQZojdEk6iNHKFtJUKN9AmgrraAX7UBlpTWpKf5YwDON2u9e3Mg/eFmpSNFMiFRQKBUajEQAvvvgim5sbuAWDkq1z2LcZDgd0B3tsX+3xxdrvUndqFGo2y+cfZX7xLLZ8mI+Lz/FxcZrHS1OQBBTDAkqZbKhddrlOZd9nsZwwm8/QCqq8Wr+BCO7i1PAsze6/oTZ6hl1jmsszx3nVP0sgJVv+Kv32Kdzp7yCkjh1nlIw2Kkso9zJKlU1m8z0uxEVuJDaHLz5PuXsNJ9shUBY71VnKVUWhusyz9fP0d3s4ms4Bscy+XSYQfXzAkwYDO0S0umRmxo4dklsSPVH01ZDpQo9Z8QLHnlllYTPF08q4RhU97NPVOmRZm/p2j898dY3iKKE8yEhFTI0yKlMknSL2oAxhwpBdRqL70z0xJkyY8JHn0KFDLK8cRuQZJBHiO/81T5ydp1arUSwWqVarDAYDCoXCbdHGcZyxKG+afOfCq6jpBFWAHaX40pe+xGz/JU4HFzgq+miOzuEsoNHfomU9w5p3mUTYOFaLTMbIkaIeFyiPSlh7DaayfOw+SRN0H2bmr7M4lSJnnmc0Mrn+4udor5XJUpMD8l5OqCU+tv8IpimxM5ejhXtx7WnqzhKyn5Imc6TGHEN9Fi91cbam+N2uTqN0iUKic2W4ie7qbJXnODq6QincwLETRn6fq0nIX+1cxKva2MM5dCGoJzdYyKdI9DVCpTEKB3zV6pCojP3kCnubX+d/vKfGV9IHCDPFhd4s+Y2E77x8gBEgdIUW+xzZbKEPJYbYQlgj8u4Kv172OO4kbAx85jybKO2QZyZ7WZVLLly7OkdB28FOO/Q9Sb2+SaC2mF4dMVfbptXo0Os3cQxBOx3h2BoaewxGVSy/Q9kZ8mzyKl5PY0kIHGdAHn04lvYJP1mUJjlvNTkuqxw3MhAjvqk/zKc+91/we5WU5eEVfuNwixlTx88Frqaxs3iQVysatgbXhhoPGX0+W3BoRkM0U6c3VNiqSDtPcVyLkYQwy/l/HF3gQKMFozafqvWpuFPI+/8ZnmViSUkepixVXGbKY+deHqbk3YhsGGPb+jhj5vvIghRhKYSpyKN0HImgxLhsKR+vD7ccNfKWoybJxjEI7ybUCJC2hipMXMUTfvZwyxW8cmWc2XpLuFk4dZZTj30K2y/wuaTHkWoJub3BVHubUqNJrVTia/VlumtXybOYl4/fQ57kVDub5KT4QpGkJov9PWKpUStqqDTiWPAcp+KXIE8YxgYjp8hCccTv+0+ypH0H19tkrThNwIcz8/vRF2ocnaXPPkz/6EOoYUzYi9FMhV+tUJ7LyfMYsgzT1gkHEc3KGSxbJ08jNBmhPdaia06jHx7SXVSU925ipSG+tcGsV2YrepGdZJtGY51i6wrVA09h5BZCDSELMDKDgipiRyDjHB0bU9RQ2TV0U9GLJb5VQKY6jjaPJgr02hbtTKNseDiBBVmOIUaoMMPTJP4DU+iuzv2fWqRQMDGcsQpXnfL4B/cv4xypkCcZ4Rt7mIsFUALv/imUb2BMezjnm4hJO72fKQzDwPM8yuXyHaVPlmWRk6EMsGwL13UJgnHL6N3dXfb29ijUbQ7XXY64FmEYEmUj1i61qVaKSCEJ4j5hkCOERCqJLR0aBY9i5FEUNTrSwLMcdunwuPFpDo1mKe72COyD1NYcvqr9OVpU5BDHmO8UuNJ/GVeepKdVkEwRSIvNqdfZTmNGWZeOu09m9Ol6bUb2FNKWTNXfZCXdwghLzOQ+ha5iKg9piR6YimT+Hry8R+4OqYoAlESTe9SGEm84oioE870evsxxkMj8CqJW4oq7S92ZJiHmvlf6/M63Ik68eoOdIzNMb3RxtRJFUebsayO2Wg6jgslvXT1L/do+fifE7UXYtqI+siipAmUtZ81T7MkdrLyEIys/5TNjwoQJH3Xq9TrlagO8FuxfQaw9j6elSCk5duwYhw4dYjAYMDMzQ71eR9PG7kipFKltcfH6NUbtLZKKwZsXn2J/d4tCuM5nu69wjxoidJ1ipYTuC053n2L++WsEkY5GGTTB9aLBQJhYmU1ciinrBZQVwahOWguoWT2Od5vMrXfIMgMzcRh2DOKgQS4FU2aC2ZklTeo4Wh8MScU6gWfPIZKIqK8z0sq8Gh1mee8Io06fID5FmhlogUIHtPaAT3xvxKc7NUY9GBlrvFL7Npo0cYRO1bCoRAMKms6s0vEaV+jrb7CfOBy47NO9NsVOOKBjSRiE5LZOLF2uUebf6h12ZIn96iZ9IyQxCux2lyltW8SDEE1q5HqX3sCiFZZphgbBIOS0PcTAQIWKgeFwyRjwnLL5091jfGfrGLqeUNRsfH9AYS5nau5VrMoLrO+tkGoa0tyh1/cJRh79dpOmhPvDAxSyKl+ef4MNfw0lNYJkItT8PHCg7vI53+MfFkvcbSbs6g6JU8I3TdJ0hjTxUQi0/ZBSmOMLha2ZbOsmcTBEkwa/787yv1hugnsP8exBBrHCSDWmtJiq7RBLCNKM466F7AFCQq6TBRm5cihYOrYQ5EnOw8tV7lka34PkYUraj0jbIapsjrs2fd9plwcJ0tKQlhp3kItShKYQSoIUpL0IoY+DhMWtzJpsmCD19x7mSUdHFYyJO3/CzxxeuYpfrd0+d22/QG1+kSMPfhzTdXEcB8txmd7f4pcciV+tUfM99nyPa2iY3X3uuf4mC4ZGYTDCS2PcDGSoMXf5EmVfcZ/2JrZp8Iz7AG/mcwx7fZLY5qXuEhQSjKyNsHsU3RF6muP+wjpqSib+0TqjQhm5u0c8iKlUawzMAoNuiKOFGJrAtB0G/QjfPolnOtS8Laq5BMvjlZmHCGcN0mlB1DWRvoHWcjArJkv5DHIo0d2n0eQGZu2bEGlIPQSV4aQFiqHiTPXj2FoBHZ/6sIqejrDwUZrE0UosTv8TDt7/zzAq0/x72+H+zRgVZRAm6EaENkrxlKTkaOjTHsXPLFG6p0X5ZJ1a3UIaEqPm4PkGztkmwtTIwhS95Y7r9Gwd6WgIJRFykkHzs4ZhGBw+fBjbtpFSous6/X4f0zRB5gg9xfUdTNO8LdQEQUC326VYt+kGu2xsrBNFEWE6YO3GBhvtK+R5TnewT689II5ioiDBdDQKNZt4TcPtVeh1Ehwf9tinyQm6ThMtmaOjbPZx2FBbXLX6yFhyJj9NmsLi6Ekq8X/iUrpHlwbdQpOrlQGbQZPEbmBbJqa5z6acJfeuI+UGUmxS23WYf6VC0rKoqiGu0PEqbU4sf50FMSLNEvzhPu3eHqutryFEzk3rEsVsSH3rJTwhKAgPlUfI0w+yVozY39zjtTnFoSu7tOw+YSfk5QNNvCtriOk5Co15Gh2TtQMLrHol9EsXsCOoDRR6nNMMFZW2YL6rUe/u8maS0dd6REGPKB/+lM+MCRMm/MwwdQpuPAOd6xANADANA9u2GQ6HHDt2jDNnzuB5HrZtozQN7fxdBJrG/tYavgp5PPwTCjJAjPY4uPcmxv46YFMq+eSORMkQ40UN83WBs3GVXAoc7SqGHeJHBpG/jjeYR9e2kKNF7h7A3JWPsTl1BW93imioaJjfZG9oEPROgZOg+h5p22XQWaRkJQzyDnYMoQG+1yQ1wPTLyGGNlcvnMFNJNjjA1ksag6smlW6ZWtrAiyxEUKWvLVLRbG7kbexM4w/2z9CINyiF+4g0w9s+yEbxef5Uf5F6AMX+EDfpsxcN6ZcjNF2jJC3iKOWprdOEyqI7W+GCs0nf1LHTAuvtBdquz2prjjy3wA6xwlVe0EpYSQERxSyaa1hiRPVGxLGuw0z7NBe3DjAfWVzYa45LOvZn6QTz6Ifb3Nj5LN968xFGQ5uYjFpth4vtBbLhCnvRDHuawatzX2VTbVJsPMmFUoc1KQlM+6d62k34YBBS4B6tMjNbpEnApjOFMH0UEEYHCSu/SrTao3i9z9+1HUppTB5CV7d5/NAs/+T+JQpt0LIc4RyncPJBkkRghTl/L/x3nB7ucVfJoSQkBCndr26AVSXHIg9TRJJTsDUsGLfRTrO3229HGXmQkuwH6BX7dmlTnuVkQUKyM0KaCmFqY0dNlCG0sXtGaJJ4fYAqm+OxgRQo3yDeGIy7QL3HcEEVDbSy9e5PTpjwEWbu+EkWT58HxuXJc8dPMX3o6DhqwrIxbQfTcTENg6Lv41drFC2TzYrHhdMPY8UxZ1/7Hl+wcqYuz1IZRqggZBCZFLsjjhgOia4Reg2u+qd4XR4gtIsMU4fXbjRIdiRvskhi9KlmAaKQI9LwQ3mtH3mhRgiBUoJAt8hsHzPSmBOHSCtTfL2lCDWTVHewNIf+IGaXHOvAaSqLzzA1vY2h29xffJbc6ODbJfrrOoWpFoXSCnqzxlRWZjY4wzCtYA6bKOUhMgPdContiHTvEdAka7bDdKGA6dWxvQaGUcXsuFTqNlpq0Gp+AbPYoDX3d/nMylke6IPectEsDVuZ+DsrHKnZNE/WkLY2zi5B4DoazSAhT3P0ljO2cC0X8R+cpvLrhxBvlThpAlU0fwY+sQnvhmEYPPzww0h5q+22bTMajTBNE2XAgQcKFIsFbNu+LdSEYTgWapoWHe0Kq6urhGFIZdaieGLA1v46g8GAYThgf3efL33pL2lv9xECClWLwfMGRzfvJcsTgqhPW7TZsq+y64KRzLEf9OgaQxIZsZt02O3s8op+EaVp3Iy/y15ylShzuBTex9A6xzP1Kt9wpvlG/ilkblClywADq7GG0k0y/Qa0X2Mn3iK3O8RZnwCbh+Sf0tBeoxwHyCRBT3tcEyU2rR67yYhh8xJ1p8YbiyfYKFQhchh1pzEKA/pmlyU1T3d2gZu/0WLvkR4vf8LCtJp0HnqCunue9qFDfOmhBmGuCJcsensvk1VbaJ0I5Xos7rRx233E2jbVtevct7bLclvhxClWOpkpnTBhwvtACGidgqvfgP4mxLdE3pvfRd97EyklhUKBgmvjuQ5W0sHafp78nruxaxV2tzYQTgU52kUP24SdLSraiKS/R657OI5JdHwJpYOUBp/ar3L8pX+HpS+xmHyVpnaFUphRvPA8Wt9H5ddw2gX8zUW2l59kWHuSPHchnqHstUlHOrvrJiNpQNdGzyx6a9OIqIbWWqUqFXn5KkZZIRsRgzgliCW5LhmFA9bal9FsCy0scH51mumRiZ7rvNKe5UqnSAm4kdp43YM81HkKJ7ewDB0tE1Q7R9Azg1G2zyOjDfJBSqxMNFzsioGyyviZR9HssiV7SEa8fE+P+uyjSDlPjkldHWe9ZvBXqsK1vM7eKKUx2mWnHWOpGFfPUHGKSi0qT72KtdvGieFwIWFJDugMipDt0b464uqNR/iLrc/zSlZnd1CmH2rcCJYpVjbYjFe4fuMAo60pvnXhOD3zAlZlh2lzjdzYJgkjyOKf5pk34QNCCIFzuo65VMTPY/Kwi8g1JJClOtg1On92FbEbMF20KYUhN7dDUmHzRHOFQ7ZB2g3JggTSnE9XithSoqc5RQWql7Nc96hujkj3A9JeQu60yFJrXIaUZhRsHQuBcnXyKLt9bHmWI0xFshugyuY4XybOGDyzTvDGHr2v3UBYtzJqkmzcHVaT4xImRyO82kWrvS0oGvM+wet779nRSQiBc66JMed/2G/7hAkfKEIISs0pSq2p24/NHD5GeWoaAMOyMRwH03UxHYfZoydoLh2kVS5zeLDHllvEzRKs4QhLSfTXr/DIxVdRUUyYS5Rw2JFT/PHirxFYJV4vVnlOHGW1tEI92eB/r/1btnpVulRARRxRG+wKDVN+OAP0n4lhvwAOLjSwH3sCv1ZjsXiCWmGJvZ272BU2PeFiUcHIE9h5gwN2i1zbwdB3GRAy33mdLAmZtu4n7erMlX8ZIc6R9xegN6KwXkEkVQrWQUxVxUprlKbAMDpYvSWEVAykT6NqYhVamIUaljZFKfVokZNnGcIciy/N+jkebk5RfWgG78EZvOM1ZuYb+NZB3KqFNe+Pa0hvvTC96YztjJ7+9kVWgHvfFFrTue2ckY6Oe3cL5MRJ87PIW21e3/o8C4XCuH3rrTKoftChXq9jmiZhOFZl4zhmMBhw6fJFvKLDcDgkCAIWD8xz131nmJqaYn19neGwT3/Y4/KbV9nf6RKnEaYvIRQUcx+rLJidniYQAW84C4Sugd0v4g+79IM1GvkMYd7nyeq3eVFJOjsnGWVDojSilDoMNm3SngfaPG9qJV7IDpNkEYPgJpeGPTTrGnHvEAkBPecGSTnC1HO6SrKGRSAjrucNkjwCPaDju7wwfZC+Uuzv/Cf8/Cr1N2y+WT3ON6d9ykaNPXWSbes1mnGFc71jzIyKZHITLZEU0hw/97k6q9PVRvxF5X9my90l0np8Mr1M8cgC+415orhL18lpbV7HVRlmHDPfDfjl117CHPapRhnEk6ynCRMmvE8K02AVwCxCHECewxt/hvbGf0RTClPXkN/5/3CqluHsvMjy9T9Ei9o8nH8LV0bIk78Gx34JlyGCnJKtIUXMjubhWDrSBorTWK0qC8NN2uZhRP8Go/xlNH9IbnZJ1i6Qp10w9nBCkzxThNEeQt0gHYyo2EcoOuuczS+gZ4pMpUCG5scUo2lGQ5Ok+DSp2yEsvUS5+RyG3WWoh4QqZ3WqyOvWIlF+iOWpB5hrHqMZeRhSYVo+o0Rnf3dIHZuNfkY/a/BSeg839gSms8M9okmhM0Wys0JFMzG1nFxoaLKIFzbQh7/Gun0QrV3F9VcR+QA/9omEzTCeRg0k19jjQHuOVafLNSn5y6DBocUuc/6LHLvyEvNbr+HbEKkq3dECoV7n+vIOn5j9Nr8x9Qo3K6tImeLrMTvdLi8FHk/fXGG956JZMEwV/+nCA7x07e/SSxW52WYuy7nZKaIJk1ZpB0MIiuyyls4TTroD/twgpEBIgZSK48E1SqMUmQNZjrA0zKUild88glY2OdHZobM7pGJo6Hsh8dZYnM3DcXCvpSS+qaEQUGyRBZKVps/SKCe+2Sftx+TeDFlqjp0tSU7B0rGEQDo6yX5A2h+HBudxinR1kr0R0tXHOTNRyujVXeLNIf4jc+hT7ri0SZNk/Xhc6gSYB0pEN/tolbE7RgiBMVdA2BrGfOE93wtpqPcMGp4w4aPMD3Y3/v6/ddvGdMaOGsN2mTlyjFJrihlN8Pi3v0xPCMx+D21nh/2dTeLhgEPXL2J22qQyAgHPWTP8q+KjXHfn2XY8rmpLfKV5HyPTYErvsqq12A49ZCaZlW16qWQkf0Hbc7/F7z18gDO/+jlKh4/gHFmm2vJJMgOpK3LNwIpcTF1heuDuQ5YW6KdLHDzzWUpxATOq0nTvo1JoUXAWKRcOU+q1aFSWON86T+Pmx/GjezCzKs7VY+z2T3F5+ElqewKRQ5iDdqqK5x3Grx9mvvkPKKY2pb0RxpSHvJUZc7tV9rSHeaBI9TNL3Pt7Ryl/dhnp6EhHv6MVnvQNCp+cp/Krh9Cq9h3buOMk1CXGYgExiWf/meet9t22baPrOlEU0el0KJVKWJZFEATkeY5Sil6vx+uvv85DDz3EaDQiDENmZ2dZXl5mfn6eGzdukGYpygAGLr29gNW167T7u5TmNDJjiOkL6uU6ltC4pjfISi7kFoWBYlRZ5ai0GPp7ZM4+vzOY48zgFKc6H0cLbUqhQ6JchK6YiiS5nGIgNNrU2I6m6KU11rISu+unCVOLV+qHeaN6GNNM6Js+23mLTc5QiQ1SKyQ2I65Kn9XmLAIDd/YK1pWQaGQzoktdCzjrLfN1cR/PNJc42fk4M2s+U8MEI5F8OZ3hFVNRSlzuH62zK7ts7PZRqkcoezQH6zh32VxyfELfZKMoiVfb7LgBtm9i71xn74DDy4dyZm6ukUfRD/28JkyYMAEY503c/V/C8V+BsAtbr0J/E333TYp5G/e5/ze89h85XBiity9TmVqgufZlDsavsdAswslfh+WPU1YjHMsEt86qdYT2KMXSJL4KSYvzuAstTK3Ld9Kj1IJrePEuyhyyXXsDmQ7RtSsEWg93aothOGBpaw09a+NuP08jrJK78ywGj3NGLDMa7ZOqkNTtUrKv0Zdt2tY63dZXGUUuelwkyTRkMaNeiPjuKGAkdHKqWNEy1448gB6UiHrL2F4VzVMMKWDmBuddwVbf4RvbirBfw230OdqpUJEW4dV7KfVO4No71JZeo6H6PLZxkqI4ylrpPLVVlxHfoRI1qe8us2YeItMcXNWj4UQU0yHfrFRpixW6ocHX8yYv1y+z8nSfKFljyt1mdehxIYrYLkhetV6kqi7ysvUKr5lXidWIej7H7nKFC+oi26Ocm/semTlERTkPbF7mlTcNhlnE8bLkK3GZPbNCajaZyYcMw0U8d5tUa1JQk0zAnzs0k/uCqxwbZOM21lmO3nCwT9aQno50dU7u3kB2hpyr+KgsJ1rto9XssTtGCXQBZUdHKUlQ+BVS1eSB6RK/PFslbYfkowTmHiYrHkX5BnmS8dBKjXnfQro6g+9uMnhmA4A8yVEFA61qo4omQoqxc6YXE6/1sVbKKGfcoUmYGmknRJjjIZwx71P5O4fuKGOSrkbp88uYy8VJVMKEXyhqcwvUF5YxbBvTdRFiPElerDWIZs8gUNjRCKtY4vm//hL7piKTEGyvg+oQupDoCXEqeMM5Tlc30fKE/SynXjAQqYYMIoaJIssNDOVxyLtIP/gFFmqEEGhKUqjVOfPpz+OebtI4WObEXAmvYGI6DnaxgG6aTB2eQ40Myt4DuHNHqKwcw8wKmFkV92CDg/fYGJbB3OGjVEWJk8WHuMes0Eoc8isG86V/iGlMsZsUKcUPwRDyOCMJB1grLrWpT1Bp3E+heAq97KKKJvq0944a0Ntiiy7RHB2tamEuF1G+8Z7Lib/BLXNbuJlcb38uKBaLuK6LpmkEQUAcx9i2fdtRk6Ypuq6T5zlHjx6lXC4TxzHD4RDTHNchl0ol+v0+URShTw1oFucxNJMwCkiJmT1nIlSO41sU3SK+VcCzCpQ8m8QyaORzpPqLHIsVN9xX8YICB4PLnO06zCYPcHzjM8yNBJ2yjVAp7giUfogE+HfxeZ4eBgxVk/8hf5QL2SIDucTAPkM1CsmyTYZGgxvaXVyNT1AR00iZYwjYz2v0ZYl8qDNaCbCf18l1D50BVrrDG36DNUzq3XVix2VYKBAc1JHXXb7ZafNbYcYRUaKcvcLzs3/FDTfFSWoMZI9UF2zOX2ZmQRIULF44UuOVk8cI812mOmvkeZ+RK/mdzhmE6mGEk4yanwRxHPPUU0+xtbVFt9vlqaeeYm9vjzfffJPvfe9741b0+aQMbcJHHCFg6jQsfwI6q/Dn/xWEXbTKPLPxFcyX/nuE6SN2LiJ6a9xc+g248CVyzcaWKUJqCK9JkQ6O58Nj/wcKD/w9giRDf+2PmA4vEttNSp98GO/McVrHHqRkK0xN4mgJSb5Pbrj48b8mEB1qwb9k8dBlvCxByzS87CWK+7uk6RyG06cYZARJl46CQdJmRcWUiy2ULNPJLtPfqiPCWaIRODJjpjhgLVQkrmD+QJd1TfK6peEaVaKhhchthBfwonWY3X6Z45mONjrEs7WPMwgfRXkjgp0hWq6QucVDW8eYsV+geOg/cs/i85SGN4CEXM9wRjkbkYbeLXOic5KOcw/K2MByXidTklcPXeaC71HrtWnuJixwmZ2Ww1fPmDx7aIdPLf0HurEkLBzlf7rvU5g9m+EWbMcDBuoKJWeL+u4Kb1oRuRLUtZy9KCTSOjQyjc9dfIGDIVh6h63hK5TZwJJ9euFV/vTmw+zvl3DcdZKhhWGkP+0z7xeCLMvY3t4mDEOGwyHr6+sEQcBgMKDT6XygvxFCs7jPkny8Ow7tzfMc+1gF61AZGLe9tlp34xsWv90oo9saWT9CbzrkUQpSkF3tsuRbKE0RJ1OgbAxbw3INknZInmZk5eNk7jKqYJDHGXctlGk5BtLRSLaGhFc64xKoJMN7YJriE4vjgGA1dtRkQUK8fctlc+v+XzkayX5428kvhMCY9u5wx7zbhO+ECb8INBaXaR1YwXRclk6fux054ZQqDGdOYsbw4Gc/z/w//WfYhQIDxybJU5RmI3TB//TEE0QVCy8JOWQ5zOkZ9SmdQZZRLlk8bZ8nEJJYucSpw2rb55Mza8yU3A/l9fxMCDVvoZsmjcXlsTWx6fJfffEkv/dbJ/nEg2eonl+mVK5x8P570Z0iJw7/A87ddTfCMqk+/lsUniqgNwrU1x5FEy7C0MiGKVIodEdDSrBP1imcPobeGFsGlzwLoQnSOIU8QklQtoE0dYSh0FsO0lIIU/7Qi6EQYqzU+x9OKvSEny1KpRL33nsvUkqGwyHlchmlFLqukyQJo9EIpRSf/OQnOXjwIEoppJT0ej0sazxrYhjG7TbfZ+86ybFHahRWxiHYYRiQZDF+w8AqZ5S9MgXD45BXoOGbDLKcQ3vn+efdIxyoH8fWDE4lDxJHI/YLbYZHn6cyOMFCfxMrn0UPcpxwwECmzOQZ57c09rMhN7vPsK0v8/VDEU+ZjzEVvkoxXCVKQl4Rh9kUZfKhT2OzhJF5GFkDU4vpSCCtsp7dzb96rMGrMwFGluCoHZoX12kMU+xBxnY64kLmIWsxV+sP07AczvbXqcevIeMduplHqB1lpB+mm+8z0gU7aZULtRm6JZOwCl8+NSBzA9btBvvTU5wwP8ahbo1g2aDjV3+6J8IvCEopkiThypUrfOUrX0EIwX/4D/+BJ598kkuXLnHjxg1WV1f5sz/7M/b29n7ahzthwnsjBBgODHdh6zXIUrS5cxxR1xH3/0N4+H8NuxdA6qjZc/x77Zdo+4fHDhylg9ugJEdYjocoLVBpzuAUq4grX+Va6UH28gKanmCWK9z38CPo8+fZyQqoLELLQiKnTBoE5LUVkjTBZxsVS4zcwJmv0BUxne5Z4vwmIytixXyVqDRE4yb2yGMwGsEoIVX7ZMMGFalI84BvbhRoJjEFLSPy9sim/4q+ETIV7+M7s2S5QWj4hHofpAedo3iqQRZK0lgx2pjmyl/exWi9wCvADU3gDRsYWRGZpRT1V6k5Za70nkdH4RkD+lHGkaiG2XbYDQtM53ukScbLN+/iudo2YfAcfver1NMaxvA1rNTjT48NeUZfAy3iWnuZvxx8mkvuGYydkwwvTTHonCBONR6SLWp6ny3RxtYtDg83sfKQ3XSNxMu5Nvco86ZiMdC5udPgyMYl/vPaJeZGQ5LBNN2eTppFTG/fhLjz0z7rfiHIsoyvfe1rvPTSSzz55JP8+Z//Obu7u/zhH/4hf/RHf8Tu7i69Xo8rV67czvL7W2P6yJlTSCSkGWTjNtZvNetQRRMtcSi7FrausA5V8B6aQTr6WKjJcvj2Bn9wcgZdl2gVC+dsA6RAWoq0EyI9nWyYjLsv+cZ4PcaTv8rVybMcVTJJdkbkgCoYSHMc/iukIAtThK7GuZa3ypyEEKiCQbw5GC87YcKEO7gtXtoORx9+BHFLqBEC8gzoRBw/eJDGyiE+/lt/n+HiPB0psCrT5Jrke+UqXS2jMuqQEbDQ2SEq2kS6wSW7xP9v9lEyQzFCI019rsXTBNJG0z8c5+XPlFDz/QghcBydqSmP+z/7eSrLszh+Eb9ZRytbGJ6D7/vjD6tcw4hclGMiQwdpaIhbarXyDYSlgZLoNRuhSaSjcbLoMOMYY0eMb6CZIOXbF0Xl6RQenUdVbKT9/sSXibo94S10XafZbCKEwLIsFhYWgPGAdmdnh7/8y79ECMH09DS6riOlRNM0+v0++q0WcG89NhqNOHz4MPVGnWHaptiwiKKIOI6xyqC8BNdyKRtFjnku0wWL3jDhoS8cZeXX/xG5f4zze+dpuC02giqhPsRWbbYbOkbBYNd3KEgDOx0g44CpoMOhGz6EcDwuMDX8GqPoNZ5KT9Ld3WFz1CHImsRRl2ES4qYGauBhdgp4Gw+iJyV0Cdv9Bbb7VV5d+CVuTt+FrjRkvk2rt8o9l0OykSCdTmgv7NBVgi9XTrDoPEpqp2yHm0RdqK6dRbkPcc2rkQvY9Q5yLT/LZlxka9qhbo9Y01/HPWCRfMzkO3dJjNaboG2zb00zyCaW9p8E4+u1Q57nRFFEpVIhCAKUUjiOQxRFNBoN7rvvPgqF966pnzDhI4FmwagNtUMwcx7RPEYrW4ODj8PC/XDmt+Dhf87UzBz15ZPo5WkIuiA1sIoUtATb0OFWAPGR46chDlgr3cWN3SEMt8fuG6XDyhPc9E8jsxCTmMDwCYeQNk7w8so/Iehske0McfoS085JSi7Wdoso3aVjr6Pl16moP8TlAnG8QCfp48Q93HKEn45o9Xr8ujQRmcZceJU5J8O0NAb6KwRRh52NmA2rSlywudzTuNH7BMeCGDteINo5hRyOaOk6up4QtiUpLkdUxqEwAwz6l3+J8NIiw6FNI18mzyOM6BpBuoebl3HzCiQDnLDPQmeP4fZRGhsPkaZNFrUuZiwojspc6Q4ojOpUvHP47hF6+SGWMklXaVS0XTqRSVlz8PMGK1qTpcTlJedb6GENI49ZbF/FzUYMaNOrZ4TVjAP2Jp+9+sdU9E1MN6A8Cpna1jlgxYS2hlIGy+IS8kPKHphwJ5qmsbi4SJZlnD59mmazyTe/+U0Mw2BxcZHNzU2GwyEbGxtEP27ZsluHu38foY3DefMsvyMDUhUMtCClZOkYmsQ8UMRcKiItBQjIcpKdEfpOgFCCwqPzt8uM3ipN0oomg+9tke4H6DV73K0pHgcBS0dHuQbGtEe8NRgnIrw1PhCMxyhBgqpYaDUb8X1ttrWmM+7oNBFqJkx4T94RIQIYSnA6URxwLLxylYVTZ4hNHac1BWaBWJPs6iZdqSj2O3SKgpn1VeIgws0F21JwpVAhtm1CdHY3T7NttgiSiCxNPpTX8WMLNXEc86UvfYnV1VW2t7f58z//c9bX13nuued48sknSZKEPM8/VFu7VArdMLGLJaSp4z00jXLfFk9UuYx97ixCH4swwlQgxC1XjEs2jMnj7PZFT7o6Z6seFce4ZX90MRyFpr09qBNKIgsG5kJh3I1pwoS/BUIITpw4wdTU1LjET9M4evQo/X6fPM9vX2SEEMzOztJut1Hq7R9nTdOIouh2x5HGfJGDZ1qEYUiSJDQaDer1OoYyKGgFfnuqyj2NAnbBoL5QQLaOEmFgaSa6a7CaHGJB9phKBjx1yORScZZ1cu4zptmT0+gZmAxpByYPD4/zwN4pDuzG1II+Ua5AdtjSNlnfvIes/SQyH1FSCvICqjPFaP0AG+F5FBG7pHRGBn05xb46BQJMtcWLswZ2YBMPLILGOsWlP2E9uY9NShidFhfMB3lx+ACrLzaQSc6xDZO93CXOy7yhPc5WQXFwf4jRjYjyAq5eRK94mNVVbs5uYg++wvWy5FtLj+NPuq7+REjTlK2tLTY3N7n33nt5/fXX+cxnPsPKygpKKRYXFzFNk3K5fMd1dsKEjyRKh9E+HHwU7v0DRHkJVZ5H+K1xjs3xXwF/CqUUn/rUpyhOHxivIzUwfUTtwHiWT6hx0LzlI9waTqnO+v4AOmugWyA18tYphrMfR8QBRUenY3k85z5MUlpiN7EwswH5esBCdA8yHhL7NtXeiEwPqWhfohtsYA+3kWKboZkjPElFgmZ2Oev/e4btPYKoxRfNIQeSy3yi3MZxPIZpHRUP8XZ8LnckoRlxc5DghTrLvT5dYXLl0nGsfo+6EVBqhRiWTZj4lDtvUgr2qes3WLt2lKdGn8AMHwfNYt2bJgxfIpOS48EDlFMPTWZMBT3u3l7F21zBdi/TzIc8yldxhY4z0HGyEuWkhjEo0fO/yHdvnOPE3rc4w1WW9XUi06OfNfnC1Df4+8WU5c7Xudx7inOjMvVBg6tHdjEKGYHb5zv+DXaNy/zh9F+QLER4U/Cid5nuC5vsvD7HrDHiJfMN1kbL5IcuQTLp+vSTIEkSLl26xJtvvkm73WYwGNBqtVBKcf36dWZnZ2k2m9x///0/vqAvBCgNoQnyOBsHg3+fUCNMhRamVOMc01C3B33S1MaiiRy7bqK1/thF4+jjkiVAmmrsmilbhBfb+I/MoSoWeZTR/+YawYU2wlKoooE+5ZJsDsfizPdP5GqSbJigN2z8T8zdEXuglSyUq08cNRMm/IjYhqJoabfFD820KNabHDx/L2FkYeQaFjl7QtHstVkta1SvXaKLwMky+pbNnqazqyRtIXk6WuLJ2iJRr00a9D+UY/6x74g1TcP3fW7evMnq6ioHDhzgj//4j9F1nWq1yrVr15BS8p3vfIednZ0P4pjfFb/e4PSDHwchMBeLdx5jrUb5N36DPBmLMMK4JcjYGnrLJbi4P26Nd+txrWSORZscpKXQHZ1jy4dxnHeO6pyzjUluzIS/NUIITp48eftvKSV33303ly5deodQc/DgQTY2Nu4YyNq2fbublG3bPP744+zu7vL8888TxzHHjx/HdV3CLOR4ehwzSTBtiyP3T2F7OteuXWNvbw/bsfHrBqkjcF0Lv1fBtobEO1scLpZZiWy+ntuIWDGQVbYKCb+7X8AQHqzdw18c/hZ6OcFRKWGWkw+X2HO/Qme0SjGocinsMEpmINliNzZR+hRreoYhr7ASHGM+y+jasDSyuRJOE+cpRlbDzq+QjBZ4I2yx70m6zgGuv1FlxzZp6JJ9fRM9aiFjC5kUMbqznNYusxjfw7fnTrBvznHEuoyr9bielDhg1agP/4xvlRfxA580mogCPwk0TeNzn/vc7b/n5+cBWFxc/Ckd0YQJPwZSH5c+2ZVxGZTS4eP/Aqxb9x5vXbcZl6jiNUG3x0INwLFfhvUX396e4UH1AH6hRJjr5HtXELPnxhNKQKE+RX5xgGt6bB44RGQ3WC5USG6ukxseuQzQC/OI/AZ5wSHVRgSWRaNQYXWnj1OeYRi8QlT/HnFk4+YaWa7hWteIss+QByO6aY8VY8jBZoFVofjL65/krriNP5xGpRn9+AoXKgucjhU3i4fpGUPakWSxmDLt9pjLahgFnfVeAWP9IoWpEUX7Db4hp8gqPtNDi67w0PwB0W7GYJixeO0upl2TVbvHr1yLWMm+S8j99P017l9d541Gir8XY3QjmtV5FvJpjK1LfLlS5NSFJ7k4nOGxtuLGoMu206DS1tF3VihoGvu9VR7xFoilTrtf45n5kEp2iR0toisVTy2d4x9kb+Bc6pFiEsqYxRvXuH7iENuxh60ZrO/4RK2TLMkqE5/fh49Sil/+5V8Gxr8ZS0tL6LpOlmXkef7hiPiaJIvHOTXfnxMpdIlSgj840KTkvJ0tKeyxUCNMhbVcJN4eoVWtO8YBwlRIQ6FKJqpsokomWT8mCRPitT55lCJNhVaz0So2yV4wbkhya/QohEAainQQI20d/fs6wL61fWOhMHHUTJjwIyCEwDE0oiS747GP/ebvEeZweXMTEdRYzAfsSp0DKuePhULFI7ThPv5wwHprFjeDVJfklsPV+hGyKCQYJiT5h5N5+YGUPr1lZ3/r/9+6oLzlopmfn+ezn/0slUrlg9jdu6K5LrVTZ961tEgIgVAKocTbKrQYWxtVxUR5Buasd7s9tnW4grlcQmiSPMrQLYVftt+xbSHE7XrWCRP+Nvxg4Ntbbbwdx7nDOQNgmiaPPPLI7dInAM/zsCzrju2YpkkQBGRZhq7rKKWwNZt5Y55ut4vSJUcebBGEI5555hmuXbuG4zg4rZTZez0WFx5g9WuLHFq9QGnQ478Q4JkaBU1RV6DyiOvLOZfc87hC0iBgvlOnkkuqysYbeVzoGmi5hZP2KO0H7NNlU+zT1dtE2VUa5NysmXhxkc8/l/P5tT5J7wH+vfkrZAOdQI3o+1XmsotEPZ2dqyEiydlwChAWuVqxubxQYE90GOSKQ20TQzjMtU3s6Br7h/8Tjekhfb1JrDfQ0nVCOUeozZIIk13TY76bkOcZEyZMmPAjoXRIo7eFGaXDwcfG/3037DIYPsixm5fZu+D8771d6uDWoHUS1/OIvWnS3StjEegWJ0+fw3MdVBaSmQ6HT56kWq2SZtCXRTLlIcrTiMIUwtaJDlW43HoUozJLXDqAsXQvO0rQyb9CQW4iA5MkrBAef5QTn/g83cgkESlFFfLg/fcSNuq8oB3keb3CtVmdjgnecJWDoks5e4mca2zqipESnKv1KWWb+G0drdxBCg9td508/hqbKzfYKA14zHqTa8OrfFXFBIMuVgYXB4K+BpgJpUwR71hEeQU7bOKNdtBefoOZXYu7XokpjzIeWvslzrSPc+qawdH1K9T2d8iDHLXhoLdTZkjILYPLu8fR9hropyscrC0xyoccGJrc2/c4nlaRGNiqzpW2wcJ2G+/6AG+1TBQHmNsbWIsjSvYS9xRPsWU9zL+xfpuObr375zrhA+Wt+xfTNFFKYZrm7RJvXdc/lHttoUnyMB0LLT+wfetQhbnjddT3CTjSUGN3vqWhT7nYJ2rjbq4/sE1ha+gNB+dkffy3Lkn7McJQFB6bx5jz8e6bGrv8NUkWZXfsX5iKbBjfUfL09pNQ+OTC7XbcEyZMeH+4hqJgvf19FUJQbLYoV6tkSPJen6mNa1jkTDkWpVEfmUQU2jtMbW/gBSPMToRvCBLHJssVfpQQ5TaZ+HC6yP7YQk2apoRhSBAEPPTQQ+zs7PCFL3yBc+fOUa/XWVhYQCmFZVm3k5c/DN5X/osSOGcbiFuttP2HZ9HrDqpsYcz5qIIxDuryDZSrI0yFMBRuycQrTy6IE35ylMtlTPPOkjohBEqpO0Qd13Wx7TudXpqmkSQJWZbd8Z2r1+s8++yz9Pt9Ll68wJe+9CWEEMzMzGDbNt1el0KpRH2qTpYrlm9exRwNmZutUJ/zWXAVD1x/mWjrBmna40Z2A/OJ+ykdP8av8AjH+xraIMcKipRcnV9J/w6/2XU5muxyPDlIRZXoWnt0spu00x6BkCSDo8T7iiwW1LenWe++SJct4jxgXfWx4xuESmcQhtg55GmOo+eEFYud43dxtfEqVjPgrjcEA8enc3AX4Q7Y954hdEb0E40bgxW2Mo9w525GyVlG0mFXmcwMc6rpRGSdMGHCj4jSQTPHAsz7wSyMxZi3pt2FvFPUmbsPTn0Rx3HQitPw0P8KWmOnpRAC07JRukEWdNFMm+PHj1MsFknSlJuhR6aVENUFmDqD5diERyxyTeE8+A848/v/F7LF+/m62+CleJeD2gZhvEznhk5y4EHcWg00jXJTIznxm9jFOoauM90s8JosMnWsgrFikc2f4JORoFzXqOsD2qmLZqfs7BxnuLFIaoyo3HUAvzqFFg3o75msjg5yX1ik/NSA/PXn+ev+HmgjDMsgMWwulHKezTfwN54izTRu2r+EToi/+iKyZ/GKeoLs9CLlpIvqW2zlKUEQ8bHvfImCUJjKoLNZIJYzPNhS5N4JLvoXYTBHzxwwmPoW/SSEMGL5ok1zbxY7bnJifZr6IOYC89han9qNXZxEkZuSramYPa3FN/JfAXEUt5vjTpo+/dwiLY1kdzR20/zA7YBzroE+fWcnF6FLpKlQnoEqmrjnGvgPTt/peJEC5eno0x7uPa3x+MRQpHsB0tNxzjSQ/rgVN0pQeGIR9/yd7nxpKtLeuws1Qownnd8qtZowYcL7wzE0fPudzjxN07j3nnv4g0OLHNxdpyBymq0mBzZX0XXJ9OYqK2lIhYzSMOYEW2hOjhmFmNKm1z2Fij4cM8qP/S3XNI1HHnmExx9/nGazyeOPP06r1eL06dM88MADH6m8ASEE1pHKWN2+lZwulECrWLfLnr4faSikKTly/xT1Oe+ncMQTflEplUq3nTJ/E28JNd+/nJSSLMvIsuwOUefAgQN4nsf169d544032NnZQdd1vvCFL2BZFt1uF9d1cTwTfItKrU6S58wcrHHgTJ3//HSNu2Zq1Epl7j12lCPHj5C0HPJ6n5lPtrj7lTaNvMKwvICVrFLZT5je6eFHisLAxYpsdrxdZpMWkfLJwgJpNG41fjXvUmvvMdO/yrzTJTUiqkEVMpee5nPKj1iUCi0W6Po+j2SbLIQGuRxy2niG4lDnbO8oV0rbhK6OoSfYeh8n0fACl9fCJ+i++RzPWA47ZoFLtkYoBcNsEhI5YcKEHxGlj0uZrOIPXxagMA3Hfum9n9cM0G1s28aybcTxX4Lps28/LxWYRZLOGoY9HjgKITAMg9f8Byj+4/8T2sG74Pzfw7Jt2p02hmGg/Aa6V8ZoLPNy9ThXbZ96+zka555g6mgLIXXKLYdP/v5pDt11nOZdn0HqBr5pcLbh4toGX7x7jt/74hkuVuZJSxqFeh3PgJsdQcW7QHuxT+ZErPojGgufwm/6CAMiaZCOHqV3o4Ic9CmPAkxd0pzJKEybKNslLlh8t9zgmpGSjBJeyA/zwtLTJIFCazWR8R4blkv/WJ8kiYhZJ41yDJHglDUszSZPYF8v0d+q4o800mjIMIDtlx8mSRWtuECWhsTDXbLdnEM9i4/vvsZKHrFmHaTTqJPvr3FankUWfd50TyGilDSDmW7K4ddfxo8nGTU/r1iHy/S/vY6xULizfOk92lsLfeyWcc42MGb9Ww1IfsBJpwTGQgFpytvlVEITxJsDjBnvjjyacYcpA/NA6c77OM8g3RshjIkYM2HCB4VrKnzznc5XIQTLy8s8fOwIs55DIYkplSv8na/8CfbeNofjEY+cO8Ejz/0VnwxW+cTqq2hpjBsHWCJnfSsjH3w4iv4v3BXgHRdeIdBnPLS6885lTTUOFDMkcqJcT/gJIYRgamqK2dnZH7psvV7nzJkzdzwmpSRN03c4akzTZGFhga2tLTRNo16v43kepmmiadptocYtW8xM5RxoVLAsC03TEFJQLrhEaYojJTO+R6VSod1u0w/3KVRsDDvk7973Rc7MPESh4NFL9thY26EfOnSclN1Rn9pOhaWLIUFuE3RdwmBEJhKCOGAvEvxm95co6SV26gZFWSTJq1zjEL8eliEPkTm0aFPf6+JmJlpcw8+uYjgdCtMRr+Z1buR1HHEQmWxhp4Jiv8/0i7vY+69i5OvsOVWuK0G3E4IxcdRMmDDhR0TqYPpguD98WRgLOgce/aGLOY7D6dOnx2WvdwwQBczfR55EON7b4lCxWMTwKlhHjyNMCzQDy7LY29vDcd6+p/Fsm6pXpqM3SHOBPXeCQq2KFDqaoSi3HM6cOUOxON52Wdc4XbU5VjNo+AZVz+Tu403Kjy1QaE1RaLbY7ATMrVi8MGtSuee/pzBnML84z8vz3+Sl0y2uLC1SblTQTAOVxyyWykzNTFF0C4yCEYUcRlHGRqbY8YuILCEyUkbzZbLUIO+3Wc5fRJV01GyIZkRM608zsntkWYRZ2ccUEkOHQMBqWELkilNrJq9FMd2e4uZrX6BkeuTZkCTsI9MI78YBejeu8GhvHV3A9bkK60dXqBZz9owmTw7vZWPne8xv9jixnTBzo02Whu/vc57wM4UQAq1mU/7CAeyTtfdVWvVWtqUqm+NcmXfdMPgPz4w7yr61nqtT/PQS9tHqu8co/MBj0tNJ9kOErt7XcU2YMOGHc36hwn3LlfeMSVFKMeV7nL/2KoVKFWSO0Wwyd+Ik+sw0fr/NcraPHQZYcYLVb5MN99j3HELtwxFqPjp2l58ixuzYLfOOi6cmx623JxfJCT9hGo3G+1rurXruH3TUpGnK0tLSO3JuXNdlY2OD6elpSqXSbceblJJ+v49t27hFg5UzDcIoYnUQ3hZ7bNtmOBxyzMz5eNljOCywvb1NnucYto45M2B+bo6/P6vxsrXLK8/cZPnMWd7MC6ThPvGNgAW7wM28T0E3KI0SnGQAoohQsGuXKG6ZvNT8PJnfJu+MaK9PY9oadrhHrT/iaFah7HTZ3ihgew5G6jLs21huQMO4yp/kZzi+/XnWxPMI/yU6osMBWaSSJJQsnbmd53i68iD91GA06JDqH05N6YQJE36OkWpc9qS/z7Zx7/MeQinFysrKu68/fZbiygOcOX/X7YcLhQLxD7g9DMNgf3//dmA3jI0Cru7Qjzx6y5/HcusIaSCEdsfM/ls8rqUUPI97Hp7F0jUQgt++f4E8mSFLj3D1WIDxL5/m5Mn7WY1M2Ohz5PQiUgmGpS7e2ePsXN1nem6aDXMHs+xjOOCbOp4sMQgLnElybpYcZBhybrbBxlAwJKBUWiKMvkKSJKTaGZrWqzR9l8hJOJi8zrPyBKNKkzSFF0sXqGVLaHpOrJcJBoLWfpVvVjzyokO5G3NVuCzYOWloYKjrVAstRlshybCDNqixXlxirzhgxXuD1xqzdHsC3TQ5ujEAkWOZVdJoItT8vCIQt8cA7wdZMPDum/qbtykEqB8YTxgK6+j7L41QjgZZjpw4aiZM+MCYLv2QGBMhmFtaZu9P/yNe5e8wLBepLi1Rqjfobm9SaDQRcUA3AydNqZMz6HfYKdWJsw+nPfdEqOGdAs1bSF/HvXdq0tVpwk+c9zuD8m7LSSn52Mc+Rq32zhkix3HY2dnhyJEjHD9+/PbzmqYxGAxul1sdOH8vaZoSua/cFnN0XR/b6ZOIlqmz5XlcuHBhnKTuOHzq00/gOA6uEJSKBWIER++5n//bED65IQmuZ9SrVY4/9jgrtRme7qxj9F2MDKyCx5ZTZrg55IpeIvQMDm7eJLhRpnjeZJD0+R2vwMKFTXqNg6x2CpzI2jS1KYyrZ6hMB8TaLg9vvMnotaO8UPc44uscVl2u7Bb4nLHGZTLC9i6XrHvxlKSYS6x4chM0YcKEHxUBU2fGrpoPcqt/03W/MIX26f8rmunfFn5arRa+79+xnmmadDodPO/twacA6qbLRqCTPfEPEbqNlCZCvnv48cGlpfF63zdhIAB0HaXrWFZG1XNoVQ7zT6yQV7plnEIZgeDe6ftopKDWvsvi8hwv220MrYrKh8z4FlZSJvcPct/nz1BaOcz3bnZYX48J9gYUKvtYrslwlNA0StRnv8Cl1f8vNW+FqKFoaRan7Sb22U9x/S832T7036DtX6eng2s16MUpO85RtuPXMZ2zlFXIfQdn6Qy3IC0xc+Agh86v8Ncb30ITLtPtFd7o2fTdy1CbY82yOJC1eeXkCkvdb3Jjb5HKtQV068NrhDHhp4y4/a/3t/i7iDDve70fZXlLG3ep1SednSZM+KD4Yd9DIQTNxWUqs/MYrkdWLNA4chTbK7Bx6U3KUzPsrN1EahoHex2mBOylEVszh1HO+3TY/ohMRil/A1JXGFPuxHY44WcKIQTT09PjtrA/gGmaGIZBuVxG07Tb4cS6riOlvB1grBkGhmVx/vz520LNW8HDhjEO3fZ9n+3tbZRSKKUoFou3vyumZRHn4LkOn6gUODxbJ4sDNNPk0PGTfKpRpuoa3P3EY5z73EFsx0Q6JlnJ4ORUkTwcIlOYK9X5tYNTDJ2U6sws4rFd5MGL+GWPhSfu4ovLv0M3LDHSLkL2MKXnY/xuykCUUKLIE6UKulbiJXEPI91AVwZn5mYo9RMG4Q2Gcfcn98FMmDDh5wMh4YH/JViln+w+rcId7pxGo8HSLVHlLQzDQEqJ53l33LvU7QKnj91NqVwFIcZCjXj3ubof1pzB0iU1z8DWFabUMfQySo7dRZ9Z+gxlr4qmGyhN4vg6Rr2KtGz+3l3zWGGBytQZDpw9TaNk88SxJq/PL7J3wufsfRUOF22qeYYsmRw+eYKD9QVsr8L9n6pilyt88r/8J9x1/AiGPcR02/gzGuenFykOdxjOb4AIyEdt1vOU3NaYrhug/SlWfYsjD6yweO4Uxx7+BNPLTYqGThqC1C0WD/49Hn7sEaa1Cp2OQsRN9mrXuDj1DYQxyaiZ8JNFKIEqmu+anzlhwoQPj2Jriod+8/fQTZP64jLTK0coT8+w+vorlOp1cgSGpvjis9+gnGQUNIFTrRAb5g/f+N+CiaNmwoRfIJRS1Ov121kEb6HrOp7n3ZFp82511HNzc7et9o7jcOTIEbLsnS2uTdMEKbFMk18vFIgLDptzi+imcWsCS/DQSp2qa6BXBVvdMgcOtZg/IbnHhe9degHf8HjsP/tVigsttlYreF6JQvEYWee73PX4ArVpn/5zGcmoS64PcZwSSuwze7jMRmmKw9UHWTn0Of7i9Tdxj93Pq6/t8plpQb0xzeArl3DnDdzy+wwDnTBhwoS3EALUO4Xwn/xhvFNMMYxxTo3runcst1y9l8P1cQdOAClN5HsINT8MS1fMVx1sQyFFjucdvSX83HJoGibKMJBS0FgqYAQ18riPZWkkgYZXNm//1gghcDTF0sNLHJhqMBqtoq3cy+jAAMfzmb5ZRy9YaEsuwmtgOh45CeWahrXvcM8T93AkP8Mfvfhlyg0TsaZYnjrDk4bNvQ9/goYuuDC9SL6/g+V6SKWozS8xe8hj79sB8orC0zNq9SYnTp7jza9d5o1ujyvrR/CO7dBfGFEoFv5W79OECX9rpEBvuUhrItRMmPCTREqFXSyS5zkPfvF3sFyPKBgRBwFeuUKlXqfbGxDPL7OveYigz4ISdHOY/hCOZyLUTJjwC4SUkscee+wOWzyMS5++3xHzXjSbTWq1GjC+wT537ty7CjWGYdwOKZZCYDgm9QNT5PnbXZZOz45FkjQ1uP/++28dk+BkGPGwa1JdblGca4EQLC0vUSqV8P0GrnsQ3Ri3xS3WHBbOjhDFa5iWh1J9pmd9/ulDj+CIu7GcAp86MY2hSdab9/OxTxxlf19naecSQ+0qInvsx3k7J0yYMOEjhZSSUqn0DkflfdWpH1juvR01PwzX1Pjnjx9GkwLQWVr8x0j59myiZhhouo7SJOc+tcDo6XXC3j5SSQbtkOqtzjdv0TQ0GraFEArbnmfmH/0fye0cpbmojQylJBRn4fivAGA6GvNHipx/8R7ONM6gRxYLR2oUypLAfplTZz6J1RfcuzRPEASce+h3sckoNVsAHLz7PgCMwj7Wv15j/kiRctlECMlsyeaf1lz+u5tXuM+yiZSBrr17idiECR8m/sdmJqVPEyb8lBBC4BTG4xTDdqjNLeCVqxSbLRK2+NqRh7h6/RpLScKvFkzm3qWb1AfBRKiZMOEXCCHEO9w0MBZW3o9QI6W8w3XzVlnUD6JpGo7joOtvX7iqswvA20LN9+fj+P7bWQ/Tps75ojue+VVjC/7Ro0dvr6PU291Mpg4WMcour7y6jmm6GLqB6ejUCx7gkec5Xzg9zavrXdpzs0i7REGmHDtb4OLGgCAYUZhMlk6YMOHnBE3TePDBB2+Xsb6F/IFru2nU0bS/XcaOFIKK+7YQpNSdAY2aYaLpxq3nJPapU1iHDhFKQW8voFC17vit+bVWBf37Qo31eh2APM8Rlol0bIRdgYUHQQgEYFgmTX8K3/DBgON3LREGAWLxBkdXmpxS4xJdy7JYXlp6R+A+QHW6xP2fPUahfgbTHO/z0yemGEYJX35pA8+wGGXvMzB6woQPECEEwpwM0SZM+CgghOD8536JYqNFMByQhCG+Z3O9EzMtYoqug2t/OL8Vk6vAhAkTmJqaolwuf2B5TJqm4bruHfk2UyuH3/f6pmneIRy913EJITDNCkqZlEoVWvUU8/taYr613pFWgZXGeFBiWBqLv/FJuHIF2xn9rV7fhAkTJnwUkVIyOzv7Q5drNr+AEB/ObL2m61iedztPR3keeB5RN0JKgV+9U9gpaO9+HAIQloV03Hd0ztIME+PWjfFbZbkAy8vLSKV+6G8HgG4qTpxfuWM5Q5NIqfH7Dy/xSu9NBqkzySmcMGHChF9ghBC0lse/FdMrhym3ptnfEbRDSLSUwWDwoe17ItRMmDAB13XvyDT4cTFNk6mpqTtucH+Um90jR468axjyu6FpBTStSLVaZ3HRQ3+Xmm4lBUq+vX9VLDJ95IsY+qSbx4QJE37xUOrDCT4EKDWnOP3E597xuJBgeTpu8X3uWwikZSNd5x1PWa6HW6q8Q5BR7+HyfO9dvPN3SZOSkzNFLl8ycbR37nvChAkTJvyCceu3wvYL2H6BVrSH6XgcP3Kadrs9doB+CKL+pOvThAkTPnBc1+XBBx/8W60rhKBUKuE47+8GWdMK6HoJIRSVKRe39MMHAUIIHHseTfN+6LITJkyYMOH9o3Qdp/DOUlopBW7JxPLefy2/9+ADmEeOvOPxxtIBjn/80R/7WP8mDGng6BOhZsKECRMm3EnNMyl6Dg/cfz83b94kCIIPZT8TR82ECRM+cIQQ75lf80EjpYVpNhFCsXCy9IMO+QkTJkyY8BFAMxSnH51D+xFaDhsHD77r40rTfmT3zI+CEAJd6Xj6RMyfMGHChAl3UnZ06r6J57mcPXv2XRurfBBMhJoJEyb8TCOlzsL876OUh5QTlWbChAkTPoooTTK9UvqR7OE/zXyY0/XTpFn6U9v/hAkTJkz4aOJa2v+fvT+Pkuu6Dnv/751q7rkxdGMgCIKDSIgkNFmSpWhwJOtZEiRZip79HE+J816QxM/rl8gvcp4TObK9PEhxLMc27NhPdhw7ki1ZA0jKmiVSnKcGSAIgZvQ8Vtd0687nnN8fVWgABDgAxNAk92etXmjUrap7urr67lv77rMP/9fbriPvOis90i4HSdQIIV7SLMump+eWqz0MIYQQz+Ol1Jh3bWnt1R6CEEKIVehUL7PLTXrUCCGEEEIIIYQQQqwSkqgRQgghhBBCCCGEWCUkUSOEEEIIIYQQQgixSkiiRgghhBBCCCGEEGKVkESNEEIIIYQQQgghxCohiRohhBBCCCGEEEKIVUKW5xZCCHHFTE5Ocvz4cbZv387y8jJBELB9+3ZsW64bCCGEEEIIAVcwUWOModVqMT4+fsmf17KsS/qcl8pqHZsxBmBVjg1W7+sGq3dsq/l3ulpfM7i4sc3Pz7N+/frLNKKXv0OHDjE5OcmmTZu455576O3tpb+/H9u22bdvH+Pj4xInVoHVfEyB1fu6weod22r+na7W1wwkTqw28nli9VjNxxRYva8brN6xrebf6Wp9zeDyxQnr1C/k2fZ7QXt8DlprHnvsMeI4vlRPSRiG7Nu3jze+8Y2X7DkvleXlZSYnJ7ntttuu9lDOMTExQZIkbNu27WoP5Ry+73Pw4EFe//rXX+2hnGN+fp6lpSVuueWWqz2Ucxw/fhzHcbjmmmuu9lDO8cQTT7BhwwaGhoau9lDO8eCDD3LrrbdSKpVe8GO01rzmNa+hUqkArM6IcWVdUJxoNpscO3aMffv2YVkWa9eu5brrrmPz5s20Wi2OHDmC1vqSDU7ixMWROHFxJE5cHIkTL3vyeeIiSZy4OBInLo7EiYtzueLEFauosW37kv+xtNttbNvmh3/4h1ddhm1hYYG1a9euyoP+sWPHiKJoVR4gGo0GxWJxVf5Op6ammJ+f57Wvfe3VHso5hoaGcF2X66+//moP5Rye57FlyxbWrVt3tYdyFmMMSZLwhje84dRBUlwBtVqNiYkJ3va2tzE1NUW73WbLli3kcjkKhQJr1qy5pPuTOHFxJE5cHIkTF0fihHih5PPE6iFx4uJInLg4r8Q4ccUqai4HYwxKKRzHWXV/hFprtNa47uprA6S1xhiD4zhXeyjnWO2/09X6uimlsCxrVfb5WK1ju0TvtdX1Jr06JE5cJIkTF2e1/05X6+u2Wo/FsHrHJnHikpE4cZEkTlyc1f47Xa2v22o9FsPqHdvljBOr6yd9gYwxnDhxgsOHD6O15sSJE9RqNZ4n6XTZxXHMgQMHiOOYdrvNiRMnSJKEyclJ5ubmrur42u02Bw4cIMsyJiYmOHLkCHEcc+LECarV6lUdm+/7HDp0iDAMWVxcZHp6mizLOHr0KM1m86qNCzpX/48cOUIYhiu9NaIo4vDhwwRBcNXGZYyhWq1y9OjRlfdYtVql3W5z+PDhS1oSfDFjm5+f58SJE/i+z4EDB1haWqLRaHD06FGyLLtqYzs1vsnJSZIkYXZ2lvn5ecIw5PDhw4RheFXHJi4diRMXTuLExZE4cXFjkzghrjaJExdO4sTFkThxcWN7pceJ1ZeefQG01uzZs4ebbrqJOI55+umnabfb/MzP/MxVzU5alsXDDz9MpVLh3nvvpVwus3//fhqNBlmW8RM/8ROUy+WrNrbvfe97jIyMcOedd7J161aUUjz55JMEQcDP/MzPXLVsfaPRYGJigkOHDrGwsEChUKCnp2elYdxP/dRPXbXsab1e56mnnmJiYoJHHnmEd7zjHRw+fJgkSXjqqaf40Ic+dNUy9bVajXvvvZeNGzcyNzdHHMeUSiV6enqYmJjgR37kR67K2E4d9O+55x5uuukmxsbGeN/73seDDz5IpVKhXq/zute97oqP65TZ2Vn+5E/+hI985CM88cQTZFlGT08P5XKZw4cP8973vnfVXX0RF07ixMWNTeLEhZM4ceEkTojVQOLExY1N4sSFkzhx4SROvEQramzb5iMf+QgLCwvs37+frVu3orW+6pm1XC7H8PAwxhjCMOTmm29mfHycNWvWUC6XiaLoqo2tWCzS39+PZVn8+I//OPV6nSeeeGKlWVSapldlXMYYBgYGqNVqbNu2jXw+z8jICCdPnuTGG28kiqJL2lj0YsYWhiGvfvWr+ehHP8pjjz3GzMwM27dvp9lsXtUrB/39/QRBQK1WY8OGDbiuS7Va5ZZbbmF5efmqjcuyLHp7ewmCgI0bN/Kud72L733ve0RRxI033ki1Wr1qY1NK8fWvf51CocD4+DjDw8OUy2Xm5+fZvn07tVrtqo1NXFoSJy6cxImLH5vEiQsjcUKsBhInLpzEiYsfm8SJCyNx4iWaqDlVquh5Hm9605s4fPgwW7duJZfLXdVxBUHAzMwMhw4dYvv27Tz00EO8973vpd1uUy6X6evru2pjazQaLC4u8vTTT3Py5Eksy+JNb3oTJ0+eZPPmzRQKhas2tscee4zFxUVs22ZwcJBqtcr73/9+HnvsMW655ZarelXjnnvuIQgCfN/n8OHDjIyM8MY3vpF7772X17zmNVf1itqJEycYGBjgtttuY2FhgXXr1vHDP/zD3HfffVc1w3zq73N0dBRjDIcPH+bGG2/k5ptvZmxs7KquXGDbNu973/t47Wtfy80330wQBJRKJd75znfygx/84Kq+buLSkjhx4SROXByJExdO4oRYDSROXDiJExdH4sSFkzjxEm0m/GxjvtplqC8kG3q1xrhax7ZaxwUytou1msd2ynON8QLHJrXvEicuyGr++1itY1ut4wIZ28VazWM7ReLEJSVx4gKs5r+P1Tq21ToukLFdrNU8tlMud5x4SSZqhBBilZATcIkTQgjxXCROSJwQQojn8vJZ9UkIIYQQQgghhBDi5eglueqTeOUxxmCMWWkEdmbXdsuyVm43xqysY3/q/rZtr/x7Cda5F0IIsQpJnBBCCPFcJE6IlxJJ1IiXjMOHD3PHHXdw7bXX4jgOw8PDHD9+nFe/+tXs3bsXpdRKA6yhoSGCIOAP/uAP+Nmf/Vk++9nP8ta3vpW5uTle85rXcP3111/tH0cIIcQlJnFCCCHEc5E4IV4qZOqTeMm48cYb2bp1K29961tpt9srXfHvu+8+sixjYWEBANft5B+VUmRZxpe//GWyLEMphdaaOI6v6jJ4QgghLg+JE0IIIZ6LxAnxUiEVNeIl4VRpoeu6WJaF67o4jsMb3vCGlTXsgyBg7dq1Zz1m27ZtjI6OMjk5ybp16wB45JFHuPnmm6VcUQghXkYkTgghhHguEifES4ms+iReUnzfp1AoEAQBjuPgui6e5+H7Pu12myiKiOOYZrPJmjVrGB4eplKp4Ps+juOwtLTE0NAQpVJJDqziUpA3kcQJscpInBCrjLyJJE6IVUbihFhlZHlu8fJnjKFer9Nqtejp6aG/v18OoOJykjeXxAnxEiNxQlxh8uaSOCFeYiROiCtMEjVCCHGJSdSWOCGEEM9F4oTECSGEeC4XlagRQgghhBBCCCGEEFeIrPokhBBCCCGEEEIIsUpIokYIIYQQQgghhBBilZBEjRBCCCGEEEIIIcQqIYkaIYQQQgghhBBCiFVCEjVCCCGEEEIIIYQQq4QkaoQQQgghhBBCCCFWCUnUCCGEEEIIIYQQQqwSkqgRQgghhBBCCCGEWCUkUSOEEEIIIYQQQgixSkiiRgghhBBCCCGEEGKVkESNEEIIIYQQQgghxCohiRohhBBCCCGEEEKIVUISNUIIIYQQQgghhBCrhCRqhBBCCCGEEEIIIVYJSdQIIYQQQgghhBBCrBKSqBFCCCGEEEIIIYRYJSRRI4QQQgghhBBCCLFKSKJGCCGEEEIIIYQQYpWQRI0QQgghhBBCCCHEKiGJGiGEEEIIIYQQQohVQhI1QgghhBBCCCGEEKuEJGqEEEIIIYQQQgghVglJ1AghhBBCCCGEEEKsEpKoEUIIIYQQQgghhFglJFEjhBBCCCGEEEIIsUpIokZcVjv9sV/b6Y997CIe17/TH/tXl2NM3ef/wE5/7Imd/tjenf7Yozv9sbdcrn0JIYR4dqO7/V8b3e1fcJwY3e33j+72L1ucOGM/rx/d7Weju/2PXO59CSGEOA/L+jUs64LjBJbVj2VdvjhhWW/HshpY1t7u13+6bPsSrziSqBGrVT9wQQfWnf6YtdMfe6Hv6e8At+2p7Lgd+GfAn1/Q6IQQQlxt/VxgnBjd7Vuju/0XfO4zutt3gN8BvnlhQxNCCLEK9HOBcQLLsrCsC/mM/AOMub379ckL2pcQz8G92gMQLx87/bGfAT4GGOCJPZUdP/2M7d8HPransuPRnf7YMPDonsqOLTv9sVuAvwBydJKHHwZ+Hbhupz+2F/jWnsqOX97pj/0y8FEgD3x5T2XHJ3b6Y1uAbwAPAa8FfgwYf76x7qns8M/4b7k7ZiGEEJfR6G7/rDgxs6vy08/Y/n3gYzO7Ko+O7vaHgUdndlW2jO72nzVOjO729wLfmtlV+eXR3f5ZcWJmV+UTo7v9LVxEnOj6ReDvgddf/E8thBDiBbOss+IExvz0M7Z/H/gYxjyKZQ0Dj2LMFizrWeMElrUX+BbG/DKWdVacwJhPYFlbuPg4IcRlIYkacUl0ky2/Crx5T2XH0k5/bPACHv4vgc/sqez4m53+WA5wgI8D27sVL+z0x94NXA+8AbCAPTv9sX8ETHRv/9k9lR0Pnmdcn6STENpznm0fAn4LWAu89wLGK4QQ4gJ1ky2/Crx5ZldlaXS3f8FxYmZX5W9Gd/tnxYmZXZXbu89/TpwY3e2fFSdmdlXOiROju/1P0kkI7XnG7RuADwHvQBI1Qghx+XWSLb8KvBljlrCsC44TGPM3WNZZcQJjbu8+/zlxAss6K05gzDlxAsv6JJ2E0DmfJ4A3YVn7gBk6CaT9FzBmIZ6VJGrEpfJO4At7KjuWAPZUdixfwGMfAP7fnf7YRuBLeyo7juz0x555n3d3v05tqNA5oE4A4+dL0nTH8axzRfdUdnwZ+HI34fPrwD++gDELIYS4MO8EvjCzq7IEMLOrcsFxYnS3vxH40syuypHR3f4z7/OcceJ8SZruOJ4tTvw+8O9ndlX0efYlhBDi0nsn8AWMWQLAmAuOE1jWRuBLGHMEy3rmfZ4zTpw3SdMZx7PFiceBazDGx7J+DPhK9/mEeNGkR424kjJOv+cKp27cU9nxv4CdQAh8bac/9s7zPNYCfmtPZcft3a9teyo7/r/utvaLGdSeyo57gK3d6VhCCCGunvPGiZldlbPixOhu/1njxMyuyu3dr20zuyovJk68Dvj86G7/JPAR4I9Hd/sfvIjnEUIIcemcN05gzFlxAst61jhxRk+ZbRhz8XHCmCbG+N3vvwZ43elYQrxokqgRl8p3gX+y0x8bAniWqU8n6cz7hM5JL937bgWO76ns+APgq8CtQAvoOeOx3wD+2U5/rNJ9zIad/tjaix3sTn9s205/zOp+/xo681SrF/t8Qgghntd3gX8yutsfAniWqU8nOU+cGN3tbwWOz+yqPG+cGN3tV7qP2TC627/oODGzq3LtzK7KlpldlS3AF4F/NbOr8pWLfT4hhBDP67vAP8GyhgCeZerTSc4TJ7CsrcBxjHneOIFlVbqP2YBlXXScwLLWY3XLdizrDXQ+W8vnCXFJSKJGXBJ7Kjv2A78J3L3TH9sH/N557vZpYNdOf2wMODPb/FHgqW7j4O3AX+2p7KgC9+30x57a6Y99ak9lxzeB/wU8sNMfe5LOSXMPz2OnP/bJnf7YzvNs+vAZ+/wj4H/fU9khDYWFEOIymdlVWYkTo7v954wTo7v988aJbuPg7cBfzeyqVIH7Rnf7T43u9j81s6uyEidGd/svOE6M7vY/ObrbP1+cEEIIcSV1+rv8JnB3t+/Ls8YJLOu8caLbOHg78FcYUwXuw7KewrI+hTErcQLLesFxAsv6JJZ1vjjxke4+9wF/APwExsjnCXFJWPJeEkIIIYQQQgghhFgdpKJGCCGEEEIIIYQQYpWQRI0QQgghhBBCCCHEKiHLc4vLZqc/9lngfcDCnsqO7WfcPgj8LbCFTkOwj+6p7Kjt9McGgM8C1wER8M/2VHY8dQH78/dUdlQu3U8ghBDiShjd7ReAe+g0dneBL87sqnyiu+0vgbcBje7df25mV2XvC3zenwNeN7Or8m8u8ZCFEEJcSZZ1I53PD6dsBf4Txvw+lvXrwAcADSwAP4cxMy/weX8OeB3GSJwQq4pU1IjL6S+B95zn9o8D39lT2XE98J3u/wH+A7B3T2XHrcDPAJ+5EoMUQghx1cXAO2d2VW4DbgfeM7rbf+MZ23/5jGW3916NAQohhLiKjDm0sqx2Z9WnAPhyd+unMObW7rY7gf90dQYpxKUjFTXistlT2XHPTn9sy3k2fQB4e/f7/wF8H/j3wM3Ab3cf+/ROf2zLTn9s3Z7KjvkzH7zTH/tJOkkdC7hrT2XHvz9j238F3g3MAT+xp7Jjcac/9n8D/xLIgAN7Kjt+4pL9kEIIIV60mV0VA/jd/3rdrxe82kG3Imc38Do6x/p/O7Or8r3u5k2ju/3vAxuAv57ZVfnPo7v9MvB3wEbAAX59Zlflb899ZiGEEKvQjwDHMGYcAGOaZ2wrc774YVnnxAmMWYkTWNb36cYJjPnPWNY5cQJjJE6IK0YqasTVsG5PZcds9/s5YF33+33AjwPs9MfeAFxD5+C4Yqc/Ngr8DvBOOlddX7/TH/tgd3MZeHRPZcctwN3AJ7q3fxzY0a3U+ZeX4ecRQgjxIo3u9p3u8tsLwLdmdlUeOmPzb47u9p8Y3e3/19Hdfv48D//XgJnZVXk18JPA/+gmbwDeAHwYuBX4J6O7/dfRqfacmdlVuW1mV2U78PXL9GMJIYS49H4C+NxZt1jWb2JZk8BPcf6Kmn8NGIxZiRPd5A08I05gWStxAmNuwxiJE+KKk0SNuKr2VHYYTme9fxvo3+mP7QV+ERgD1DMe8nrg+3sqOxb3VHZkwN8A/6i7TXN67upfA2/pfv8E8Dc7/bF/SieDLoQQYpWZ2VVRM7sqt9NJ0L9hdLd/qrfZrwA30Tn+D9KpwHymt9A57jOzq/I0MA7c0N32rZldlerMrkoIfKl73yeBd43u9n9ndLf/1pldlcZ5nlMIIcRqY1k5YCfwhbNuN+b/xZhNdD4bnK/fzEqcwJhz4gTGVDHmnDiBZf0OlvVWjJE4Ia4oSdSIq2F+pz82AtD9dwFgT2VHc09lx8/vqey4nU6PmjXA8Rexn1MJoPcCfwS8Bnhkpz8mU/6EEGKVmtlVqQPfo9vjbGZXZXZmV8XM7KrEwF/QufJ5IZ5ZAm9mdlUO04kJTwK/Mbrbl34GQgjx0vC/AY9jzPyzbP8bOtUxF+KcOIExZ8UJLEvihLiiJFEjroY9wM92v/9Z4KsAO/2x/p3+WK57+y8A9+yp7Gg+47EPA2/b6Y8N7/THHDqli3d3t9nAR7rf/x/AvTv9MRvYtKey43t0rsL2AbIylBBCrCKju/01o7v9/u73ReBdwNPd/490/7WADwLnWw3wB3TK3Rnd7d8AbAYOdbe9a3S3P9h93g8C943u9keBYGZX5a+BT9E5GRdCCLH6/STnTnu6/oz/fYBu/HiGlTiBZZ0TJ7CsQSxrJU5gWaNAgDESJ8RVIYkacdns9Mc+BzwA3LjTH5va6Y/98+6m3wbetdMfOwL84+7/AV4FPLXTHztEJ1v+S898zm5vm4/Tudq6D3hsT2XHV7ub28AbdvpjT9HpYfNJOs2//nqnP/YknalUf7CnsqO+0x973U5/7M8v/U8thBDiIowA3xvd7T8BPEJnutKd3W1/M7rbf5LOVc1h4DfO8/g/Buzu/f6WzhLecXfbw8Df05kG+/czuyqPAq8GHu72xPnEqecc3e1/cnS3v/Ny/IBCCCFepE6D33fRmZ50pt/Gsp7Csp6gs6jIOZ8h6MYJLGslTmDMeeMExqzECSxrL2fECSzrk1iWxAlx2VnGvOBFFYQQQgghhBBCCCHEZSQVNUIIIYQQQgghhBCrhCRqhBBCCCGEEEIIIVYJSdQIIYQQQgghhBBCrBKSqBFCCCGEEEIIIYRYJSRRI4QQQgghhBBCCLFKuM+zXZaEEkKIZ2dd7QGsAhInhBDi2UmckDghhBDP5bxx4vkSNUJcNGMMWmuMMdi2jWVZK7cBWJaFbdsrtzmOs/K4M+9r253Cr1OPA1ae75nbT31/6jnOfNyZ+zrzOU7dTwghxJUlcUIIIcRzkTghXqkkUSMuG6UUH/vYxwiCgDVr1vDLv/zL7N+/nz/8wz+kt7eX17/+9Xzwgx/k93//96nVarzlLW/hve99L5/97Gf5hV/4BT7zmc8wPT3N7bffzsjICHfccQdzc3OsX7+eD33oQwwODvKFL3yB3/zN38RxHH7pl36Jn/qpn2LHjh386Z/+Kb/4i7/Id7/7Xe6880601nzwgx9kenqa73znOxQKBT70oQ/xoz/6o1f7ZRJCiFcsiRNCCCGei8QJ8UoliRpx2RhjCMOQT3ziE/ze7/0eR48epVar8a53vYsPfehD5PN57r77bvr7+/l3/+7fkSQJSimOHz/OwYMHCYKA3/iN3yBJEgYHB3nrW9/Kxz/+cX73d3+XQqHA7/zO79BqtTh69Cg33HAD1WqVL33pS9x0000cP36c6elpvvjFL/If/+N/pKenhyzLGBsb41/8i3/B9u3bKRaLV/slEkKIVzSJE0IIIZ6LxAnxSiXNhMVlNTMzw8c//nHGx8e5/vrrAfjc5z7Hxz/+ce644w5uv/12qtUqn/70p9m3b99KieG2bdtwXZdPfepT3H///di2TaFQwHEc8vk8tVqN5eVlfvInf5Jvf/vbGGNYu3Yt1113Hffffz8AR48eZfv27WzYsIG+vj4GBwdJ05TPfOYzfPzjH+exxx6TMkUhhLjKJE4IIYR4LhInxCuRVNSIy2rjxo389m//Nn/8x3/M008/DcDP//zP89GPfnRl3uiv/dqvMT8/zyc+8QluuOEGAHp6evgP/+E/UK/X+dVf/VXe8IY3MDw8vPK899xzDwcOHMCyLA4cOMBP//RPA/D+97+fT33qU0RRxPr16/na175GHMfkcjmUUniex6/8yq9w6623rsw/FUIIcfVInBBCCPFcJE6IVyJJ1IjLxrIsKpUKhUKBD3/4w3zxi19kx44dfPnLX2bfvn3cdNNN3HbbbXzuc58jSRI2bNhAuVymVCpx8uRJ/uzP/owkSSiXy/T392NZFuVyGaUUjz/+OJ/85CdZu3Ytn//85zl48CClUok1a9Zw22238c1vfpNt27axefNmPvaxj1EsFnnb296G67r88R//MUNDQ7z97W/nPe95j2TBhRDiKpE4IYQQ4rlInBCvVJYxz7liniynJy6aMYZGo0FfXx/GGJrN5kqZIUA+n6e/v596vU6WZQwMDOC6Lq1Wi56eHur1OkmS0N/fTz6fB6DRaNDb20uz2aS3txfLsoiiCGMMaZrS29tLmqa0Wi0GBwcxxlCr1VaeP45jWq0WAJVKhZ6eHjmwihdD3jwSJ8SLIHFCvALIm0fihHgRJE6IV4DzvnkkUSOEEBdPorLECSGEeC4SJyROCCHEczlvnJBJdUIIIYQQQgghhBCrxBXrUfM8lTtCCPGSIiWul57ECSHEy4nEiUtP4oQQ4uXkueLEFUvUaK2588470VpfqV0KIcQlF8cx7373uxkcHLzaQ3nZkTghhHg5kDhx+UicEEK8HLyQOHFFEzW+7/PBD37wSu1SCCEuuYceeoh6vS4n4JeBxAkhxMuBxInLR+KEEOLl4IXEiSuWqLEsC9d1KZVKUgoqhHjJKhQKcgy7TCROCCFeDiROXD4SJ4QQLwcvJE5IM2EhhBBCCCGEEEKIVUISNUIIIYQQQgghhBCrxBWb+iSEEOKV6/lW6pASdiGEEEIIITokUSOEEOKyMsYwMTHBAw88wGtf+1oefvhhbr/9diYmJgiCgB/7sR+jUCjIKh5CCCGEEEIgiRohhBCXWRRFPProoywvL/Poo4/y5je/mbvuuove3l5GRkYYHx/H8zwefPBBlpeXr/ZwhRBCCCGEuKpedI8aYwxa65UvpdRZtz1fubsQQoiXt3q9TqPR4Pjx4ziOw6FDhxgcHCRJEhYWFqhUKmzdupWPfvSjrF279moPVwghhBBCiKvqRVfUpGnK3XffTbVaZf369UxOTvLOd76Thx56iDAM+cAHPkCxWCSOY0naiMvOGENmMlzLlZ4XQqwS69ev5+d+7udYXFykt7eXkydP8ta3vpVms0kURYyOjmJZlvzNipc1YwypMXjyXhdCCHEemTbYFtgSIwSXoKLG8zxGRkaYmpqiv78fy7I4dOgQQRAwMjLCxMQEExMT3HXXXVSr1UsxZiGe1Vx7ji8c+sLVHoYQ4gyWZWHbNuvWraNYLPKqV72KcrnMyMgI1157LbYtCxC+FKlMU5try0WYF0gDfzSxQDNTF/X4VBtamZLXWwghXqa+NF/jUDu62sMQq8SLPjuO45ggCCgUChQKBdauXUuj0SCOYyYnJxkcHGTLli186EMfYnh4+FKMWQhMqtHpuSesfupzvHEcg5zICiHE5RQ0YvZ9Z5IzD8NJlBGH2dUb1CqmjOGgH9FS5zbNXkxSgvPcfqbD7Yi/npELXkII8XI1EcU0LjKZL15+XvTUp1wux8aNG7nuuusoFouUy2XWrVtHEAQkScKaNWukpF1cUsYYgr0LWDmH4q1nJ/9iFeOn/lUamRBCvHIkkSJoJXQyNZ0YP/FUlTjMuOWtG877mFPJ9VfiOYEy0FIK/zwn4X87u8wb+yu8rq/8rI/3lWI2Ti7nEIUQQlxFodKk+qV5sdkYRZa1cN2+V2SMvxxedEWNbduMjo4yNDREqVRi06ZN5HI5+vv7Wbt2rfyixKWnDMGTS/itmJn2PMqcPukNsoAok5JBIYS43EI/JY3PTjr4jZilSR+tNH4tOqfq8fjeRfxaTNROaSwGZ20zxqCyl+8iBNp0pi75z6icMcZQzxTh81TUhFrTymQJeyGEeLkKtSF5icbAJKkyPv5ndCb6iktBGgOIlxzVStB+wj/M1/iVh/+EdtJe2dZO28RZjMFgjHnZnvALIcTVFjYTskSfNfUpaqU0FkNatZh7/vYwWXL6hM0Yw/ThOq1qxNKUz4F7Z846RmtleOSuEyTRy7PsWwHN7NyKGgO0lSbSz31y62f6eadHCSGEeGkyxrykK2q0ToniWYyROHWpSKJGrGrGGCajBHXmyXyksMsezSRjIWoRq3hlWztpE+sYDJg0Jdz3hCRrhBDiEjPGELQSskSddVsad3qHtaoRixMt6gvBGdshaqfEYUYaK2rzAeaME9KwlTB5YBmVvEwTNcbQVpqmOl+iRhE/z8m5rxTB8yRz5AKFEEK8NBkg0prUGF70YdwY0IoX/0QXsEsUKmuB9Am9ZCRRI1Y1BXxmfJ7WmVcgM41dcLGUIVAZkTo91amdtUlVikaj223qf/e38IyTYqX0yoeDNFZnfdAQQgjxwsTtFMuy0KpzPDUGtDb0DBZYmmyxZnMP8yebK8kDow2xn5IEKVmsaC6GZOnpxENjMcSvxyj18jzJU8bgWNY5qz4ZA+3sBVTUdKtuFOc/DTbG8EDDv+hVpYQQQlw9BkiMITGaF53sUAk89KeQxc9/30vE6IRMtc+pqHnmBQRjFO32Uam8eQEkUSMuC2MM+lmu7F3IFb9UG5aTjPTMP/BMY+UdHA2RUsTdg5DB0E7apDpFaYVJU3QYYXSn54GOY4wxHHpwjtp85yrv4UfmmT5cP2tss/HZFTxCCCHOlcSKfMlFdxPfWnWO7QMjZWaO1lm7uZeolaAzw/hTVbQyxGFG1M5IE0WWauZPNlFp5xhdnfapDORftsnzSBuGPAe/24cn0boTJ+lU2sT6uWNjO+tU3aTasK8ZkD3jvga4a7HBXCKrbgkhxEuNNpBoQ/LM6kqjOwmXC/lsohKYuL/z7xWidYJSAWcmmYwxLNfuI02XV25L0wYnx/8EY65+rDJGE4aTqzZpJIkacdFWrpI+y4Hjcw9NUG0nK/ddSlK0MexrhYyHZx84jDFkOntGxrVzIttSiuyMXZhUYxVcbG1wnCKR6jSsNMoQZAG2ZaONxqQpJopAa0wcs/SHf4SJIhqLIZGfdho4zgfEQbqyXw384fgCtTQ7Z3xROz3r6q8QQrycPN8x/UxaGZIgo1B2MacqarQGA8MbKyxOtOgdLpAmmtp8m8e+Pk4SZuhME4cpWaLoGSxwz+cOc3zvInPHG7TrCYMj5XMaFL9cRFqzJufRUgoDfHZqiekoQdOZ+vRcFTXGdPrYaGNoK8VfTC8SPbMpMZ0+NudrSmyQYnQhhFjNDIZY69PTYI3pfLXm4YE/YuUobgz4ixAsP+tzodLOfa5gAkLrBK1jtEnPvJX5uT2E4eTpoak2cTTLaohKSgWcHP/TVZE0Oh9J1IgX5NkqZILH5tHBuW9ubeC+o0vUuoma1Bh+f3yeRqZ4oO5zODh7ZaZm0uSv9v8VpvtHm0QZew8+zaH6cVqZItOa2fYstaiGSRVp3iZnwLaLnYoaA098f4patUXRLaKMwiQJOorAaFr1/bSfeISsVieNMsLJGUyW4ddC0lgRRd1kD1BNs/M28jpw7wzVqdYlekWFEGL1Ofb44nmb+RpjyBK1ksg5vneR8kCeQiW3UlFzasrSwPoS+aJHuT+PVpqpQzWyRBH6CbmSS5ZoslSz/W0beNtP3sDDd51g/w9myBJFqTdH+jJtJhwpw5qc26moAR5ptKmmCmM6KzqdN8FiOifuCkOkDSXHJtGGWqrOWVdDG/CfZfWo40HEyeDKlcALIYS4MJpORU18ZtL+4B6oj8PEA6DO+Lx19Jud255NFkHcBH3lEhCdRE2C0ckZt6WE0RRpWlv5DJmmdbKshX6ByRGlItK0+bwXkTrnJ9kLuth0+jEZWVpftb3dJFEjXpC5JOWOhXqnUuXUH5pKCY4to4NO5nQ6SghVZ3vDn2SmXiPolrCnOmM+Tki0oZkp2kpz0g/Q3WxxkLZ5cukpUt35IODXYr5813f53uQPCMKQ8Ucf5I6jd/D4wuPoRBN4FjltMJaLP1cjeHKR+ZMN3PkcZafcSdSkKSaOMVozu/hlwuZJssVFkihj6Ut3cOK+e5ibvJcgbvLd736XNE07SWqlz5pqdYpfj8+60nvm1Wdp4CiEeKkzprN8dtg8f6n0Y98YpzYXsDTlszzjs+01a3FcG91NDKSRwvFsipUcm7cPUu7Lo1JDczFkeGOFdj3uJGISRZZo+taUGL2+n7d8ZBuWDVmqKfbkSOKzT960NivJoJcqP1PMxgn9rktiDLE2LCQptTRDY9AGMtOJj8efcSHjzyYXV6Y6FWybWBsamUIbw/EgZjFJWUxSdHcKVdCdUqXM6WlS99Z87lysc7gdydReIYRYhYxhJT50b+kkY9qL0JzpJF5OiX1Ig/M+z8r2LAJ1BXvUmHQlWXOK1glxPE+a1lZuS5JFlI4wLzCJ1Gw+wdT0/3ze+0XRFFPTn7/AMSuUDlitS4pLouYVRnWXfrvQpMJMlHJf3eeO43cw2ZrEYPjmyW9ycHo/ppu8+JuZKke7J5izCz9gsbVMO0rQYcgXDn+RQ40pMmNoZYq5mVnG/9sfopIEjCY58BUON1rcOV3DaI1KFQVcJvx5oqDNsYfu42T1xEpFTc0BzxhyTonWYo1gvEUYxvQuFRlO+kjjBJOk6DAkyxLirI4puyT7HyatztEKYx77+h34apJGtMT8/DxJkpB1X5/MGNpxRpieTszE7fTsknxtCPYugjYcPHiQarX64n9BQghxlehME7YSkug8VZLasDzT5uQTSxy8fxaVGVzPxnaslSRK2EooVjxs1+KH3reVfNlFq071TN+aIo3FsFOBowxplOHmbGzHZsONA+jMkKWKYk+nouZU8rvdiJk8sMzhh+auaDL81NTbS7XP++s+fz1bpce1OxcjMkUjU1TTjEQbio5NZuCb1SZ/Mrm4st9Qa76x1OBwEGEw5GyLWGt8pVAG/n6+xiePzvDvD02RaIOvOhU1e1sB31hqUE0z/nBinqUk49vVJv/pyDR+tjpPSIUQ4pXMYMh0J/asSNqdhEt7AcIzpjqlwXM3Co5bncddwWbCWicYk6H16X2mWR3X7SPNGkC3SjTuTMkyZ02RenZJWqXZ3MuZyZTzVc+kaQ2/deCCxmyMQqlIpj6J1WEySviL6aVzbn++ipBGplhKMg4tH2YpXAIDy2GVNErQQecPpZEpwm7pezNYxlw7THV6nKW//EtO1k9QT2Libs8Z/dWvsuaxR7HiFJNm6JP3k6kdHDm0zOPfvIusVuOmXIn5dpWty3P0Vl2GDxdoJT4m0UwYhW0MJbeXdqvFodlFJmvLpEHE+icdpo5NYeIYHUZ85+S3GVt8kPzrbyF57Bsk9aNM96Tc8PZ3geeRzjfxGy2CoHPFMuwujfeN/XM8dPx08iUOM5LojH42YUbw+DwmUUxMjNNqNc7/4p2aYyqEEKuYUobQT88/9Ul3+nRNHaoRt1NUqnE8G8vurPpUnfGZO95kaEMFAMezcVwblWlUpukdLlGfD8kXXSw6x1PXcwCwbQujDSrVFMreSkI8CTPu/cIRZo7WOfTQHOoK9gjLDHz6xBz1c1Zo6lSxPNfKSsoY5uP0rJi6kGQc8EMqroOms9R2zrZY7iZqyo5NqDQ/WG6xdEYD/fEwoew4nV42BnKWRdBtPJwYTaAUjzcD6llGM1MrPWpOhgkH/YjFJGUySvCV4nA74mQYU8sy6umFlYcLIYS4vLQB17JQZxTUdBI1MdgeNKZO3zkJOomYZ5O0OstzZ5eumbAxhiiaedbGu1onOE7xrIqaNKlSLl1LlnY+I6VpjTCaxMsNoXWKMYrq8r1nJXeeKU3rhOE0WeafuTcmJj6L1uHKLUpHJOkyF1IdY4xC61gSNWJ1aGaKmTg5q32TMYY9C/VzTkjPVE0zWkqxHDcIsk6pnTaGvPLQQUozabEQNWnHKRNPztHy2zSLBe489G2aT++nGTeJtcFXmnKk2bi4RH79Olr7F1m67yhho8CC9SqqrYjJw0/RXFikRxUI4jpbq7NsKVzPZudtJN5WwihgWikcDDmnQhrEuLUlrKxJnCWUsjLLX/sH4hMnSYIWR6uHyXSCufE6Mj/BL05jVzLWjl5HmhlUrUUSxRw6fJik2ycg1bDUiln2OytFaWVQWUq1+ddkWQswKD9C1SN0omm326Tp2ZnhUyfBE/ufpFldvNS/SiGEuKR0pomDlDg49yqX0ZAlmtmjddJYkSUKx7WxbQuVah658wQH75thaEMFy7IAcBybNFZYlkVlIE99ISBfcgFIY4XrdU9BLAvLsbBsCy9vszDeZGJ/lchPWTjRpDrVomeowOyxBsYY0kShLnNVSKAU319usfyMxvIK+PSJWY62o9MXOJ6RjF9OM37p4ATHw3il39lSkjIdpfQ4DsZ0Ln5syOdoZppYayqOTT3LMECf6/D95RazccLxIOaN/eVOTxrTqbxpKkXaXRnEGPijm69hR2+JpTQjNp2pT4tJSj3LmIwS6t3pxh9eN8DNlSI/qLX46xmpABWri1KKAwcOcOTIEaanp7n33ntZXl7m+PHj7N+/H30JK9yEWI0M4NrWGdNTTSchkwYwsAUa06djzfkqarSC2njnPnELCv2XdOqT1gnHT/wBSp1OjiTJMvX6Y91epimuUzkrURMni5TL20izzrStufmvMD+/B88b7FbfpJw88Ue0Wgef9e9bZW1y3iBxsnDGWGLq9Ue6n8lO/fgRWda4oKSLMRlaRWi9OnvjSaLmFSZUmkDpsxI1CrhzscHe5rlzHY3p9AaoL4UEmaKZtGklnT8Kx9iUrCIqSHl0/nHGlp6mFqTc+cATLC9OY3IeOiuRLS8TJhGW7XHgWJV/9GCNtfRDuUw0W+fAnd9h9htLFBNDGCWEzQb1vROUTRGdtnFtm8nRPnrjAslcib0nx0jjFiUVM2BvoKg3kI9zeB7YlkWP6cN74gDpxARZFDKzdJK83c/YjEegyrQALIfYT0msHJGdks953PPEk3x7fnmlkZcfZ+x9/FHue3qaNNXY3jKR/XWieIlYaaYaXyZhGZWkBEGAUmeW5CnqjUcxRjFz+CDNRUnUCCFWL600cZDhuDbxeRrEG20olFxyBRfLtlDKdBI1jrVS6bLp5kFKffmVx1iOhco0lgW9wwVKvTkGR8rYjkUSZlhOJ6FjWVCs5CiUPdycw9TTNWaONGgtR7h5h3Yj4fZ/vJkjj86TxYojj8wze+xZKhhfrG7SZSnNqKYZ8/HZSavFJOWxZkCgNZNRwjeWGpgj38REp5sR1tPOCk6/emSary91kku1VFFxbHpcGyyYizM2FXKEShFpQ8VxqKWKfs+h6Fh8+sQc/+XEHJNRwk3lIvVMkRhDuXu/xHQSNaHWbCx4rMt5TEYJBdsm0prFOKORKaajlJJtU08V/9emNdxULnA8iNnXClbBehtCnKa1RinF1772NcbGxjhy5AiNRoPvfve7PPXUU0xNTTEzM8O3v/1tarXa8z+hEC8x2hhcC1QawtN3glHdpsBtKK85u0dNGp5bURM14Qef7iRsombnMZdw6pPWIUm8gDGnEzFhNMni0rcBMDrBdXvR+vS4srRBvjCK6U6LUipidOSfYEG3oiZD6ZDq8t3n3acxhky16O9/Pa3W/tOzGnRMkiyRZe2V+yrV7jQp7va+MUZ39/Hs0a6zf5n6JFaJUytLnPmWPbXc5311/5w3873T9/L0wtPo+xYoGkM7i2jGTQyGvriHvJ1HRxl+2iY2NgtRwheXM/a1hklsh97CWmzbIayup6ArnNi/SN90G3vtKLpUJplvUPZ6ydda5LOEIMmI223axPQ6JdZ7PcS25m9Hc/QvBbjHLQrReoZmj9HnN7l9P2xJUubzPpG3SH+uh4K1DhWtob1cp77tJkqJh9Xup9ZUtAavBWcU7RaYKdosjKwjNDEYRea3WJj4Cm46TdSu4i4+RXtxir+57wh+mJLrO0aWFpmaGucbizUero1hr7PIgoQgaJNlauX1y7IWExN/jlIBWZKgshc2D1MIIa6GueNNxr41Ts9ggSTsTIupzbWZP9lkcaKF1oZCxWPbazsNhI0xWLbVSbpEGfmSxw/t3IrjWivP2U3DYNsW5b487/zpm9j0qk6T4bCVduaod+fiF3s8ij05vLxDHGQkYUarGrH55kH615XoW1OkWPHw6wnNpZAkvPQnVcYYmkEdM/EgM1HClmKe2WdMYTrkRwx4DpHWPFD3+aPxWWbGvsgXn95H2K2eWUhS3rumn09cN8r99RbfWapj0oAbygVKjk3BtpiKYjYVc0TaEGlN2XVYTjN6HIcNhTxvH+zBtSyOBTEbCh42UEsVPa5NvbsyYdSdpluwbTYWchwPYnrcTrPhxTTFzzSzccI1xTz1LKPk2PS6DseDmKkoJTjP6lBCXC22beN5HlmW8brXvY7bbruNu+++m1wuR19fH2EYMjg4yK233kqlUrnawxXikssMFGwbFfvw2P/oVNOouDONqdB7dmLmfBU1WQT+QucxcQvKwxedqDlfSwylI9K0jtanP9MoFa5Ma9I6xfX6zqq4ybIWOW8QA2iTYnRKf/8PkWYNjElRKqRUupY4nqdTOnD2GLQO0SpkYOCNtJpPcmpak9IxSVo9KzGTZW2UClZ637RaBzhw8P8himee9ec81VfnmYmazr6fO8lzJUii5hVmpaLGnJ6aow30uw5TUULUPdE8Vcl9pHaEyfo0uUjTa1u0s5gpf4o/O/gV7lZbiMslfD9icrlNahyWghSn0sNj3ptxPUi8AlnTpz0zQqHt8OrlFCs17K/NUWu3yeZqFIvD5DLoS2PCVLO1cjstt4Cb2by5sQU3TJlKU4xJWbQMxTBCnzyJiS0e2dRLjSEmSm2CpEZFuUwN5pl87W08hcXTN9/GG/0fovTEDxG2FcH1N5FFLonncriVorQmUBHYFnmtGag+zBBLRPNPc+vcHWyxHdKwxsLiN8n1HWPp5Nt49JHjLEQxgWrirHHJ/IQoikiSM5pnpXWiaBqlIlTaSdTEcUytVsP3D6HUc3RqF0KIK8AYQ9hKUJmmtRwx/tQylcECcZChMs3j3xjn6Qdn2fvtCbJYkS+7vOH919Kd2YRlgePahK0UL+9gO9bKtKdTcgWHfMkDC2yn09Omb20Jx7U5/vhDzJ84hmVZlHpzFCudippSbw6lNH4tZsutw9z6jk3YjkXfmhL1+TZhK11ZaepSCrTmM088TvrIZxkPQt7YX2Y+OX1CaoyhmmZsLuRoZ5rD7ZhXFXPUajNUazPsWahRTTLm4pSRvMe1pTxTUcqfP/kI7zn4Z9xQylG0bUqOzUSUsLmQYyJK+OuZKgPVg2T+IhXX4QNr+/n50UF2NPdzMggY8lz+9ea1fHBtP2XHppYp8rZFW2lsLFzLYjSf42QY0+M4BEqTaINldaYtbyh41FNF3u4kaqbjhD7Xec7pzkJcaVmWMTk5yfbt2/F9n/Hxcd7ylrewefNmsixjy5YtFItF1q5di+d5V3u4QlxyqTEUbZtMpdCYhKAKKu0kXfLdRI1OYe5JTBpgsujsRIKKIayDSl5wosYYQ5wsYczZ8WAuSTnUPvv5tQpJs/rZqzqpcGX6kTYJntuLUuFKoifLWuRyQzh2njRZ7jzWsroJlgSlAjyvH7BQ+ux+OsakHD32aeKkSrG4GaVjsu4UKq0ilIpYXv4B8wt3YoxB6RDLclcSLGE4ThIvErSPPuvPf6o/zTN/foDJyc+SpqenCV+NVX4lUfMKE3VLpfe2AhrdkzSFoeTYVBybarfBYKQVDy4sUW8agtQll0Hegh+KXktcb3PH5GN8N7apD7gcn13mnidbWJbHUpjglDz0cESvk5H2rIcb34E/NES/MWxaXsY1MVHaYiFIwG9jxwl2qtgULWAUbLCuZ51bgkiTm4i4RW/AeHmsAmityEyCnh/HAmZci7FCmYSUm3o3ULZcTlYUS6M3w8A2Cj0bqKhBivYaFAblQqkc01IZ+xot7CwlNikKQyGXw2rHbFJtwicX6a1N8fqgl22lZVqNvyPfN04YOfh+TJBlaNWGgiJqhliWIk1PZ7qjeJY0raF1hMpSVJoyPz/PI488wPETnyGKpq/SO0AIIU7b951JGgsB7UZM2Eqo9OdJY0VtNqDcl+dNH7wOx7M7zX9zDm7OQXc7HVqWhePZBK2EXNE998ktyBVc8uWzt/UM5in1WjQX52nXO6tYjF7fz8abBiiUPV79jo1YtkXQSuhfW2Lkuj4sy2JgpMTyTJuwmaCyS3+iFChN7C9hNSaYCSNurZSoJmefvLWUZm3eo54p6lnG/7NlLTfS4v2lmHtrPl+ar7GQZKzLu+Qsi1+9boRd5Ravqj3Fv2rdz6viGYq2zXSUMprP8fMbhpmKEtYe/irr6ofoy9psaJ1gvRXz9id348YNel2HmypFfnz9IEXbppZm9LoObaVxLbAtGPQc5uJOD5y2UjiW1V2iGwa9zuvv2RY9rs1yqthWzjMXS6WnWD3y+Tzvete7+NEf/VG2bdvGhz70IbZt28bb3/523ve+95HP55//SYR4KepeHU+7fch0GkJY6zQPVmlnqe18D4tBm0arCvf9PsQtHlteZjHJoDUH1aOQxZiwRhLUMc0p6Nu0UoUTa81jjTa6m2hI01PVIoajR3+XdvvYWUM61I74VrV51m1p1kSpEH3Gak2Z8lHVp2HhAEanuG4fmWqzuPgtlGqhVIDr9lKpvIpW6ym0SbCwSNMaSVLtJGrcvk6CRZ09lStJl1la+g5RNIXrVnDdykpD4Sxrkc+vZ7l2P0F37FpF5LxBlOpMh0qSRUqlLWdV+HRe7lMJF43S8coUrDNpHVOrP3xWA2OtI2r1By/wl/viSKLmJc4Yw2ycoF9Ads90l55uK82X52tMR50/NG06J9zXlwscCyLA8NTE3/GHjz7GY2NtqmoUO9X0Jza3TN6MNdmgnQQ4rsXJYQeCGrebJj1ekWqUYjsWW/ZNccvxCf7puEM5fz19uGxxIddcImcnOCTE5MC1sHVGLp+nb/lxBjKDlWjycUaaxfhuxDVZP56bY7qYMhSlxLYiP9BLziiGsHmyzzBTKeGV19KTpNR1gpdB4JW5c8t6GlEMTp7lSh3bmmJ46Cl+sG07B3MurtZo22Arh5JbIIlhS7RIc/EYWZpRKRS5vlQlio6Q6SVMcQbPadFcnsFWbY4sHSJYOEQ+l5Gm8crr7PuHAAeVhWRpisoyfN9ncfEordZ+1CVs7iWEEBfDaGgtR8ShIg4yBkfLlPvzaKWpzrQZ3lTBcTurN0XtFM9zVlZ5wgDdipp2PaZQOk+iBsgVXfIl76xKm0I5xbYeJ0tj0rhzLOxbU2JgfRk3Z3PD69djlCFLNW7u9GlKz2CBZjUiaHaqgC71Va1QaexgCdpV/LDF5mKOZqbQdI7ryoCfKdZ4LgtJSsG2GXA0ns4YzRr8uy3rmYkTltOMQc/FsixuLBX4oWSKYtpi64l/oKc9S8mxmY0TBj2Hdwz28G+vWcPrrQY9SYP+xjH4/m9htav01o9xk6qRO6McvOB0Ei197umEjI1Fv+eylGaUXRs/0zgWKNOZfjbkufS5DjbQ57oUbZtexyGTxqxCCHFlGdMJvlqd/v7INyCqk2pNwbaw0xCT74HayU4FTdKpqDnUqPPU4iymNQtJwJTfYiFJYeoROPx1yGLCoMZ9Y3d1kjQDW1YSNUfaEZ8+OYcyncbd9913H2maonVKEE6wXLv/rJgaKUPtGc3007SOZdmYLFyp1MmyFro9i6kexpgM1+sly5rMzH6BOKmiTYpt5+ntvY1m88nO6k6WhTGaOFlAqTau24vjFMmUf9b+4mgO16mA0dh2Hscpn5GoaVIqXkOrdaDbqLhTUZPLr1u5T5LWKRRGVxI1WidoHZOmy0xN/Q9Onvxjmo19nZ/pGYkapQKicPqs1ajiZJHpqf/Fhawq9WJJouYlLjGG/3pyHv8FloGHujP1qZEpfNWtqOn+Yd5SKfJ0O0LrlPnlB6hGIYGyOTG1hI4zhpuafN2j6PfQVhmebTOZ04RZSL1dQFu9NJOUYo+HUoZXL86xRmtsp4eNXhkv0liuwcrbWCbFykLaxRJJoYzecBP9bOdHlEVUaGMrF60U9UJIXjtgbKasFkO6xTFrDh+YylUpmAzlaE5UykyUSrTThNA29BuLulOgniU04xaq5HKs9xixU0M7LSYrPcy6UKFzJqtzGdP5E7Sa11OuutSVoVkeoeVq1nhTGKNQqk0+l+ASMHNynAIxc81DJCc/i+cp0jSBLAMMbf8wlcqNhGENlXYqalqtFs3mNJ63plNqpwwm02AMSkXE8eJVnwsphHjlMMYQNBOSMCWNFNfetoaeoQJaG5Ioxes2DrYdi8hPcXM2ltWZ8mS06VTUuDZ+LabYm8PCOmcfuaJLoXz2NAW/tkDUmiONI9L47CtolmVhO6C1wWiD7Zw+TSlUPNIow69FK1U9SZQRX2C/mkR3erc883hbzxSDaQPfcgmDGkM5t7M6ahLRTmJ+98QstVQxlHO7U4ksrCSAnvVYYY0Bz6GZKRaSdKWKBaPRzRkm7F6suSch8Sk7Do1M0et2kjmvqRS4WdcYUS36dYQ1/RhMP0LezfOeya/iPvX3Kyt9DLguU1Fn6lI707iWhW1BwbYo2fbKlKaC3Xnd8rbFoOfQ5zlYVqeiZtBzKTo2Em6EEOIKm90HJ+6Be34Xlg53mv5+/7dh6QipNuRsGy+LYPhGqI+fVVHjqIRacxHdWgAMnun0HaW91JkmlcXYKmFw9jHY/CaMV4Tu9KgnlhaoJymZMWitqVaraK3RJqFFhaXmwbOSFZHWLKedz4lJd8W1LK2Ty61BTz0I+78M3alN2gKTdSptCvkRguAEUTSJyloYo7DtHLncMFnW7CY+LGw7RxzNkmZNXLeXnDdImpw9zagdHGd4zbvI5YexLLdTUdNN5qRZg2LpGsCgVQgYlArJ59Z079MZbz4/gtIhWmcsVb/PwsLXmZv7ClE8R7P1JO3gKI5TOidRkySLpFnjrGleWVonTuZXeuJcCZKoeYnTBhaTjMwYwlaTNIqe8/5ht/lgM1MryZ1YGzzL4vpSgfF2TBxHJNqiTo60Z5jxaos0yrCCDKvgsi27kVvSWyjYNpP5PF+4cRA3i9loJWRJSpaHeM1aBgMfN4tBW6w1RTQWadnBFByy4TWonh4WiimxY1Or3MS1rVsYjBZIwwjHy+E5OVzLw1MWay2bZTehP1yinjPM3LCdE26LxDFkxhCUPJacAv/rta8hynn0KLB7Brg2jVjwUubtiMROCEpVVK/NT5Xv5D3WXgYcF601gZNwsDCOtnKESwn11GV/7lU8YI6TFuqg1gBQwJA2LLRtyFspsYpoOkMUc4q5xSWO/ckfcGTxKTLVplS6nqMH7idtLaCylGazjtIehfw1aB0RTTXxv/5VaEzitw8xNf3Xl/vtIoR4BUvCjHYj5lQ3ea06PWqidobWmle/bQMjW/swGtJI4eUcLAvcnEPYSnBzDtD5v+12kjaOZ9NY7EyTOk+ehsGRTiPgM9Vmpona7W6i5tzqwk7Vju4mg073U3McG6/gkmUalXVi2dShGkcenrug1+FwO+ZfPHWSI0F8VrJmOcm4hpBDufUMK5+KY+NaEO/9HAee+hZ3LTaophlDnks9zcjbNlbid65cRk1KdqcnDECP03mtUAl2GpAbuq5Txh53nnfQc8nb3XbLOsOKmmymTR8xrL0Z9v0t1jVv4nUT/4A18zinfmmbizkmwoRet5Psydud9JhjWWwq5Oj3XMbDmA2FHD2uzfq8R5/r0u+6WEDJcVib7+zbyLpPQghx5RgDtRMwvx+mHoOH/wxmHgevBMvHSY0hb1t4KoTeEQiqaK0wcQuTr1CxIWwtQHsRY6BgQ6gUhMsQ1CBtYxUHWN86wbeTEkva6VTULB3hh8Y+w/VeZ0VCYwxx3Il/Rqc0dIlWlmHM6Yv+kdbU0s7qgZ8+MUdqDGlaJ59fh26chOYsACrzMbbd6ZejM/KFTqImSaok6TI6rmGiGrbtdpoJG4XWCa7bg+8fwm8dwHV78HJDJEn1jJhsCIMTDA+9nQ2j/wdg4TqVzv6MIUubFAqjlMvbsCwPYzRGJ+RyQ90EUYrWCbncMGlaZ3z8T2g1n6RWf5h2+yjXbvk3jI58lCRZwnHK3SlQZySqopnuClZnLDUeL5yRbDr1K+0kiC5X8kYSNS9xms6KTbHSHLz3+8wcPvic90+1IW9ZLKcZjShiaXKcsFtqN+i5rJuIOP7540SNPpbyg0zlNtH0KqjUYEWKeslmTXYtr6/dTgmLE5bLkZ4KWBYDaRtlKaZKLnFvL0m+iEk1ZIp12uaxoRzfusYjdSxMLofaMMIT/RO4do3C+ldxU4/LQmkavDxhKY+dtymU+sgbh43G0C64FGaPkuTKPLpmlHYhx5I2JPEc8/oH1I2D74Btu/Rp8BLDlvoSh3scHl9XIrMyslxAVrRZxxzvSL6Nm8uhtCE0ES27jcm18Nw6tu3STME4itRVoPtxbA8vbpD3Glh5lxwpxjYs2OsZyAUsLfhMzzX4g31/Ty3TFAqb8INH8eMx6svjLC49Qbk0jOetRamQBXecqdpnYfoxsrROGI6vdCo/7+9aX9kGVkKIl5fZY3UeuevEylTZNFFkiSZqpxjdqX5xcp0VnbJY4XqdU4RC2aVVi/HyneSDV+j0qsECx7EIWym9w4Vz9mdZFltuHWZ40+kVWowxLE1NdPYfRWTnS9RYnelVQaPO41//Kq2oSStpgQUD60tU+vMsVRf4/WMz+EFKdbr9go+NxhgOBxE3lYvcvdw66/ZqmtKrQ+Yqm3mD4+NZFq5liE/cy9OzxxjOud0pSy71bpKExO8sgWoUnorpdx1u7SnhnEpatWbJF/u4ZvOtMLgVK2lTcR3W5z3cU9PBEh+KAwyT0KcjuP7d4M9hbX4TzujtWGkIKoPWPCN5l17Pod9zqKYZFbdTKWMDmwo5eroVSK+uFOlzXTYUcvS5DoNeZ+rTgOvwQ31lHMuSNI0QQlxuYR1/dj/t7iwG4lZnme18pfP90hHY9o+hPtn5jGZb5FSEVRrCJG0Sy8UkbXAL5B0X1ZwjsRx0FuPZDs00xQRVTFiDpE1aGmYoa3JH0/B4oCGNSPd9nq+tfSflYi9x97NEI4y4u9pE6YhWYpNGCtBk3f4tkTY46SQPVWd4qF4n0Zo0a5LLraVVn2ex3aCZKVTmY+Ng0jbaZOS8QcCQz60lTZZh6Qj25ONYlovRWXfJ7AjPG6DRHGNy6n92KmpywyTJ4srL1ll+u0q5fD2Dg28BwHV7yLImxiRkWYtScQtbrtmFQWOMwqDJ59cTJ4soFWLZHq7bQ5osU13+Ab7/NI3G4zhOCccp47o9JEkV161Qrd5Ntfq9lf3H8TzF4uaVpEwnuTUHhrOWHweYnvlbguDEZXn7SKLmJU6b7kpOWhP5LVrVpWe9r0pTqosLFJ1OM8KF6jLf+dLfMX/waTY2G/gLAdvbEE36BFERx3MpaoPr5Mi0xm61adrwOyrgvkpMWYdUtaKOQ9I3SMGvcUt9ktS1CL0c2s1hZ2DZhoEwxdLwnXXrsLwCJSrYdj+lVkpp8iAjjoNrYhYLAVmuTGh7JDlF0a6Qy2xGGlWU57I81MM1qsyPLXpkTpn1TsIat0oaPE6z2KbhOrj5Ek6aMlwLMEvzlIzBLwyQWinaDTF5sJWHbQqogo3nOWwYbeD2jBBZHjmnTD7vURgewHYNWlsoBZaJKKAp2EukJsMC3FyeKeXSm9OU21DovZXpdgvb7sHoMlb+BFYlZX7uPoxeprc3wHXXEMWzVJf+AtccQk8/TRItUa8/wvLyfSsfOIwxpFmzkyU2hoP3z9KuS28bIcSFM8bQbiTMHmsQNDtXiNIoI192CZoJjtuZ4mTbFpZtkcQK27OxLItCOUerGp1O1OQdvG7vGMez6R0qUOzJnXe/lnX2SlBaKaJWk1JvH2nUmfp05jHPGIPdrTRZOPEgRx66l7uPfYfvTXyPE3sfpX9djv51eQ4+dCePzM4RRhmNxXBlKlQcBuet0jnT0XbE2wd7WExSWkrzaKPTeLCaZJSzgOEN27lFVXEsi5JOSBePcIsd8Mb+MktJRsVxqKWKsuN0TrQra6A4APVJ/lkwxo95TaxTy6QuPo215kasdTdjbfsRSHx6TMxI3uskc4zplL73bWCTlVBREfRvgrf8W7juHfCBPwbL7lyF/ftfoFw7xrZinj63k6g5lZixLIvtPUU2FHJsKOS4sVxgyHNZn/O4rpTnJ0eGAFiTc/lnG9ZggSRqhBDiUjEGJh7sxIRT/w+WoXqEJ771X3houQGLhzpNgmMfnBy1NOHJ6gJm6Dri1hwqDemzFCUVQ6EPncUElotO2hgnj+24OP48fmUjllHkHYdGHNL0a6gkgKRNvbiONN9HzcrzSJBhwhoLyzO0hm6i5NiEWUSmYtpJwudnl2jOjrFt4TBeq43SKZ+frTIbp8Ras7b9Hf7niUd5t76DOJ4niqYpOWs4uVTn4aVF9vsBJgtwlMGkPqbbj6ZSvoGe3lcTx/PYQQOChU6ixnTaQ2gV43kDKBXiuhU8r49CfpQo6iyjnaZ1Zmb+Dtfrw3GKK+cRjluh2XySgwd/Bd9/mmJxM0NDbwUMxqQYoymXryMMxlEqwLZzOG6ZLGsSRVPEyQKW5VAsXgNwOlHjVAiDk0TR9Mr5iNIRntd3VkVNklTJF9afVVEDkCbLWNblSalIouYlztBZUjRQmiQM8WvVZ72ymMQRtWqVMhZhoqhHIU82A37wt1/iuiNH+P4XjhBMtSHRxLqHnAulLGG9yshlDW59/B62TR7ATms85sM1zZiSYxNYFqbXobdR48bZBf7pVMbPzRTYUhzBMTagWdcMGIlSKrpM0rYpmAJKpWSNEB03aNsRkZexJl/EaEWWtjiYToNjoayMqLWI5weM5x2GnAo3VaHYM4wJ5sGZouSWiHKTNByb2HEwZJi2JpfvY502NHOathWjrICc06bSDMm3Y7KKQ64AA31TOPlh2lmGm+UxhVEe3FjGymUoZWi0AxIVYeWgsjbC8mIybFwNVWWxz91IcchHFwq8SRVhcYHluRqwRL7skiv7aFPD9Q6C1UcUzeA37yfrHSY9fJBwaZY0rZMkSyu/2Sxr8vTTv0qSLGEMLJxsSqJGCPGCPXMpychPWX9tHwsnmhhjSCJFsSdHux53ltDuclybJMxw3M4pQrHiUZtr4xU6iZpcwcXLdyo53JzDumv7sJ3zzHs6D5V2qgbdXJ40DomDgPEnx9BaMf7kXvzlane1KJt8KWLtlusYnz9Ktb3E2NfvJPaPY/EUadagrgxxrGg3IrK0U7J9+IEfcOiBHzxrHEyNYSnNuKVSZCnN+G/j8/z+yTkSYwjShDV2xvDG2+htTWNhuMVqE7slXpXTvMGL+HDrUYqORT3LqLg2VliD4iBsegPWyR/w6kOfZ304Byfvhfv/G8w+ASO3wqYfgtt+AprTXPfQ77FzqAzdnjXEDegZ4fq8Rb9qQ64C2z8MPSNQWQeFPph+DCpr8J76Ih9a18/GQo5Ce57b0tmVn+3dQ328fbCHf7tlPWtzHh9c18+tPSUqrsO1pfzKya5rW1hY0qNGCPGyY7Qmq9cvqAK9szzzi20Qa+Cx/9FpANwZCNz7e9CcZV3tEFZ7Cb73m50pQ3EL3DytTHGktkTas4HxIORVX/83vH/he6y3U8j3orME281D4qOcPMay6YkWSQauJXHyDNqG0Ud3c7i2hG8sTOxz0htmKb8G1ytQNx5q6SjTdpl1lV4Kjs3UwndYXLibotFszHscmTtITxRjRQalAvY2A5qZItOadXaNpcymkB5nau4usngz1qEHaHsQFRzaWYpJI2yl0CpC64Q0qzMy8mGGh95JFM/iKIOOGxiTdT7P6BStI3LeAK5T4vpt/4FicTP5/DqStIYxKY3G4yxVv8/gwJs5c06165Rp+QcxRrN27Y9RKGwAbCzLI02bGJORz68nUz5RNIvn9mHbeTLlY1kejlOmv+91VCo3dZ7PraBUG8ftIUmWSLPTVbad6Vm9Z1TPaDLVJp9fh1LBWedWWsfY9uVZlU4SNS9x+tRKTmlMHDXwa7Vz76PUSkPbME0oLEV4SzF1Zahv2MLA0gK9jRb12TYL400sBQnXgGPI64wtBLjaZ1O9ysDMId4WGco5j5FZGG42sbUhyRpsms7Tk3s1o4HBrxQYsQYxdN7I/UYzECrKmY1KDWW3iIUhcD1mNlxH24lIjCZoVlhQi6RRkyYBVmZIbY3l12n39/Hotltx3AH6MguTH6SQQn+asLa8jXXjJ/GymAiDjaaSc+i1S6zTNuutkM3mGoyl8UxET5xQSlOSXoUmJUedTVZGZmUMrjtKj5djVi+TOT5papOkFqChbFMcnueW8sNEWjOaHOHa609Sr9RYu/UfCEoht5RGODGneWTsCMZ4OHlwyjUsIuK0wT3VHmpxZ8m6cPhalK059oiH4/QQpw2gk4hfqn6PdvsIWdYCY4iDlNBP0PrcJphCCHHKqROIsJUyfbi+cnvUTrlm+xDz400wEAcZ5b487UZM/oxVmxy3sxy343ZOkAbWl7j+9etYe00v0KmocbvVNcMbK9z6jo0veGxJFODkcjieSxrHBI06Y/9wB0kYcnLvY0w/fYDq9CSLJx+l2JOjd81aJueP0fCrtJYWObH3Ycb33YPb30PkuCRZRr7kEbViSNqErSZHH74frdR59z8XZ+Rsi3V5l2amOB7ErMl5xNoQh00G8wWuH72eXFLHUgk36hoTPVtRUZO3VB/mn05/hRKKzHT70LQXoTwMG18Px76HNf0oVhbCxAMw9wQ0p6FvI9gO5PugOc3g4lO8ruxi/eC/wOLTnefoGcGxnU7ixyux0rXZsjord+z/Etz8ASx/gff25xnNe4wsjHHb4sMrP5trW+Rsm9t7iri2xdZinkHPOe/rYL2wvJoQQlxRZ34AvhhqeZmlP/lTLiQTPTe35/mnrnSX0H72HSed43272l1lV5E1ZjBRnTXxIr21w7B8vHO8T3yM7VL08owQUbeLfGzz/8ncqz5Mb1RljZVCoReVxZRyRRyVEtoekTZcmy7R255lweTwdMJNU9+lN5inahUgrDGXH+ZQ5Toc26aUL5FMP86h4ddxbalI2bGpRUsE4RxaKbaXCxxrLpDSi26nqCPfoJYmTE1/niRt0E+TZVWkmYFf+wFHjypq1Sb2YBt/uEa7NYaOl3HSlMROSZIlZme/RKVyI6XStUTRLE6aoJMWUTRDOziKQaF0p6LGGEUuN9ydilTCsmyWlr5HvfE4W6/9JQYHf/isilzHKROG44yM/DjDw+/sbrOwLJvjJ36fNFnurCBlF/Hbh/ByQ9iWS5b5VCo30NNzC1u2/Ct6e2/rTBm28zhOEdepkKRVsqxx+tfd7aNz5tQnrUIK+RHSrMHc3FdI0s7FdUnUiGelgVAb5up7CdIHCJsNjD47Kzx37AhPfPcbpHFMlKS4UUKvtljIlTiw5WaGGjXMwhJRrCjYTVw0/QuQtzqNJHPZUdxCiKkM4GYRPZHN6EiZSmARKc2AVtwcbGNzPsdAocXjgw4zFQcvtjF5h8zJiE1ITtsUM42Xc8jZHgaDsqG9dg1LaQtta8LQZ86q0UwbZBbYEYQFG7fdZMvcCdaFMXWTMeHOEubzWFaNeKnJ+nCQ3obFQBLR1oacysjlFL2Zi5NkvLYdsbW5mdApokzMcnkjhh+mZjcwOUXBjnjtQgvP0+R7JuhxFJFqkLlttM5hTAGjCp2GWc4I13GCRhrgFEKKyQQD0Ty2KrLYPsjg5OO0+68nSGzIrsXOedheytp1Ga6T8r1lw1xtLzl3kMQtkuRHaS5WsCiuJGpA02w+QS53S3c+JkTtjObyDBMTnwVefDATQrx8TexfpjbXZvypzomEMZ1mwms29xC2EtJEEfkJPYN52rWY/BkrM7ne2RU1vWuK7HjX5pXVm7yCszINKldwKffnzzqZei5Bo0G5fwAMqCwjjUKaSwsEjTpx0Gbu6CGW5+eYn3+afMmjf/165puz1FtVtMqY3P8ErmfhDY7SzhQnDjxC/7oSzfFJzN2/i0piIt8nqC11ys5PnVx3j5ePN9vc1lMib1nkbZvX9JUoODah0vQGc6ieIex8D7ZXgmCZDSZgvrgOO22TnriHIEvJ6ZS8bdHr2p0GwX0bO31qbv0obHgdhHVozQEWJEEnQQOQK0F9Asufw4oasHyiUwrfnO0mc9xOWXyudPoFsyy46b2dHjUjt0GhD6s1S862Me0l7PM0MDz1u3jmtLOz7sOVXGBUCPFKNxenNLPzJ9DPNHOkztTTtYuem6njmGx29oUnaozBbx8hSZef+35hrbNK07NRKfjz0J4H4K9nljhWr0LUotGziWtn7sO0FzH+fGfqk2XjegWGTUgLl0nt8ag7AkmbPlIit0wuC/G8AtgOPi61JKGSNHD8OU5kDmmW0B8t0uPYxE4RHVQ5NrCdv7vmo52wl+8hWncrPUmdG0s5ehyHRhIQRMtkStFnW2hiFp21ZGmebOkgSRZSn/8C9dZBYnK0rR7S4qtxdAul+5gsbMV2ltigDlCe+XWCxgEcu8Dx+F7q9UdIk2WM0ThOicA/TClIMSoijuc6K+iSI8kivNwg+cIIx45/mpPjfwpocrk1HD32KXz/IKXSlnOmE7luBctyyefXnxXnoNM/Ztu2j2PbeYrFzTTqj5HPDWNZHlnWpLfnNrZcs4tcbg2O00mq2HYO1+3BcUokSZUsbaF1Zzr2qYbHamWak0ablFx+LWlSZ3Hp2zTqj6/cLokacV6ZNmTa0EyaOIUMrRT6GYma1vIS4/vGiII2gVEsNxfpsSymkoC2NpSiiHChRq7scHvPHCUv5baxA6wPY2I3zz3O/Uz33ouxPFxbg7bIXJu4HBG5eUZaTV5dLTGkygxEefAMT3oZWhnqXkhmEpKlKTwXtgYK27OoqibGsbBcBxWkZBWHLKdQmcZzPapuG6uUo2xKNPMWSiviMOKtEz7rawFTahatTjARfIU+PcD183BtbojrSbjO5HBtTdNEOG4OK9WsDRcpaYvE6aWlNCdTmHcM/XYDY8e4JJSrW3HKI9h2jUFP0+8kKDdAKY+C24fJCmArotClpBoESqPyGXlabKidxG05GKtF4k0xqUaYHt1OMnYNqlSEvCafq+K5ijT1sbWP5/Sik5BWtA2tchgFmWqTZS2mpz+HykKajTUkSZ00aRC1fRrLczQaj2NMypfna7Rf4LLsQlxNWZbx0EMP8cgjj3D48GHuuusuFhYW2Lt3L/fddx9Zlkni8RIyGo4+vkDQSEi6S1errHOsyJdcSr05WssRkZ9SHiiQJopixVs58elMfVIriZozP/BbWORLLsVnLLn9QrXrNSr9g1i2hdGGLElo1+v4y8uAxfLcDEdxOXTL9ZT7S/StXU9Tt2n6NfpHN+AVitzwxreS5daRYhGmDdZf20v12DTMPYHOUkr9A8THH4Lv/1Znp3ELHvlzjFbsawW8NprA/u4n+ZH4GD8SH2fAUlTTjLXBOP89OkliNJTXgr9AKWnQ1z9KMWkSZxm1nmvIRcv8o+gYm6d+AFEDSkOdhMrNOzvTm/z5TlVM/yboHe1U0wA4Xuf+cauz7Gp5uJOsac1B3wZw89Be6Dz2TJV18OP/vbO61PD1UD1CzrJYk1SxLrJcv/PblL83IcSV8bXFOnub7ee8jzGGueMNmkvhha1KZyBLNVmqMGmK9n1M9lyr8JyeFhyfOEF44gBanW4Qa4why57RpH52Lzz2F8+eAErDTrJ94SDm6bs45gdYaYCJm9zbdzu5o9+imeuH1mxnyWwgtXMM6pC6cXAt+L6vUbFPUcf8f0sxKRZ4BXDz+MZmVrlUB2+ELCbxypgsopnrx+0dQXtFdLCM7/Xg53pxLChWhllc9xreeOIrFE48TMmGRhISRlUypfCMAc/hqLOFTJVJg0U81aZPt1kT3ENklRl2FUvONRR6X0dCnr/oeweZBcX6GoLh/xMXD5wSTWuZJK2SZnWYfBC3vUzBFClQBpUQRdOA4Z5Gxj3LdSqVG9l+y+9z4w3/mTieI0mWKRY2kGUNHLuI45TPeYltu0guN0guN3zGrZ2Kmpw3RLG4CYBS6VoazX143hC27aFUgJcbIJcbPOvihWV5nQocp0iW+aRZjSNHf4tm8wm0ObuiRusEy3LwvAHStIZSIbX6gyvLelvW+atXXyxJ1LzEpcZQdGxaaYRXdLAdZ6UHgDGGVGvCZp2ZKGa+2SQt9nCsNEC/ZdPOXNbVY1gzSqsVUAEGsMi5UIgzSu02a+wc/ekajB2BcXj0xuuJBgbwMs1x92kC2+YGX1HIp6zP+kgci0IQcMQxtB3IjCKzDQu5kMxJeOdURpazaOUUoU6wHZcCRSaGRslyRUx5gNuSTbwh3EriZfRavSwWbQpOng2FtTTKiicGLFpZi9LxY7ypvoPb/evZHl/DGtXLLdEiP9M4THX0PuadNnOxzVC/T3ndV+nx2tgU8bTLQrvISX+QvPGxnAisHPN9A7QH1mDZhh6vyQAtdMWnqQs0C8OYtIhX9gliRdseZji+BlXUFHtd+nIWVkNh+gOq5V7ceonp/Fp0w8KyFZYdofUMjqMpax9XB5g0IFNTTOXWkhqNF5RIGxOE4SzjE59FH1+mufcGIh+Wlu4lSZdoN6tE8SyZilmoP0aYPfdy7EKsFr29vdx3332cPHmSxcVFarUaY2NjLC0tMT4+zvj4OF/5yldYWnr2hujihTEYIj8hiTKSqHMFU6W624zPZnCkzPJMm6idUenP4+YcipUzetR4Nll6OlFzFgs2vWqQzduHLmps/nKV8sAglu2A0aRxTLGnl8bCHI7rkisUmJicZMnWVAYGKA4O4vVVSOKQNZu3sOnm7dzytveRuptYpxu8ue8w7toUf+Ekxl/CZAne8FqCo/cRzj5JNQo6q2Hs+zxh1KIZBYyM/RkMbeOD89/mxvt+g2vCaZLWPFv8Y0xkTRKdQGmws+RpWOO2kWuwojqDw1u4cfQ68v4s/2b2yww/9qfQXoJ8T/e1sTsreYR1cHMw+hrY8NrTP7ztdvrP9G6Auf2w4TUQVDtXaouDnYRPY6qTsDnrNbegsrY7faoXYp+cbTEYLXGxyZZTfYyFEOJKaCv9gi4uNhdD0uT5K2/OZDA8ff8MJ/YtYZIE5fuY9NlXUTXGsLj4TeLqJHO//uu0D46t9CLxM0WQRZw4+d/OXom1MQ3VY3BGFaMxBn3qIlNYxwxuxRz9DvrJL7AY+uSyEBO3OFDayjFvmPGe6zrN442mlWmmlY0d+8wqm63FPAdTB9KA9VbGpPJYMh64BXDyBMaiPbiNm295F0XH4iarzZpglv09NxDc/EESp0AW1gksj37XoTg3TSGN2ecnPPzDv8b3xw7w3dlFaklIFC2jdEbBRDg5TSN3DUlcxE8DsrTFUGhxe/Q4RStjs73IhNnAvd5HCZWh6VZI6Gc+up754ttY3/8hGtYgbW8dqbuRLG1iDnwVtz7P9b0fILM1Jg0Iw0k8b4CF1GF8WZGzeymVtlAqXUuxuJEomgKgUNiA5w1iWe7Ka3xqURXb9ujr3UGSVAnDie5vobNsd7lyPWChdUg+vxZQeF4/luVhd1d/eqaVihq3jOtW0ComCE4wM/uFlYoarU4lamJsy8Nz+0jTGp7XT5rWSdMmVjdZdDlIouYlLjOGIc/BTyPcvE2+XCFud9aYT4zhd48eZTb5B8Ze8xa+v1gF2yYsuLhRAFHGtgWH5NXvoeYkDA3msJ0+bNvFjTPW+k0+0nT4icbb6eU69OAa7rjhJq7pLzGoNLq5hMpCNpsKhweKoGA8PYnRLUoOtFFkKqOdszixYS29WY6BtmYORZ2E0IppFnvI54v0HlNkgcazHDwbSplN3akz0OhhJmcACweLOA74Tq9inZ0j7gmxSj00TEB+7mGizTE3Fb9DhQXaxUeoZTNUvSKVAR/PLWJbIQVl059YWNpmPlvC1Q28XIrRPSzlMnKlCG024hUf5wOlffT2heS9a5nSJdK2izI1MlNh1tqG5/ST5WJwInJ2hh07OIUaUdzDUNMQpnmweinmHVyvgCEll8vx/pOPkMsiIgWRFbM4+DipbhMkA7TqE0w8vY8kbuA8ERA/XSP9/mGSyKfUUyEO2yTJMnHqc2v8NRzdvNpvQSFeENvuLPu8fft2duzYwQMPPACcnqaxceNG3vOe9zA4OHg1h/ny0J0qGQcZWdw54c0Shd1d2WloQ4XqtE8SZRQrHrmCS6FyetUmL2fjuDbPdt6RK7jkCu75Nz7XsIyhVV2kZ2gY23E6VzODNsObrqG5OA8YeobXMn3yOJGbo3doGO1BX88gSinM0Abe/L//DLlikXYKG+Mm26yDfGX6rxjz7sIkbbyswd2btvBVp8osee6dn0fVZ1DNWRaWxunTIXmvwMTG2zk0fT/UxvnfJr7CtQc+B8ECtSwgzEIo9kNYxw5rjAxtgEI/1ugO7L5NuPUJHMcl2PYeVM8mjH3GlTSvBFEdnFxnKtSN7zndEMZ2oTwEg1th5rFOEscoaEx2Ejy9o52SePs5Xlu3AFlMCcVwsnzR2RbLknoaIcSV0VnuWRPq5z7qaGVoVqOVuPVMKtOo9NxkTxopDj00R9BMOhU17Tbx4cNER46ct1LXGMX8/B2EM4cwWmH15rsNYuGuxTr315YJw4mzVvyhMdWZTpudXtRDA1+YW+4koMJlGNyKbi8RNBdoRAGuijFRA688yN2v/Rh7+7eD42GMYSrOmEwtwrDB/lBxQ7lAT75A3jJUVJv1lV6OpTaWmydz8lQzcBMfR0VYWGwmpD+YZSZf4Q43YMEukzVnGSwUWe85FI4fprddZTqKOVG6hkVngPsbAY00JI6r5HNNVP2z4OaZMSNEYYEZewCtQopxiq9fjdYWm7yUgVyeQ4HNbBTStvIs2ev5y7XvBztHk5s4GQwTWes51vOzGJ10poilAfkgIq5U8NtFgnaVfH6Egu3y7skHyWWduGlZFqXitQTBCdppmziLWG5YtJPOFKR2+zCTU38FaHz/ENdc8y/x/YPU648Sx4uAwXX7KBWvBWBq6m9oNp+kXNqG5/Vj2x62nT9voqZTIdOH65Tx3D6Ujsh5Q50VpHSC61TOrqixc7heL2lax7HzFAqjBOFJOukUSdSI81DGUE0z2llMruTRO7yeQw9PYQzUU8VdCyHfDzcy0VeBeYe8U+TV2ub6hQV6/DYfattklUGMZ2M7Ck0ZYzvYqeLN1QZWIUM7OXpaBeoDA8z0DTAQZfRFbbbEI2xQHmtjl8fLhpAYP2nTDKv0oQkcm4KdI0jbXGv1cE0GeysT1CsxiYpJsox1Tj+JyTAZxFlCjzbYniIjZk5N0SxEtPMZCkVmJThBkw/ve4TRWsL6tAebmNl0gai9RFFDzvPBalMq1dGWT0oe7WRknotNxNByi1IbtrgtknSWnnSKcm+TYCpkyM4YCqo0m4O0SnsJrCLbnCrFyQq3VcuE9RwQkKkiM/XrmLfyGBuyLEVlIUHiksu1MKpApRkxaBwa/ZtwkgBH94Ddj2tbrGtOYCgRolHWNagoT77HpxHmyRo5Zo8cx41yVG85AmtDkm8+SLS8SKk3h1ElCvlR9j9wN+3q5DlLxEF3Gd72MbR+9qsJQlxJWmsWFxd505vehFKK+fl5fvRHf5Tbb7+dgYEBNm/ejOu6FItFbFvC0oulM02WKMJWQpZqTLdxcL7YSQBUBvIEjYQ0UngFh3JfbqXnjGVZKz1oXmjfmRcqSxL82jJ9a9biuC6WbWOMpnfNWuIwRGUZazZdQzMMyY9sYM2WrWQoCk4BrQ1/d6BO27jYjkXmwVBSpZjM0Gyc4NHiEjVvkC3JPq6b/xpfZpIniElbSzz93a8wWRzh8OQBrnNSrHyZp/1J7lVNuPat5I7cxWLSJEzaNFK/k6gp9EO4jJX4WIUBrC1vhXXbobIWqzGFtlya697PQeenOHNVCrxip1mkV+p8uYXT22y308tmaCvMPgnDN3SeM2517tu7oVOd85yJmhzELdbc+9tsCGe4+HSLJYkaIcQVE+vO4ienGGOYCGPUGYmULNXEYYY+I6FjjCE6dAgdRUzsr3LiicVzDntBM8F2bHSmMVGECUOa3/ke07/5u2SLi+eMxZiMKJohbS9h9/diig6ZagOGRqZZjEOyzD9dUaOzzpSlnvWYqEG2uIhOEqIo4svzdVpKQbBM0jPK+JodzDs9mDTEMxkmWGagWGGm/0aOe2vQ+V5QKQfDjL5iBT/L+GYt5LpinhsrFQoqhOYMr+ofxHI8sD0SJ8d3am2uU8tYjelOgr93FIzmTQNwg9nPQ6NvJ7T6+JfXbGCDpSi06mxWPqFbZDmO8TNFZKDHSlFpg6GhGgT38bi+gabuB1NEWTDiROScEgfaG5luvYlbWiEVY9jqNKgpl7blMeneiHY86mlGNXRJEof15DiYDJIkEaYxTtg8RH38yyQ9Qzx94mbqc5pw2SHvFBhJliFTnXnaWlMsbiaMJvle8iqeTIb4+2Qjfzo5hTaKfVP/QHX5AZJkicmpvyRJltA6Js2aHD36W0TRDJbl4LoVsqzF/MKdGBRbr/t3uG4vYOPYJTy39zzvSou+3tvxckM4bhljFI5bBgzaZDhO8YxETYxt5/DcXpJkEcv26O25lWZjL1hSUSOeRaINfqZppgn5SoHha65j+nCA0YajQcR8CgeSV5PLNK9fKlEmz+01xXWNhJ4wZKStUI6DcSxUklAr9KG9HKZ/iG2hJg5nyCURpd4+DlcctvkNegJFWXlssNbxwzWPviRlIq2ynC4T64wBkzGQLtEuObi6wExvDzfN9nNdtc6RwjJLjONkCSrT3JgWqJuAzI6ZN/O4SmM7ISkxLafNtwbGGC8soIxGWwmmnNKsLODUFxlIe9hqr8MpWsw6CnPyJFhtlB0Bo9yweQGVZLQLDTA9DJWBDJpOLzlVpCfroT8r0acTVFyiLzvMNn+M6sIgmaV5MujBMS46LmBVB1iqbgE7w+g8aiFHo+5gGRetS4ChZfdQLAVEoU2z5NP02hwc8lgqGNKsSKRHyMIKrtUgSfqJ05h2XGZ2uYzX1yRIKyjjELXnKR7tI3+ol0JvHTU/SzAzhZtX5LxhivZWCt/9X+Ra02RJiN8KSaamUGFImqYYoxif+O8kSfWqvjeFOCWXy/GWt7yFN77xjWzatIl3v/vdjIyMsGPHDt761rfieRfX70Scn8oMKtUEzc5x1mhD1E7Jlzt9aLy8CxYErYRc0eO616whVzhdFeLlnQuqmDHGEPkttH7ucvVWdZF8qUyuVMbN5fHyedxcnvLAIFkco7VmcMMmrEovlc3XMrRxM4EKsUNFXyGhEbdpxxlOvISbr7OQfIO20iTNGSreWoLKMPlwjuurd3NrbgNP0yZdOEq6PEl94w8Tzj7FGwoZVr6HIIuYHLkZdvw0B/J5/sQNCWwIdNpN1PRBUOs0iPQK8Pp/3mn4W+wHf47eQpE8RerNZ7x3vRL4C52EyzMTXbYLr/8FGL6xk3DpWQ9b39ZZMcp2OtObysPPnahx8pC0qYzfw1p/8qL7OnXaLwohxJURaU2k9coxK9CaTx6boXVGg+HITyn15DgrlBhD/e++QLa4SHWmTWPh3P41WaooVDyyVKODEB3HzOSv5/Gh99M4OnPOcfJUP5KkvYTdW8HkLVTWXhlnPYlQqn36gmfU7BzXh67DzB8j/NJ/JXjgfqa+9nWm44Q46zQSni5t4F9f+4sctfu52YnJmwwTLtNXrNBWmqpdJikMYlSC4+bZ2j/ImsoAFha395b4/23dgJUlWFGD1w0Ncl25CBgSO8e+dsITqh+/XcPYbqcRfZZg4r0UswXm8uv5kvsx0vYsA3Nfoce2GE5bLHoDTC7vp23arFN1tieKRnEL/X01LDYwkdp4OEABk1viNucIynNZF7ZpNLcyePIeNrR+wLHqftxcnhgX3e5hJA1ZOlRjdi7CMhUGEwc/G+Kz5p9zML+R2vx3IfaJCuto6RFy4SBbp4+ybG+j11jYKoEj34bxe8nl15AkVaYSmxl7C4et9cy0F0m14u/Ve3Arr6HZ2k8YjBMEJ1A6IstaBOE4tfpDJOkymWoThhPYdgFjFJXyjdi2i2XRbRh8bs8b4P/P3p8GWZbe553Y7z37OXfNPbOy9uqtGl1oNHYSJAGCJLhJpIZDSjPSiOPRjB1hO8IOh8P+YkfIYX/wjEMxoZmxRrNYo4UiKUIiRZEgQWIhG1sD3Q303l1VXUtW7svd79nPu/lDNgCCIEURiyiK+YvIyIibWffmvXWW9zzn+T8Pm5t/gyhcx/O6eG6LMFgFBNYqHDfBmPqtcOHqrVGpLnUzwHVi2u1HyfLbZ6NPZ/zRGNNQqJprSciELibs0l3fxOBhrOXFecGy57ImlviIvct62rBsHC5J2OjHnGs7+IGLry2OtSwajTAeLg7Ta4/wa49c59F6hTfWVvm773oPn1/TPDkdEwQuayV0nJAfOJaIaoQOAo6SFE3D5u4d3j/9Cnf7ktz43FlbI2s1lLMjFoWPO5/QcQOM0nSbkNRpqJyUzKRgNDYoEC7I3gUc5aFkjrUGpWoQDa+vSjyhuXBynquzC0z7I1JAFsdYJ6fxMu4fvZ0mSTm/MGXmjJhPHBbbhsIGoCMS3SKoQlxp8OQMq7r0ew+w+QpCvIekephJtUSZX+CN0MXkc+p4BVcEuDqklRXcGLVxGtBViBQOtdvG91Ia6WNcKFRNWRYY36GofOrtS+hRgFgPSNMWjtQ4TUOpUpxwRqV7aMDUM8SwgqyF6aeYIqPZHQJTRKlQH7+LODrGugXDnUNe+OQdBn//7zN+4w2eeeYZjJE09RApZ6cXaW85bKz90838nnHGGX8+0cqgpKFMG7Q0GGOpc0WUnIoKwoEw8SnThiByeeS967j+15cDfugRRO6/cYWzNYZnf/2fk08mf/zvWMv2qy9x7pHHSJuU59Qbbwk2Ae2FRUQ1IXFq+usbrL7t7VTGUinDr7/6OtFE4wrJ+SsVW2nFvc/9Amvii2TyhANvnUnYoWqv8MD1sLbmmYWH6G4bsqYkOb4JrqR96X18j5hyTQ4hWaZUJQdBhN54ksmTf5WXhy9zoiYkQZusnqJdB+o5WtfUQmCFcyq8BB0oRsR+AArq/Ot5BWmaMsmqU0dN0P6m928BLrwfuhuw/vZTt83yI/DB/ysgTkWahct/glATgCoRfoz4au33t8CpUHMm1ZxxxhnffSynjprqDzhqJlJzO6++oQlK1qeCi/lDWTZ6PqepG+bDkmLe8Iextqa7PjoVaqoSXJdZ7rL89isMX3zzm0ZET2uYHZpiiNtpQ+CiTYHFUKqKWXPqqDGqPg0lrqanInzvIub4DrF5BbIBo8E+reyQzhf+a5hucxKts9pbpQq7vC+o8IxEp0McLyTTGqIuWbiAFg6+H9FPevRaPf768Q4bZcFmHJ/mt0U9luIWG64B1RD4IUthyMfj9/J3JwfMOqunDh8hGHsxqYa7ZclQ+jzY/gXE9FmWl5Zxbc1BZ4lSGTI3QFjDjrnMm95VPLfECT7AWKwSGPBcgfTe4EL9CWZOm/5wjSN8ujLiUfMmQ/EwxnFwLORNQFgqRuOC4WHGdHad/1b9Feys5AFX+IVz/yF5dsTv8WH+kftXONE9omYdvyiY6z6vu09SWx/e+FcwuovrhFgjGVVThs4lYpsi1YxKzhgpiDtvZzb9MgiHotzC6FOhxvO6zOcvo+QU81azVBxfxH5DG6LA9xdwnIg/jHjLCeM4Ib7fx/f7hOE6WDBG4ToRxkrgNFzadVs4ToTWBcLx8P3+aSYPpxEd3w3OhJo/R4waxYPy66Muo9FnuLP/69zoxAzCd/Ol4Mf4rXmNG/h8cZTx4rzgYSP4TyeS92eHaJkTKkG7saRiiWPTRnY8VssZ7W6E8TziUkFlkK0+G1WA1yhOPJ9zOmDf81itJNO+ZbPUJDicnzZM1ATPCxjGDcoxRMNjLt1JOJAhs8Byq2P52PkvMginXH6wh65rWn4LzwrajQ+1QodzbOgjlaJ0Sgg8gvA9LHgeG1WB57hII9lc2SZEoTyLpz301LJlH+AKHzoS7dak0ZhB6XBgK666O7ijAbJy8fyS2rj0D76H8HgRR1ocI3H9ijqNiPw95lttOtUKS6//HBeKDVY+vsrkpMEMj7hUuQQ2xCs9gvmclZHBqQVR7mNoUzsxCIUmRgmHNpZEKRLj0qiYkzsdhJPQLAmMWQIbobXFtHyCToqRLaSxZMaC38ELEiadKbaXoLcz/Jdfw44mODcbRLyIjS2zkwmzgyHV7duUh4fM53MevDJmclQx2D/k9c8fYEzNg+2/j9bVWavOGWf8BUArA9ZSpBJjLFZbqkIStr4uAHSXIoLIQzjim2qcvcDFj7xvdoT8Aay12LfujlprmZ0cUabzr/7wG34OUMxnDB7c59KNd3B/cp9n69fwWwl+GNHq9bni3OWxZIcwTlh46DEqY8kaxWfv36IzByM8Qkb8k7tHfPnVN1jWdyhNyb6/TOF1CHXDi43hy37KM8LFv5eRx6t8aPxpHnSmLPTPs9JZRBy8CK0VSlUyb+YUaGYrD/O2MuW2U7DR3mT35JOcTD8L1Yxb49v8yr3f+Pob9yOo5wjHR0lLVSqwUCvNF16+zeu33sTWGdZvfUOT2cHBAffv38cCdvU6vP9/e6qYCed0XEoIiBfgw//3P3n0SZaw8ijiw/83xLe4OBTiLEz4jDPO+C5g7de/vvoQUBvztdEnay0PyppSm28QarQyBJFL1Wi0Pf09rKVoJH/vaEo6b8ju76LG4689j7UW4Q8Jlj+N0QZTVohun3pWsHqpy/TuIaYsv/YaShrS6QlxfIHGn1E9IvGSDsY0ZOkbzE5+jamsUTon//KXyD7zWWydov0Ymywi77wKxZgo2EP19vnZ0WcI7/wO6fA+J8EC37/Q5Vxvmff7DZ7jovMJUnjkStP1fd7oPIJyQ5wgxg3biKDDj37203T2d08PzI4Hy48grEFUM6xuSPyIa+0W4yBhC0W+cBniPqa9xi85f41fkx8mlQU6nmPLLSI0h/0N5qGPE/fw3C65G1O7MTOvw8jrIhsfYa5RO+toqXHDBPQmui4Yiev8XucGjzR3aaU9VrD4TkJhLD0sW70VglJR+prMBOxsPMYr3hqxnvNUvkVp4Av2Ks9WD/N03uXlICA7OERIiScC7pVdivkETl7HVnMmkxRjDeN6zpH3DjpGUVUpaXlIrhXCW2c2e412+1Hq+hilc7RK8f0eRldIOUWbkqo+PBVq/mAINA5r63/5tC68ePBHXgcJ4eH7C/j+AmG0BuJ0PM5x/NPxLCxKZ2/Vg7t4XgfPbeM4IdpUb52Hz4Sav/C8lhV8YjgjlYrd6YyJ1Nyc7XMxCvnrKy4nosPhIONCJvn/3j+gc1AQzxWusjTZ2zhWxwSlwgKhqPgJNWbQWPp1jyud70GnO/iAkIakqnli3rDVK2gryc/tKyo/RhwPeBDDkjbEAoqFirmfEfmgPRcFuMrgzD2kEXzukkZ5c15pH5OLhu5sTGcypuPEuMJF+A5d4+O4FmyCrBu2sy43+0c8Pr3J9aYgzlMC4TMQGXLlJhdFi5ONkDAWiFgyr2d0S4UXVGhcSjdFCsWYgqjM8D2PFXse4WRIApL5Ou5E4AKOpzGOYFFcJ929xmxvTs8XOFnCjdkqdfIR1lod6r1DlmYNrokIUh8vndM7mlM3llngo6NFlA6x2sOakGU9YknN8KXEb0Cb8NRdg0salKRZG2titBLUAQinRpeWSlnGrsv9pYeQ+w2bcg6Li4TjNq2bt7GjEe7YR7UdwDAdjKj2hsj5mPrkiKZpGO0XFHPF9OSEyWGOMacHsWJenVpGz1bnZ5zx7zVaGYLEp84lnu+cOmoKSfhVR40Q9FcTkl7wRy4t/Mj91zpqqiyjylJe/N2PoZrmrdGnjGI+e8sibHjx47/Jl37tV7DmdGGejYZ0V9bwo5g70zvMbY6II6J2mzCOWG9VPGe3OCwOKbWh0obP7z+D9Q9YtiFuU/NoNeJmccJ+d0RT36dAs9/epMZjoxxTeiH3REPi/QSL7jq0Vhm0F/jHfsqt7SE7s2tw67ex7RUqWRLMLjNKFbIwPGbexuuO5Vx7k2F2n8rOsZMHnDiW25M7X3/zXvRWq1OEkoamOK2W3x0X/INndpnMcxp3kVdvL/KleyNeO5ifBkfu7XF4eMTNwxTld2HlsW8WwoRzKtb866xM7ltCjetDZ4Nvp/XpjDPOOOM7jm5OnRLf4GoAZSzlS2Pq4vTxe0XNY62IudJfW5dqaQhijxcnOa9lBZ88mJAOcjKteTZXWE+gxhOanb3TjJs3xoz2M4wpQJRfE2qcjfNY12NhNaJQPno4pNndRY1GDHdTXvr9l0iSa5TtEZPl27hxj3FdkqYPUPUhmaxQKqd6cA95cIApMg7cLspvcV/lSFsgyiOWxy/wSHaPV7rXieopAxtwvR3x3o2LdKshbthBO3CiQcuSq3tP8/eW34fUY7wgwQnb4EWYIsOk6ddEAbP8CKOTI0ydgSpprCFTkuUkYu6GDFrnkAtXUb0LxCLhnfUdfrazh/QyWo5P6Bu+srDELc8j9hyEtcjEIlyPmUg41H2U6THafo1FAXWjKcwC9299iCpb5c2TmHxlyFP5Z6h1gEkbdFkys4ZLnS77bNIqBuQ9w+8+/ij3F9s8kqWIhR6dMifwGv5Z/2fIWgssVjm0NSIdYhuNICJvHKrjNzHtdXRd8IUvfJFKehRKcr8O2dArCCk5HN0mk4qD45yTwTZhuIa1Bq1SlM5w3RZ5PmM03sXo8tRRE11Am6+2H5+uPxb6738r4+af/JGbbBAssrLyEbrdt5PEl/jq6JMQPlqXlOUOWmV47qlQEwbLeH4Pxwlx3RjHjb7jmX5f5Uyo+XOClpLBwQGZ0vyd29v87i/8L3wqu8xvm4+wEng85OyTGnhk0NBSBp01/NTrGW+baIIa7Dzk/mbNRqWRDozDiLBZ4K5v0RJ6dczKGy8hLOAKFlKPZ3sOW7HHglY8Mqp5rHJIrMetyCUyFl8Jtjo3id0pvs4xRmOEoO23EdJSOB4HxTFLB7sU0kVaw4kjiWYzWmWDYyGjoi9W6JlzqAJc4XAsS36599tclHssliOKJiUUPpEHoVfS80PuXPKwocT1G9bLFv1RRlQO8c0CwlEIPyUqVui1HRaCNVZmy2Dn+LaN1whW20u4wpD5Hu3qIpeyJxnevownNM5bNreo9tE2ptcofNfQaW0CIZHbIpQK93hIqQPG3WWKMKIpFXXtoipDVGW0yhmBVjilwThtrGlwEJSijykCFF0aGXE+0BglQZ7OiG4saYbJMrtli4VyRh1GuOmUcHyAM6+RjWHXX0U0bep5hkhzig9oSj1CSklTajAx6WRMlUtUmaJlysnOhK1XTquPa3M6DmH+hAT+M844488PWhomhzlKGqLEoykVfuhijT0NE06+7tRYONfi8o3lP/KKvbsY8ch71//I1/jqCNO9Lz/Lwe2bqKbGWkOVZxSzKbu7u9y5fYvB9hazwTHZZHza9pROiDqnrQu3x7fRnWVu3XgfcaeHbwqyKuP3hMPO4Qs0RiF1xS+9+Y/InJust5ZwVMX5YovzxT9jtKL4VKQI3YSd9iItK1grR8RRyCxZwnEXuPbOnyDuLPHi0iZBHHNva4sH6eOQLGGCLqPjA4b31vitl0dwkpCM381QV2y0zzEtDpC2gmLISdRmUA4Y7M+RtT4VaoQDUQ/V6Le+DA9uTZg1HmmuKdxFth4Ivrw15pXdKQDD4ZCsKPiHX9hiPKvJpvW3Jpq7ATQpOD4I91tvfToLEz7jjDO+G6gKvvwPTseF3sICUlvsTk5Tngo1x7Xkejvm/m7K3S+fYK09DcH3BbU27BYNv/LMDl/57fvkFgaVZVto9pOEalZw8OaU+y+cMNrPMbYCUWO0xpQldvMq8WKbzkqLWsTUO7tMP/rPOfgf/t+kJ2Py9IQ4vkiu92jcMZUT8ubhAfsf/2ckoqLRBUJ4NKMD9GzG5Nd/jX1rSeUxJwkYmyOqE65NbqIKhy/3btBEKxwOpyzMppQ3H+AXA0zYRrsBmREUSqKNIdb3aJo9oiBGBC04eBEvvYlKU6Sqsaqmqht+6ekv8tsP/TxaeFS6pJAlfVmROS1+8XCZ/6r107xiL5PbkAvVfbryTWRY4S1sItodxkbxybJNnwmOOMHt5nQcxUy0mLJJYzfZmc9YSmdUSqGMZTxJ+Kz5j7lpz2G7HY7XOtRSYDNFXuSYOGHNC0l1QCQVE1EzdBUnqiYaZ0yDHrvGQclXWLJdxkmXfhMRdRti10N5HULjUEpLOd7nKNlgbgS7ecm/KB7FsT650lw1U4SsePXml5g3kpPRjLLsEoUbCARK5yiV4Qgfi8uxjhirAKUygnCFB1t3OT6+87W2KCEEUk6oqj86gN/3F1ha/D7W13+aOL50en40DY7jk2avs739PyPVHM9rA4IgXH0rqFgQhRt4f0z+zXeCM6Hm3zFmUnFYN9+0gCvmM+587FeplOLNsma/rHhzNKVjR/gYvGabsYSVcY0MHJ6aVKxLzUcGmo7ySOuCN8I7rBYN2nU4dj2u7I45SgSzqEHbGsePwIKOBbOO4OlFnz3fY1ND5MJ/cABJa5HdyOBKiVNaRk4bJ7uAkBryAjeMkPFltHFZamq+/+4bXBgfkKg2QoSMw5BEGI7sPr7nM/RTCmKUmiEqB9/zaRJJbSPGxTJp4+Fan9AJ6AlJZDVxOOPq0hbWAWde88h+nyRs0/I1UbpA4BnWTjSbuw8xih8gcPBMG+0V2CbAxaWrPR4vFzmX3aA3uYyRNb5UxO0+bpmDY1kwHYJQ4B1/jt7iAp67QCMlsdsidgR2PObF+w4Tu0pdeQTWxag2ynUpS5fOTkoIONpFSIe1pI2HIC9XCZo2k9Fl9HSDC+1X0K4LNkA4Lc61CzZkwf32ZUwzJVMJnlcSeSWerVD9FdzQQbOE8nxacof6Qs64HFI3DU2lCfxL5FNJUypm//xjmKMZdVFQFxWFNvztO/u88vIJe7fGfzYb+hlnnPEdp0gbvvBrdylTSdwJEI7A9V2O7s+YnZTfINS0egFXnlz+I+8CBbHHysXOH3uHqCkL8umEpirRSmK0RmrNK41lOBqy++A+YbvF+etv4+DNW7z6lc/yP9/8X0gW+tS6Jq1SFtorfE4EPPrDP04QCsrOMaNkwsmzfw87fRUx+Zf4Zomu+gAL3SUCq9Bqh0venL9iemy7PqveCgeB4V2iZNUaWo6kDNo8kihayUU8x+F10fATqwGmmjKb+6gf+zvcPf4Ew8MdcEI+/eYD6lFIK9ecc2POtS5gZIxUKbJ7jUHvHFlW8qlffI3dm2Os8LBxH+I+qjHIxpCOK+58cpeVOqbeusBOeZWicDgcl+yNcxqpOZ6kFGXFrJQc7s557je3sN+KUO4FUKXghW85b87ChM8444x/hzD6tMp6sv31xywoY3Brg6xOhZpMay7FAXcfTHn507s0pUI2mteamlRpBrVkbawY7aeMkx4Yl2PHMA0DZrsjnvmX9zjamnNynKN0cSrUGIMpS5rli/htgXFPEKsrVPe30XXJyTtusn/8j4iSlDBYxzgZjZxwNC8Jiwxd7NEXElfnuE1AMzpETyeY7Tep5R3G00/xkNomkCl6fshB623U9zUfDx7mt7tP0D78bcJP/Cvmn/485CNKv3Mq1ORz4npG5UasijHGsfQ8j9RbYsu2Ec2Io+N7/PLNX8Smh5hsyIkf8MzSu6hwmQuHQCvWh0fo7lPc6V7iM3nC5+s1TF2jGouod/CX52jPJbeaVpnzoHB5Sn0SiyRng5ZjKJ0YIRMqetxqX8c/PELHcNzyyds+n2w9yu2N6yyonCqOqRuDzV2auka3e4S1AQOuF9GyDR8ZHLDe7NFrQvYbgc0b2lZzbg55p8NiGWDdGuuE2GSNfj3HWEExG/C7/lX+9/738Jn2Ml9Smwja9DAsFbsgK3orbWoEJ+MpTXOZKL6CBbQu+HK9ylQs4XkRzzs3+N38IYyR+F6XyWTAgwe/z3D4aaw93d6aZoCS02/K67TW0DTD0xE64QLiNJAYg+NE9HrvwtgGJWe4XhshBO3Wo0Th6c2sKN7Edb8xk+47yZlQ8+8Yr6Qlv3ky/YbHrLVo1cDJIVZKRjjcXz7PKBvSETlFMcA9dFGNA7khrTQ/Mqs4OhfQzSSxFszjmEM35dFJxTiAvUCw7PfIWx474ZQ0tIhzF7HKUjoNbywq9kLoeh4LtWUYldx3t3mdferqmNKA0zjIcUKRLtHUHiKrCVyPfHmFaX+V8wc3WWzGPDYdcOU4pG4XDK9GbD8qee3iABvDJ9ae4Zn2hJutW7h+QO2VNDgsqEscDBwezEJCPFoLA9q9hsTpY+2ENf8BoSlodMJ0sUPtbOC2I1zZBVEgZjmO61CbE6wqMfNDjJDkpQLXIXC7nAsv0Ro+ih1sUuqUlXCFhWAVkZcIYbiie0S+pRMssHn+I+w0u6jGEBNSJhG7CwkT43BYPcHJ/U0WSks1ukrpQmFrrg4PcJI2lXSJKzA4jPOIbLZEWSdU92KSN1OqtOET2++msS6CFq6Z0kuPKCsfK0vccxr5hMS7doEkyhg91EG2YbdeZFEf0692aNYD5OyYrKrJC0WgLlPNHbTUNG9uYScF9d4hVV5SG8Nr+0fc+tQXmW6PToPS/sC2Zv5ArsIZZ5zx5wdZa4Z7GaP9jKjt44curid47TP7zIYlXvD14Nk/nEvzp3udijKb07xVqa2bBrGyzm+1V3HCHVT+HJ2lFdavPcLgwT0+/+Lv8Gp5m2hxgbTYQauUxM6hOuJfzb/A/+/BbdKWZaoKhirHKe4wHv0OK9419rbfQ6sV4Qmfz134cR6qRjxWzbjg9th0WiQ8y/nyBAgQk9tYU/O/evO/JFIv4Tgux/WYda/BXxhyMD9ka99lMPkc2lVE7YSp2mawI0hqw0Maes4VXn7woxSy5vPyP+PEWeKx+ikuXFvhlc/u8aWPf4mpl0PURytDqTSfe24fpza8J0xwQpftap2iMBwMc27tHPFLX7rPF+cLaGPIasU8azi4MyWffXMo5p+IG0I9f8vZ820EzQjOjvNnnHHGnw5r3xrP+degG7AGO7iFsRapNYfzMU6dEjaa5uXfwJRTKmPZDAPqWU3SDxjuZ6jGsKMVriOYFpJFJXA2u+y6fRa0wzx0mIUe+eGEbFziuILPvX7M3mSCMjlN3WCqmols4QQZB4e/gA5ryrv30fkMx48xzW2SYEY2CnFsRFIEdHOHnpaYMOdt2X0eKbZwCw9rU2R9gO1AJPaQtmKhHoLjo+cH/MP1n6MON7GBYha/Qatzh/zwN8geldj8iLGIUE7AeDzh4mQbXJ8Fc4J1fbpC8XHV5f958edpfJc7o2NePbnLr6z8GPdbyyTr9zkyIV/yn+L5cx3cYsry8T6hvcSwt4HXaXGvfYUlO8dYB1/Pqb0UrfsM5CLLheE/KT/NNW9Iv/Mocyeh40iU4xCWJTJZYDdYYNNaso7Dr6+vsXP+Io+rjGPr0N+bkBnITYtxtkHieAxEgjuTeNaiaXh09hWuT28i5H2csua4toSlwhY9XKPYEyFqQaMCDxWuQrRIu5rT7bRo5gNu2RY/mr7EfneR0FtAOG0WrKaV7RKEiziRR21hmueo6nv55eE5pkqjdcFzzXkOzDnKsqFE84XcoTa8VbMtGY2+hDWSSdNQaEPdDNG6+Frd9tc2V11y6/bfpmlOgNO1keu1cJwA10146Nr/BUcEKDX/mnNmdfUn6PWeAiCJLxOEK9/5fe0tzoSaPyOstTTKfLNzxhgm8g+rfZKdnX+En49R6QytDaOVc7hBDSTcG84Jbq7RrgXzypAWmsUZnJgcKw2OgTeWVzDty/iy4H6rYR65iMZjGgmmds5U19RxD+locgr2nDldYdgsczo1NE3BePaA2jdcHg5xpQ/apVGaRrr4Tgvbv0QkJdKTZIHG6AI38hGZxIaSg+4bHF084fZaTtbMuBK1KaJDFrKcC7tT+omiWFKY0cNcmr0dNU9x8obIVHQv/jYbizdZGoHvZ+AYiE6ovYTx5Yzw/DHa0/h6CRyJ0BBN7tBplTjZMbz+CtZ6IAKsZzE64rg3wZQOrgzQnkOfJRZUhwCDEYaoCQhEQ8cPmXlDjtI9TOrQrhSOyjnpJhS9DnssUlUR0e4J+VaXsBZ41iH2DWt7+6TSoTPJkXXDvYNljg+7DJwWV48OOVm4QPH0EqODLsoqauOhSbHJEi0R4LKIfe8Wk0dXkDccWu1bhE89j1lSjOolFo9fpll/5DRcuZnQyIq6qnF2fMwswK1z1GSOe6SQv/LPaIoapS3fe3+Ptc9+ivRXfpFm++t3PWpj+acHI/6E0/AZZ5zx7yBNqeguRezeHBO1fILYw/EcrLX80M9fJwi/tYagP4ysKqo0pSkLtFSopqFodRkLD2mG5LN7tJaXGIo5s+EJ98QBvh+Sqob7B7+Oa8ZE+pifVJ/iM2/+D+xObpFGPnG4wsyPcfL7rK/+RyyZqySeg+8ohBvypg1oRJeXxSL/x/GA6+UAMZ/Qr2d0cTh229yLL3D72o/hLv4qApjYmkC4nLSf5UH7Jq99botGziEQdJIF3nN+FZ17uH7M/3rhKbreOlvjcwyykMHApUg1j+t3sf72Ps+1DS+9OmYmaw7qkKbReKHLKy+fEF1o4U4kqhfyvHg3VW2ZTXMOxxmf+8ouXtSiUZp5UZNlDVHbZ7Sf/ek/fNeHJj/9/m34Ys4cNWecccafmuFtuPvpbxKIrbWYdIAd3jnN0Fq7Acdv8C8PB7z6yf+Rz/zq7+GMtggbSXPrs6hbvw3ASuDRrmHtUpdi1iAbTepYWp5DdVgw8WG+GnHU32SzseiWy4nvkaWK9WXDxeI1YimZzFLyacVkPEbXimxSUqkhxmYQCOR0jm5KmDf45QQ/rqm+WODPE84fBVw+qok8Af2Qx2Zjrue3cCuf9qU5+qHPU16bYcKQYjbHywtqbxGqkiEh3afe5D9NfoeX2j/LF9t/g+wDDarjYfMhExtQuTFH+RJ7ZR9cnxUxxrgeXjrgs3e3iBuHB49/LzdFn69kP8TfK9/LnpIUnsNxJTksHabuAk4xw2/gwwdf5oP3bxH7MYP+En1qHMfDNT6N6PBaus5OfYHFyuWCfAPXaoxwEFaS2BkKwYasOAiXMb5PlBrGvmHsu9xf2ODGVsojWYFNLcVRQ+pusj9fZb3lEUiXYlrjGM2g2cekO2yKYx5LFKGVOMZwzg1YPN7EP/RwjaVtUxoHdOcyIl5iFiaIi1dpqoqh0+Lx0S1+5t6LLBYpjhtzoZpzzlbEnU2m5ZBaG7TrkZ2EfOLBjImyaF3RiC5HzTqjUQ1uB6NOSElwRIDnW6LY4vtr/NL+Pp8bz5Fyiut1vibUWGvJstuU5S5lsc1w9PTXrsk9t4UjQqzVuG4MQFUf4fkLAG/VfrsIIVhc/H5Wln/ou7bLfdtCjbWWuq5pmgZjDGVZYoxBSkldf4sz2H8BsMD/+Jl7TAr5DY9X2jBTp4G/qdLczSsO7r7I8fCT6FaXzsEJpqp47ytfYJ2MQgveSGOCaYuPHLscVpIKqMoSle4jhEBFLoeJx2V1hUh5iDJjFghUoRh4mlRn5J4h7V9knvhIoXi1t01X1OTZGL+0VEYSex79/oB1dUTYWDCCQmZEfkqUgulFJHlO0cwp9RzHMYSBj5YK25wgs4YfPfwpROOzUayw3TvgbXqFS9EdFlaPSZa3We29gGcrVu6/yaI2+EEXX2hUucn01jtp7Y5oJSV68jhNfwdHuFz3ffwfALm0iKjbKOXjCA9bV0RJiKai6CYIGyJsiFQlqi6IDrcR0qcuFVI4dKMVesESSIUWFq0CbJPRiXtMpkcYLdD3VojqEmFKuhhcHZz+bi/Bdhbxiwy3UeAY9FqPbp5x7n6X7u0ZjlF0PdBRh+OFL7K0POTB2kMcblzkRuuEVDsMyhAZ1jw49xgrawHi9mMc3vkgs9d+GHV+m+J9I0wvJFiecVKs07iK4toFrAnxnAZfSZq6xv/c79M+LpHzCfk0xZ24+IMDbC0xs4YbXz4kKiY4R9voyfTr258xfG6S0pxl15xxxp876kJx4fFFsklFmHj4kYvnOShp6C7HCOc7E3Yn64oqS2nK8nQMajZlFrUYSUmajUn6CeNWzd+/+T8xm48YNCN6TcLLt15hkO3iCkHiNLhuykw2dO0+6JjN+Bxz16XKD+h33s0Hdz/K32w/D9WEqyhm1fO45z7AgUh4LB2wkh1w5AYsWsvldIcjIo6lx/GlD9F4GkrInJAgPM9D/gpPODc4zmZUaQKBwBMBP3XtBmu9CLfV4Xy8jshTvpeEN4crVFlJlPYos4ZdfYzp+VTtFabJX+Jvf6Hi3sEE3zMsGYdt35A6liJOcIgxypIYiSt8Hj50CJWD1pZZ0TDPG7pLEVX29fO/0ebfbM0knNMMCCf4thw1Z0LNGWec8admtge7z50GBR+8xPQoY3KUU8wbXvjFT8Krv4aVJXb5Yaxq+NT2fZ4dC8RhC9drE1YV6fkfZPvaXwJgyfPYxKG3nlBlkqbWxLHHqu+jXpvgPN5j6MOF8yOeqOaIxKNOPNJJQ3f+gLXxS4TzKeWoy8KDH0E1DVr7rCiJ1BnalrgtaMqGIX1UpvGNgxdWdAY+5vj7SFJYyAa4iUcaPIY4WacrJ/iFS2KnJIXCZcCW8w5mxFgpSf0lGi9B+A7uyjJ3Fv/PuK3HWOte4bGH/x907m9iiwlTApSfEBiXUDUYR5A4oIM2TjmiVQz4gcFXuHnlnRRRi6zpkjYes/KImU2YFBl5VVO5ixgKdBOwaHq0hwOkdpknlo6akXg+ommz7TzJf8Pb+XL0Nt7mTPGDmmF5zMH0DR4Kxri2QOGykhe86qwTNpKW8nCE5e3zEZeLjCTLeM9hwdDuEOU+WROjjOGRhYglDVV+iKNqhKNBR7Rdw2JoiD2PDpYFXyMKQZIo+krRPtmhQaOiJXRrnWHtM+6dY+50aZwWtw5/gKXxiM3Jq7TDiL81+Cxp0MXx22RS4ggHN44JohYnRjPXzmlJittjS7a57V0CJya2c0RwDsfx6fcStDYcHM25Mx9xOy8xpiLwF77BUXN7fJvD/JAwWqPI7/PVs6LrtXDciJ3df0DTjHGckKYZ4Hvdb9olXDf6mpjz3eDbFmqapuELX/gCv/iLv8izzz7LRz/6UT772c/y0Y9+lF/+5V9mNptR1zXj8Ril1J/8hH8BsNYyrBWvH82ZFKfWZ20tX5nl5Fpxsr3NeDzmzbziF/b22XrtaSblAp965Kd40VvCMzXebEw8q5EqIZCaKIP3bClmkUtjBQN3jPQm4ApKV3DXtZyX55j0E0TQwTga5QqstUjfpXYknVmNcSqO1ZQVN6djagZKYhtIqzkt16XbGxAnFdJVGCFQtqEdH7BYgBEO8TyjlBk2aFC2Oa1QCwI2tiyuiXhDVUTtJbrzHv6ba4R5RHTpDbrvK2k2X6Jl7tNyHuDP7tPXCkFEFDbk84CJ6qCEh+fNaQYxWbJDuLjDB4oKlexj3QhhIoTxWGaOFQFZ3kaWFftv7wMJXhOgG4n0LFXQ4M8bSlmi8Ii9LoHXxrUO1nPRAows8RqXSk7QyqIyD1+FeCYkbAzn0pj2aIp0Q4bX38anH8nxHdDCIfM9JuWc9hsO7oMU6zvUXsiRv8CsdUB/45hN12facVjxJIkRJG4H6Wl0PiHohHyl1+GN3hWCEBZeDzCjRaK7G9yaLbGddjlcvsxXKLHNOoIap1bURYNX5qzMn6MOJmTzjHAS4VcpJp0z250TzIckIieWM/RXK3UBZWGuDLUx37TNyqOjbxiTOuOMM/7s+GotqbUWo08XF02p6K8mXL6xTKsXEoRviTWBi+t95wy0sqqo8oymLDi8c4sXP/4bHAoXW1cc791l6eI53jS77BUHOOs9Wu0eiQ44mR5xUIwIGROhyEzBevsSWuxgqoaFsEMWthkIjw9O73Aj+zI/nP4mTnbI480xtRnSW3qcrutwt3WNRDcMZMqiVJigg2xbLgZDHu+kKBd6mcOluIcvlliqzhNKQ9ieUYwexrrQpCnu6Ldot30IYjLpcbL1cTZqye3hOlrWbGZXmcopn9h+hqsrbcpOyN3yg7w+C7l3MGFSlcyV5EvTOWql4qRWtHAIE8HD3YiHlzr0HY9N6SIN5LUiyyWtfkj9VqimtZbXP3/Ab3z0E6Rp+q/PrhEO0ulg/BZvzS99S/+HZ0LNGWec8aemKaAYwnQHnv4vOb43ZO/WhNlJyf17Hk065+ZLksx/iMPl/5jZnuG54EmkXcS4XVwDr5kV/u7eBICOAW3hLooql1SVIgw9VhwXtzL0VxOGjmYzfpb1eowKHaLEpRAt3HxK/y//BEmnBVVAbxzSn01p5hU0mqYuyWyM2/Koi5rj0odokTDZxKgcESiK3XeRFR1afknoF8z3HsaMKnpySqx6gKBkCaXO8czRO6j7ixjfZ9bapAxDFoKCtbVr/B+uXORcGHAlSegtvRthQ6hLqrCN9hNi47KkC6RWKOFTR8s8yCw/GP1Lel7FdmuR2nFRyqKkYaZzSiNIbMlLKw9x6K3hexlWe9RFgmcNni4pmpeQRYtF41LnhgdNzA1/zH8e/ysutN/AizWNdekIyQ2njS1CGuvTLwz3Gs2F0RGhiOgozeXdQ95zf5sokWze36UMM06SE5SjCBP4gbUllpMAk2/RomHFXWJFrBDoglRVqMqlpySBkDRSkbv7XD3MENM5TeDwW6s+z8qnuFcuc38kmcebVLZDNlunE0ScMxlLvsMVb5//z/rPIPyYyl0lcBwudhVBr03qwqFZ4A1zDSXafLl2eKbzNpSIaJFhw0uAR7vbYsu/gRYddrIRO2WF0jVBsIxSX3eyfqG+xBtNH9dJsFZhzGkDmeeejj4VxRbGlHheG8/rntZ1/1vm2165BUHA8vIyw+GQN998kx/+4R/m5ZdfxlrLpUuX2N/f5+TkhGeffZb5fP4nP+G/p1hrmRwdIOuaO0XN/+a1LW5OC2ZvOWqOa8n/69Y9eOM3yA/3mE6GjKXiYPg0w5OC/ef+FkupT6YsC4zxihQ5T7AywJUWEASBy2HikFeag9YEqoa8q9GeprTQKgz3FmqM69FzNGUEoTkkdHyUC05VI/SIXJVI45HkKdvnNskdB8+NCPEInAjPhbQpsR5YRzHva1xvRqMsgR+CAOOeCjV+WGM3WjhBn1hqhuPfJZwv4h3PIM1p4XPc7ZP6XVa8mqAlEOUt2utvY2lxnU4vwXMLbA7F6IhXimtgK7LjjJQS8+g/Jl88pkldQIP2MKUiDDymUczwQY0O+ohugrUxno3wogVmPXhlcZVhvEjjNNSNi6cjbJyQODHacTCeS5T06MeLlPMjjFTIysFkkgtFwHrh0Etb7NeLmOkRoT/hKeES+yBdj0mtqaykjvvc3VyjCQNGBNxzQ4Yix3UkbSY4zRts7O/y1PYJPdvC4tJIyESLcZyQd2OqKOA4ucD400tEn6nYevBhPC+h6bZI2kN8eRGn40OjcJoar90m0gVBNCFsGsRAYeIYrxzz4O6QeZjh0eDXU/T464HCylrmSlP/4QsFaxn89/89cn//395Oc8YZZ/yxPHh1xOSoYHpccOuLh6fu1lIRJj7v/vHLbDzUO63Zjj2SToD4Dg46N1VFmc5RUpKORhw/uMfUj7ja75GsLpJVU57fe5Wu7CEvtFldksTdiLvRMb96+IBVhiR+wn5+wmqwQGVAyEUSoxlF5zgQMeeyLfaii4SuZqncolhzeXfcpj3aJjaGTFwmbq8RG0NbK6pknYmwaL8DKLTNedjV/FDHsLPXZ+eN76GpBjjmZerJoyzmN3CbgsHOc7yZleTK48vPRcy2DaKRTKo2bsslOujzgafeTUsmXFqM8LsOd7cr1gNJbQRzLFcvnvBE74SwP2bSKEJtiTouGwH84MUu6xdClqWhNiC1Ji8kSS+kKRRKKayF460ZB7sD7r6+y50vH/+xn70VDi+pv848fuLbCxMW4luOtznjjDP+gtJkUExg50uQHiJrRT6tGR9m2GiBfFpx/1bDs3uP8tysz6Njg86grjVVYdChy4FY5GZecZLWZJkk15qns5ymUtSNphsWOHLMBMPt3SkDUeHHE+oqZyY0La/Gv3GIY0bM+wuMopjEgCtDXClRaU2U+CTL8Gl+GNOO8T5QIN6TYr1lnGoZx3go/YClwT0a61KFhs7RRcrhddp+SqJyuuEqVRLhuBaT+RzO+9TanN6kHq+iXMWiOcRtrfPM7id4KAl5OIkQwuCRY3JF4bXRQQchNR2Z4zmaufbZWjnPR6vH8LnJsbvAnkiQMTTSgLJMow4VHgvelGfbG+yKNRbCjLgTUhmBc6nD1cUHyGYMgyXsPKHM+iitaUmHDe3htl9BOhG7wfcQGo+lwQFy3FDogKiO+cFin4XZAN0Y3jadsI7AUxbH07TKBhXWzNwZTizJvJRnBp+i60252H6US2GHTt2ipRLwfWaqYZ5pLlQzosZFLVe86T7Pk2+kuJ5gGrZ4WhjuHpU47YqRseThGlYldFs1i90unvbw5jkZHUZuG8cL0GwQOC5uc0waR3Qjnzs8wjP6KRwnZK8pGWsPLUJ6rkZ6a0ipmNiQXwt+iMXz7yT2YwotkaYhjNaRagaAUopRWTKsKxw3wljNSy+9xHg8xnXbOCJA6xxrNX6wQhheAL4z4+N/Gr7tpVtVVUynUzqdDufOnePpp5/mkUceQSnFgwcPWF9f5/z58/z4j/84i4uL34m/+c8n1vLyJz/OfHjCs7OMFd9jVkmmZYNKZzx3eMygrtncfoP3TRqapuKkUYQmJS97iEiwULpsDGBRHuLKmqx8nSVZs1gLEKf5ImYhQHmWe90py/S5yyFNMKGlBZGZc8udkQXQqzMmoeXS0Uv48xHD8+eRocCNKyotqcwyS2WNTtoYFwK7gRQCUa1SDTKUL7GBJWkHDApJWe8jGoV77hy+42JVQeC7uE5D7UpGvQmdokU8qli9d55Ig1UTFoIWJuwQqTGumIGzim72OIw3WOhYIpUT+CUm82g1mvHcQ0uBLFvY8VMk2x+gevMdzO7/KM70HGXTIEtJZjdpvHdjqg741+nVCiNDHO2jTEQknyXYv4aRPfJqjBt6aC1oZgMikWAcl6oBRERLWmw2IxQaL3EI4opEOoR1zqVK8Z46wMlTYr/mg4UhNjlIg5WCUmsmCzD2JKPGg2YMwZAahdIFZb1N6hni+YCoSDFVgDEuoRE4XkAXi51WNDrksPcw20sXEaOGR4o+bw8iXOeIR5NXSKprEHpIHdBe2cNdrLGZS2smcUMHOyjQ567iTI8YjokgRvoAAQAASURBVHM8p0GKAKElajr72maqrKWqa5rZ7HR+c1qf3t01Brm9cybUnHHGvwNYazm6NyUdVwx2Uo4fnN4EkZUieEucCSKPpBsQxh6tfvAdfX2tJE1REEQR+XTMzAjclSUSdR8pGubFiGFV4zYJe92UJfeYskrZiivOBUssBgvgr7JXpVxwDmhkxe16SqfMcNo/wk90rjL3R5TrHTompW0G5K2Yn7/0/WwevkDLSKrkMpEbshIt44Vt0mAVwhaN6zDTDoiaKCoIzZRP7F5jMkpQtcBnl+5Dr7Ny8HaWliIcznEoU0ZNwGjapzy+Sif0uNLNODAxt1YcPjkr+dybXRaiAb2eIs8aHnFOaPuKcc9l+cpnub6ZseVuogQ40uJ3AsKm4VI7wYkaTC3BCWgFLnkhids+6bzgk5/8JE3dMBtUtJIut1/cYef10ddGoE7n6DOa5q3gYeEx0+epnFVOHTXfWqLYmaPmjDPO+FNTZ1DPYO95bNQ7zYOZ1syOczY3JeO0hdJT7hzN+PTOhMcGR7wzn6ISl7p00HHApLbsVg3Pb414dWtCMB6yV9eUlaZuNDfcl8nLz5N1PQ6PckwoMf6cPFAcNTVuPmfDXIN2wYPsJURnQJxXmLCP2+8QLLyXqOXQvZzyXv1plqMdet6XiDf2cVQLt+jhei1Me0S7GtKNSprsAuKFFK0Nvl/jGEXgBxyLZW6l6+wc9JnLkNIojGMYjjtkSY8L8csod4nP7H2WH2lSnqwn2OqEyLyOri1HQZ8vrn0I1WiW21u4oaQWCYc6QgQW14+JA5+p4zCPS+pGE0jJ1OvhkpCIOSMnYE9s0vMqPAdk4PC5c1d4Qr3EejnFSsUoW6WYXqATeDwYLnHyxatUcsTo+Dq5WOcNucnWrTexeU7VeJzvr/G+oMRVFXrwBR4+3CIwEhBo0+B0e1QmR7oS7RfMnSm/s/1xdka/xTtaa/zUOMJzHFShOGj3yRuNQfD+By8TzyVDb4D0M2xkOFo+IXVcjBTsbCji0MVGDmNahMahaI/ZasXM0hB1Z84XBo/jGosjXOpM03Hh9nzOM8pwtRWyLTdIWcK3hnPM8EUXJ9ik5xhSGVNVNS/nbSZ46PZlOiLBNYrCBqeOGjlFSsnB4S67w2NGTY3rxlijGAz2GY9HuG6McAK0KrBWo+Qy08nCn0mcy7ct1ERRxJNPPsnf/Jt/kw9/+MP85E/+JB/5yEf4a3/tr/GzP/uzLC4ufsvNEv8+YYEqS5FNw/2i5p3dFrU0jLOG7LOf5e4nfocnogjLDR4rY1SjOa4liRDMuh1kUiI9l7Lt0jYBJG26s4wfOVBcSjXCFXiV4gd3X+XtbctTk3Xi2qVQLjJ3eFIKcn3E55Ylw8Dne4YBO8uC9cmc+47DLy52ST1FxjbKNdRNTJJmnD+6R6lGaMciXU09jaC2NG5N0Ug84dCyklUDXplSmy6u1NiyIIliBs4jnHgBRViwdrJJUAl6KESYYLRGl4esq2MW3QZoEOYSnbUO2oXF8GXijS2W12YofYl29wN0OtfAtPHEGv2ZJj9YoNp6iv6szdLdPe4NXschoU7PE3kea+9MUbtvZ2FiaA2fIiLBoljVr5FIh7Gc0svHBK5P7sN8+oDQRgShg8bi2RBnMsTXNYFzejdThAbiJZzHvo+3r6/xI+OaVSlIlINXCWJdEXs+y0GNv9KlWp6hg4bzsxO6zS50PofndZkSMPDuMo89kuGIqcg5UC5WeziFxtYjzu/vkagM2erxurpC0TuPiTp0/BSmOcuJJvFyPpP2aIThvlzCXXwJtVghVUiSgna62Jmi8lfxpgPs/JBzdkKlI1TUQ83Sr41QKGNZ3NuBX/pFtDQ895v3aSqNbRpMnlPfu3eWO3XGGX9GWGtRjcZayGcNqtacbKc0b43QyFrjvxUY7Ecu7/lLVwhij1Y//I69Pl9thROCuNMln03RrQ518Vl29v8JUqeUJqfEIRBdnj96hothw2q/S9kc8l7nOkc8yYlOOG4EV+2MH09nvOa3eNdsxk3bYRzkbMRHdN0DJtEC0gFlA/x2jwtWsRz1mS1cIJ7skznLlNZnX3ncaHf4/vAIv7qJ0SG6SdD1AJoWVDETtUq5sMRd6VAWDq0gosnWWVu6x/bcoXb61POYuFPimVe4uLiDbj3Li3tH/M23/T5B8zsk/gnG1VyJLf0gI2s7dFcqKveY48o7/fxrzchC5EbY2kWKHIFFOAELrYCqkvzqqwfsHJywdW+H4Tgnn9U8dOVhqjFUhcLor7fvvfDCCxwcHJyOueFQqphax285ar41Tv/l2bH8jDPO+CN461j/Tba7JoN8ePo9WULVDemookorzrkvMUjXeJ2AadDiMi5i1nC9Lgj6IbYWNKGPbQwXogDdGLb354SzIWPZMCkaRpXkapQTdgtOWoIya9CORDsVsl9Ty5rF8YBg3iNcHaHCX+L6I3+P1XCO0S6r3Rg/6eJoD0TGq/tX2NnfJbQJXnhMS7h4TgdHBJQrNe7iIrWUbOcLGF/SmBodBQgLjE7Yv/8z/Hb+s7wwuUatBIHroF3FiT3HR83PMq6ukXOJXObM/sWv8N/8i/8TN2f3+V3hYQpJ4Th8bOF7qRrFQvsBUgQgQqbGou0Q33kHC8kJnVDhdZcxyhKYiol1CWYeq4clF0XFvmzhVhndqCYICsYiZEnt0ZUzjJYYKWjXFViDaoacG3yKLxWG4bxDbvrUXkCtBFFUI6TFExYns1TtPtm5qxTZhAlTtNaUZcm8fgWnzsgbTWrHEM352Yd/jrD3E9ispDN+hU6nhVKKF3VOmGlWPM1ha5+GdYYLQ2JPkoZT3nRukbmCtbll278ATkwQeQyIcfSMiTpgTzVcrmdcOdhilFq6owFHd++S2S4rpmTs9Tnsu1yoJ2zVHpmJsTLjRwcvsEIb7a/R8+DO7jFfeeFF7qvznHcmzMUK1aTEr0oyZ5kwWCMv9nn66ac5Ptoj0zUnZYnrtjFWsrj0Co5zgNI+SoUoXWCsZn+/zWuvOWit/8jd5bvJty3UCCHo9Xq0Wi1c16Xf7+O6LnEc0+l0zkQa3jrOWUtTFGRlSao0lyIfBxjmDTpPcUdjgmdvMXKewHNipKwZ1ZLzpGw/lJP1Vtm7FPPMhkvDKjZus1ivsN5EnG8UQlk8C/sLD/ATyZpcJcgMaTEjR3CpgiJseP/wkKCuaORt9tefwc6PeChP+ctbrzHoH1Mu3qcOC2Sjabcky/WEoZNSVAZZxqiijc4KcgoKDKaROAcP8HMQhSYfdUhkiI9P6AimckZ78wFNKHHymrC7RB68jqpjrOOCO2J/EtBMe7gmpMqWOfdQm//C/6f0RIZdGhCEu3hyga5fkxfvArXCQ0FF1jnheR6hihfZGPw+TnpAMx0SmyVWZhVxd4/a9VHSUOslFh98iEW7gREV7WhI79wd6I0Rowq3nKHaGSaa42oBszG95ISOP8E4NXGvS4BFK8NwnrLaukTSepzYfICrNqPnSHSTI9KGgBsstZeY2i1GSwqjDJHTJl/s8tLmR5jVY/zgPCOxTOOPqXs9wpliHFiOmojAJpTzkqo+prN/QL864ri8zaE0JO01Rr0rzGVJ7WaocE40UZw/uY/wLD6aoDuldKDyu3iOxYlCptcuM+uu4NkUmhlC1+jFPnm0QjNNOahqPv7FPU4OMtbTGXbrPloZJkcFSp4KNSpoUe/uf+t1sGeccca3hTWW5z62RV1IinlDVUjyaf2WscIim68LNUIIkk7AwlrC8vnOd+T1VdPwwsd/kwaBXlyjtbzCvJjidbo4ZsBqmFCoFB2B8nwevvAk7+w9woIHa8tddHPMhfk9PiU/zLFd4ZLRXJ3OeHem+T7/Kby6xsHwAtdx/R00Aw6XVsn8gEndozElefgULxU/QlNfItIXuTb5EHVZc0yfpfYVHk18duZ7NPNVjl97O6q5QKMihBBMCEhbm3zx8DpKgbzTZ3z/Yc51tqgR2DaE/Qq/fcwk64FJeby1z//uAysk/oxxusXV9ue4cf2TOMfL0LSpNNQKHHUH17EkiY+uNPeKBsdtk88a0nqC54LjhCx3YmRjML6gLCxyeJn/7uP3SI2hHfVY6C/hhw53vnxMmUqstcxmM2bTOScP5hgjqBuPqhKcZdScccYZ3x0svPYvoD51a1pr2a8atCxPW52shaCFriumxwXaheFSzFF9hTJyCIXlehiSJZso7wKt5YjlxqEOHRJr+enejHdHx4wmO4TpCarRHFYZ/f4rGDki6df8bONyznEIJmMCsYhYllwKx7xn8wERhtHDPm80H2aHd4JNcX0f3w3IFkIwLlrPuHPSp9Pr4ttlVOOyNvo07myOly6ihkd47ZipcvnYhfegOh49d07jLeIaB2FyjuUqUdnmlXNP4OGwFrZpHAFE+NlFHrz5Ie5MLIX3TgZ33+Cl8IQH2T4HIsBYn4ecm9jRMbKckoQTsplC4zEXLlcX5tjxGp2kpBfOIVyiLwSxgLlZxhv7bHxlj3fabRxjUIVi9cpvsXjtBVInRMag4xNs4OBOoBgeIbUBF4yUjLXBsVDZBR4Tt1DvfT+tXoijLJOdOwilGcYdttcvY41i1psCAiMNqs5Z3ZOkpk9hXNzVcyx6i3hEZPMZ6fAOcRzhuA5HTs3ivZRucYyVHlXYQQYSy4RXLn2JwqRUQrPiwqKRiKpiIwl4sLxOL5vg9l1UussCc6wscFBcHhxQnhwx8bpcaoa8kjxKbgSXtm9iTE2pHbRqWG0q2mFAoS09V3HzwR7j0YTMRCyJEQOWaZshSVmSh08QJ5fI8y1mszfZ3b1LScNhljOdNUynE6w95LA55M7dhqPDC2+NPimkVPh+SFEUAJRl+W+tMOmsnvu7iLWWNH2DqSx5LS2oi4LBJCNxHRY9j5UkYFY06CrFnef89Bd/E5OnGCUYjw7Jq4YVVyLElNtLLeLA42999lnefnOMxaF7MuD64RGPZJrKFww6LsbxKU1KaDysG/L5x9d4sNDnYmnJ40WeXXmCnIbt5pB3V58jdGJA8p77X2Ts3UQvzLCJoqUaPG9CYCVHjDkJH9AUHvOyRZUVTEXJli6xukbUkkXr05M+TR7hKEPgdDF5RnfZo90dsJ44BJ0HBN55vMMJntchXKipbMpRcYVqso7IYw6POkTtCb3RgCXvkFYCOm/jm4jrrd/jmvsqOt9EyC3eOF8zxqMsHZA+Q3EJ1yzgZRfpF1sE/V0+e/ghTO1Qi4soK6iVC+05nnNA8PDHMeGYZmERJ0gZtO5h9AlWaJzRIR22iNihdCXRYoknKyrlMJQ+ntsnTT+L646RgcOOiLGBIcwsV/0ulA0nTcaON8ATFqKAcRiyrGveV6yw0KxSHcasiZA67JOurUH/PA+FO8QCXAHGGLym4rb7KpOwx1HpkC63ePHyh1G6RtgC6Qxo14LHyxMcVxHS4MRzqqSF8hNMPSfuN9x/xw24cQTv3KPltGB1TvDoIbrbp9ja5fl/8st84uVDTvYzViZjzGiMKpvTFP5SYZqG2u9SDWfwZ6Aon3HGGWC05WQ7pZg1FPOGOlcgwA9djLGo2nxNqPkq69d6bDzU+47cNKmLnDef/TyzsiYLEszFNb64sUtlFL6jiM0IKyq0Y6iAG5vv5UZ+GWkSwmpAKAzX5IBlXRD5PW4kXZbna3xi+fv4O+s/QyX6dESElSuEhcO8F9As3Kfs9DnMe+xnA27PZxzlEUcHlvurN3hiskbu9nl6cIOiTFBFh7weY+pzqKbP4eTt4EV02wWlMGTGJfErVloTlgOXK9+3wJXzlnaiuNf43FxKuHTtezivr1BVmqWWZjOec5i1OJlMyUavsrC6RRq41HnAICsYFy6XlhJ6kaGb+GgDu2VNWRlmw5xpNsT3wXEjljsRGHjHtUWMDhBlzMlRwb6UTGc1jaxRRvLC727z0jNvcufLR8znc4bHE175/T20ssjGUmXNt5VR821oPGeccca/75QTePZ/guI0w7Cxlv92+5isqcBxwfHAT7CywXEFZcfnH176MVS8gudXPNzs4VSaq9fXuf6hq3SXInqVYR44LODxoXCbn9k44PLKr7GQ3eexhRhn4yv0Wr9Ec7zForvL++YFf6Nb8WOv/g6U64gg5Zz3Gr3eS3hSYs0O1UuaIn0UlIcTe3i1h9IWYRzqakxR54RRha4Fr2x/BCed8nL/YTZ2+vSfv0tkxojgIrf6F9GR4Xr4Bof1dXzRo2kMpXZZVJLbtIiERKqAMtlAm4RztcumCvlnN3+PQbHOrlU8NG4jp5JOfgVjQ1aZ8GPV01zr1nT9gkp4PM+7kG7Muc6MoFnDcVMSd4jxQtpYEsdycLJG9sDy/nKH7zW/xUZkuXRuDW1KCr1AIwJmZhNFTSFy8qMRS8tr4Lh4vo911rBig1AL6qLNdbPL/WQBEYa4WtHsv0Z7MMBxAzLPwfoTfvB9H+D81Q4OkARdlquExOkTtNocK8PR9jGekjRVRp3PcR0Hz3EJhE84bmiqlKV6CeE7RH7INFhiEG0T+xGYgsSfcn6ywwVV8qMX17jT7bJWZQy9MaYo6NUHQA2OoXu8TwIcRKtcLHY4cQI++GbNhb2KHg2B0IAlibskUYSykFCydukiP/mX/wM63TX6esJerVhv7bJqp+w1a2w/mFDXByws/ipZvoX1fIzrcO/+AVmaU+s5/3Te5o2tfebzBq0LrNFIKVlcXCRNUwBeeuklPv/5z2OM+oZw4u8GZ0LNd5m9vX/K3fkRHz0c0RQl8tkJyzgkjsN6O+RkllLnM3rzKdFgQDg6IRA+b372S+w9dx8rKy7XI6Zt+BuHiu9/7jl6dwY4wiGZjgkbhVe5PLvi8RubEMqQkTvi1dZt7oZTOv0hhStYrg1l7lI2LlJYLApb+SQJKKEYn2/RuB6NiQk8zfVS0VZTwKF0JY5JWAx7WNkGbTFKoZTBC1KMqnHzCXr2GsaC1gVu2KUZ7VN4NdYpueIXWFmxYA44n6Q4ImF5s43XTTjOlmjmV5jffh+DchNta0Z3u0hbYaTPg08vU848vJ0hwWTK4JUfx50JQrekVZ3gYKCpaMsxtv8k88MNFsQDwu6E44M2utDMigQnLJk2BeNOgXJdjCdxk5Rq4zLV2havXPo0RXsR4RrE5ABBylbyBtNejFkIkIsRubI0uiEPLHcW77LAfwVOjhMENLZA2IBlYpzSgg242l7gCI0fjDFOxcZ0iw/dyfiA9MkLS8fkBF3Fx358lbX+Ae3mJmsp+Cg0Fut5TLyU1zKPyIPameIsKdxFl/O+wTM+nbJCHB3juC6uW6OdKXKhh3U9RDXGdWboRBBevIndmLCS3iO83Ib+ESuP7OKe3Kf/sd/gUiWZjiui8Yi6bqgm2Wm4W6GwdU3ReFTpvx0F+YwzzvhmtD69QJ8cFWAtVS7xfAfHEWhpMNrg+t94WhdCfMecrVU+JdkYIjyHQDVMPclBt2Cx79H2cjqkBJ4h9HxyKwjKQ64WX+DYu0p3dpflumGxqCmEy0+nb/BkJPh0/B66K0f0PcGcNh+oD/gvDn4d7bdpPIdZ0uVjaz9F7byX/yb7MCfZJr18h3Z6gCxW0VXDa52L7DYrDIePcfSFn6P76vdRTs6zcOkmx3uPIx1Bvzsh6uUUVQ8LtMMCzwiiRx9iZXGZlU6Jm1SYFR9XK5JZn1a7jx8YptM9ZnWLUms8T+H6MWF7RlVZ+klN4Dm0o4Re7PDhx9cIY5fKNJRZzmQwR9kKN3Lx/R5L7QjHCkKnpiganEqzJAS5C7NJTVlnNKoinZTc+tI+t587pMgLpqM5ZSZR0uBR0uTVW/Xc32pGjThz1JxxxhnfjLVw9Bqkh6BKALSxnNQSJWtorUBnHbwI09S0liPiZcu+sbQ3E7JQk8Q+VSp5z49d5vKNZaJ2wEJp2YgD1rpTeqIgOZ7Sc1KWxJgbXZ/W8h20XET5E0w+IMpqnnRyrtx9BjVfoWWmrDpHuDrBaTz8xmdyMGe5XsXPuzgCZCPIZg1YH1UIykYxHN9GK42aWCJjce0h3eYzxE1GyEvE4oOU8QaNV7Dg3+NAPoKUPlkdcm3vdZarAlc3dETJYAav93+UtFlknYBzvsfh+BhbTrjfv8H3PN9Fnhj0rIPSPr89klhni3f390DEVI7PXXOe2HPBDJHzZYyVjPUa+8OQvqOIsegTycDxKdwWPbvHuprQNxXFydsYzz3a1nA0XUXikTdbVH7AIFh6q7FIsG0XqeYLxEcpsvZYL+aUg5S58IgdRdh2yEZDur0uOnC5oBe4Hj/K6GgHx1S0Bzss25CEDuZcTffBCWpe82g1Q1Qpsi6xRuMi2HilRLe7RJFi2XkSL3JIgpiht0KlCrpBG6Nn1KNDHrMN+uhTGHmT69ldqCaMujGRbNMSFZ4nEa1Tp86mK9gzIUl2gESQ1BbEElelxbcG13X40A98mG4S4zkOLddn5dwGfpQQaMGSrNmrJJvdhDXvDrdOZvze73+eo6MSrWOSziGRF+A4GsdrE4YxwnEYqRa1UljbYEz9lqNGsrKywuyr+Z1ZxtHREXv7r7Cz+w+/q9dFZ0LNdxWN0hmzpuSwKFFKI3LDguMwaRStQLBtNK8MTtjI5wRS8choTGwsleMTzypG85onizE/d7zLY7OcJN9DVQob++jVTawT4mrLnb7PduLT1W1qT3Ez2WHszdkQtygdQVBrbODyvV/5PRy3YcmsouYRwk1xW4Jjp8U8Tdg/fAhH1ISVZqFx8bShl0/oWA+hOvha4OChZYPj2VN3hTBIkSLLGdgCLStSV1P6GiMlvaoh8jJk7nBucI+rS5JHNndRDEl6Do52ybnEaPpuxk2CVlAFiqq3TtXElFOPpvKoyh4cDqjH4I1yrr055vGDm/jk+OkJ0eCEh3uvM1t4QNhp6M9S/rNnfpOF0QNS7dLpf57zPEfpHiH9FkZL4rYibS2jlg8YYJm0z6FQ3Fk+YCe6yT33iOmqR9mLONyMaHyXbuIwcifsbSosDY4v+bC5wvceHjN1JbXrksiQtol5OL5Br/TZ0ClX7ZhockAanWMhbdiWlo/5BauHU/Z6FWF0TMwi4iRGqALr+djAR7saIzRv7zp06mOGnR12Lna5MBhjZ6v4ZY48GiHckFYwRYgIE3uIJUN8fZfInWP8OQYH0w5p7zyN89j7OXzHObIPdmjefoOwe56Lwyn5uGSlKhm0O5TjDD90qQuFyTLS2qcuNUj5Z71jnXHGX0iMMhhjOdmeE7V9qlziR95pmHypEK7zbdVwW2uZDU7QSp0u1rX8mhBgrSWbD4jO3cL6Be0w4P50l9qpWItv4ckd+q7EKxs6tQXjUew+T6d+lftcQrgui02F9XtcrAf8wM4XkI2PV6R07YSftx7CcfirW7/AE8V9vKCDSJ4g6j7FxbRDdvQOUtFhrC4i6SKLhEkRUGcBL+nH+CEVU87bRFeGJK0B050rRBfepGMXeXdcYqL75NdnCP86bT/BcxRFYRgXDbqIaSW7LPQzfubJJQZ3XyCaJ1y8dA3pCG6dHHOUxUjHxfcNxnFp97ZZ7kg+fOl5fC/E4uIKSxJ54DsErkbWM5JegOu5eO2I8bQhaSyJ4zAZ7OMFpyNQq65D2PEp0wZcg/UaNh5rY7KQ+aggCELytKLKJU2haLlTmrzAfhsDTGejT2ecccYfy/HrsPIYyAprLW8+e8R0XKBUA50N6F8E10fJiueveAyaNzhqNJtPGNzFkjBJqEuJH7oIoE5corniYk/Q2/gXpNN9XF0QiIrELbmQHuPUFWneAwHd6EdwgjZib4a40KZVXSKWsGyOCPU6OA6iXiS0gs5+jN8sI7Qmj1xKq7GuR523qJRHUWRUpmLF7iC9J3ls+vtUXkHQdfHaKbW3SI7Pr3b/Or9q/wZT1cY1DlYE5EsdAqfhQ4lL23U4nC4wHK8R+C51oBmIEwLdAUcxqKE/mnJ0MsaravLJeablBq/t3+Di8jModYELbcNFZ8ZlK3i+/iDZKMSMAybzDqIY8sMbXyBxFKFnuXDtiOypKbFX85P3t5m+9j5uDv8yx5xjg5zt2TppE7K8OaUWNfeDJa4e3CGocl66+BhtcYP+ZEJmKtp5yeqDPbTXohVU9Fd7tJIW8eIitb+KW4QMDg+ZnxxRTY4Jhyf0/BYLos9mL+Hc3SHuccGGrtGu5cFDN9BS0nYd/B9+jJceqREBNMM+bk8RiYj3LKzgCEE/WsSoOavdmI31dQYc85XDz9Eefg7rudztX6ds93A7PUQAKg4oH7rOUujzSBiwf+49dLHEtURWCT/8lYyoqHFcjyTu0vVcIkfQCrqUxiARuE3Ngi7ZrRrOda/Q4XVOygkXLl+hyH+Ipv5B+kvbxG6MNoa3veP9mNYywrE0Xpf3f+B70brEGIlSDcYYlpeXOTw85Pnnn0dKyRNPPMHNmy9R14ff1V3xTKj5LmKtQeuCuSw5zEuEcAlEwILjMkoHFGbCyUbA/bJFJy8Ra8v4bohTS9yoz8O9RZxeAm7Go5OG0JlTvC9GGUPR7nLn0qMgfFyr2AstldAsmxXmoeLQGfPm1cd5kDyOcgVheXqx740HdMMBgfVp5kvIcUQgWmSph3Ab8okPNsdITTxbwW0qmuEusk5R0kFQ4wZttJoStI+wZYPfcUjtmLi7hiNSXATjOkUnj+I5gv6sojdTyKrGrxULXkHyyJfpJDm2cCHfoHIs47CH4x2ihWL0M4ajfoSZOzh+BG5EMTWYPCcQDW5esfLSMZfefJFIzIh0QdQ0eD2FWjA0nZhgr2Zxb5ey3mfhxicwwWtc2vgU8caXkeECG25Cq3dENg1R4YyyKhlEXfbcmBfeX3IgGlbdSygraeoFJrHGCkOwP2bVn7AYlGjTIrQjFutNQt3hfjBmP5jSCxeIVEDcXMTJDY4XsG7GpFXNqPcQ0dEeofZAGcJXhzhFQ9UOuD9tIec+LUps1EKGAdpXLG5EdKwhQJBoxdzv8KngXbx2+zGQJZXjMWgWCBanKLUAvoYVn+LhPexygh8qdBkSlz4HP7JKnG9x0n4b83aAfCxh7q0gxoeIccX5TLKftCkHU7rLMXUh0fMUkg5auJivto+cccYZ/1Yx2tLuhwx2U6KWT12ctjwBlOnpothxvz33zHO//s/Jp6d2d77yj2GyDUClK37p+F/SxAULixP67ZBMj7gkS6ZLU5RvaQlDPJywtHvIqhcQZPcpls6BapG3NzjnRJTC4135bRypSWWPlWIPyHjS1YSOy+ULT9Bfu0YiIOx/P5HaIZ6/xtqh5AlZMbUBpdNHVS3q+hKeEzOePcJSbvHn8KXRJQ7CFD9qSBPNpBexWWR4ImUQ9rHhAl4gOChj5lpzOCrZecUSt3bZnXd540FJmg0xQrO4sk7lONwen1DKHrkVb+VravzoNu22x8XuXbaGir1Jhe9ajtMKKSBKIkQ/Ye1ynygKkb5LNa2pnhvSaiTp6IBkrQ39gI429BcjmlwStyNG6gGPfe8KnaUIIxTddg+Ui6w1dSFJWqBqibXi25l8OuOMM874o6nn0DsPTYaWmnvPHeNOagrlkzub2N4FcALqquKLHcurqqaxFrPSxiQOUTvBWoMVCiEEVcelVob1RR+/2qd44WnOPRYRtSWuzuge3qbwfY69mGC2QevNdyHjIXXmw+MX+N3JBZTUPDzfpLv3vei2YX6yQcsoLjg+ghYIyOaaJN7F+BqnWaaWEapawKiaRa9gEl7jMlscx1fxN9oY0WbqppwTgh19jkOzQYOLrw2ucBhdukDZhv9EdAndDsPt92OOHsdNPGZliTUFiejg+A5CQLdIOTw5QsiGMl3i8fqHmBQB8tWfIth/JytuDkby9L0bvCS+n+Rwm+jLGcoLWV5t+N3u+3nHtde5uLjPzvpDVIEANM6Bw3S3yxu54OXiYVacAWmSELtwdW3AIyvfwyjssbKzhagrdtttgiymH4eUpiZWmo2dPcJoA69KWUkXUbllVjekDvhezHw0wFUSR0mSKGYhWWCxOcfa3YqHdsfI+1t4nkvV8/nkxcept7ZpF3MeOv8oftxCC5CF5GJR0XvuLheiPokX0QsXQc+JL0s63Q65zXnx5EXm3gzb6lM7EU0UMtq8yDwUeFWKvHiVtNZ8+PWSoOrSN4oFW1M1LtFMgarpdh8hic7TdV3uT25SRY9R46MMONWcFeFx3EhW2xeIzU1WuxLv0lUmE0W//ySXrvznRF4fYR0G3hofUw8hraF2IhaXljGmwhiNlBVCCLrdLg8ePOArX/kKdV1z5coVfA9kkwHfmrP134QzoeY7iNY1xjRfa9CxVqN1QVAc8M7B84RJm8jxiYRgul9QtvocCYdYaWxWMltbYffqIzgC3vnSC2yamrpp45HQUssc9ltUj6wiwoBbnXW+fOEhZJigcQgpcVSODbr8xoXzdHs50yWHF/QVeq4lTDWL944QQE/kqNJBlUvIucXJJL1aE6c+qigJxCJaStTRHLdRYDTzXFFKTWELTNgCJI08QitNZ9OSV1O8oIeqZzg4XPAusskFXMeAbpB7a1jh40gBbkgTGeKkhT+AG2rMT2f/NVuLKZdu30R+cYPgBBonRByUiCDG8yzMC5qkReBKXAFC93n5+z5C1FOEXY17PsZHc5EKvx0T3EzZX9jkrrPMnooowgnpeU0kJ2gnZMEUtKMTws4Y6xsis4hj4I6d0m3FDL1L+O0ZDYBzlWHvCM/v4+3d5YH/RT40G2FkSFvv4/sNWi3hiwhfJ4Q6BGMIxQJlJRiHa6zqIb2ww8NVgJ2mRF7Af5SFdAuBn5WYVhvl+mSNwBcN1nexCwGVL5muCEpbQhMT6ZC1w320DenSUFnB7vIVXs0ucv78PWblCtZtCDZmWD/i4EmF1y5wTYdXjq+Trdcs3n2Z/ldaWFli3AHe8ipWnlBMSvpZw+b5i5w8OKK3ElMXCp3OaZ1bAtfDngk1Z5zxZ4LWht5qwsbVHmuXu9S5JIg8HEcwGxS0F769diejFfl0TFOWgIXRHShGGGv5wv4X+czJlxDOMhv9I75vYYvlZMgNKTlyc2InoO12eUP4bCnFOxYCdP8ex0GbK7MTzvkBP+13CXTNxXrA7eRR0mqJJJBop6TbNzy9+RFeuP7zON0NXOHw1KX/kF77OloHTEOH/liSxJaIitDzKdIecRwjZjF+A5u54PbMZcqczQ9OmXsO2waqYUQ7aPCTNbJaUtiLbFfr2NhlktaUaYv9aI6qd9g/GjKtKkRbIMI2670WF1u7CN3hpK5pGhdkTtTSeL0WiW8olSDwPALXsD+vKK1hrF1677zGUdcjCEKOrEGMG5LC4BY1gS84Pp/Q32hBVhO2fagNG5urXH/7Q1y9fp6VGxaChk6rR+AkGG0ospro6pNYv4Mx8K0uEMVbGs/ZJOsZZ5xhjcWaP3AwqNNT58zgNuUzv0wxqXAyxdZkjdebH+fm0pNUjkdWlnRNztbiDa7FEYdeHzcIibtttNljOv0iACJ0mKz4dFoWxyuRgcL1G4TXIGlgdkBGxH69jmja6H5GvvAaqg2Od4H785CmOWJxGuAeLSJbktlhnxhLuz4iy8fUpqRR4Lk1NkhZyT6ILDuI7Cquqgh0ydis4ukpJ90YG1ZYd4Wdzjphk1IkgulmTOZInLpB2Io1x2ICH7fyaJdgCo+kEqjYYZyVJJ7h+92Itw8FN0QX3V2gThswBuW7rI4LZLvC5jGiapO5KXMbUS+uEsQB7ckdvMYifXCiET2v4sX4KnrFZafu8sboSWYsY+cVG1tP412Isf1FFtihiH02woCWJ1lIlqmigL7VRFIxcz2kMqj1ZaRncOqGpUZzlNVE1hA5i3z8iQ9wkmVoYUiSPqOte3TSlJ4xxK02nXaPMK/RwyGLJ2OiumZSa8aBoPZ8JmlBO8t4Ql/hrwY/zt7Dj+Ost7lUKFa2x/gioeUltMNFfqgfI5v7WMdSU7OX7eH2BeOLPTLrkLUCDjtdJBYn+/+z95/BumX3eSf2W2vnvd/8nhxuDn1v50Z3IzbQCARAgcMgaqSRNCPJlu3RDF2uGcvyB8/YNZ6yZ2qq7JIsl1RFywqkJVISKZIgEUg0MrqBRufcfeO59+Rz3hx23mstf7hNcFj0kBBJmAH3V3WqTr1f9q537b3etZ71/J//iCiZ0U9KnOtj/F5GI43xVUqiXXJjkyGRloclbepCkRYDJvMpqVLEWuPFxywgMQY6wQKeE3BfMuEF45BmGXbY5ar3KWpBjZYf0TdtBsqmMD6p0lQ6RcoKrR2qqkBKSRiGFO/uf+I4JooiHn74fspqjtY/uOzOu0LNHyNHh1+hd/wt8jjmnae/gdEVqorxd3+J/9XVf0Ij9AmF5Is7A6a3S5aEy4m+wi8NVhbTs10KaeFZkkahePxYsda7j+b+BxjULQ7DACf0qRYXSDvLPB5DFQZklkTkYzw1YxIETP0lNms+M5GTFiEbA4VQICZjaC/QUgqV1zFZeEcBLzWNcgUv79HuuJAtYCrNRBlyJPVaA88qUChyMaUMGkjLplIlMhDUTxzhaxtfKGw7xjaCM+qQ5eqIrjVG+BbxfI1cu4ikICsVpUiIbYtgmPEx/RyxDOnPjjl9uMXCeIg99ankmKYKEEGE1yxwFxQqdAn0DGEHKBOiHxjSvu91ju5fZf+eM7il4t5ijFrycLcEL5x/L/ubl5nlDWRNk7oGcsORG5O6FTUVs3T2bapA0J2tEZgdrp3+LKvhASKaMxYZZWkwwmYhTDHWCcpkwrfcPbrJmFIGOOoWunOTuNigLnxqOsBut3jjskU70ZSWzWx2lhcWn2TDtFgWHsPMo4gsHuglLNrQiEsqS+NWGW921rGkAFHhPDhj7GYYRxNXKbJWMFtoY8+nLDPjvY0e6IqnFu/nsFxHZzbv9O6hCkqurq0zeXGd17KLRM19qGdcyU4wmNUox2NOvfAdZNKncEG5HsKaI6wpWjvUvA7Ta3s0FwKSuKSYTPEWW1i+xzBOuLU3Yzov7ubV3OUu/3+iKhRlpnADm8c+c5pzjy6TJXdcNLZrMTpIqHf8P1Iejaoq0umUMs+Y5BPGSQ+SAW/PU/7x9ec5451EpAZfH9MZPYswfc5RZ7coCJyAtc4FfkMnPBUGbIoYXxzQyA557+Fz1NWADVXQzfpkCHaDsxTTVboNQW63sGs519oPMvaWEAtnwXKxrYiVlZ8A2owii9Xcx3OGhO4xVsOFBCJh00klVSjxpiVzbZhVDvO1NsY9wVwYiszDt0tUccxgesi88HECQ+7AeJbTNyeo6/s5a43pj6aMnBbDrs+/ePUQIX2W/SOK3CYzLmkmyJM5hROQXmhhOzU+es8pLq8t4Folu5OUQkAjcrn3XIfXhynGcnh5mGCmJZsnGkQ1jwsXzvN3PnGB+063qQqLetPDFoK1jWU++MEPYtkWtSUL6UAtbFALmvihw9FeH2PdWRTOR/kfrevTnZaUf+jn5S53ucufD/aujth5Z/g7c0IRQ2MV07vCwXPPs7hZo1vCsd5gMI/4v+8nXC8skqLkQ9UtpongkzcyDvOSB/znsZsu0k3Ism0AzttHXLxwldayjZYZRc1BqQRNThJ6WCKmrxs821/DlE1UOMFOFnCzBVriM4wRZFtnCUcbzM++RFLbpYlL5Llw63VSu0fcegcQWLpDYSbU1CJa+yhb41EQVDGHusVRY5OhWEQXfSo69EQTxsccRZo3fE1iG0QeU+QJVnknHD+1NK3pFUymSacpPaEpTYklKrrznI8f13gkKRmtnmAtX8SzJZUUnH/lq8j2WaSw8IxPYpWMSo8dq8FEVdjjbYw2ZKLkWK6zYd7kIfEqLWvAmjXmudYDfMv6MUJ/jt3b4cgTqLqkSQ8rCGi7qyg7wHJA+g6X3S5RXhFLm+8snOUbtdO4jsEkCVYF01zjKI0QDtdcj3GS4gmN3ewyfPNVLg/GnJrMsKRDLYpYd3JcAaIe4c3nvNGv6BnFA4VmZ2kF7/CI+faI3sJFrp44y7VFi8SuoL6MpRostj+GjN7Dhe2zzPZ7/Mrur9BpdVgOl1lqLJAFM2INfV9xU41RpaKYjmE8QNg2SbePfTzl8u5NlLSplGRkQradRTwhEUBDpwiV8NZzrzCezhiVFXUV09QVkWXR8lvY9jJqv0+vrGg0m/SEzT/aPkZJh5brcKBCEmOjZJ1Ma3KVIC2FVi55nmJZFp7nce+993Ly5Elc10VKCZTk+QStqx/Yu3lXqPkj8jvuGUOe9YnnxySTMd/+6pd4aTBEZZr2N3LQEse2MRW8PZ0RpiUrqeY/2yq5z3uEutNgYnlUSmNcG98JcC2XVuoR7F7mILToOzauUcw2l7goS35qTxA4gtyXBHlCaAwzI/jADZsFs0DNFFyo5vhDjbEFyjJIz+be9C3wJJkEsbREaQzF6i1cf5s1axczdQg8G+ldxmgIrC6olMoqKNwJw2CARFOUFZYjcHyNawx+Q+NEPVbvHbFitgi91zkp3wLfZXlhhygoYJpgWRaaObfShDDLaNh9XlMnuWx6LMY9Fue7yBmIbMjt+DLbrfP8am2Nz3kPsy8dTm/9KmF+QJ7NmbZf4NvtFVpuzNxaIlMuXpmSbCRoTzBaP8GL7XPMcxcdVORWwdhdZGK3qMjp9CrWzXX25UWuHd5LerxHN3VpmAOatSMsL8GUHo6y6DoxpdFoS2J5NYTrMl0uUN5NUl5BFw6XyzFtM8fVhvcfbtIcCmoomrRoeZ/E23wvqpyTVRZW4yTH7kXW3DHLhUdZJVjpDGFKpBSgS7STEtg1Rhh6Ck5whZ1Asn3iAkXN4Nuaui/Zay7QmFXEXzrL8VCAExOWB/xW5wPcGp/D8474ysF59qsm43KB3dZJdlqrhOkEy6rwIgvfpKy2nmNOwOtbCmcypLkU8MrxjG/c2EHWm9iBx1P7fX7+s1f4B7/2FuOsIlP6rmBzl7v8MVOkFcnk3fBuA7deH3Dzld6dDBoBtiMpUvU7Qs1h/Ed31FQV6WxKmWU8vfc03x68Di/8M45nA8bJgGbic8sE/FasGFgg7YAwrzHQAQ13k/XmZT5s19nVGatbz3H2JnzF/nGunv2PKIMfJZ/meFVMufIQabRCzbbwGFHIdbQcc4/nsjSvmPdblLnDrV6CcFfQOqTW8lge3ca1DhB2j8yXOEIgfHBdyUFgyDPNchsys8SLsw6vjT9MohWVrbBlTpEfMU1Tjmc5p5brrG2+zayYcMUf8tpek9rKCklR8Zze4EZg8c40YW/WQRclGJcCj7JyUMrG9RaZGEFJi0bUxnUCXKvEVFucOK05vVzj7GKNWa6YVDYzZRh5grMPLbK02uE9jzzCUsOnVncxRrLcCXA8Cze0vye2BUGAsA2tRpdG1AYX5pOUvaNtzj22yNvfOf7eKbiqNNm8/L7n4rthwne5y11+m0kv5XhrDKMtTJndmRuiBab9jJ3yUS481qBZQS9tMpjkXJ2mfDG6n5nb4UfTN5GZYuko5TjPqHOE7RssNyUvjzHG0DF7nFzeJ2gKtMjAT94VagrMYhuYocsGZRpgsjaZs0dQXUDqEJ0tkmGYmMsE/gMMFr5I4fU5E9xDI2zzRvskN1aXuCnmNNxdqCLmw9NobBwHhCzwpMaVilf8Jf7PJ/9rpuOTZNrmKFhiAtTSFIuKpcmMHIXRGZM44XoRo1TKoZPi5Xt0pCDNDYd5Ab5BZGASRaBDXm/kjE+tEgR1Is8lNxVWPKI0IEWMVxUUVptEewyUzfuq13FDF4RFJmCXU9TUHqezV/l0+mXWlaFaWOANzlM//1XccoSILIbCIpIa1zZ81/4Jvuj8Zf6lSpjqjONiDYyP3zxFaklePrYolEtubTB16jhJyuJgQGY7jD2H3AtYkBJRb7FeaJbaXTZ7Y5J6l2eai+S+JBaS4cIJPCTTyGHmC87MfNITJ2mdv8DNK9d4JZCUjs0eJbt725SzgsnI5pZ+L+pYUBs3WT/8KNlkygPVGmeaZ1iNVu9UgwiXwnE5yiaISmBbHtnRNo4nOajfpBjnWFlO6vnoChwjWXVdPBQYTSM+oMhHFJMYlcbsHt+mZnLquqBlSTzpsND9OG2/g7RtwmaLnrC4muQoJHVZsVsIYu1g7CaFNuS6wLYVlXKYTkdYloVlWTzxxBNsbm7SaDQA0DqnLGcURfYDezfvCjV/DAxHT6N1ijYZ8/GIPE0YHezx0quvkgwt5JUBg+6DvOQuoCrJBQ1njeCBXKAsuKLG+O2zCFkjE5LYsbCFi60lndJB1CSJXXFLQECb0VLAA1znuh8ztA2ZDd50hJonzCQ0DjMmLwou7VzhL6TfgLJCSdCuRNmSpdkBuTtj6EpYWqGajzkyrwKKhdu7VPu7oHMUFaaqkKZDmQ3A2qK0J4y8G2hdUCqNrQssp6R1ckJ45iba7CNWb3Fcn/Om22ESLiDcCPvMgMX1OXboE1kgRYltT3HzElWmDOwTfHTwKgsrFbISIALsfsSgDHgtuMQtLG6eO4Vet/GzIyxX4WNxXizyHe8yX1z6OHZ8H/PSQqucid+jvL9JO5iwn1ekJiC1FYUoGJqAHb1JKSpuqzoiKwj36xxVNVQc0x7XsUyI62mkPaNMGsS5y6od4tshZS0i9dtsn16n6KxQ2haJCJB5ShA52OWQYD7nQwer2FmFX1acDxZY15KmG1DeeAWkhV9f4VYWUesENGYFWZVQpnMmxRAhSiwUSud0rYiIDOM6hPk+qsqIpQ11B8fyMV7IB5ozVu0Sb14QCANCIc2I3G8xm4YY5XNrusF+WSfL69yqL/JK8xyRXcezC2rLEbXZmLXBi3g2WGWEWFOkKz46ryhu7GCvroHjsD+ZU44L9vsJ3x3O+MXDwe95J35bvLy7E7jLXf5wHN2a8ua39gEwGNJ3uz057p2fbcuWSEvg+BaWLZj0U+pd/490TVVVFGlCniQM0wGzcg4HrzKfHNCgQg4ydsuS616DVx/6S1xqnUY3z7Nd2nytPEdOjf88nWMphShnZJXDU9YHePv0j/Ha8AlICvb8FdKN97Jnt/jg0hij52TVIpPpC3wqe4qll66y/2KDgysf4b9/cYcbZZtGcC/3NwuycYeOu8dELpFYYBvDKyje3HSYNSVKau5dG5KpBq8NFE9fMRSVQXVsQscmzlrMipBpWrHWrrHefp15dcBeYYgrg99scCzqJPUGk1LQm+V8+VpIkq8ihc24dDiOz6C1Rz1cJSkMozTCtupY0se1SpatX+PxD3yVv/2hlJpn8fiZBUbNc/zFR09y+olVzj+2zJkHF7GcO9lCXuCw0Ar48KUlpGexF98R54QQBEHANB7iioA0U1wdJaTzklkyppAzskxQVYbRYcztK4e89vXd73usxR8+3uYud7nLnzPKXDF5+VuUv/Jfcnyjx835g6hwgRtZiwXzOp7cx8oM0mqgHUFHSD6nFrFVRtdz6GCxXAnmRYHUMbarEfaMSXyENhqqMa6M+eXvjpjlEmHNqGZDTFnQvfwQntvi0vYheexgpScQlotJC4wqiY/mdAOXA8ujsBwqSxPmkoAaK9338Gu1dZ6aFFw9ijnpXMHFRUubGA/f0ghKHMvFp+Sq6/Cqt8xAQ+60GWUdjl1olQUf2Btx/+SIxWKENpBqwbV0jtAxM1PQVjmbToHrKbrOMZMOlFJRCsUNc52RHnMsSy4oTbMeEocWYjpAKIXcew57/wr1kUuzqnBci1Z/QhF2UKWHLRxmWtGSGSL24fpP8BNf+Bo1lRFJxUQ3cEyOdEumAkLh3HFWej4vmzV2mgGVkvxSIjhudIgDl9CusEzFqFrkav44c7/BI2++SpjmZL5P6tqoRpdOrilLxYndId7iEiII2VpY4581V/mVtTPctiMOGutk4QKvdkJutrqsJCWzQhM++kGOhc1AKQpL8CPaIRvPaMkFklsZ/cLw64UgNYazaZd7jrqsDQP+swf/DmebZ0HNWXZDhHAJDw228QiCFU6kAksbjsQhymgyPyDxIdOGSErORhFH19/kaHuHE9tv8unDZaIswJ1PeP2trxLKArdK6BqJJSSnTv1NfuxH/0PqnseFhx5iHtXZ9BwCy6FmRmylJYmxME6LwhgyldGoe2SZ5Oho/3vCjJSS9fV1zp07B4DWBUUxYzab/MDezbtCzR+ByhhKrTg8/HWKcoQxGXk6IY9jItch/re/yK3rLfLKoddZZBDcyUA5PZc0CsH5cUUWCPTsALwmoRfiWYrEkggtcbShq2F47jmE26dwBKas0XBS1hIbtz3gzQi+vCIgm0E6ZVaXRNMRwWCXtXibcNgnSzWZUuBLHCsk234AjMERAZV2cKKQiVcHXRHkOa4TU+VThK+QaHoLhxw3m/jTKe3BjCfXKygTiGqU8QQjc9zWmMJPkG5GaRV8ST5JsKGpfAfbidB1RXsto2p20NUcJ/dZiApEYchUkx2zgX2UUJ6vk+kFdssz/Gr8v+CpxmnqWIiaw632OmV3GStyiZs+IsoRFRzO23yh9mmm8WkGhaAsUnIZs3VfyLK5Ra41mfJIZQq4VDjMVESJYttbRVY5y8dvMywsHBRJavNG/+M4loXtFKjSYWwqwjJi5De5evnHGQYL7DahCGtkwmVYeqjBdarGfUiV4lIStu4Hq8DJMyxl0SwSVrIhaIMKa9huh+3KYXthhUvaIh6D1hmDPEFJjVspUmXTMh5WPgHXpU4KFtSFIXUkpa5IvTrrso/jNmjmGQuOxmCwzZigKpiIBvN4k6xsMNUBZeEz8w2j0qWscqraDaxGil1omvsKt+zjLXYZz8f8H7b3WRQVa5McGk2M6zOfzHDnFVlc0rs6YjCIf8+7oUrN8e0Z5t2twPeEm7vc5S7fF1lc0tuZfW83XaaK6SDFdq07LbeluOPACGxs16Le8fEC+w99PW00aTLHDSPyNGYUH5LokqsWTEa3CXRJVTjsKcWBrnip6PGAiKiWz5JabfYqny/2Nb52aHoL7K1uIJbOcSq9Td1U7CZDnGabXzj1VznWJzi3vUCt9wp50GE08RkMnyGJf5bD2j9Bn6qxt9+hmMx5eZKA9umIL5JOfFxrzKuyg7fkUziC13SBKwTacXDCgjPdAUYssmjX0HFF3bUZn41wEOQ7FpPcoxV6tGsNRkmTYRYjhCKSCWWRs9HMqM61mJeKolLcGJ/kLfU3aC6ukuuA7fgxwKdRWyOvFMOsjW03kZZHw01YqDkE4SLZ+F+BKfipB5v8n37qYc4s1qi3PcKGy6UPrt5xTQJeaOMFNlHkYPsWn3/nkLy6kzsTBAGVyYmnBfOkYoYhm5Y8/v738Pqbr2K8kMw0ee7zN/jGbz7LbJiC4fuaayWg707Jd/lTRFVVvPTSS7z66qsMh0O+/vWv0+/3eeutt3j++edRSt1dS/wxoLUhT363+67MFMNpyNf6f4tbb005zk8R10/wy/WPE5x5gOm138DNFR0vpN30+HQQcYqCJT2j1lrhrLSplwZGOV5SwTtT3M0K52ad/t6cshxhEfPKbklcnMOqINu+hZhrqrxCOTGjkUOiodQWzf79iLmDoGI+T1nxHeba52iSkosAS7mkesKwSDFWzt9sfJMT/i6emLIov4Xll6hK41sGYUqM5RMaxYEuiaWmbwqGziWmk5BjXREWGecPxjzEq3izAYUWlLhYOkemA/L+kCqeYfwUt5bSjG8zcisyUVAJxXC2Q33apxACE884XGwzEAqRTFlIM+RgiHV4zKM//yp/6yufw/dB7VXMahtURYhvfIzRICwc41Lc2Cca7/DYi98k0HPk4TqiyEElSDQ6n6H0HEOK0EOOIhc3MzwU1NkTEZkFdd/G2A6ltsmdJkl3kXv2dxluXCR2bYSwKJyI94wNz9Vcxo//bZ59z6fJa02kv4YOImLbJV1c4eX77+fW4x+l5roMah3aoxvsOUvcuh1xvLDGqKyYK02KoUwNgXBZmvQ4l854aPc2acejbdncXDyDYxzON8/RCTrE8YgTfo267nDiNYHMJJ7V4gOz+2nPJJEfETRtNC4TqyK37riJW5bNaJrzG//6eZ57rkNoFwQyZE1rftO/wMXsBs54wqO3CqQ2SGlRjyKajsVR1ORGZfhot0HNsmnbhq0kpcSjEk0Mgnl2iO/30cpnMDim0+l8z+nabrc5e/YsQgiUzqiqhP39XbT+wQQK3xVq3uUPU6n98jThN/Z7FFmfNNlmNHqJJJ4wG04xm2dwli9wON4kSyvm4ojQDTBSsDiqUJUmHBcsNl4hSA6QrSUWw4DITSksgZEOUoOTSuZkCHKmZoZ3eI7PvGnTHK0Thlf59Y2ClxsFXqHYWCgZNQfYVkHV8GhVCbqsURQGJRS+MiyWkv7uBpUqcUxBUVbU/TplYnAsSVl6KJFQzkdYTcVKy+Xl5ReJN+vo1ga3zimcdsVsVVEJg7Q1RpZ4jRIhKqwGGJHQFx06jZtYTozUAjyHeqNk3mmTZzH23Me3JzhVicpXGYxcxrUFlMyJE8lWeoJd6wLvUGNaVpjApgqaXK8WyaOIabeN7mQMJZRzF1u4GMfmqHDJy4y5XiBVDp3ykAVPYoxNSYWrVpD4ZIWDkT67wQewyoREBWTYhO0GlfH4yq1HKG2Hygtx62CFc9IM3vYm5LrF5vHD7L/6t9jLlvh81GBa5JSHb1JmZ1F2EyUDZGVQgYVTKWxtIZTEvNs15GD9HJa9xLPv/zF6jQ02WxMm8zb1IEAUAYd5myQueHu8SJhLFrffIERTJ6YXpIzVgLllk1YJc6fOPE1At2nZFkvlDEuA6+SYvCDWNrdu3odnNEuhR5w4WN6YW+4SN2mR+wLRuYkTGEw5xVkeEZ1VnLYs6jdHLLZzpAhxawFet0EwGvPQ/tdZiEdYv/pd3v+dZ6jMnQyN2fBOK8d0XvLa13aYDu60lM2TioMbPzjF+S53+fNGkVZM+yllfiePpMgq5sMM+11HjRDg+jaub+OFNqtnWwj5h8unMcbwav8tfuOtX6XRXaBIEkbxEXM0/7wW0j96nRpQnr+XvSqhqDTb/bdopNsMbB/prvF4NeT929/lHTbY8S9w7J6iX3uU//r2/5tzN36dKhhzc/NJsvOfYfhCDzvfxJEOmZSQ1zDKIKRD1rrNyL+Fd3LIX9t+jsHRNea5hZAzoKCwLILuItfTjDSQzIzhRj/mzFqDYL1grQnSOc+D9XXms4KlyCVVillScn75EEtULNYc2g2fb+/fxyBtcr5zyKmWoDfos+IfMY980kqz0XDpBj7aWeLNgzl/K5uz2W6S6DXq4QmKSnN99hi1xmNI6bHRmLDaWubUyb+DYzfo9X6Lt9/5e0zH3wAMaXqdshwhhLhTLp0fYzmKoO4gLUFnIUBLweHkzjzq+z5+w2Z8GDOIC2JhyGLFytoStm1jt2pMizbzUU4yqUimOTtXBhTpD65e/i53+UHi+z5f+9rXeOqppwjDkM9+9rM8++yz7OzssL29zfb2Np/73OcYDH6vk/cu3x/xKOO5z21hfntfaaAqFbHucqPX4vrLIzLZJbcCqtwlfOQvED/xdynqHs1GQLcb0P7GMf/JzQE1neO3NriAjVMZzl1NaR2GZO9Mya0pTr/F/+2zb3IwOkSYOXEByfQeJtk6k+o0tqxTNg4onT5WeImGY1NUHiqJMEZgtRtMDCxmGsdukGtBik8WTkEbMmNhqoR4R3FSWsycQ1T1LLfdGJ3k2BRIlZMLF9soUmMRCUiFxc+XH+XmqofwC2QeU5gSkbV4U64yMjWE02QxACwIREqWF6TumCpIWDru4xU5hT0Dz+AKgR1PKLRhr2HTrweUrRa63uDcwQHbK5uMj/q8efYCYZIgjcVGb8RhsMhUR7ilj1QVh+mExJJ0Zjd46YlHaR8OqSaSvj6JLnOCakJLpFhaExLSNTE1kRB7Nn+jYfirtgNakErAdhk4DTKlyestqPt8c/0RRNBgFtlsBh7atrgYSw6DiGsbG7zmN3nx8Y9iGid49MZN/uZrr7K3sM7XL57l25vrvP+7X6ZR5jSTI1qhz8p+xbHVplKaaaWYSKg3TgHgJQkrox6f/MaXGEcWO6HF1zbvpa9AVYqaU0P2FSf8GkY46NkMqUu6rQatUrM6gsWjkLKYsDEQ5JbGOBLHswmFxBeCzD6maL3JcKWH79Y4ObzJ3zz6Lc7kN9HjMd2r8+/l7QshWHEd/vsbe8xmr/FgzaHj2ix4NWKlaPoL2NFlapbFfu9LHB3PqdQpLEvQbDa/9/4IIb4n2midE4Z1hsMes9nsB/K+3hVq3uXtecqgKH/P59oY1O9S7w1ZdoDSOcOi4oWv/BbHt2+TJLdIkwOS+ZjjgwEzlvEX38PNzXNoL0LKGufskMoRdFJBnChiaWj6T7NeO0D4dTZ8Q1cc083H9M5fvJMRWAi+6jzO4cEBo9EtXj26wY1aRG3cwHMnpG5FkBV00tM44zMcph2MKrhRv0yRG2RaIu0ewlK4hcLsCTZatzHVGJP0UIUiskKqUUotctFnmsyqBMdSzKopDavi2Aw4J16iI2MOGimlkzNaTPB0RU3mWMLg1lNENeDK6gG+lXAPe1j2EK1HWGVJYQRytIi+eEAubORBiaWH2I5htHXE5niXTec22g3I4zmF53HatrnY9ukXJcYT+EXCjbLFK/de5LhhoZoOO/Ei8VgTasiEQflt5sphkC9guQvU1IQlIVGlxJgAp1jE1j7zRKCEYK0SSK3JTJNlN6NyBLNZSlwISluS+zXal7+NayuKMsCYEX5VcaLXIGz02T9c5xXbRkRNtMmpdI1UdpnabaoA4nbIysn349ohopQobeFpi8f8Rzmfh7i4GCJseYA/19SjBvWxQzzRxE1NlgjOTgXNeMDqeJ+OGlAT4KiCzHLJlWIqG1SVQUcBW90GUVFiS0Mc1HndO41xbIR0Od0c4+uCYdzidGqxttFnt3Ko0GjveWon+8QPNQguDbE3fpa8TFiYp8yf+U1GjdO4gUPQbfDgS99hrf8GC8Pb1PWM5PpbZFozOkp4/V3rvVaaZFLw5jf3OL49ZTbI2Hqld9drf5e7fJ9UhcJyJOn8TpeBIqtIp+X3SmaEELiBhetbnLjc5eL7Vv7QQcLHRcX/cPUNXtp5jvrCIvl8wigbEgddjizB4vBZuvZtTjf30caw6nRozEekxTVuugUndchH80M+fuPXGNktOryft9wf45+6H+bvXfqvsLef5cntb/Gt6CKJEjTiGV7D5UsP/j1u1tZZTUqq8UNgDLazyM2dY6Zdi1nVQextsZsoTqY/hRvUeGH+APd5I5K0x7Uw54OrDpOk5MxSjUvr5zi9+dOUChpa4FiCxcji0+6rGJWjggXqnsMJN6a7EVLaS3iyxpnGLq4tmJYlZ5ZvkFuCJ8Ir/MXzFifEhLXd51krezw63eLBhRVm2U9Rr18gqzRJ1cB1mljSZ9HfoRadRkobaQWMJy+wsf4f0+t/maqaMBn8GtPpa+9+64qbN/8+yhzTXAiQluSxv3Cah893+ftfvsorO2Pq9TpPPPl+Jr2MzBgSrTGFxAttarUaMoShOkmeKKwqYH/7iGc+9wbxOP8Dx1wA+u6EfJc/RQgh7mQYak2WZURRRFmWSCnxPI+qqlhdXeXJJ5+k1Wr9Sd/un1mmw4zxUfI9R43BYKqCZj3h2umQPK/QyvDON3ssxDZe3WNuu2y/t838iQXizef4wI9rilEThYPdPcmPRCGua7EwVbhFGzez2JyvILN13hnEbB0PUVVCnCumRxeo8hVSIiy5SNx4ByuwKeI2G47LHJ/blaDUAmzNuNSsWCAyheVoMu1QODPqzhhpvUrTrogHF6glEY4VYxjzzGxKokGYEo+cuQgQ2Ahhs1lIguYir2cObnCM7YxwJOQi5yV7kTfrm8xFhJILdJwSy7XwshsoVZC5FWV7RJMp9SwhnxdEClwpMZaN7fvIdkQ9qCHqLfLVDe452GV/cZ3q9HmuXtzEEhBoxcnJnOPOIqmGi9tbrCcz7JnDKPNwK01RaxFVFYtvHqIkWJFFu8xYs6boUtGsJKtSYasJ9/S3+eDWm6yLipYxVAY8x+PUSpO81CS2T8PTPOeuooXLVMK50MFXkOWKv7BT8t2TPu+Ekl+4dD9XV+vcc7zNQxOLK26DC7j8+DjmycGIe0vJ2/d+gG7koWsO88AiUIq81EyCik7nLMKvcbrxCCZNCaqKkVS8YiuWy4pb4SL93/wiydVb1Ks2TSVwHIcyMAg9ZiEIGIp9upZF6NXIdYJtWyhbc/1ySNkwhELgY+MIwbT+Mpea53FNQO3wBu8b3ORG7b2UlaDIS5I8+d6z/2S3wfnQIhk+xaN1m7+80uX8ykep2w4L4RImvIeW49Be+nEEn0BZiwRRQBT5v8fJp41hWAo8v8P73//o98qj/rj5oRdqjDForfnc8Zir8e8NA3ppmvDZo9HvTGjGcPv2z7I3vcUvHvQpd7dJpy4vThJKE1DpOUc7u7T9Gqthn8Ozy0zqbdQs57J4i8wS1IUiFjD3KpJIkt5TMu220I6klDeoyh6DRgttBFWleV1EZL0hzXRGb37MNVfgZR7uPKBtjvlANcQ1NkxdMuViVM6j1gw5KUl2j8nUqwxVTOFB5gtcOQESinGPEIcVoWlPHbpFxqB5kVx51Hyb+WxOqgS2t8zVKMVr5nhOhS0yfL9kdfOQE2dL3NIBJyGYZ0QKAjQfvfar2KYCo/GKhGyc8s4zC3jekDKqI/MIWWV85exPo2sRT1z7NrW6xyRYwMoThkgWULxvo4mxBMI2eGnM++se3249yNeb59nfOIVKTxMWhuOs4orQ5H6bqfLYmiwS1y8gwwbLWtIrWqRVRFa4uKnLPAZlDOcmN2lnNrkdclbu0wsfwizdC8bFRhIVPl74NqoqyHML381xdYGtbLrLL6PzGgvWKipcoXfpExQiYkKHrcY7JJ1DdLRNO7iAhUNWubzar+OsPMG4VkNbDr4o2FAFoSiws5LYDSgTzbCekVhDjAubKKx5jEdMQ09pqpIAxcjYJE6TfXcTy42YUnHjxAalsJkli1hCgfEQRoPtcbJ2m5muUNYyw94jXOreInQNyiQk8x75qYqjR9cQrTnaHIOzxccOXuTy4KucuLBHY9HHbdRYu3qFty99gHNxD1cnFP0emVIkk5ykN0UnKboyJJOc/u6cIlOUuaLI1PdKoe5yl7v8PhgocsWJy13e/vYBujJUpcZyJI53R6hB3sk3sV2LsOES1t1/r0torSnyO3koh3nJTjzgaLpPY3GJbNpnmvSJozYT2+HYtmlyzHsGL9IsCx6fHnLJ8WlkLiOd8zP9a3ws7vNG5z6+cvIDLOrLXG6f5xXpMilWedZ+lI/kL6KaF3lrnOAzpij3cGuLTG1BrV/j+Oo5ougeTmz+DfxqSuJlDNwWP7p3xIIRTPxlSttjr7qH89VVKHoUXokXOpyvu5xo+FzWHs2wjW0J9LzPf9R4jTxPec/4SwRac0IvEXkB9XIIkx3OOjNW3ZJQlBQqp2mVfPjqM6xUEz4lv8XHV1P+d595gPds1vnwuqReDLhUlHzS61D3XWZZiSVACoGUPrraZ7G1DghsKyJNdwmjszTq95HMX6Dp9EmzbYwxFMWQ6ew1orbDI586iRBQa3u8/+wCq82Ar71zjOM4nLt4mmxekgmDlgIpHCxHUq/XMXbBOKlR5QpZBAgssqmiyP/gVqF3uj79+z+ad7nLD4qqqjg4OOCxxx7jR37kR9ja2uIzn/kMly5dIggCTp06heu61Ot1LMv6k77dP5MYY5j2UpJpgclmmCqnmo3Rg20urH2Ht89LTm/cQORTDt8YE/QqtCtJlKbp2dyYZxyO32GoetjNOmPPYWz18QpN0HA5lUFQncKphaxuPYrpL1NguNqro/ojstGIfl5D5EuUlqRSq7x9/FHatz9DKkJWSujnOavtbyJ9TTXpMUXTtmNCaVC+4tr0Af7p1vvQjLDzGzQdGHXXMMEBWifYTJhbJTOpCISiIXNSq0YhPaSG1bjADrvMtMtoWjAfz7FRlJ7iuDSs2zHC8bnZbCNNBUGAm/UQrsuhJQk23qS/WNLMY7IsR0tBaVnE3S5RGJJIja9BWR79s+cQyYiyu8StR59ARR1CY2glUzLf4t+eb5Erwyef+RJ/6emnWH6roncoyZUhyw2BKli58SrR8SGyG3IqjvmEeJNkJjnf/yYLszcITIYzOsZ++23sfMKapUFpLC348MVF7FIxnxU0ZMHDCwEam4mE04FLUBpyBedWm/y3Th01K9ixBLfaNo29HRbtFsoInoxCNqcOG/I0/9vehJfmkuNxxl7HYVhMcSZDFqWmLCfUFexefJDd9XVkXtJYOU2a9smiOY9uXadnLK7/q3/JtX/+y5wtTlHvZXSMT/7Y/bSWu1gZ7A6v4fgW8t6AlbUlwgWbmq3ZW4ZB/YBAgl1qAtlmmN6LvhKTljmJaHPceZiy8RGE1WWaTHnqxle+t4ff8BwaFvTTPqGEFc+h5vgsug5N22ZSaVqOQ+zfz4EV8BviXpzVkxwe/hy/bc1RKqUoBiRK8w8GJ1DOKlD8kTpu/n782RNqjPljXV0kkzGvf/VL9IuSWN0ZBMPvZGrsZQVPj6borW9iigR2XyDbe4FfPRpxdZ7iTEcM5zV+drBBX3UxJqE/F+j6CmtlBzcxHC6v41mSSh2T2sAsxg8llrxBQUB+ssa87mEbmyqaM20mWDhUtqSQgrFlYxcFp4oYVSTMpQJXoHWND/W/y7J6HpwSv6qwSlBVTuMwxhxpTN5FaJfh5CaFpUnDI2ZGI4XEE5LQs+i479CegsxivmIepcCl4+VIBPuux2lqjMUxE2cLbQkcciKvyXI3xW0q7DSgoonIDWeqGq7V4ebpFZTYQGgfJ5njzTW12ZwyapBbFfhrGGPzTLfNfiOgHU/5nPtp/iE/Sm5ZhM2QWs0wWY/oNjxCX/KTD57gNe1RVQ5bxft5R36Ge9VFWqXheJDy1TRlKhuEQZPnDj/C5/cv8WveZ7joehSFTZq7mNIlSF3w2mSmSy99CK/a5MCc4PFon+3KY966SGUEptI0Zx5u2kUVJXkuabfhul+nqmbUxC5NZ8RHds4yOlzlWvAeEkJ0bqHrVxnnPWrZApbVBANJJbBdB905yzdXLBIBkTXjo4e/zqK2WHJqaMfGBD69KKZjWxhLsKimdJWPk8VM6SIBQUxpOSS0GYw9rKU2FBlOt87UCbl1cIHhzmM8UmxhlEJJl0Wd8rHhTQbC4qXaCoIMx/bQoolKZjj9TQ6cS+TNiNH0HOa04tR3voJ72WNp9YB618WqhcjKsL20ycJ0hJVMaM4mjPpD5l/9KsXTX2P+9a+hlCGeFAz25lT5HaGmKtRdR80PKVprtra22NvbI01T3nnnHZIk4eDggFu3bv3Aanv/rGIwlJniwuPLaGUYHtzJgQrqzveEGikEpx9c+EPn0hzPh3zu7a8DcJCXpMUYv5GzuVEny+YYpSlsj0RaPNPYoCEFq+MhTX+Bj+SSn3A2iOUpSnEP6/PbpNOUqbPCTn6BSEguex6egocqiy8cXeSV1f+c+vOanzpSNMsBeXmFlSufo1sGTNQFpHGo1+4D5yGq8hRxbx3fS6nNJ8ik4GcHY+KapI7mpN7lZl5n5lgMCsH/5sEW96w2wEDkWUStq0yP3+R/nv8iRX+H6eAAey65eCvBLxLuOXqN9m/8X/nQTLNhx6isoOXP+YD1HPWGy6fVNVbTm0TVHmunTnHuwyusNXeQOsUa9GhOS0LbolIGVWqMMkjLI5vvEfgdAGy7TlH0cewm7fYHSGbfpR0WpOmddrXT6auU5QQpIai731vkrbV8fuajZzme5WSlRtqSetcncwWthofr21i2pNlsUqiEvd0ZylToUmI5gjIRlNn3IdT8gBaVd7nLHxbP83jyySd54oknWFtb48d+7MfY3Nzkve99Lx/72MdwHOdP+hb/XDAf5ggpUC/+IsX15/juLzyL6t/C2COmbsl551cok4SqUKhC0xOaTGnajkV4a8Zjr23wb57dpooslJ2R5geYXOE2POqzEitdQDUDLCkobMFqc0yv9yD+5GMEoWRa2ljxJkWlOCxbfOvm42gtmXtDFpoZhT2lPP4uaTFhNujRq1lYwR6+n3Hc3OXK4BKDuEXlzPGrKaF0icyYVbOHazJckyFEwURk1POYthoROT4ZCluV6NFVZsqjEbjsmgZK++xXDb6Wr5L6LVpmjhuE3Op2KXFQXsX8nMCu+UznGfMtn+koxVYKiaGaTUgtyaweELiGsSqJJ0PiqMHzFy5wEDgMFpfQ8z5nXnsV3xiW3/4u+w0fEbgY36ZelDx05S2CPcF73qxwlpapRIQSioVqinuwh1mosTGZ80j6JWxVYyXZQaYpgRoTzSeU169RZUMcM0VXhjSvUFLgZxVimnBpbZO/++AGWhnS2nN0ZEJdQ6Y1S588TXOjyXKu6ZaGm6aknqb49SZrZcKjxuAOYN48zfKixY9cXiUX0LncpZ2Mae3cZuX2TZIipqxKbp68xEtLFkveIkur72OWjIjnB5wdJlBrsd2M6PgNpGxQ24v5kRslyeVPsnHiDGZcUrYCRJniNiw+/elPsbm2wYPzklolyW3FBd9hsyjYaOZ07FUsI4mDOZXVZCxbTAtNLgJQhncO30BVKcYYlIFKF5RqRmnuVNGEUrLpu9RsybSqaNkWr00TvqUs9pw288YKg+FXSNMder2vMBw+zf7+L5FpzZUiZCpXUeoPdrH+YfkzJ9Tkt7dJ334bXSrSK8PvK1TMaI1Okt8VQvbb/2fjGXvXr9A9ygmSdxc3xvCV4ZRhqZgrxcHNGzz/uV/m393exdx+huHhZZ4a+piiYEEK4rTO+mxAfTrDdgWZV8fNXMJRm//1v/5l5GyIcA/Q5YzMtZCFjSMVHHwZb5KQ5jl9u08wXya1DfXQJbICjmoWuSM5NzA04oxWNgdZgZwzdmck4zErYopIJJE3xRu/zqnDHYRT0j48QmcgVJ2gsHHdY4Q0uPUOh1aILEvcrCSP6xTOHlo6/NrSKjdTg+3Z1JyEzB/xue5V7pkd8dH4L/GbxUfxhMASGtN/CNtolJ7jaZ+iamKCNueNQM5dhgvQzFbx8iay1NiVz+qkR1xvMa9JxlkLo206SUqlwDn7fuZWyHVaxI5H1Ih4NKloHqfkoU2zink4KvmM/RaX/DFJ0uQjq4/zgYv3cVlbiHHBbl5SmoiovYASNXYngpWNk6yVBq0dJvM2ZtAkzFYJwjVsEzGZ1qmss0i9zIpf8oQeEBeaUoNRLnbVwNv9NHbu4sgmnSDlth/g1VPcIsaNhuwOH0YNQ0wuiJWFRYXbusXEtbGmHURmkNw5EQ0sA0IwtwqEUJwwQ0LVA+0SSp/I9JBNQeaXLAooTE47m9KsHMxswjf2VqGCSf02bqTZKbssV3uIWopdzqB3QB7USN0GSR5wv77NoiMpLR+hDSuUXMAwSkGSYfCZ5HVkbuGMbERVp/IE26MVeg1J/pc/ybWVkyhsqoM9TOBj/Agnm2HZEms+QKYFb/6zX6L85X9BY75NubeHfrdldzYvKd8Vaspc3T3B/SFFKcV4POZXfuVX+NKXvsTW1haf/exn+fznP8/TTz/NwcEBR0dHfOc732E6nf5J3+6fOMbcKR90PIv1Cy0ObozviBBN73sZNQg48/Aijv8Hnywro3j24FlK9Tvlvb2yz+cOfolc5eykGUExQjoSX4wpZYG2QlIhUWiGxW26TotMLPPBC3+FoHaC2/kCg8plWFgEUoC0CFSdhS0LKsXG7T0+/cwY680JF1OfxHqc1s2U91zv4+oQz/FR7hGMmmzyHD6awL/M8SygN1hG9xss6ZvMjcVePOe7O2NGWU5UVXSsjJWlBln4i9zf/3nON/epexU+zyOFZma9zN7RDeYi4tPh2zj5EKMk671v8J9mP8cD42dA7bAkGxzFEmlsTjVep9Ga8Er9JB+av0xTZ0wPf4WyHNLrf5kgfZV9R2ImPUylkYVioebRvD0ne62HxKPUE1ynDYDrLuA4HaT08P0V2n7MSqOGqmKSZIuj4y/Sbr/v94yVEIKaZ9OJXN5++QBhDMunGlBzWGwFuL7Fq/sTcAMmsxF5qjB2iZAahEbl4nu5Rr8fgru6+V3u8sOEMYaXbo84OI5pLPiUgz3me7sc7FRs2y1e8O4hRaIay5TUEE2X8ZLLlSznnSsDFrQg6ifYcp0oWcZtOYx1g51JA1UoUteAo/hc2mbXgbwxI6nHtMIt6vWrXE3WiRAo2yafNnlt9DAvjk7QLyuKN15jOrpNsPwyh0XG7QmI+jP881bENTWi1j5C+QOOxA1CleIZgTJjFkRCXTpMHYU7inGFxjUFkUzo6TFRHmOZikrV2QtbGCGp9/e5YmkWw5zdMiTu2WwVdXwJYxPREILbzn3cTE+wY62CgDTIidoRS6KgPckoC4MxGksKrHxKOzJUQY0qPQbLcJCP2e9EXPRhvrqJWxak2RytFbeX2rR6B7jxlA8mMwrbIshKZL1JOU1Ze+Etpo1FrmarZLU2jSTFMiVJy2XDAa9wmRUOdR0yLxaJ8ikP6z7YLvnkEEel6LxAJjNuJhmuBstyuBSdYkmHWDWL3WgPU8XUKkPg27i2hdP2eHCk+Ghf0asqmo6DVZb8jasHbM4rLnYaLC508M+e4CcfXuee021ea9v8yP0XWF5dY/38eZJmm7fdiH3lsiUr1rxFvNRG+XVir8ZG5lP3lrFX7uPXP/WX6TVarCJZVCmjgcbdmyFti2cefpih69IcnGUp6tBuNu90ADMw1xUnLM0JU2Bl3yJ8xOfJBz5I7s4oTcBc+cyzki8FTfzAZbh7myvfepnxccrW069jD69gdEFR3Skrr9kWf/fUCqG0mFSKlmPTLytG0qJyPa6kkjw/4u0r/w1P7Xybg/7XKYoes0qRKs2uaqL13fbc6HeFlfydd0hfegmTVqSv/v6ZF8YYXp0mTPb2GfyLn+PGC88yPjoA4PlJzBuThPGXbhJPptR2U6KZ+p6Q85XBlKOixJ+NufDSN3njMOc3D8YUk0PO3ezQmYHOMxqNGlquEswrhNbYvs2svcxGKSlqgnYmMGqCjApsHREZQWDb5LM+ohyjpynj110i811M5lE4IcaL6fgWO45g7jh0DgucOMXJE5x6CPmIa2IHnZU0RQpZm4bcp5jdYGF/D9tR+C0ft9ug8lyq0OCafQQZwvVQQYRVFEwbOVbpMK4WGQVdboiSCIHXEGRuzKgNSdphRUUUepO15oC2Y2EJhyyf4eiU0o0JRQZFB2SAXyTInRlL3SlBL6DztS5CRhyyiJMW4NeIOyE3JjZSe3xEgLQl4sST6GzOAwF0GnUeH0lCU/DXHYf/4uMX+GsrNfZef4X+tXfYuPAIUcPm3vuXaa1ErFkWTS3YbAWcyxv0avdQD1waoeDDp1ewLY0qHF6+9TEGt22s3jJa+UQqYF24zDlLkrv4bNJwlzlIChxLokqfyqnRGZ/htLyAZbexGpo0kjhLY962HoNoxjSImHcEC95NKtvGaQ6xG2P8sEAUAhOUCJNRlYZOZOF4BlWlBELxnnFM4Z9DVx41KRlbI6KLmr+mx1zWR6R6jldZNKUHhWYcC0xmSOxVYsfiKNG8bjRb8hgZpFSqxPVDvq1OcmNep2Y0K7YkMQ6pa7CaFqfyIfNU4MgKuzIcjc/j6DrObIA/SyitlNE84oZYYkNc53b3PoRR3Pz7/w9eHo2gUWNhckQpbdxiTt0NWH/5BdTKKZrzW/QOj4nzino3YMUb4c0OKbKKqtR3uzX8kGJZFp7nkec5w+GQS5cuMRgM8DyP5eVlptMpQRCwvLyM6/77lfD8ucQYtDZYtmRhs05/d47WhlrHx7J/O0xY/K5Qu9+PQhX8wtu/wKSYYIxhUFT00ik3plvcntzmMElYyCdot8W8GPFvLryPzA7JTEUbi7yaEIqAPbHKwyd/gt21D/I19wz7IqA13+PQX2YhMESl5OLI0BEG5+vP4Vtw0fF42PY4fn1AIgTXnC2U26RfnGOa7pAdtDjBMwSORT36AFWhITNctiRnvSHjPEJbBteRfNs3BHXNVlZjqRtxJLYY+XOezdcRxRh/+K8Y7Rwxmx6x4Y25Yp3nQ7UjfD/EsgwnnJeY6wU22n1Kr4uxYjZMg4BF1uYx/7r2GX4r+DQnDt7iuu9iFTB863mS8RYLDLniOKi8j6q7lHtz7kESJhXp631EZWNJH9tuIoTA85YIgxMIYSGlR7cWUQ/rICRJskWz8SC+v87/eBFjjEEld8S0T15e5ldf2mOrF1O/t43puDTrLm5o8+9e2mMnlqyuLaGzkqyagaMwdoVl32m1+/2oMHdn47vc5YeLz792wFGcU2u6lJMhk+1DktThpm7wDXEJbfsU7/07WEGNSU2y9aEOn71yxJdf2SccTXmkGlEs3aZe+ISW5Gq1xj/8WpOD/jH9/CnmoeKzac5r1RZULonjsuCv8WhgeCeO8DU0wpx96fDy6CRf2V2jclIm45sIX+LaB0y9iPetj5mqazynPWJlIb0ZTlQQmxxUgVVAKad0rAy7gi9cPElqAoy4c1i66KSs1rb4j+tfpCkS5kbRry1QGZvVQcKZ3phFJ+FwrrlP7fApdYWLxQEHscYzDi8lmwxXAk6ofVCQW2tMwg4Xyi2aagbNBlprbNtmwctZHbyGzO44yI3t0h6POTPL0PNdKiE5Oz6kUAWFMWhbsllmdOYzxO5b5PUaUrrgNsiBowcucc3xOMmcxmKDJhYTATfnFsvHY5q/FjBP3iQ4qHFY1glyj0fULjJYwCqHRGVMJCasm0OeyTJ8kZBGBcnNCdnuDOMIjvIRHhWXHZcgdLEtgfBt7klBjgp8BFHUws5yHrh1iFNI/EQR1us466v4tsT1bF5KMz5y6Syrly+z3GgxD1s8LSxiy7AvJO0iwBI+lb+AbnTp2l209DjRvoft1gK3ugGnH15BnkxJZwO6V0b4yrBlO1wNFFuDFtU4p71YJzeKGMNMlVwbXKVSQ1KxhRcELAx8lsqIopDMM8NoHLOXGtyay8niAV56fkRve8r133yG1vZXUTonf9cFYwnB2dDDlYJJqWjZFsdFhbu0wkYnZLeAzsInWDnxd/gN86PcHrxEpeZMKsVpa8jNwiVXGfoHtL/5Uy/U6KyiGmX8uxd36c9zdDxHzeeYSqOz6vddaYwqxX91bZfDyZRyb49rzz/LrN/DGMM7ccY705RympIdjwiPUpLid06hRqUi05rOwTaNM6do2VOW44wvF/fzpnmI89fexJQFuhHRzgX/wUEHy7URjuZ4OkcbwZGTYp29zLnVizSrczRGl1kuCgJPkDsplDlqnjHcSjm+NmYuY+bSwnJ7+FowdgWH0qCyElPkqDhG+CG1acp4ekhFiOtW6DSirvewsKklYxyrwt3wIWqRdg0Hix4j7dEspkRUSMfFBA7fOnPAvqO4YZ9kd/EsB1bMogM7y1N2/Am3nBwn/QxRusCgqlgJrtOSGk82WfMHyCqhdGP8uGRhPyCUObmusOOArtnDuTlDbVscch9vinWOowV2Z4JWMCJvejjUON1o0lheREmNVc3YdDVRs0GnEKTVDMeDnzy9wI9ePMtg+xZ5ElMPFWubI/yVAKvlsVwaLjR9Hl5tUkvaPOV+irrvsLD0FvV2he1rfAWXq4j+cJ/ANVTaxSs82kYy0aeZaY9GfgHbWmAvKwhcm7LwmAmXX1suMFXFoWqR2hmjTo18qcd3ZhfI/ZjGqZc4ce438T54hXlaYJxjpF7GDWK0rSkDiamBpwyLrsF1KgKdUxcx7zlcYuL+VeZmk9Nen49VH8AoeN9un5Vil9KVVNRxjEOqLcaRjTWNETzEpLTQCLL5nL0iIS0TvMhCehajUy38Ro26p3BDxXFi6KkIq9Fk7Ahyy8eWhq5O2JyuYfk1Im4zPBpTmIoksemrLtl0i2vt+7Asl2z7Fl+1POz3PkIricnxqakpVr1FWkYMxSJyfMxrx0OuD6e0V0K6e99F/Jt/THY8QlX6rqPmh5SiKNje3ubs2bO8973v5emnn+YjH/kI3W6XyWTCqVOnaDQanDlzBt/3/6Rv908MYwzxOKcsNEaBtAReaFOVGq0Mm5c6BP+eWTQASiuOkiN6SQ8D/L9uvsG1WZ/Q2+T1wZuM+59HmZxta4njYs5VS7IgRpQ6pY1Ny2mQl02GXoeRtvjl7pP84uqTHIXL/M3jL9BbfgSRjwjmRzjTioawuCkuILohRysuxxsejZaH50jmww77luLIHFFlNWTiUVO7WMypckmRVrhSQDzAlyNG1TJKWJxeCDmxWOPvfmSVXz5c4qWdY1Ytn6uBYTCLUcNjGN4gfePLVPFNFtwRyfIqZnCDub/GAq8TW5d4VnyMl4uPYdIlaskVPpiGiN49dI/P85azytP2Bb7a/hl+YfkJwuwSxdNQu/E4tSpmUF8jiXu8dZgw+q2bnHx9yHrgggA90Ni6heROeUYYnmVx8ZOAACMJ7VPY7gZC2OTFEbbdQCB+V26XSSumT90Gbbi8WOOMbfOvv7vNP/3OLZ6/NaRT93Ajh1FS8PbhnPc+cJaO1Qe3pLNc5/T5TWTwrnvxD5Bh7jhq7k7Id7nLDwOq1KTzklFc4DZcvNCmmE7Y6oPfajCpAm6VEQueT7HyAG7NhbpDp+axO01prkQcH0zxTUru3mS1sulcHdM47dNWObeau0h7xI5j2HA8XpkE3CptZplgzb6H9fIjZDrCcQ1nFiq+XgV8yIH3h4YNUTHSIbYdYpcelRNxO3ovr9n3MSgsMmHx61uPoG6dYDA5S1E1iCxJbsU4lqFKDhnUa6SLqxhTkcuQRTuhqW+AZWjqEdMctBPipCXHziIcbBNGFudOSnw3RVnQtVI8Siyd4ZoCy5FUWpFN5sznNR5x95jadQ51k2i1gVIKOwzRVoiaTXB628y1hXIDpMnJRofMRhWlBrt/G1dKSj8kVRWTRoK3eQpZFAwjm2mrhSUDHNvmO5ca7EQZjfyYXjaluVxj0Q459joM3r6OfnuPWZowUm1S5syTDno2R9ZaONUMdzQgd/d5xDrgVJyTZD3mcoRei7j5zoC3ZjGDbMR8FrM0LHEjB0sKpGexaFnslRVhBWFzCRl4oAtMAdU4x4oirGb9Thi9MeRas+A4dG2LRSMQ0mG47BMUY9Ca0BhkzUEIC2syoK56mMpQ1Bc5RnBblnTO1hnGQ4hHpE7AxHLoSdi3Z1ypW5RpSbNbowoEsRCUluT1N16hRHNglzSCVVQ/IzIuBphNY4op1OYLJFZKy1pmnmbMhznTokPL5DjSIlf5nViG8s7e35XiXUeNxVFeMhcWkcwpVIZfexARPcJ2LlD2AiCZVBVnzdvss8Y/2M3Zy35vQ6I/Dv7UCzVqWjB77pDvXj1ifxwzH/fQcYKpDCZXmEpj1P/vfIPvjuf0i4o8yylGI4a7O5T5HQUt04ZxUaKkQk9TFnsZcV6ixwPyXsK0Undamg0HfHxhldNRgye34c2RhysDVFaSa820HnDvwS6dLKRo1ohMwX/69hewqgli9wp2c5kz9iMs7H6QcfQUz9pfQeicnt0jDwMyK0RaDr0k40uNF9k/1OztLmDmNaIwp9m/zYnRLYypSNOCyg5x0oTctOhNHqIUdXQSY1SB559A6BJZJaQ6IPU6OJbEN4qJssmTAo+cEkEWBIw8xRtOxb51ljfDRWKrZN/Kea62x7af081Tzg8OaGlBmdSoCxeZOEizzKLoYZUxmIJJdZbms4cE5YBKZ4jBGsO3fgLxym0qNL09jRarzN77YQ5Vm6DeITrxMHbZZPXifZz/wIcoyFhUQ+5LruLV6ghpOC53OC63EUIQNlo0lpaxbJd4chXtfgmtFEd7NzlRc3goCviZJ89yZrXBX3//GZqBgzBz3MRQFy4NIZhHfSpT0PJsisTBSc4wVWAUjG3BkVpgnLnEWpMoSE2NeK7YKQ6YS4vE7tKxNcs5nJ1rjuMGRTHBsd8hil6nEEfoIKYUQw7HLbSzRwGMMrCiDKvSOFlBKCrW0xFaDynLRYrBGZ5P/ypNO2WJiCPlcCvp8IZ1P9rzmOmIQihU6LK3lGMNR1x8/UUu93fwqJBpxsyMKITGpH3KvMcsFCjbJclmqOk2wwx2yiVwQka1JjgunmXwQ5t7pmfI/RbmxBI3pw2M8NDWGoWpcWg1mdbXsf0mYTrklLhNUyjWskNkGGBVCdXmOXYvPcYk6FJ2VgjSHP3z/4gLCyPWT/qMZjbJ3jGq1HfTK39I8TyPT33qU/zkT/4kly5d4q//9b/Offfdx4/+6I/y0z/90z/U4szvwsALX7jF7jtDtDZIW2LZEiHutE89/9gyUfP7F2p+u8S30hXDdMhBfICJexxe/3/Sm9/mfJFwNNvheu8rjK0E7S/yYjWiljzHjyQxWZXT1prKWuON4j76VoeDouJYWZTCoU3FQ+Uh733Pj+PlE6z5FCspOGFS8soitmHHUuzOMspZgSUgGYZMtaJV28HkpwicGlJqIk+QzgpmsxzXlozmFn7gEC4ug38Lv3Gd42nG8WDAkb1KYRIeQJCZIb3Dz3L7n/wDqqpFc+fnMCg6397jobf71PWYKUv8w+4C1/zHucex+JcbOXG4QmfvWewQPrt8nsRUCLvOzHLo67PsOnX+P3oX670RzbRLc95CiXMIf8JM57xw/AxLHcn9CxH2YkC1l2PnDfTEYJTG85bpdD6EEAI1ytDPdcnNeWyrRpbtYdsN7og475ZjlxqdVlT9FFMZLAOfUTb/+yfP8d/+5L38X37qfjaXI5z2HWHo6tEcrUsiZ4oVKO57cp3OUpPczMiTkvkw+30djOLd5+0ud7nLn3+GBzGvfnWHWV4Rdn280CHPYaY71Jols0QznCtWPIdcG1RgISObZHeOLA0itLl5kGLEbQrrkMeKkGBcMBkq1q2Sl3rHlFbANWvCR0uLpIAvTDMmc4V/8wBx5YhM2yhnTFsnpKXipDzmf9Y5oGtcju/7ACZZxk5WiMwub88Eb3v3shxoKlOyEEv2M0l/vkmVeoRoSluT42LJhNySlH6Eq3MmosFS1cdTc7bVCm41pSrqxMahmo34rliiF7QZL2VUtRl+kZAUKWbrNU7YKVL1cdWIehAyx6Lt2rRmR9RGV5gVFrf8BZxgEaUUk7DOsBAUdgOpPWwhsecDZOCQZ2NKJF2/TazAi3L8Vp1KCN5eTTleaFM3Jf6sx6xVQ3cWiYTFStDnsfPP8/iFDlWewT2a3sY6pe0wiTzkyirLkyZu0OCh6QELgww9TbCXlpBlzomywiOHW1f4K1e2CMQxihhzqkG64JBmOaWKee7WIb+wPeB1H2wpEI6kblvMpjnNStC6/3Gc5S7CAp2+u36XgBAIwLckFyMfW8ATieCJnuJkBScfXmYlHhKVBVaeoNwcAXQnA5LpNfzJTfpFSj0rcCcDnn39Nl99eYu2KhitrDH2AmLLYrtrs+8Z4lLhujZZA5QnscKQ4HrMxGRsN5ZoOx3UNKfrNDFSYrTB8WyaVYfdcpc4ziiKnOP9IbkK8KqKptchVxlXnzvk1a/sgAFPwHE8o+3YjErFqKyw1ARHzyidVY6LirGyWdz8GQQwzOcsml3ev3CaMDjBqv+DydD6Uy/UWDWHYueIH/vSzxEfvM3X3/4CJk0wpcIUmvStAfnWBHj3NHIypszvLFB2s4IzoUea52TDAbPRkDK/U0eWas0kr1CqRFGhpGEyGbP7C/+Y4VduEVeKNE8opmPC6x5t5yOcyCx2RxZhVaLcCCVt5sUCjl6jVhhUbBiXEZNTLQaeS1kVlLgIIZkWy+wtHfOmcwORK/b8Y4ozm6RhgOO5TGTCsTujdRwyHhpkKahHRxz5Cb6ZIG0bLW0K7SEx+HKNep6x9/oHGOxfYXsnZ6nRxSBQOiMRbbR9DuE4FIBAc9MsI6sYR1aMo4jEkVReRb9YJ9UJ0irInRhH+Axti3v7Wzx241Vso5CpoGYLFl3NdNDhorOPLQ2Vcfic9ySiKKEo0ZEg3bPJR+swm4BrMd93eN9+zP1/+6+R2UvYzbP89IefoPubFt3Vk6xfusw8mrFx8Qw1x+A06qjQoGSFkhUYg5CSxZOnWTl3gaTXR2QFVZbx/Of/HSujAX/RD2i3An61CUudkIZv09UhaW+Eg8NCKHk9eo1GuEhUCXTmMht9kC2l6GEo7YybYkpqVYQ2zHKFcZpILQnjY75pe1xP6jRlyXL9kFGYU9WXKBAgJtjhIWnlYJ9+Gh1AP1+nYoukMCTh84zMDoEjkanBygr+l8/8BnG2RWxnHDlTZiYk1z7oOh2xwZutLs+KkMIRjJOSyjNY9YBhs6Sbj+iMBzwxeovN4pCGtqlXY2wJetKnf3iMrQSO5zAWbVSRY/kujcSDWFIlCcIYXKmpKsFg3uSleI1+TTIwLQw2wm5QZi7uQo2fcn8L4bWwSHjc+S3EbMLy+C2kJTBBwMHGhzCXH6F4z3mSlYt0jod0Dw/RT/0qIk+pGgskvRGVuKvT/LDyPy7T+Z/6uwtobZgOUm6+0kMrg2Xd+V7ChofRBiH//UJg8/khv/id/47nD58nMC57g2ukN7/K0WyLQXLE5XTI0eAKqcooLJsNurw6e4vLk5f40MEuVZnSrOBD/hnOFkfoaJWdJOe4qFiybb4QP8IXH/w/0uqewLZcxvEJAttwIttBGbh/rYE1KVioYDxLKeQcN1JY9h7t5oxh/x4C1yPzF2k3fV7+rS2a73wLSoUtJbXI48P3vwX1F7mdPY/B8NnXjqgvnqBdV6wbwVI15FvyJQ7eucFMfIQr5aNE8zpuUVJM5mgNsXF5R27w3eAbXNz6Jj33iHLtFG+cHvP58wVFFPBGLeW0igiMYVobkUiHr9nHKPsWnf7P0Zs3OTV5D7Y7QenrpI6F7yoWpUC2XaqdEmvWZvwrN0lf75PfnPzOuKYV8vYppoNHsO3Gu0JNDcSd0PpqkDJ/7oDsxhg1L+4cPqk7h1FUGltKHtpsoWo2h4sONc++c5pZahr+nFrbZ+NCh+5GhN8xDA/mdxafvw9C3NVp7nKXHxayuGR4lDDPK6JFHy9yyEufopK47JJrjVMaNjyXXGt264K+B4e3JkSVYVUJhOsxlwkjBJWRHOYlFbvU3QGz1KEIb7Ib3OKcp/grSwcoy2KKpG5F+J1FYstgmZzzX/4N/mIwwHIL6uUigfR5x/ZpaEN5o8VGeZVl2eN2arMqpnSUpsmcUZgx1BphbGqmQmvFqLTBKahRoRFIoenT4pTVB2PYjz2kdNj2z/KKd5ZPxCNOeC59r8PY89CRh+e5CG3oOBWfTN+g5wfMOotcuHUVWZXk1Ziu0yNSI8qiwPXroFq4rs1hEDFr10lKBy1D6sCiilGWj2VBgWRddPH8DjJLydKcWhAwcUtGZYpd5vhZzvPrY25teqQbp7GSkqkocfWY0I4wi01yz8WxKtKPnOLwPQ/hTzyaBz3OfvuQja1tzFRgNbsoNJNGn4fbK6R2QWZ2eX/2DFrHZFXC+PC7FPEMaQqu98YcVBU7Qt9ZVwiB0/BISsXfNgE1fwF7oQW2QKcKu+MjI+eOyi8EbdviwXoIQFdIWoOcJ6THd7OMn/noE5zotimXY5JyjK/gtIStyqaWzuiHx5zuH/DgrSt88/XbnGnZnOk26UUN5pZNZdl44Tq1IuZIKwa3thjOJkRoSikxOiEVGRvxY0S3Y2ToYCMQjZygHhDVfOwsIpED0jSh0iWHez0abZuUDmv5GurtL5DNMm6+0ieZFbhoxkay5jnYUmAJQSCha5VM5TLbWc75KKT0znJLLfBCf4umpfmx+iH/Se117B/Wrk9x2mfW36dfazAYHWHmMTpN0VmFURo1ykh6O2h9JxTotae+wOGNawBMK82ya5NlOdmgT97qUmTvCjVKMy0qyiqn0hWZ1DTfmfLC9pRR/g4yLvn600/zWhphyj5q/wZiXlGUzrs1ll26A6jHI4rmEl5VYs8zqknCi5sxa8Zi02niyIh46TV0fQ/PqzMPNVpoZtGYcrnOXjjHbjWoa4cLxQJn4k0ccceQLOx9DqPXsOwCx42Qjo+pPFzXQiUZJc/QPvcr2G7Bo6biQvQSFnWS8ZCRWKEqJYvuFN+X4AeEnkukZ4giwa5m2EKh7Zhx4hIEFZ6UlFUfn5C+gKYPC2sV41JhLI92mbHRegtrArnlkZsahYnY62vKSsLMQ9UNiW4QlAHeQof6xjrvXzvNmcmcjaUm7zl9GtddIPI97NgCaeFFIfv6Js21FbyoRv0TH4X3dOjv36a3ffvOqaAxpJMJ6/dcJjsaUJ9blEWO0iVpPMTW4DoS7dnYlqDu2SwUAUc7t5lXmlNeRtmZ8cj7fgIpahwrxc+OSnZqil1hsOqKl6N9tsIC3wLPgmF5hnG2xGvFSV4sHXqFg13u8MjKv2BoT9BBiyLoMqmF9PMlXp2dp29PGKy8wHa8gLZn7Gy8w/jsS7xaNgkdCaVFXkAw7lMxI/dmvN55jlkumQfLaOXxHt1ga91iGhhKqRj0XWZWRW01RdiSsOizPuvROLiCNZ/QdGqcVBKnzPFzQVxouqVAypKpqDE9fYHaxWU8rbleKzmSgrP2CE+UJCWMHJ83Rmtstc7SsC20ybGsCluFKL9POP8mN7oPMRculZxTOTnaq6hsF9Nq47ZqbJxo8dbHL1H8hb+KWwqKzlmm/RQ1m6HqXeLekMzi+86o+W0nwN1Mm7v8MFHmiqjlYTsWRVYh5J0f/saCj+Naf7BIYwxUxfcU0dvJEZ+79SW+u/MdTntdjo5fJ95/iV4VczS9zYo23JofctG4nBY+Pzm6zfs4ySfVBvV4glPl7PinODcbsT7bR5x8lGd7dxwb90mHm/Nl+uoswvbArZE2N3CjitFxikFwMfTwbckHl5rQyqmqlLDT557F6zhqxri/QD20iAdtTp7xkSsBk72KSmtsRxNnhrxy8bpTZvo2T6ymDOKKD8opJ4pDmknGw6bOo1VJbVQyiS/xRvVRTg8EZSfhuJwxzVzEy9f4sfRxZjLmOOzRY8jh4ZgvNGBo7/Nfbg9oqoID9Ty+HLLrbdNgmbmB/v5zOHKLt5w6P998miR4k3DtJkUGlakY3trhuL+FOIpYj/4GpjDMvrnL7KvboO6Mg84U9ZU6JwsLx2mQZQdYdu3OmPcSJk/dptybU+7H6HkFlQZt0MUd1/Bv47sWg7RACoFjSbQx3Htxyn/wlz9BrVZj7VyT5rpD/2BCllTvPhL/U3OouCvU3OUuf4b4o6yLsnnJfJozzyqsyMELHRK5yshqoNUulTE0hGDFsZnvzLiWpTznVmRpyaaRfLKyeeBEh6Nyja8en+fLquIfiZy12hY1rZmnDoc3z1FmPjVvjm1LKimY+RBWGU7HZypKUB3scUZgcmrLY3QcECi4Pk1YDI4pvIrLzpixaLAY+mxScEL4VKsOj594CSWPabsTut4EpQ0D0UTJjNM6Z277HMuQ/apBxx1DZJDFmEqGXPMUh3aTBeFxytyisCxiu0vhNClayzScgJVOhEqn7Cxv8stnH0IBni55K1rCakcQdu50jSor5rHAs0qG6y4Hy4oCl1ndpwScOKWzsoZvbAplWBQBH2QF07vjLHeEIrFLZlFGx81p+gGvNq7yZt6jaNSYmTYHk4u8/eoVLCLc9hKVY1HD4a3ebVIKasIiS4+oIo8ot5lFLsVKwY6XUlx0+XsXH2CuJqTOnJXr+5TZkNloymj/EJ3H+FKiKfnUfSt0I+9OowEBuuuRSkETgR5mWM0AYRn0vMTuBljvdigUwE8ut/lwp44QAhk6qGnOezs1/rsLG1xaWuL+bhOvK8mqCfVSsZ5nvFiGuPsHHC0usDiL+cRrL6BnI0JpONFu0qv55B6AQBKxerDHVZVz+OY7gEtL3RG/FAX3Rffwwf4H0V89wGq5uMLjhaWSsBESNkKqosAEd/b5lm/IR4LFM0sUsyUWbtdR166hZkPChkORVoQozvg2bcembkkWXZuO69E2x/R1ndtpwUP1kEFp+GL5OL82tKnLksCpQXHID+ro40+9UDMbTelNx/zmRz7Na0WOFefoJEVlFVNj0Jni8PZvEB9fAWB8fMi/ffNfMy8TEq1pOzZpmkFZMlo7Rf6uoyZXmlmhKIoCZRSF0HQHBWk15CX/RX7irRk3tiJuJJrj4Abm4C1IKwJj8IXgI/EB/+Fr38JxUqzVipg57UnO0u4mD0ZtViYJbdnCKyx0UGLNY6wi52Itx/YLHuocERQ7rOiLlJ0GVujjJRrfiQiNAQtqScZK/A6GBL/m4Ho+nhshqgpMwWA6J8sXsL0mnhOyYb1Bw4swxuZ2sohSsFTcYtUbk+U5toRIFoQkuG5K02pw2XmTE7bFhcaMTWmRUuDLkIFRyA2f2mMTMsfmOScnD2JEtsLS7WvMrYS0kpSmw1bsMMHDey4k+s1FCNr4gYe7tIi73KbheES2S+Q7fPzee6nXLyFsG6vVQkiJ7flcfP+HaK2s4oUh9Y9/nHBtlWQyJh4NyNOEqijIkznd9Q2q7QH37rao8pyo08VdriNdie9Y/BefOI9rSR5Ya7KWOSTjKd+uGW5GIxp1l+7qBiL3udCwiIXilujxol3x5LnTnKuW+cpEEWtJYMPX95f5pf4JhO3xiUaNZGaYZgFdT7BkZvjGZ1S4RN6MK+MP8/roDG/nZ5hNUvYnFqk7519FT7GjHZ7OlnFQGEeTGQtTlbieQ/NwzMJ4TmlssmAFox3Ozgx9d8CxPeDhUZe557Mvx0zCA5oZjPWYzJHMdUi/tkzpRDQLB28+QRaKtjSspwZt5kyNy0srJ7nie2TSYlzOKUOfsJogVcI4N+zJnFvzRXY8CxyHSies1oaEosPc6jFLpwzy+Z28HT1ldmpMdr5EtiPKxVXqSxGrSxGZlAxrIaK7yO3V05jVUzjLS+RWiEpmxMKg9Pc/kb3z7QOy+AdT83mXu/xpJItL/JrDw588wan7u9/7vNb2cUObP/DAJu7Bs/8YjEYbQ29ywLpwOJhus5bNSOcHDCfbFNJhlB5z6KxzrUg5kcLfm6Q8FL9JEJe0dJ9BfZMAwe3wNJfH1xhQQ9SWOFCKjw4VB0XFODX4rsP+O1P24/PkVosl+5DJsANGEo9zAvcFDM8wqsdIt8JrCDr2Aaf3bjCsZxg9pXptSHp8E/LrHM6XWK/v0mm/xdHrPa69MmYej9lwajx4+M/4b8TnOS/+v+z9Z7Bl2XmeCT5rbb/38edcfzNvelNZWb5QMFUoEAQBggYUSAqUpVqKpijNjNSt1vzrGBMTMRMTwYkZtaiOlhu1YkRSEh1AEiQIQ9gqAOUrMyuz0t/MvP7ec4/d3qw1P26xgBKKkloSJVDMJyIjMnfsnX/2Omuv9a7vfT+bs86Idh7ykcTnb+3mWFFFnkASxizvFlw/2mWscsJpB+fahIfu1Xj/3jyJEdIy6uxtXuGOjnk4us75yS9yNI+ZDL7JjBxSOhWtuIVRFezsXkA//bdYb51gIivWmodoLzgUuUFllkTJmCgfY3gujVMnaf34MRo/dAQZWOi35juVFIiui10qTLNJlmxhGgECQbkbUWzHFHsJxU6EMAQqrdDqLXt38R2hxrMNpmmJlAJTCiqtCQJFoxkcLJ6lwHZMxv2EqlBcuXKF3d3ddx0q97s+3ec+f7Ioc8Wlr66/Pa/8IUr9u8WbeJoTDYZEkwlJUeE3bMbyKBOvjq47KEPgWga2hsmNIYuDnH5SECU5ZpSzNCl5uBVwbdxmfbjM71QZ592KjwcFtarGuDL5dnmS0p1BttcpdUwJTLWibb/KXe8ykzAmHvpMlYWWmqB7nUrtUJUGfa9HbiYkdsLxWoRLQrbssmz6PFI4vDi7wtziFQ7VMn5C/yt+2PolqHIiq0NpFCzlU3ax2LWaFEGXRrRK3a2Ta4/StBjVbiKqEikdjvoDWoGmEgJ3EsNkysvnHmLaMsjiEb2ay9lwi4YtMWt1Vo89TtJoktpdRB5xb34ZYVTIMqeXfonMvUVpW+xYLrupIhslLC0fw5QS0xT4gGtFLK6EGEITtJpkIiexUhqeZjxbZ2iELJomZppzb9FkoCyUUcObe4ArokdogWprzKQkOL9IQwhq+RQRGAgd8r9+KOEV9QrDbMKHhrPMui0yT5I6KT1/FqfcZ21zn2lS0HMqDKHJq4yPP7jAe491+KeX/imDdEDesIm1JhNQ9GPMXg3r0AIqLjDnfMyu9/aYWvEc2pYJgPRNqnFO4Fo80QwwBfz3K3PMBz43d17lIWvAkcmQDatOUJRstDpor043aHJ4dB0x7rM006XvSBJP0C5ycqXo7e7z2rU3Gbx2FcMI6EmDXFoYvo+1r7jQSNlPt7EfatEymxyrF2QSskJTkSECMFwT09UIZdJYnkGOZrBVm/7aeyl2buMGFmWuqKuMx/N1HAEty2TWNunYLl29xd20ZCPNeajhs5VrQm1yyBjQEAm21aUoRn9sjoHve6EGYZOJBKkddvY2EVnJVSfgTprzz4ycMhkgRin9/+kXqaKIze4CL1VrhEVIWik6lkkxmOI4Lo8+VLFXL1kdxHzzy3cQ+ylFkWO4DkVZYCuJLXye3+3gbGXMmhqTnLCKUJnAzSueLF4k0TF27TmeKl/m+NKLuI6H2cvxs3ma4x+kV3yAqUzQeYldvJUxEFmUu21a1LFEwCG1gNXa5VqwwKo3j7Z9YqXYaAw4znHMXJHuWCT9Q1T5FMMf4Jo2phVQJimWVVKVmjsbRwm8JqPWDNuixuO9l3hiKQZcpCXwGTOf3cCyLBxDE6gJdT3BS3dwVR1th/SiEafXLzKvBaYRYhoBma4Qlk1gDqlsi157lcyBYfE0ctfGTUdUWQqix/lZh2bdR2of90pIlGe4rQAVRUjfQzYbmN0uCEG9/gAL8z+JsCzsQ4fAODglPvehjzCzcpTF0w8A4NbqzB8/xczKMcY720z293Brdbx6E5UX+F6dNApxPA/RMBCOAQJ6NQchBB9/YJ73BUc4bC/jtF187x6fOvoktudg2zv8nTMFR7XF41KTiQnv9xqcHTaY5NCqhzhGzmZcsp4a1OYcRNtD5PCVtZ9GpI9RL13c1GA/aeGbU17efoxR2uX6YIGtOz1sbYIKqLKnUFriOgqpNaJukGOiK83U0BixYj6sU2tkTGpdtAdm2eaDRUUvq3H6pSFFmCC8irtFyMOiB02bPW/Ceql4feE4uxVUepaijChkyYwomNkKkTqmMAxMNKVWVI7HvFExT0yWl1DBtDJ5wzcpVIPcCNlNU6SEljnFSnwiM+XK/hGS1VdwFpvkZUwYb6Bqgn5vn18+9YOcee8CR061UcCu1OTPfpS1Qws0nn0a+eR7GAsXy8kZKsUgL/+9ToO0gvVrQ/Lk391m9j73+a+FeJzj122aMx5n3rcAHFidGj2X1pzPwTnWv+0/2IetC6AV07Lid9dXmU1D9ie3mFUFVTJkfXqPoHaCpBhxtfEIQnosFyHH8j1miiHH8wGzCK63H6JhtvH0Ef5PSz/H5+33IyYVj1YGH5sKtvOCKC1R05ILv32H1/Y/wTRrMcMNykRRFhnptOCMfY9251c5v/IFal3B0fMP4IZH6OT73Jl/jlvZ85SRprr4WzTXP0uRaw7XP8NX2l9k69420SDh3HrBQ/cq8thi93O7TPcKSjnELxV51safVkSzDV70vklZD3EKzfPtFnsiIomOM6q7FOEWS1fu0dya0tSnWBM7uO15ZHEJq7iAq1MEBZ/yNfPmDFf9NQ5XKXteE33+p8hnjpBZAb/uuxheSq3TI/fuUMqcTCUYbQdrPsBeaeCebh8INW81KFBxia7biFIhIw+NxjACQFDsRggJKswpBylG2zmoGC4UutLvqKhpehY7kxTXlFiGpKg06INQx6SoEFLi+g6qPNi4ra+vs7Oz865D5b7Z8D73+ZNFmVds3Rqjvkuo0Vpz9Vtb7G+E33O/1vptUSeNCiokcaZI4gi/JplwiInlUi0cRQcm+yhkobC3IhbCinw7Js0LxkmOUprD/ZTrqYtVHSI3K840FEZeo161CHH58sgh0y7Jic9TMmSqc9bLhDKYQ23cJIxihGty8dGHUB6YzhhlR5SFgdIGbqlxHRvDTJjTE26ZBqVXUma3mGjJjexxDsdTZk3J8zzCv5YfJzI8KkNTT8egDUrTZzozS+E4jGdLvvzEj7LtzFBfVzQaIY1DI5aMTc4X1/hz+T/iB7a+gB7sY1UFct7EFjnHd67zf77yP3O42mfQ6LLanSMUKf1eRP2wx9CxSfSUdJwQJyFjGdN3G+S2RyhNpBJURRu3YWDZJZW2wKxYau/hyZw4janIyESGW9eszwg6skmejAnSlL10ympxmUwo7tbX+Rdbv8GAMfuzGww6I9bEm6iiIspBtSuMJcEts+DiRp92HmBeuMY3155D+C6REbL0+NPM1isubdwklJIjtZRK5WhREDgGR2YsXth+gYvbd/niJEK4BjvOlM97z7Fp7fPps7ukZo7/8AzuqTZw0EkyKZO3x5r0LVRcIKzvdKVsWSa2ZRPFI35s9w7ty29gdjrMt+qsCQPmFtmLBZm7TFtKFlotoobF2FB08pQUzck0Yr/WY7HxPjJhM9f0yaWB3eiiC8Fltced+BKTcoBtBexkNynvfAP1yiWEV+F2F5C+i2lVGE4BdYn2TWKvTk6TfDJ5S6ipeKb/PGdX/zlxMaFhGszZFh3boafWeGGwS6k1Rz2b16cx9fQ1/gf/88yYOaZZR6kMrf949ivf90KNa9pEyT5HM4E9mlCff5jfWznKhWHMRl4Sr71OebNPdH2H0XjCze4cY98mq3JSpZiRBs3Lu6SFJo4H/Lrh8mY/JM0qonFGkec4nk9VlBhaIvIGu9ESPSGxbRvfsxgXHrn2wTZpzoOhBNJvwANQ7o4ohhaivoH0zmEZXRr7M8jDFxjPaSrDBK2RmcPWJU28No/ULvlkjqkXcql1AlNJzKpFZpp88dgMf3B0lsRI2bu+ST4JIBpj+yW+v4ilTCgLVB4zu9xDIem+eZ1NscPNpMkh+wJqpoWjTUqtiZ0eM2obbRq4hsYTBxkslVQE2uCKs8HLi19hq91mrsh4qn6TB32DnmmTaQejHCJdyY/N/wr29phsM2My7SCndUolKKs5/oePHKMZ1DCcGobnUcqUoGGiJhNkUMOoNzB6B6fDB61KLYTv0/vf/U2Ebb+dUdGcnefIw48dbExmZnnsRz5Bc3aW6X6fK1/7A448/BiW62K5Hl6jSTgYYHsB1kKNqqXfYQswTEnP7NA12sz0XJpBnwc7x3EW6gS9b2M5feaETVA20ZXEubRPXSvOOiFZWSLcHFHAJ6wBWUsy8iQNKRnlXarxCoO8x9kJ7KbzqLJGVtoEjgGVgzXxsIqcqqgRTk/RtTQPtCZoLZGGS2EalCLgbhZSGh4L5ePMzQ6ZKBvh5WR5k8eHFs8mC5iLK6AU2inYEIKz+zmxGzPqwOq8wa2lJSKV0jdOkNUUUzMjA4yqwC4TTNOkoRQNNJVhUDg2c9UetuGQJBWZsLk8TWjYDRxZsNTIkEaAwxAqm7iscXN8llp0hbzjo0VOJcdU3Tqm2mfX8LEcA9uSuFJyV1TIE2c5EWwRnD9H/t6nCW0PRcIExdU3+iThv7tKRmtNPM1Rf0RQ+H3u8yedg0y1jNFu/Pa/x3sJjZ73Pdk97fmABz+49O676yKG8fqB3SnqQzoGVRFWig1M5syAUTaklceY/iw3REXgHEYiWOyucMS1WG88wq52GNHAkRZOKfmNuR9mPvp53vPqCmHRxFUOw8+t89h2ybxjYWcK15REuwmUFa6sob0ONb2FJwb4zS3S9ZucHE95+OaAJ859koeOb9CrnqfYatARIXX3LlM1JklN/kn10/w/+bOEhsFlp+JUarAyLYksydxrCY/d2EeHffIyI7p4mbAY4ZRddvMZylDSmvMgHHC59xyyqtiXY6KWTXp3xKvnu5SrL1I4K8j6Ct2pR6EyTqdneeTFlLKqk2UpyjQZ2wOOWh1mREk7O8ugcxScNqZRQwM76QSsDL8Hce3LJDIky2PqH1xG/KE9TYCwDapxjsoqVHIg1JApyhslhg6QOKChCnOs+QCj7SKkwOx6B/cXCulIdP6dObDl2+xMMhzLwDEleanQwB+8ucP/+JuXSIuKRx97GN930RrCMGQwGLyrOC7Ev78V9T73uc9/eZTSpGGB/q5lkSo1t17dJZ7k33N/fy3kzhv7aK0p0gqn08AwbLKrX8BRA9K4YjdX5PPHkE0LwzUQk4Ilw8SIK4KtGN9MSVWCwTbGheu0myWdhuAvLYecdVt4+Tw+DtrTqEJjTaDI6lAKCl2RIthqj9nca6OLAtMvGNsw1VMKvU8VjPFkznEn4fRmga8c4nAdg5jYMBlUGdN4D6VNriVnOGHeQ9VctuUc3wiXSF1Fo2VjxkNS4VKZHkOvzdXuo3yl9QDHtjf5x41PoIw56vYOeuEVCjNGiind/DYtX2E6Do+FW3QW79GoazLzMtpcZUbt8dPF5/nk9j+iSZ/XvFMUvRZurSCtYlRRMommhCVccY/QM2ya2JhYmGsWskyxrIQ8TUAK7m2bBI02GRWe7SKlQLgF62qLhWnAUI0p63VcYaNyjTIr7ogrLNvLVI4mNk2qdsrYuEUmBIVlUPkj4nOKM36L4ZwgTVNuDm7wzTvfIDdKNs1Nug89yfLpw7zgfpbNk/MotQbaxLM1v/7yOv/0uWtsR9u8uHaLX35tnZpn8a3pq3w2+Cq/tPmveCm9yNRLkZ6JMA9kg4t7F/nc6ufe/oZISx58/8x3ygqmbeN4Pt7CAvnGBq1em/lGwEZa0G41WXviB3hPtMt5p07NNBB1i32d0c5SMmGwPB3QjHOeM7fYa/nMtnzseo1S2hgNH8dMWTh+gi/+6i/xz2oZSWWzzCN026e58vA8xvJ7EbZDKQW5U7BR7ZH7JaFlUDlNSuugk2aRVTTDTV5JVtmJNmmYBkd8h67t0GGfHnuseA4t0+RKmPC4tc5Krct870OYZg2tS7Qu/1h+99/3Qo1p2ow8mE0UJyYN5hvPMCpSNicJg7xgbzBA3YlQpz/JK6++zigKKVTGKI4AmMtj/DgmiTKev9FkomyGk4hndq7Q2N+msiJsy4OiQlbgyCan0pSFKgfTBENRz06y9eynUI2SuiexTQswqFaW4e4D6Mok9LYJpvMMmzbmuGKnFJTLryBtoJRge+RFTmvoUemSydU+WWGzPI5YySuMPGDo+uyMQ/rhKmPHpqwipJlRZgmWmyCFj12CUIo8ibFrLjKKKHyPiBZTa47SrPHZapFhsUdeZtzQ86zWXWRQQ5oGqW2z6tlkTsARHWILl6wTcs27Sy8rWfbWeczs8+c6FoHtgB6hA0l7vWLulzYJXlqnsOepjnoUiwKp9qnVO0gcpOlgtls8/tEnOTYTglbIRh1rYQH70OF37DGEEBiNxjvEle/emDh+wKFzDxG0OuzeuU2RZSyfPYfluri1Gm6tTjjcxwkCdF3QZxOl1HcWnqag/b7DdJ8+yg8/tsSZmTVMs4F3uI388PuZehnzDY+tvML0pjDuM9tOeVJfZzp1UPYYyyjptIbcDhySQlHXMM00an2e1/YfZinW7Ew7xOlhigKQgshrcW32PbjRhEnYIIwNTCGolSFKQ6RyYiem8NqYW6cJ/UOkfpNu1qWctNFWSolBmAoWZl9j9uRZjEaDrYbF4TymG4+xOjbrnYi1hQzHjlAiI00FOojJuxYlCtuusJEIXeHFOWcGe+gsY8tr8Eh9l7bfQEqPI/WC4+4+bSySyqPjDVgdH6flZzieT1z1uLK3iHYz4pZNIRzoSEpLUS8GaKWZJAfCS82QXNclZZTgVQetDdcnKVPTRagUzzG5/sI2w+sbaHWw0tBKkW9sfM+GoSoUWVyiqvsbifv814eqFKsX+ty51OeNr21QFhWrF/bY3wjpLATfc7+UAtMy3plRoDWoCvo34JV/fnBjtAfDVbj2e8SVYkML8uYpAi2oCYNa7Qiv+QFP9PcwK5NzYpMHdMHIPs2bzYe5Z81wy+phD1bZyRbIRis4Y8lxt87PnjpHe79gpoB6w+GD9lWOdzP6uzGft0ruGCaFZeIYMV1/l0O1PnOv/TOW0xvEnMB5Y4Nj4SvY679Bu75KffYINe7Sj0dUpeRCcoy9QpG2Bb/mPMKZ6Q5yElGOY27PFpwwS5qXQ9qnNEZ1lS2ZUH1bEPcVhZ7nq4cf48H9ZdJihC4VMRF5u0labfO1B1bYmW2RBIcQPMrjV8YcXa/48O9cYeZSzI7xFGUqOJp2GYUDkult1oe/hV8+yS51ohdeoXxzlawsGBYpylJ43W3SYIMt402qqsA52nw7UwhA2gbhtzaJXt5GJSUqMNFpiYhczKKBTg6qYRBgLdWwFwJkYGF2XHRSoosKGdio/DundI4pD/J7pMA2JVEJg8LkC5d36AQ2V7emtNot3JqNUoo8zxmPx7wb961P97nPnyy00uRpSfVdB1jRJGO4HR901eQtG9RbVqidOxP6a1O00lSlotYzadcc8mhEOn0V0bnK1iRDZB5uqZhtuNjjnKDUdC2TYzWXrpkzKae80fgSmR5wfFbwQ+fneOjQ7+NVBW6xjGFKBqnLw6bNOWUjovdj7TQxrYN5MGi/jmqH+I5Ayj1SXZAXCULlRNVdKjPjw+obHAnu8iH5uzSNCRYJf3b8PLmdkVUpHprcKzk88wbl/G0mSxCYiqE7oskQN51glxqFSYjPv1j6BLfKYyz2t9kuLMJaj7ooGAZNqrqDPryAYcJh8ybSs8nCm1js0GwJ+qzh6Jjj8TVMI8GZvkxCTN9ZojQzNvIvk1rpQRfDPCQqM4ZVjQfTkkdSwczyCSbuBvdaIw4fvkYpNhGyhttY4tTKDEa3hifr1KSN5UXkVkanbDFQIwrXIWgEWMqiOdMm0Tm1rEZqFEx0k9Q/cEvIxQ75oxq/ZjE1Q1r9BkXTpmg32Fr2CCd94iJi4tkMzYxD7R5Td4edVsk4XmXeOkm3ZvDla7t8++495vx5rt+9wOYoZqZusRteZSHpsVPs8uDceWInQxjfkQz2kj32k/3vDE5TYgQWmIJCFW+v6U3HwfZ93IUFlJDMzjSZmetBkbNcd+n3FumNtmEywXU9pAebRLSmUzLTpNHf5ofevMPLx5c4stTDExLD8ZgiaCw2WVYpbWHztaXTvDIzx59p/QytoY3UAW8ELntSU5k+iTbxTB//RomwMmxbkimXyl/AcSFPS5QqmLh1sjKmaRr8zHyH97WbSGHwt1cW+IuLXdqWwcfaJvNmhu8fZXnpL2IYARqN1n9K23MbhmRsQUsLZtwjmJWNTFOao5wor7i208davYGvOlS3N6nGQ6os54VvvEBnuoq+9o/wnAHlQpfpdIHRVYPu1l0+dPN5nrj9bcxHLxJYB346aWlaXos/M7xDI04wax4bC4foih6O16Pwt2hXbSxHYlQe5lizqJ9Emi0yYx8rrjGVikKVjKYtktqY0q0wkzqRqBC1DkmRUVQ5LTGLCud55LUXaEUpymzRDxocH+zxwNqYu5M3SB2NViUl4I88ZnREaRhUVQ4yZWrByqxP1mwSO21yw0dS0A4SJrUdTC9Dugn/vN0Er4kjCzb9Gi+JCQMj4Nx0m//99YBPjU0+FNaoiTqxbdCptpgzM+a9EC0ipobGMnxcZbBke1SyhqEsgixj9psRZmIjpYV0fMzeDIsf+TDdH/ogwnExmk2C972X+g98iH93wMJ3+EPRxm+12V29Ra3TRUgDy3FxgxpuUCPc7+P4Aa35BQab61z84ueIx6O3n3eOt2idnGelW2O24WEYBz7+srdCIifMeQa3bIO5ZZPs/S8jnJDArzCFJhAhVBEjvyCUFdkkpyEkz+aSdm5xfdpgEhhE0Qzh7icpKyi1xqj5vFwu0bINrl0+S55qLAQi3iA3K76iB4xnr7Izv4I/9ulXI3YHNzBxMPKA3JYYno+0u3hyD9NTNJoWj3Xg2aygWnyYoTKQjskRco6OfxfDUMgw4k4wYXrCQpkKs6kwCoWKQhrFGj+x83m8NOTm7HG2OkcwhIchfArtUCFJrZh+EjBX75OVi9i1u5itHXZ2fhhZzrDpdJgerRFWTZRfUIqETjlkEKZ8+rVNAAJDsqNLkigCZVOt3+Xi736RBIdKZzQ9AzWKGfyDv081nQKg4pj+L/4iOsve8f7LoiJPSqr7Qs19/iukqjRvfG2DtSsDBlsR4TDjm79xi+F2RK3t/NHPAb+2PaSYbMH2JXjp/wujNYgHAOhoDx3tw43PM04jdD7hnjFHz3ARZoPuZIM4n/L07hU6uuTk2u/wQ6OS2vx53qwd5p67wLc7T5EXGrVW0Kw0toAf78zStWapGYLZQlMoeCy9wkpti2Ka86BrMpSQxwrDdXmg+xpt8xreYJVpkJPqOYb/v18mGt5B5gNuzobseecYZyNGUYJotJgtCmq65PLybzIyV5lTBjrOsAZDaPoYJ1wK2WV39lFkfoWPhxXOTkTz0iUmow7fnjmBUUl+fOcEntVACcG9pYDLTz9IUFvgsx/7M0w9ybY1w8kLb3Dvgw/z7Y/+WdJzD/JaHKL24Kf+YMjk7h02x1vMq6dZMU9QKRi/8iK1rSsgEywtmOYj1MwO0dAiWPCpircWaN/1iROOQb4+Jb06QCUluSUp0hJRODhqCR0rQCADE2elgXOihTnjHVif/rCiJjDftk8BmIagGzjUHBPHlDy/Kfi7q4+z3PH52Ll5XrozQEjB3NEaSIVlWVRVRVW9e0n2/dn1Pvf5/qTIKoq8QlWKaJyhtUapg8qY6ruq7AabEc0ZjzJXxJOci19eY+PGiEJpRjvx2wdeWmvcIEWakijNGG1/EWq3CYuKe3dDLCF4aq5BtH4XJLSkoCkl82GXuMpZ7l2EmsnqNGWh+yapXCXhDsU4pSgTsspk1tDUlE11xUJslTg2GFaFMiJwJXVfYsg71Pw6lragapEk9yiMbU4afVrlXWbzmxhlhWfCj+x9BdWZ4rQrTF2gVYVnpHzb/iG+1n2cOT8mtScsxZt0igne5hb36GK6IZJNdpkhanp0hWYvaFETCaUtUIZFbf8OSljUrDFlLWfRH4ER0zmiKfQ+NWEyn9/hWvMMfbfOnjBIgGvWiLK4Q0KEZVlkFJQ6Z6mh2G6F3PV2efKHP8kXZl9gzZySYdOvJaBPci85ScepwFX4qkaZJ4RK0OvM0JJNSltj+BbCk/iGT7M+Qy4LFpwFSqtgP60o3Q63WMDwPHK7IGg2Cc2C4ydO0V5cZnR4nrWgYDrtk2UxGwz4jZ3P45oOVVUnkpsYKmV2vEQ7gLYjcNyQB7sPkmebnJ/3OTJjMeNofoineWbpGbp+l8TO3qEYjLPxO6xPwpDIms1ass4/vfhPUW+VfZmWhVerY8/PU++0+KsfOsX8xz7KTKvJfM3hXgyXzQ61Zz+IWQuY84esxGs09/epHIdaFjG9+yVKV+J126i45OnQ4c35o7Rcm9awz9bdbRbe8zRzGaxvTvDxaRQVqVJcncbcqC1hKMmj71/EG8R0DZu2bZBmiiIZY+R7bwmgBRNpYFVT/spil6Zp4BkmUlp0HY+OZdI0DX68HfOtves4zjwgEMLEkC5lGf2xzAXf90INaYhWMaaOmDXnMLTgeJrz0HaOWVS40QTaHYzKpHd9h+Ord9BFjrhzmZmvf4a72Tpjt8+qm9GeeZk4zOi/9hovPvgYteEu2o7I7QATyOwc27CwrBCkiWUJluIYt3KY74/IzQFBNoswCuyyh53XaDnz5AkMsg3Gx76Kq3NKqyLJoJQFmR1hijZREuKZHaTpkquYnrnMztoZ8mlKmWXYTkCY5cxPpxjGMtPiHpVlokpNhcSzDbp6h1yXVFWC7ZSkhk0ZLTA2PaJGm0TYVErhmhHD1hqpVXEofZnNdEJWSJxajYHUeFadgRxSj0u6F0bM7N3jo4yoyxYVGb7awtQTnGqIthsc2dhl3JmjdfQIy50eS9svYsUlTCXGXYmoDKTnY9TrBE89hazXkY6D9A6EGmFZCNv+D3r9fr1Bf+0OjZlZhBCYlo1Xb+DWakwHBxU1jZlZhtubvPG1L5FMJ28/+x37gIFltjAMFwBpeFQkHLEz7pSSM8fey4n3/3cE9cPUGwG+mXLkTkzLVJDniCqnyHPmHIMnlcHYqHGvqHOxLghMk2WjQQUUCNYdSTEYY0vIZ1YOWptnCc2FXUIr58uV5OvRAhvew2inSVS/y9TYRzn7zM6Mic09cjPHHTsH3larwg6eYknmPBylOOUpHFNS6ZBnsgHX8jvYhkE7D9lQQ4LcoBA5whsSjPbppBMOX7/OkelrBFbBriqQ2YShNDGEz+1pi70yYM5MCNUsy949irTD7btzRIfWuRmf4bhTY1cfoWpP2Y4a4FZoUdByNIfrCav9A2/0k8NtfvbKS5RJSFVUVNub2NeuMl7wMQV0DIE1iWDzDsVocrDwiGOKnV108U4luswVRVZR5e/cYGitD64X9y1R9/mTi1aacJSyvxnh+ib76yGdxYDFky0M64/+LEdlxW/vDYnWXz2oorn0q7DzBmQTQFPFA3LDgc3XWfra/43Z+C6PRPc4Wc3jiRpHNl/jpH8UN/DpVQXeIEIrj1tOjWvGEs/bT5MmAa/0/gz7eyXKTJAGzO7krL6+B0LQqzLW7k0YvH6eI/YeRplwzFmnXRoUkYW2HSqxhxjvoUJF5s1juk3y7X1k5ymkf4gvjSe8vDmD6czRy2sUvVl6jRvYvVvs6jWe2puQV/OoZpvmcB0108NoJ/z2xxb4lY6FsD3O7YwRQkIaE/e3GHV7JOQY5hnsYAFTm5i2z91DJTKZZVTafOnRRTYettlbPoz55M9ya+4hdswHWc8LvqENtG0gV3fYyHaZD59mpX0YKsHw9m3k/ussq5KjpST5zCpfv/Qmg+wQ7pllyrL4TpWg1gy3NsE56H9tL9cptiIqS5KlJZbR4HD951GTg/uNmoW1WMM906Hx4cPfsT6VCulb7xBqDCGYb7o0PAvHNNgYZ6Sl5kOnZ+nW7IOgYVPw+MePgjgQaoQQFMX3nvSJ+12f7nOf71tWL+yxdmVANMp57Qt3AahKRVkc/IG35prtiNmVOvE05yu/dPVA/N+J+Z+/cZsr+yGrqmCyF6GrClvukVWKULtMR6/RPK7IXMHeRkhDSp5t1xgPKvZNgSkqRJkya5rYosCRHnnp0PH7TAefJlUhafBbsLmHKDNsWVHXMdtTzZ3NJbKqTmBUiGoMMkSaBU2/oO5HNO0ajUZImXU4JCeUVkllNjGSHcxsTFQ6aMOmXY6w24L2gyFSlJjaoKgkKnM5Wuzy/uBbHGlHLKVTFvSIbJrwq433MBZg7iiEleAf8/GnI9aXjtErVjFlRhF4LM72UQTsN5Z4On6NRXefUtqErOOZDjuNFcxywOVggb5hseHPIPt9dqx96k6Pwktx/Tpm4FOzDfL2N9kLMi4u9XlzeJV79R20dPmdScEbjTHSNXmx2+fL6iqrxSsslg0GfsHt6AhnDz3I8vJh0qbggnGNMIpxpcfalRgqk7qqIXyBlgVxlTMqSsY6RagFnIZPavk03VMc6h7jVtemX3PIDQPleeQ6ZTTdxzEcGslhPG+EWaQMN3MMscPHjlzmgeWKY/UjeE7FX3/vDB8845O4Q/YXA457P0jdqRM7GQjxdkXvOBsTl/F3BqwEo27x1c2v8tL2S1S6OogwUClBu4PZaGDNztAIHIJmgxnP5VDTZWuasf7Df5bGj/wIQkqC9HXOP/+ryCzHNgyMTpsd06LSFgPDYnuYsHJjimXNEt/bIAoTVr0WR1yXJMzIwhzPreMmGc0io680k6hPw8i5du0ldBjhxjZNIcirjJ3tG4z6m9wbJ1waT5ionOLir/Coe3CQgpBI6SDlwR5WCEFZ5Qj/Adqt97ztArGsNlU1/WOZC77vhZqiyNFVxEb7dZpJjFQZK2FFI1ccNaAkZ+3Ro4y7dRqFyw/eSzkTdykrg5vVUUqRE2W7FJbF0Zl7zLQVM7HNlfYsa7LBlXHA7506SVXPmVYjggYYD45RrsGZcJcTF76NEeY4iSZpeIi4i3AURuxjpzM4pcWW2KG/fYTB8Dw1FNIU2MqlzGC8/Cp7RsW2FlSVi3Zr7FR38Z0eRdVGFQWZqNCWz+GtVbxJThqukeVjhOcjDAekzSBYwlJ9Sp0hXIFlV1SyQZU6DOtttqwalTC44L6X6diiciNmvT6KKZGMqWoxQzpsKoPDcsi+dR2nOEgQXxARx+11VFHH0wXKNalEAXqEoI2bFOxaPvZsF+m62IYEU6ClxK3VEZaF9DxkrU7nZ/8y0vfBMJC1OjL43jL+/y1YrotpOzRnZoEDv+NjH/8EQavNaGcL1w9wgxpFljLc3CCZjBlsrL/DSqOqkv6VHirzATCkhyKjmRX8j6cWefrkDNJwsT2XxtE5XGdMMxpx2gW/sGhoCKMJTwqJU7f5nK1QhsnONOGwY7CRFQS2SW46xA0X//QsL9dOMvGbVLZDSYXX3QXLQFgmV8Y1js3/Pp3j36CsVZQLHlntJs3YJhYJqZzgcBJNTulGHDYOUSmHO90HCHKPx9KQUCX0soA6NUoy6lmINGFOgqUmHNv6IsFoA09k2LdvUuiAhgnn0n28eMiNustUuJhlwEZqUtYNdsw5LDaIM5Msr2Ew5KU04dH5gkKeRag7hEUDSYHhBhhNg0fb/5JRnKDSKSc//fd46s1LlJMpVVlSxFPcLGRjwUNpTUeAk0TQ3+HGV28dODeiiGowQOfv9FcX+UHXk/JdBJkbL++wvfru5fz3uc+fBLQGw5K0Zj1mVhqsXuxz8sk5HvnI4X/rc5NSMZzsIy5/Gr36NcpkhN66gC5idLxPcetrTPxZdJXTuv7bzGebnNv8Jk/cOkN3GvCoCHiibHCndYyPlwIvTfCk5rVpRJIo7u4tEtzb5Yr5IF1psRE7SM/izW9usfbmgCzKYfxZRuNNFrwhi2KHrqgYjQWx1BRpwZdrE16yKoLbHXLX52Wr5IZcRwuXK5HkyuyT/PTnU0TiceZOwHuvauqyR8FrJN4bHI0DfuyLY6Z9D6t3GL8/ZGIIHOWxZ9+gtDeY1zFmZGKZJjKoEzoua/UWA6G43myg3QYmFm5ecdnq00k6YFhcW1nh9W7AV370r/JlHWAOcjIz4LGdRWa2FftnnuKhtYJtZwdkQLvj0F4PGW7ucmhP86nf2+WZnZLe5QlLbw65Hc/ymhMihKAqD4LSszLjhd/6VUpx0M7Ue98c3vkuwjHIkhJhGDiNWdS04KCixjpYDwqBNeNjthyqaY7OK4ya9Y6MGiEEy22PhmviWJJBlPHXjw14aLGOYxlkZQUaLNtiMp2glX67qubf5CCj5j/1yL7Pfe7zH8ofVs1orQmHGfEkJ09L4nGO1lDliqpQVMXB71krCAcZ7fmAPCmptR0e/dhhRtOMP7i4xe9vDbiVJ1z5wkUeeLyGmVynJ0PS1hFKPYtTLlOa4OQVVVRQ6w+YaJvXRcHvZynTPCOsQc22cIsOadLgXOMaUve5d+9JhpnFxCpQVURgpbTMkOPVVWS7IrHaGHmMpcdUaoKyE2w3xrVSGnbM8pGvUGYutTIjCyS7ZYp0FcqySB0XIQoaxQhdOmT2FGEobG1QKp8j8S3kOCFZmOG1xk+RNmus2EOK7hzdWsUkO428lzGvtpnTt7EHO8QIZuJdZuQE0V3D8d7AxOO6d4g5McJ3pmyUklLH2IbL6+0V1t0693iT0JCsmQFHRExPD+kIlzute9i9OpblULdd9q0BG36fiZ/zz7Z+ma7TIzJL9vIhAzEmkVM8bnFktMrK0ORk6FLJnJEzxp7Y7JZDtp0Jb5q3sBwL3/DpPeDS7PiopCDXBcIoUVqhc8m+4XEnmKPvLjFVJvFIsdJcYdedkAgDLWwMq8Yzg/fhTWE/2efcMKUoNFkyol4o9vItLhffxjP3sbIGZTLBk/fIzVUs2+O3hxf5wuU+eeGQzYIwBJf6l5jmU8b5QUWNRlOqkqiIMM+3uCs2abktsiojKiL+4c1/RufYUYTrErz3vQjbxhaCJdei7VgstT2CwH3bcRHlY3JSXM/DRRMePcTxpz/Aomvz/DBkdX3MZJriIHhj9xaOaaDmZ7EqKLOSRiXZr/vszQTMlQV/Z32Tpit5/0PnsWoOsZGTjw3aQlI5KVWWIG6PCOOMYSaJC4No702YbgEagUBKGyG+U2yQqYxYCwyz/va1hYWfwnEW/1jmhe97oSbstklrPlt2xL8+vovWBXO0WJ2x+MT+DSpRcOuBZXYbHrHfwNIm81WPfSF5080wSVAelIaBrur8oPY4Lg9T1Jts+F3UhT0+/u2v0/IFSlQoJVGWImsanOQ1lhbW8IIxhjLZCFyi2EPbEeFUEU5rlDrjRmubdWuGtUmTUbbF1E+RBZiTE4TBc9wtIE0ylOETFzb34i2eb2uiZocqzynLnCLVLA93KbIBlbeHNkySSmFYJZUlifUyN4Nz1Nwp2jUpOm2iooEQLsqtcW0U4KuEGxOHZcNgaTDLqvMqb7bbNIwF4uIuUTxlR3ocLqb4VcZWdQQRJnTyfZykoG43OG57jEWNqZpBFwKR2ZSu5kR3DdPQqMkEI6gjHIvWoUOc+Pm/idnrIQMf6Xlvd3ECMDrtg2v/EViOS2tuAb91kDQuDYPF02dZOnOO9sISXvOgxffSqbPMHTvO7p3b/P7/8vfor919e+G89sZFbn9rnTw6WJUaxoFQo6eSs4e6zDcOKm0s12Fipny4t8tDgcuHpKSFy9lqDT8fMq9S5oHjU81c3WGYac4nJXZeUZOaOCkoC8WWdNhwG/QNl7Fts+vWSDKIjYK0KtFC4qbbjOdTlHapTINpc51podnOfUaFjXZWqKTENEPaWZ0H138MT3yMaOUyS+kQy3QZTiU/FAVoXXLcXKRl1pitBkzzKenFiOFEkZsakcdMU7DzhKOjV7DiCY50KITPIafAFopEaEZGh1xZDGNBUXp0swEBY2bnf4G6vcYwncEQDYyiAmGx72gWalucbX6Nzzz3GUZXt/BGY4pBhVIuOjzwDd/SClFpWpagLmO057N96R7JNCftjykHQ3Sev0Ncy+MSr2FTld8r1CRhQZ7e7wZ1nz+5VKWit1TjqU8c49DZDls3RzS67kGHwH/TIqo1lDloTb8oyOMh1sbLqHCPf7LwSfajMYM4Yufm85TjdYpgjm+f/Bm2F97DXDkgljV06eMN99id/RAvdM6x0XgM130Pee0QkTRZMSNa6YSjWyWzQx9huZxtBcQGWK7BsUdmCBomHUcwSR2M+C6N7CZ25TDrrPPQ5r9kSX6dXBd8WY646RQoI2RvtsbLwwkvTEcYZ07zwu0LfHH7HgkacfsC7bUcIV2M1hxBGOHJbXpjTQOTzuYUw10AYVDbSHHGSxRVzInx43RqLnqnwArqCCcgDQICNOOazTifsOUEWNh4ymJdTbBUwlw6YMOwuFZroY0WtbLiPdogNWu40zFNXSfVx1iOaixuTzjV7xO/+DLP/s4FfNtiJnVZujPhsQ3J+NEaM2FFIk36+T5CSpIoZGNjnd+++Vtc37+GrFtYh2v85uZvET1mUglNmpUIx8BoWFSTDCEEsma+M6vNNaHSqLhEBhYqr96eG7XWfOT0LI+ttLFNyTBMqZWDA6uvKcneChcWAtI0w3orrP/dOLh6X6m5z32+n7j89Q2yuCQNC/KkpMgqsqREVwcHV+qtA6wyP7BGlbnCbFikWYWUAjewGI0zJnHB1SpnMt6j2L1Dq7pKMd3ELKZEjg/xKZxrDxEISa40lSio8ldJ/Ih9EXI9q0irihtZTN2r4aTzjGKLw+2PsbL4N0niJju6w42mprBjZoMRQTek+djvoxYuEGqHKp0y42mkSPDdGFvu4OoK0R4TxufIduexi5iJ9RyWSCl9SDod9KxPoEc4RUiR54jA5gPxq7RNTahblKkmNkOmXYfX9CGueUu0GCLmOzzkXOXlZpdj3ZJHk7vMySHtPOaBcJOarpjTmxyJNujogrYhEGbKvaCHkhn90qTp1uh5HXZNj4ndpJ9vYhom860GyWmfUvsYRU7fmJDP1LGkjSNtttnjqrzNk8mDmK7FvDnHxExIRc5UxKxmdxChyw+MxpyPNQktci3oV32KvYLbozUmRMRmjO3a+EaAfxga9TqkJUkZU4icpMjYTna41LzJa8Ya/3LwKpcnCUVSsFRbYs/Zo06NSgsyVVJP6tTweWX9RVq5gP0THCp7dC2TSTFlO97hzduv8fr1CJErfvPKr/GLr/4DWsZRhPK4sjnmdy+MSJckYRXxCy/9AjeHd7k37JMUCVvRFm/03+Dvv/b3KZYN3MBn1ptlkk2Iy5jVapPZJ84jLIvuX/urCNdFAH9rZY551+L8UpO2f/Cd0lozzieEvqTRqKPHQ+7GEx77wPt5XyCwrl3FvHCZosw4mmiuVDnKcsmOHGE0TkEpXFHn9Rmfl5baqEpRjww8t0vX6GAHLmMVARbtRJHbMegKa+qRJgXrg3N4/bPEjXnKqxdJrw4QN/4AswQpbbTWJGVCVmaMs+8cFgshcN0FTPM/rjDhj+L7XqhJTItm2+ADwZeYlxdImz7d7mGuNgSdNMETGWtiSGDtkTZcbngpx6ZNzhhHqRqXcIwpKhBoJTj3LcHT9yJG9Qay3aL7WMF7bow5eu0qh+0OWlSUmcDQDUrbhFRBIpGehzYFm47F0LMoK8HUdEiqFtoVlI5mx1RMo5TL+y8xKvfxXRO5fpa713+AwTQgj2JKLamkSZJYRFcuM5kM0EWOWZT4QlDkJblRkDkaywvAtLA8H7F0hF3RIgkE9foelblMgkEhLPq6zSHGxBgsVfsctwsa9S1iV7JrwWu2R9NYBqOgrDJys6Jnxnx0NmC3fg6VFvjlBDNNOT5jUittzDJmN1lAJxJiTS4iGo0lJDYqzTBqdYx6E7vToP7QI0jXRfgB0v8uUUYI6h/5CGav9x/1/g3L4okf+yS1Vucd1716g4/9/N+md2gFgPM/+MM88MEfZLy3S9Bq861f+xXuvfE6ALt3V5k5fJQ8TSnyjKoATY5IDYyu83bLW9OxuLb9Ju/dO8YJ60Ec06ambILieayFryN1RJAV1FsuPd8ksCVt8zrvnVSYlcaqYHE/wckipGcykTauMBiUTUbZPM+zShwfeIH/l+Sn+OLajzNNalRKM6hvcv3YbzKY+qztWeSyR2HNYYzmuJwU6EpSiw8x7r7GUbPOwzQZmx5CCywtWM5m6VQuvXCVqIoZFSnacWh5kumMwTgX2FHJSlLHq0oevZNRThokUc6zjYpQCFy3gzZmCSyLorSws5SlIGeaB0zSTTb2fxxVNilFk4HRomyGiKrGmeAb6P3fQbSWuDAzy6r0ULmPGm8zq0NSQxEVGpcSOdmnmDuKnQz51dfu8o3nb1EVBdOvfo3pF7/4dlllGpcETeddLU5l/r2WqPvc508SVaFwfIvuUo3WnM/KuS61jvvuN2cT+Pr/C60KNtOCrqERRUK5/CTPB6dYE3V24ylvvPl19uor3DZd/gGCr5pzmLrgNxY+wXrtAYgjJksPs+E2Cd84za+0PkXSPckds8dftr+ASgrsQuFUszihw0rdZdGdYijFsUdnOGp/i9Pta2ylp2kZa5ijKTrxKRjh7d5hLbxCZpW0XIORa5AwYdRxeM8VyYe2Z3mh2ccdZYgbdxg8eZxEb1ALNb/2E8dZnbf48Ldjnry0S2t3wqg5Q3k3QiuFaTqs5EfY4yc4Wz3DQ/I0pqkoRoJMCvZsQeh6nOx2GTfqHB70uerXoTSwE3DNw5xya6wECU4JpeFQH1b89cygVmXEhk+pEky/gWN1aCiPjz8/4Jlv/Gvkt7+AWfSwKs1oxiNv1fCH8FW/YOQb6HiLQT4CKdjd3uabzz/P6niVSTHFnPUI3r/Ahb0LXFq/xHPfep4EjVGzMVou1SRHK5A16x2vW1gSDEE1zZG+Bd81B5a7Cb07UxZsC0cIhlGKLytAf1cXqAPxRQC1IHh7Afxu3Jdp7nOf7x+0hq1bY7K4II0L0qh4W6hRbwUC255JkVW8/qU1Nq4NcQKTL+6MuJ6kmLZkpyy5l+XMWCbvP95FZzFVXmBufouwMpFlSppPEHELYxgwJwxCS1CYMRP5RUo5YbfYZgNNrgt8u8AUFkyXSIoSszyJsXeIxfmriFpKblZUTsInjv4Gdv1VisYY6Q+pbMmZ+oj3dmJMIZhtFtgiQ+Cj/C1qV3NWvnUbNwupybvU7CFK5sSey0bbxiuGYBh8aP8yjw32+cTWZ5hXu4jUoawqRs6UkbnA7WqOdbmME+1y1rjFSXOTDMFj4i7PjK9RY8CC3uQveL+NGQTocpdB1SEsc5S2ILvDV9sr3AtmqJtdhNSE+Zjb+Zjfnj/BXj6kkUfURc5srYGQJrGO8UyPjXKILWx0YVCogmk5JdNT/trmxymnOamjqAzNyA/5SvtlwuQETDboOwXbfowyFXbd5qPPfpSRNcVWJhjguz6WthnSp+U1ITfJq4LKrKjKCkcXnAwP89D2Q3zM+CgWHnmc03baTJ0JQeqDcdABSggDJzO427+F9AwOV0MeGPZ4aL6BNgtGImRQTbi5McBQFtt6QKXAKlcQ2uPq9pRrmwXjPOTC7gXCIuTW/h5XdwckZcY/vPAPeW7jOV7cepG7k7t4lkfH6zDKR6RlSlRG3J6uApBRcnHvIgArro0p4EcfWuTpkwf7RI0mzEOmdkWjWUdmKUsPP0p7+TCPrK3yf/jq77G8fYcmCY/tFdw9ep5vnXuc/Uabr17cZK7mcit7gyv2Dnt1nzzPyFsVsaFQgwLLtRgaEZHKMYY2iQyRqsIza+SxYhAuc0geIwt6lDevMHpth/LV38HJCqS0qHTFP774jxmkA6IiolR/PF2e/k2+74WaWUIemE+4VLkcqV/H8ix8y0Xme3RbC8x3jrIyPkFTrOFaijTbxd+YciZe5mfDJ2maGaGtUM0a8xtTgkojHINRvYaxcgc38Bl1arhpSqVSpLRw05OkyRQ97iFGPSoLKlmQkrBjVUR7EqUtXLOOqtksFz10bJHpFK1irComsG6Tmy6jKCCvAgyzQCmDwAuoqpKqCsmnYygLZBoSiJAiV5T6IOukRCCkyWysiPwWG6WmX0r2ZUBaCVKlKJWmKk3uFHMs9Fxm05wi7bFnrXGx9jKhFNzK9zivTUZWieWAEkMCb0DPc+nZMVWrTe500FWOQYTMQCpJHjbAaKN8SeUUHFr5q0htghC0fvInsWrtt8q1D96TEfiI76qeEUJQe/ZZZL3+R7zZfz+EECw/8CCGZX3PddO2kfLgBNrxfWrtDqPtTU48+V7e/zN/ibuXLhx4JMcjOovLZFHE7Vdf4sa3X0CYJthAICiLA9uN6dnIBFw3p/fRGRafOUlL+9ye3CB09jG1iZaCqufxUduk4xnMmZsE8y7KNkGDHo7wiPlJbdN1PHrkPDYcMRjOEZYVtglNWXIhXcAqUrLCpqwUw7zLVNrE01mS1KHyXYxyHqazVCaMezextUlhJCxi8ZGxjx2sUJkWnrCwCpN5o0NDKWzbZntZc/3Ro8wbA6ZzMJYulpLUIwfD8HBVynSywGA8z0xgUPkBynLIOIFZC8D0cW2TuVbBXtyg6+UMx2fQsceV9AOsiVlkcYi740NM8grLFsRHDrFpzzCoLIrUpppsMpvusGyXxJaDkcf45YiRs8TCzotM/uAzjLb7yM4s0+e+xeBf/BLVaESxscH4lUsETftdrU9lXn3PdVUpxv3kfrvZ+/yJoCrU21k0hil4/0+dwG+8S46XKmF4F+5+A6qCrazgAc9EClAf+DuEjVlWjQYeFds6Z8Of5ypDOtYaWq9TSImqL9OXXTLtcWE0xKxcvGGFyjV360e5asySTK9zthrxTOsafSsmWNP4leZD2R9AlnPpyh7t5AU67iWiwmGxdxU9zBHTefZlRjQxUFmENitOGm1yVedeOqRyYx59YY/WNy4RzTgcosOzyVHss+eIdcJM3uCDfJDnOpfRRoMz+z5LoY9cXMJ1auh8gmW5+OYMzq0r/IXnbeaHLrreoRpH7JuS/ZrHXq3BcizZ8mo8sH6LyK8zVzSZyWr8t+o9PLPTYyHdYKnU1DOFmygmNzPCJMZsGKQiR1QVtltDVTZzfZ/P/sh5yv/m4xSnnySqSX7tqR43jvYoY4cdRzBenMHfPOgEVQnFdDJmMBywHw3AO7AzYQpG6Yg31t9g4+5txmWODCykZ4IUqKjEqFvf89qNhkO5f9AOVeUVvBUGWk0y8vWQyZfuot7YZxgmePJAtLYNidLw9et9PvfGFl5QY3Fp6d9aUXN/trzPnybe0TXv+xGt3xJnFHlcksUlRVpSJN+xgns1izwp2bkz5ubLOzR6Htf3Qq6PY0zb4NWtMc9NJliBxV99cJEkdenZy6i7t9hjFlvn5EWJna2QdnbpSsHIAFm59G+ch8RnLanRVxVFmfJk702yfMh0UEeXU/pff4Htz7+AYWoQY+pL95jokBmjT7eZUE5O4zkTitYGh9urdNovYakavjlhxvWxnR41ex/33gYNGSMsyWO2TcfaxfcyzDJHRQWWzslrHZ4cXeDo1kXmsm3a6TZKuKxMH6OjfcblLC1D0sxbmEVG2t2kraf87cFnaVdjRjrALHbxG1NmjWt0dIpUBp82j/JCbhKXJmEV8/X8Ite8gLASGDjEZcKeDNk0YqIyoZ2GVOmQwOlh6QjPsJBCsGXvYZs2UZ7jmT41IyC1E1SSsxvtkcgcLQXaFrwm3yAVEl3mbPop142bRDJiob2A7dpIQ7JUtLGU5M70DmEVszZZY7Y2jxQ2jumQk+PHPoEd43sFVVbS1jV+xHkvaZJCAR4+7aqN53gYlYEWgnZVZ2lYI/UVp5hQUxpfSgwhEYZB6IUYxhYiN9gxRvzw4U8wtxfj6ICaY2IIj/XxgN+79hoLzjnujfYwBEgh2Jhu8JW1r/DE/BN85d5XmPFm6Hk99pN9kjLhWPMYt0a3ABikA/7VtX9FpSuSMuGfv/HPmakbLLYO9o6lKonLmNBS1AOf5ZVjPP6Jn0LaNu00Yeni6xyL9mhXIfOjHFmf4aVal7tlxcMdl0eWO+yXCeN6nR3LwNSKRKYkQpMOEqxCMrZiaOSYpcMoraHqPrklsCcpTm4ya86T12ZRSc72G/vs3J5gFgqQlKrk1ugW03xKXMQM96fvWvX/n5rve6HGtpqYvse9JCVVKVWVIEg5uvM1bGeR7OiH8eQRpBFi2ybn5Qzn5p/murtJu28wNzqP4RgcOT1PeXaIkDm2s0UrUTRUjvPwz7LX6zIptsiSMWZg4e0dJ1GreNUCD1ofYSDvMbKG2Ht3WNpbpdIVbdVCKc2a3OfB8CQPZg9i7yv0KOLGbsy9bp3nT7foaw8pXGoNjZAWTSvAcgzcRk53so+pFej0QLW2PAyvSVZWCK0QSqOmKZUQaCnopyXrmQlORlYVFJViYGg25GF8q6IQFlnmkccppSxJZEU3gsXn99hv5gzrEzK9hU9BfVfSjbYx5ruML3nsvDJHqlMIEwTw4O0hzc/5iAGolsTx5kEpUIrah57F8jpvhSsdLAJlUEO677Q5fXe77f8cOH7AaHsLv9GkPbdAkSbEoyFFmtKcmyeNQvburDLp72GYHrqWce21b7D+5hsHJeiuyYKawXEV1smEUw+eYcnu0TIa/GztU3RUi+v2PrfKlDNRjqXGbI7GBMG3UEKjlaJl3SWJ+jy8X2KaJidnDc5FE8YDA0fl1F2DwBa4jsAwMrLs4MTz3nCRNwePUSRNqtKiqEzq0XkoWrjmHmVlocoCo2xjqJjz04foWedQjs2MCLC1zWlmqMsGpuuxWZ+y6kUsVdsUnQkDDTVXIFUKVUnTiXAlRI7HpOvRiyZIG+7cOMZOalJID1NazPRSClWnJmNMpuxPm3xm9VnG9z6If73NdrjIveEyu0WLF7sNLrYOMQy2QcSoaBe/SHmPvUHlOdSn95DWgN32MYo7q5y+dR1vOCJeXCC7e5fgqafY/YVfYPv/8n8l+fxnac35f4RQo77nejIteO3zd/9zDbX73Oc/mHCYMuknGObB5/dAdDbefa689Ovw0j+B6Q6okkFRct4zMEyHormMEX2OoY7ZqNX5TXvKBdNmU4c8a5xiX0fkGlq2SVoaTJ0lLtY6hPkR3ERhJjn/qPZevtF6lih/hnObBseCKzQOp9gaGiTMGX0yBHeu7uGaIXJ8j3Nbn6aRrx10dpvMMVI5RSlpaxMfzfnZ8zwx6LF6yKZrTiHooC2LpYZJM7dZGTeYNVfozzhEosaj5gP85eZf5wsf/DmODOoQtnA+8DTWscfQjoV95sP0uudJZzVmEiNLyD0fIXJGS4vE9QbDdoeZjQTPb9O6/iZps8ufecVibtLgoenDCEOzUI1pxgWziaYT2GzdGTJNQ2xfMj18iCEaO5DcPH6W+NEneeHcEndaBYPeAjuH61z3m/TdWaopvO/kD5HVFzm17+HmLqVRcWV6mYveJUbxkMqRVFWF0oowD7nVv4XUJa92L3MlvIhSJfZijfxeCJagfMum+4dYsx7FZojROugANvnqGuVeQjXNUZMMnVc4hiTLireFGiEEUsBvvb7Br768jlNrYrfnmSTFu25M7ws19/nTxnQ65Stf+Qr7+/v/7pv/C6Dear+d78U00pKqVGRJSVlUBxU1bwk1m3sx+2HOzs0RQVURpyXrYYrpGPTDnEt7UyrPoNqLqQqHF/G5Ofyz9KMHaFkSXbQQ+RyT2jo5BXFeQmkST1r4hmJjItAqxlAJbXOPj/T6NKaHsKsR8UafvfEIITU7W2ex/LuURoKZmghzD0aHaXCQTdNV+2jzJlrXkOyzbMc8Pk2wrSHfOvwMxrGTlDWfJ3TKsjHGN2Nau33K4RRlOhSei1MMGTo9BjOLzETrCCHpxj2eGs0yLGx+InydJ/J1qOqIYp7GeJuP3/5lGtE6k9JGmSa1ZZeR08AsC/y0QxaPCJXBSAnuJHDceIBJnvPqeMo1bZLokrGaEuspHaNFDwORRERhRMuccCYIcURF3x1Ts2qM1RSlK2ZEl9JzuW6NmeYTSl1hWBaTckqhcoYqIRcOU98i8zJiYk50jpOpDEf6PHSnw6KzwE6yw9SOuTddY642h2VaSCRxFuMbPi2vh2FrbJGjigQzCphUE8bRmIeLhwnKGi2/Rc1uoDWsiMOcDg+R1QTOZszysIA0x5E2bbtFQspMYxdZekQ6ZWtyD+/2BYzc4kcenOc9hxe4vLXHC/dus7PX5u5oh7bvsBvvsBltkpYpHzvyMb62/jVm/Vnm/Dk2wg3iMma5vswoGwEQFRG78S6FKhhnYz5z6zOsT9ffHv+VrrANm6Lp0WzWaLs25luH9DKoYbRbLJNQm+yCFHzqi5/lmetXGYzH/HePdHnfkS5prUZse+waGg/BZDggRjEYhxj9Ekr4oYffi12AaXlULZcdY4Kxk3DMvoStLTIrQDVO4xiSQvZwlYsQgqzKmOZTkjIhLTNe/P1bxJP83X7K/0n5vhdqLMPGtHMSJQjLDFSGKEIKZ51hZ4hRi7ENDkJbA4Ot44ewM5NVK2VX7+CHDzATdDmdPEw4b1P5Cdru4+9MmS0snLTHfP0UM/Y8/uwU4U0ozZTI2MIza5jaonDWyIKU9utjgizCcl0amY8lTV4XV7EJmCkXkEiKNCZNNa81Vtg0Yx6Id+nIEsdKMVyHflDHkGBHY9z9PRxDImSBqMaYTgO3NYvtedgSDCHJDIuqyPHJDrpZlTmaCaosaZR9Qvc2A89jMx7z3FwP5fooWeFaPhgmH73Z4IGNfdxqn3FjgFATpFVnM5unPV1DzLiUSYMy6LAnbiH2SpQhCbcL3IvbiGmGONzCsppgGuiyQBgmpllHiu8INeb8HOZMj/98ssz3YnseaTjFazSRpkm9O8P++j2EFAStNsl0wmBjjXQaIR2HZOEqg917pOEUrTVGYDGTt1GhQRzuv+X7d/iJhR/hnDzN9rEJr5gv8Y2tPXZ2h0zlr1M2LGT2AhYprihZkq9Tq0IWYkVNSuLJENOykFWJFw+YsUtMQxJ4mjTZJ05tpCFIiw4vry1gGgrfzyhihb0zg1IWlrNLnChKSmr7TzAqH2e3OkpoZSzLQzxcvR/XDlCxx444T9FQDGsJi/03yZOcUE5Y9QS5koyUwCJl3rjEA/lzIA365HQ3Vjm8c4t0NCUtK4RhY+UWrjOlabTQSISdsV3UiHOPKO0RHw2prSrsF1tUqeZUvcOW26Heu8TJD72ArnZQ0uIH+BW6rRT3+ovsP9llfc6j/9FPUHcCGsM9rrY7EE1o/7mfYfbv/l3qf/4v0Zuz8OYcyuJ7LU5lXlH+G9anIq9I4xJ9vxnUfb5P+MOT2ywuiMbfaT9/7/I+dy/vY/5buju9zc5luPq7EPTQRUpYKVZMRawlL00jptEdYjPn/2ON2U1vsub4SCE5t3OVqY7JdcXJ6nl65R475jJbGCyMBtRbAjsuuJyYKNHk8uYHyfIWypjS7DpY2sCPtzCFQWYrMnWbG82I7MYu7egqYjfHLCKysYHIEnSnxbKs08hLHjA/wNntDpeOSGbbdZzl09RPHeMBEWLmCWIQMTPp0u8E9OtzCHK0bbMl27ScWV7pPUT76Q/gffBj5M4eyp1h/ECL/WefIFw+gtR97JaF2fbJu13ycw9w6/RZlvdzPjFpMer1ODxRjBdOcdPe4s20zz1nQGd8D1elvHetZLnmUsVQswJMw2Cj0WH30APIfMDGjEXtb/w8luFx/dVr3KqXfPbhhCVToktQheBHT/w5UB2ahU2QeaRGxWc3f4+BHDKIBkxVynPf/CZRNMHMNFEx4czJo1yxv8Wnn/9fWb1+Hfd8F3uhxjgc8bXXvvb2KxdCYK80EJZE2gbOSoP02oDs5ohqklNFJQhB+/E5TGwsFgCQb1W45qWi49vkpeIzr21yZevdO1GI+0rNff6U4fs+nuexu7v7fVlVoypNlSui1THdtz4PeVphmBL1VkaNV7f57IVNdtoG3Y5LdW2ArcGWAifMmIYZhhYcKYD9BNOS/Ms05s1mm1EtwrUFe5HN35sa/P70CHdTRQAUlSYRJbaMCIyKhixYahq4bHPGeZ4iEcj+GlmmSKwCy9DM5SuYAux6HzMykWIPNQjw8hSl51mbnYAxoUwtSoZsliPuJBtUepdbKwP2Zo8S2w6uHhwE7Gc5Wlto0aKwPcZCMTbr/L+P/Dd8aeFjrBQjHJWTyoLW6nU2hc8zW39AfXKByPTx9wxmt6YEdh2JQ2r1kLZP3nX5bORSIAjufAzCFK0kG2j28jrPDI+TlV0cs8llLcm1QlDSNC2OyMN0DAeimFt3b7NswUP2BvO2ZLfaoxkHGJXgkLHEk5MVhvEui9qnhYesINcHosTp6jDa0kzEIULT4VT7FFmV0MiuMM6GzLTmqdfaLLYOqiCntT67yQ4z/gymadK02jQaDexZm66/jCkrmiIijkfspgkTNWEaTzmuj+MaHi2nRbs+gyXAbHRxu8tkrkaUFW1lUMUJrnQJTB9RacbxBvOteQ47S2wMb6PjCLN0eUxucdTIyFTEXFvRshe5ub9B26shhKDn9fjx4z/Omc4ZOm6HGX+Gs92zXN2/yna0zWKwSFREaDRREdFP+hSqYJgNCcyAC3sX3v4tVqrCljbGzAy9ToNDvvO2SGE06tjHjnHM0wSTXeyaw8JgwBnXpRtHGP1dXKHJHQ9VZISiYGq+ShgO2S8L3piuYe4UGKWJzhxAsqL3oJoyZIpcvErS/SJlVtGeHCXzTmEJyOxDNM1lhDBJyoRJPiEtEyxhMZnGFNkffwzD971Qszm8y43hDWIAw0cZMdgZythny75KN1/jePN5pLbw7BH1mevgj2lmlyDvI/M2dWsZs+iR9lbIgj44E+pRRCPpIksbu/Cwp3W8xT7V3BrjQy9RensYWcWavkrR2WFn8QphOeJqa8CnZ75BUiYoIQh1zMTJiKsJtfoY069hWGDdnXD0G79HuL+OJiLOUrJWl+daNbQApRWGUti2g0FOng1peMcQwifwbPI4QgqJsC0cUWHlUzyp8GwLJSV1NLViwGP2GrfSnO18yDfkmNIwUBIMZdKvbE4PO3SMMSeTEQ9d2uVRs0tReVzNFzAbFdWxmPaPvh+5OE+pCoI3G0hZ51LzHDgOxo2YxfpPYlkdpB8cVM0YxoFQI52331Pw1FPUnnnmO16o/wKYtoPjBzj+QZVKd/kQWzevYVg2QbNFONinqkq0Br95hMHCF4nGI/I0AQ7KzU+PFqgmBeF4A4TGtlw+2vsQQWVz6mNP0BEWlqOwmzah2GaZU+iixCkGeEZFq61YsTSWhqbSVOEAKxtiSjCLhGPVOotBzMPBPq1oF4lEGDltqXEMhZIhfnuPaaUgXySrbER7QJlZlPVt/K3z5JMfhWqZM1OT+aiiI+awpEOcwd7EYGCEmIbBylix4B90yhovCcr9O3jVPSwfbDZppFvY4Zh0OqG/cJjUMHAFWFVBzdYYBZRyzCE7wDEaKCNkSAOpBLvukMHMPWb7mzR3hpQEhGNFXmkeqEXIvKAyJZntIdUA5YzIbt1k9tA6326F/KP3foxdr0ltcJdbjQ5mp4PwfPJWm3j5PNNxzq+ub5Ln6nsWVMW7VNSUeUWRlmj1/bf4us+fTtauDEijkvWrQ659e/vtcZxEJeEwe7ui5h1oDWsvQTI6+Lsq4Zn/I8w/hM6mdJIdFnVIURV8aWedrBjik5CqnKNlSeZ5WDqnF18k0hlTUREwQCrNi40neNr6Jk8la6SM8CqBoeFTU4uTWyVZ4TBMcorkIAMqm+b09eMYwTbikU/zFUPyhuuwf7pJsuvg2lOSXLJUWtxoHqUZlhhVSPq5z2MgaDV7zM4t4H/4z+MeOcvcZJV5VZKFEd62y3uNn0cdfRqpKsqdNQwNVW+eG0tncS2b0iiwn3iE8Z3PM/JjOrMzrLsT0su/je4cZ3D2LGZ9kS/OLbHf6dAqNKK2yNqJ93PodsrNRsa4GrOb9fmWdXBqZ7s2i3sF7drBIYNBibBLIqUY2Ue5m66RJRP6+3v4OkDmEq0ytqI9LKuO4cxAPSCelnhBDWwbY0exNdmgzBQuBnkeE7sGN++scuONV+k4bdrdDodPHSdzS/Zaiue+/W1u3VtltxwxLAd8efxl1HepzDKwqL1/ERlYeA/26HzqNEU/Rk1zUBpdKDzXxJcmRXSacpSBPmi5nRQVc00HpTQ7k5RCmH9ERc399tz3+dOFaZq0Wq13bVf//YCqNGWpiO9N8WwDJKRRgVu3DrL5CoVbt9hKcqxZlyc/tsJ4ktEwDRqlYHtnSjrJeTxw+ehGxvxggLJTpjrnZpwSRxmuVFhSU1bQz7uEpLQP7eNIQGkaUcmirWhbJTOk1OsplZkRSYFTTMEJSBstqjgguJmQjjzq7W1EdHCQW+wJpMpQzSm2AKGbyMShsArKymInG6BVSd44xr9eMpgaNbZo8HWjAUhy4VEZXVIDInuFyOvyZf8o13Y6+KMhzTJhwy/Rw10SLeiUUww9QfkmVrWLUWqmS48xsh/n+eBpbrgrZFbGlXDIVemyUdRp2Q5m6bCdScqq5HjmkccOvjBILYPUtXGkQlQhDxZHmPUcFu02r+rLLNiz1LVF16hIVYqdGzjK5pPFRzkhD+EGa6TWKqZtYmIgtOCod5hzmy0MQ7Jr/LdUVp0PuR/ihLlMFl3hd2/9DueOPUT65CyeV2M+mMc2bASCrt/FMA3a1QwL7iJhEVJzZ8iTIXY8BgEDe4g2NNujbYIgwPM86k4dX/j4jSam7+M1O4xFjDvXpdZuo+OEuvQRUnJGrhDFEx5cOsJD5RF8ZVBGEbZyGNy+TjWcIFSd+abFwwuHmFb7tDwfx3DoeT1+7vzPUbNq/JVzf4UjjSO0nTZHmkd4cetFel7v4MCqygiLkLAIifKInWiHpxaeYm269nauWqlKLMPCarU53Gnw15beyq7RGlmv45w4Qed976H3qU/iNh3MboeVuRk+4RowHmNOp5RB46CbbBHR17eRosQ2ID5/hLTr4ZQW+7dH5LbFkWhAYLoUlmK2eYerbpdG4uG/sMDNC7dQAjL3GLjHEMIiLVOmyYD03rcIzIA4Tr7n0PiPg+97oUYXNoNLDcJEg/JIyyHKLQkWPcrZ65She5CrElYIYaJrIXlQsrRyA+9wn9wZEIyOkc+NWAwfQpoZykhZyAd40wDVGOOJgLIdkZEzbL7JMLiCbgu01OxN19m6ZpEOdimimFV5jZlqFguLKw6c0/Os7UviyZQseh2j1kLqitntjO35o9itLlHYZxrH7Lk+H93X6PzgpNVyAoyghbZqJMJB6CWKvEBXJUWWIZBgSXwJsoipBxYT22FsuUz9HqbKWGaHcVYizIzQjLhuSVJhYVYaO8+xGYJX8sx0hQduG3w0lySpwa7qkB+VxA9OKJ6doVg2UFWCDCvssMaidx7rocdwLwgaOwcKrxEEGI06CIFh1pCGwx9W1AjTRFjf67X/z4lp2/jNFpZ7EMrZXlji9qsv0ZpbwAkObFG1ThdVVdRrD2IaTZJJRJ4cCDXSM+nYMyRhxHS0htIFlulQfWOIllOCWo1ZabOw/CJb5h3m6NHJZkknMU4x4mzP4sHOU/yNyVnGXZtWVWEZJlb3CKYEqTVhWpH7EbV0hF9voy0TYQ1oqJTDPbBmRlidK2yWmjz2mCpF1d6lGp7mar/NdWtKNrNOPTdphiuI6hBO7iBMk6IShNOcsZnRrDfRVUq+U+EaHllQ4WQb/Jj+HDNOSGnFmMWUssiZnQ4Z1prcnTuEzlIaVYFZROjCoNRjur6DKwJOzX4VYWpONTc4v/gchjHCLhPCRo9IB1w0MyxZ0TRGjLYFpW2SWS5VFVFrThFa4c0ZHPETHq8H9B76Afbac+z4beTcPJVt83+/tcmtnYjcrbO/u8NkkHDn0v47NhrVu1TUlLkiTw/Kg+9zn//SaK1ZvdAnHKSMdhMm+8nb1/O4JBykb2fUvPM5RXHhX6N2LoOuDoSa8z8N9XnKdMInb/8y3f2rmKrg2nCdrAgpqoifzCWfTBQjkeOZkrX5iI8aFT892GaSQWr6aMPDUVNEYmLVNW6mWPIsDg9KjO2UTNrU8kOYWybSkgyiHrfD0yy5Gwz1Pmoj5bnFnK25gsmawFyoqLRgPsrYm5vF3N0la79CMRMw94EP86niL6LiT2FmAi162FWEWa8R+jXS/ZytxGfZMigvvEp47Q1MqbHyiK5hYSYV072YsvYg1p//m4hMUHgtLvoWn/nQD3OnOs//45mf4eunHiRPC9535w3WJgXDaYU8dJLWsRWceQO7Ncs0myCzDByF65jYnkm9Z3HqqTkG+TqxGGHogoW5HqmV0UpiLj3/dczMoN1oU+mEM50zlNYicb1ObEquX3uVltsgFSbNTLCWbVIz2jxyreCpS1MmVsEbzcvcuHERU1t0+hD+zmex3RpTXzONI1ZXV9lY32Qw2GE32iXP31lC7T8+h6xZCFNidlwoFNUkPwgbVhrXNWnVJXoMw0/fRoc5QoAhBIstD6VhGOWk+t2FGuDtBfJ97vOnBdM0Kcv/PCGg/1tRlQKlYZpjSPiWzljfj6k1He5d6jPcjvAaNrtFQelKGh2H/Thntu2xqAxeTzKyac7PlzZHgil+mVLzMp5Y6HO3TKhEC0/m/Ei9zyekyU6Y8dEjMUuDFofqFabt4FuSh72SQ7JPt8qwpSSXdfaqGMcoIYnJbYdk2KA22qOKF7CtLazCQVQNRAw6HDOaf5VWalAlPcpJhdQmy6aFVViIwuWD69s8vf9ZLtSOs4XFXUNSWg5ju8H12lESkTMKzvHry3+FFgWNyT52FDJX7PHK4h2SRyVtFeNS0qwG+OEGs2is5iGqzpNsVh/hruzxpeTPw9qHcQ2L1zKXsWXglz1UdJgyWcAzU/xawjQtkCokkTllbYYl/zC2EJzP5lhaPsPMjKJtGXTTJZziaVbsAAtFt7BxCouj1TLzy4fIZMVnll4ltTIaboNz6gR/rffn6dgtpCxICg/b9Pjgox/kv//A36DIdmk4DR6Ze4Sffv9foe21cQyHjx/9OJ55ILg4jsNjpx/kLx7/C2RVhme3qAdzNDoneM97foyF4wsEdsDmcJN6vY7neXTcDray8YOASoNWgn0xof3MIyjXw6g0J6tFemabM5stGvicmT3L4+NDzJldVJpjFAXZdIhIY7rqgzzafYYnDi8grD2OtZaQQuIaLlIcrGWeXX6WjttBCMGp9iku7l2k5bYwpUlWHrTrrlt1xvmYnXiHI80jZFX29ncorVJ808eo15Geg29Ivrr2VfpJH/fUKZqf+ATdn/s53HOncRo2N44/RGNxmZ/q1FDjCcb2NnG9Rdu2cMoMTY60BE0DvhbY/E9HA3qdedxpQkRK2T6MYTmkOuSQlpyZzLIc1oiHU6okR5sF02CZX4hukJQJcRkT51OS4W3aTps0KSjz+xk1mJaD3XNwdqHM6mRpRSIUWb0gbY5QNIjvzjMeN8nSABV0WC0D7rxap7Y0Ydjbxt49RGKu4UezpFbFBlMeaZW4WYe8uUbd6bB//CsoxyPXW+SJyzfnnmBk+oRETDYTquGYKs4piogoK0hMxZuMSPojUglmMyEc7SGcOqZI8CYjBnPLmJaP1mOEMgmyigdHOQYC08hwXJfKqqFtlwyLaemSZzHJcISwbApDsrEwy15nFmHbuLWAHJMUm3sqIBYFvtgncCQnliMmKuZCLDFtyYOtAQtxQdACbUqa43nqoY297xDn5UHGQSOkChxGeo+oFSGFi57kaJ3hlQr72Am88w9hLx8C4P/P3n/H2Jbl933oZ62dw8mnTsVbVbdu7O7bOXdP5GRyOMxmEKMEJUOCIcjPD9AD/Gw96AnPsOD3JFqwBdsQSYkSw5A0w5CTOKFn2Dmnm0PlqpPDzmG9P6p5Z1ozTVMzwwDyfoECCvucs0/Ya6/wXd/f9ys8D1mrHXkqaD5SvkNKyV8QdNPErdcxrCOlT62zwL0f/V7ueO8H0A2T/s4WCxun0DQdU19meelnSIKILIkBEJaGZbu47QZJkBIEFzCESen02V//JdBK6obL//Dhv89Ce5FHyjtxMoc4lphlxGN3bHCsXOV5c8Zr1QwrSygMi4vjBmlaEKclXXWOzKwjZiMUCtPVkcYIKwk5PX2TxOwhvB7jOCDXI/T5LkLbYSF8FX/xWSZiyI00ZVNAXskx02U0dLAEujCZTmMCraSm2UznIzKpEEFGOU2YKZ1PWse4lmsMDwokJf3FVfTJmFBqGFmCXuRYWUIUBCA0XDUhmXTZvzGPmWQs2l0eX3iFpn6Amy/jNC3iY036iWBPDynMgq602Bq7pJZJqDmEhU+1HmGurmKaKT+Z/HuWtRR9cZVPPfxjbHtt4oV1UiF4aRLy3N4E7cwJfnR6yMF+wNWXD28SMEpBkatvSIPKkoIsKW4pam7hLwWUgjjMSKKccTckmmY322Ya5Uz7Rwkd3/A64N+0PsBWMIOyQKmSbikpTJ8sGmP3L6G9+VsUmk017+Iqk7iIqKch7Tyjn3RZyF1W9k02ygqPpCV60sHUMxbjAuvq3SRT0DCphCUnZgotz1G6IrdMZuE84ppBTdygzEomocY8NwjLnNMDwbhjkC23uPEuh0+eOUuimdT2umw2Q+Jxl7HRo/N3/kvsD36Ip6NF0skCSVwSljYCidZahtVlCqBvFCzMSly3T3Sygi4LbLPkB3QHe5gw6g0Y9iaMRwHJ5Qn/v90BL525k0/efSeDxTPMKi0+79vc07/Mg5N9xu6YyDTQWjbv++H7+L57vhdVNCj1ECu3OJ90qIscw4Pn3niCjYdqKDNmkvQxhKJSN3js7P1oAoIoRiSSmmMiNfjEqU9wurZBMR5RzhlcvnEVLclBNpgPBNuyz5ke3H8p49y2RlyGXOQCL0xfIpjG3B0voD33LPfcCGiFKSoP2d/fZziecuHlZzgY79Hb23mb0enbPN6kQJ/3jgyGbR1ha9iGRt0tkLNdsoMQFRe4pk67YtGp2ORlySTOCd5hTXqr8ukW/jrCMIw/d6LmT2tgXBYKxzfQlSIT8GYYMZomLFdNBl/dRV0c0Fz0sFuCKE0p05JZxaBVsThuGVxMU4oyp22UjNdfgqUrNMUBJyqvMrJjxsrGsyEVA95wp2TajIr2MotpyH2LNrrQMUtBI415aP0lFmo9yCpkpUls9dBVgsWYUsToysYItpmFEqWmOJqGKmoow0SfCB7vLkKqSPeb7Gg67ajk8f6z1GYmqeGykb3Eu0eXeSK7zh4aW848Pa3OTm2dr7qnebVxjoHl88XanbSsDneryxh5gR8dINM9KqsJrSIABYnusFU7iTAqFK3TPNFt8oZ9ETf/Ilvx73Kt8RxnfI+toCA0Eqp5G610OJAH1C0bZWwxMsZYMiUvZuSBTmXqgnRxMg8jgzl9zH/RauLvP0DYex8ds8JHGi73ezGecHFKi86SSyZhT41AQstp8HByipPBIs16B98uuO7uUC1quIbDSnWBY16Lv3/33+N04zQrlRXqZp2aVeODax/EkAZXRlewbZv11jr3n7gfQxq4RpW5xlks3+fcnXdieiZVu0pv3MP3fWzb5jbjNlqzFo7jEMcxWZJzUp2GWpNngwCthLt2WlR0H6OQLJrzeG4NXTN4qHoPyvApoglxOIZoxuaBx+21d7PRruNYJbe1z6KUQpc68LXx6o/HrCV/iUEyoG7VMTSDuIiZpTOW/CXGyZh+1GfZXyYt0psDUZAF1KwaslIhtiQ7sx1+//rv0426aK0W1qlTCE1DugbGnMtz82eJaw30VpO810XubLMrTe5cmMMTJblKyHSBRCMKxyxmCQvS4zMdg4OlggyJymZIkRGXNu8dJjQMgdVMMEwb3YoYRwUvTTYZJkPGyRjPqGLIY8zZc0dG32lxNOH7M8S3TdR8vYv6O/19O6jKgE51xDotwnGV6TAlRCMvQmwJmtHAsRbpjwOisY4eNGiKTRyzhrAUqdMjskNKt4eYmOyUFhNh0BIgc4/cG2NIg23rEn9k3kAUEcGhy6GymGmQOop4MCAdgXBdRi0HqTQiWRCpnHCSU1oR262AQpX4poHUYiwvY+J4GEaVmgOGbnOyt48Tz3DyAxwm2IZGEpkoWVKojNLQQCXIUlHqFgKTYaXB51unKTyP0PLIpzngMi5MLrkmF7yE+3wDPwgJiykntClVx+A2u8udYYpT0ygsm6G5Qvp4SWkJYk1iGS00vYpUJnFvk6xaYGQ+seGSaSmCPsXOFvUf+kHsc3cAoPkeWq129L/uoUnnz9Us+P8KhmVz7n0fwrCOCCTdNDn7+HsxbBvNNHEqFZZOn0U3TYoMKu496KZFmReMDvZAKpSt8JfmcLRzdHufBQ3koiDKb4AoEUjqepW1uTUeqz2GjU3PWCcQJY7rMhfUeNV9jTP5i8zPdummGa9tK4osRxoWd2UOp4MqUuj4OpQyQ7dy8kKjk0wIo5LStjFrE0RrF732OkZxQHV6AXPxS5hS0e92OMgzQmeTalhFuDqFWVB36kxvl8zsktoQDil4ddFECQNNWsxMh2czjTdynf2eRNcMijxDLwsqSiGSFK3IMbPkKFFMwbyccbhzwDQUTIJF3r96SM3t89KND3JjdIbSE7jygCiz0ESMFBOCtM5U+byxcIKJ5XMQ18kcB31tBaVlPGfeR5rltOd7yFbIjcocX2m+i92DgEdeC0kHCS/cfTfq9VcIulOmL75I7+lnjvqTUlGqo1rtr+9b0iinyMpbippb+EsBVSqSMCeepeRZiZSCslQodeSn1NSu4zn5N/SfhYIva4vsBTMoc8qy4F9s9nkt05HBIVbYhTQgtmqcll1aRofAtLGzGFuzaaV9LGFRG0zZ2/s4E5YR4VkyU5Lvx6QXTlBmLcJd0FKLbC9EhiPU0hTdTJmwQpybeOND4vhoeuCVE/TS41hqsqwlDOSIz6wFvBgrdAqyyZjr7hViUzIp76XAIlcCJ1cIqZhGJRePVSk0B6x5KjcuYgYDHrj6BWJh47znI2RrZ9FVSuC73G1ZJNe7RNmU4bjLQTjjlfkmk0RysbHA96/N8YXxlGZi4och1dGQkVjmunmeXpZjNSStBZ94GlLLTCyZcu/955gVbda6m9iNgl5/m0tXz+MYHrPpjFqjjqYVrGhN/CTDn1tApTmj11/GtWweXXmMB/pdbGOX6umcTAmKKCCt+Mx1S2qF4L1f3ORGM2BqlywWGt97vc22M2KhvcBDlTWsUZ87nt1mYW+KsBTd3iEvW5K+OJrE7l67BMD4cJ8Lf/TlI/VVFKKUOvJLO1FHqxhoNRPNN7EMjaqtUV28gnNHAxXnVGyN+apNu2KSFSVJkhOmUAbfaCh8y6PmFv464k9S1Nxct5SKMvrOkDlKKeILQ8rgm5dbKaUoi6P5TFEoqlUTaev0xgnbo4i2KmhZEj3KqQQ5RV5Qc0fEacjruyNmFQPr+oROriDOmaYR+wsjrlT7BAuf5yPGgBV5nO3YIyRH1wM0Y4A1d4Wzvo6tD4jzIb83vIByh1DGlHpIo3kDo9IjygWmYeF625hlghlso9QEoe1x43jBKJyRZxZtbRsvFZTrDuPGGoXsUWoG2Ys29x2cxg4z/J4kGYfM0DFVDz+eMkCxq5scaA5jYXLdnudw5vJ/Gu9HC27QUxlaEbCed4kKHa1ImE8y5rKQehlyqFe54R7jtbm7ueSuMLrz7/LLBybPVl8h1RqMNI2xNaKjFdSFRpoFzBV1hAbTckI1r5JXtphqfXy1hIFJWZY4ekqQC5yiQpb2KVWfTjGiF60Rxsc4qPw0m9qD9CvX8F0fu+6TGhfJkazLNb6L+/AKhVWbMN7bpz23TMVXPN18gY3+KhSKPJqBykCVN+cCVavKnDOHq7u8e+XdvHj4IpZn0fSaSCHxDA9Xd/H8Gm67BRwpUWp2jVk4o1arceedd3Ji+QQk4DgOURSRRRlr/TXoQrdWI4hjsihirraIFIKGrKIZOoZhsi4XkbU58mhEEk0hnhFlJRXboGa5nGisslZd+xPbfdNu0nE6+IZ/pKJJxgRZwEplhX7UZxAPWPQWSYuUkqON1zALqZgVNN3gwugi//NL/zM3JjcIsuBtJJDetPEfX2KhZlOxDYzlZd6cXKJ75UUQgofmWthFRlHGBFnGYQpyOmF5f4eLWcblmsF+GnBpsYk27KPFEVv6PJjzuHMOK6sWmmEwbRbkYUgn87k2DJgkE07bZ3h88mNs+BvkqSIfdVGXPvtn6nn1bRM1SZLwB3/wB/zO7/wOTz75JL/8y7/M7u4un/rUp/j1X/91oiiiLEuK4lur45pJk9yxqaca/VQw1A/YzC4xGh3n+cAkKUpEWiXJd8A00CfHuFztcnxVRxDSjw55avC7zKw9ilxgz+7FL1exZxZj5REZGaWWM1IRw6RESY/DQ5/tscu+NkXPNBCCcCAwKg2GeUSQZAzDTU68PiBTOTsLDpvSwG0t46dT4jxB17Kjshetip5EGLU29cMtIjOgoWu4vo3ReAylzaGEgdQl0sixjRLNttHsFn45RzXdoXAdCsunb/jcu/kaSwm8V7yAMCDRMm5LC7QkYdmBH/I+hWEUtHSbu2cFZhXSikawlBPfvUPmzYhMD4cGMtlA5TlJ9zqxOEALdGaVOqUvWJl/kvL6ZfRGAyGPmon0vkbU2NYCrrv+7Taf7yikprFx34NITQPezvAals09H/oeap0FdMsiS2Li2Qy/2SSaTXj6N3+VJAoJ1Qx/sY0sFynKiFhtIjuSLBuiVExzaZnLzzzJ9ZefoTHzUTZ8sWnygplxdfcN4t4Ex7mEH7xOezIgJ2X1rvvRpaRpwIOujh24VHQPPwux80NMMycxHE4vSaQwCbUUe2GXPeMZrvcOAcXQeg+yv0AmGsSzGmglsdvFTU2UUEhRgiq54YyRUtLphYhY5/OVCQMfIl8jkzmxBr0iYhwqpOVxfLiPrTLWxj2IE0SRU+Yl0nFIFVSZUlgeI6UzTuYxvPNHC4fM4ELqU587xmq5h4aOFAZKZUTZKrMItiyftFZhWvrElCR7XdLRhDfEOsNJzmr0ZeblVRwhuTEp+NSnrlC5GrA4zNlv1Sg7NczDQ+zr5xlcuAgcLYA1TbxNnZCEGWmUH012bhE1t/CXAdN9mB4yHSQYpoZuSvK3/JakhPvaX6TpdL82uCsFSjHNMnYzODi4TDy4zlC6XE1KfnVYICa72MkYdAvhtdGiLU4ouFo7jiENTvgL/L3+AcOB4CCqUU4LBtEpkoM7GOpt4lSnVD6arDPvz7CSCf1RQrrX5XD3TSw5IMl9PDshMFJcW+GaikJJxDTBLE3OmS6XhGDXd1nrvk6jnBE4GbFn4LeOM0qWia9PSYOQal6geZIwhl85DIiVTVEcw733YZ40E15HQ5ttIedXiS0HzdD45QceZmfZZu/FN5hmY0bxkOcbkv+4JPhIAA/pDg+7Dlt+hpnnfHT4OrNCsm973HvuLMMg5erueV5+4QX2d3dYcUxaegDxAdnBNkkUUroj/GTKztYN1NhHK3UqFR/dzMnLDFcoHnzgAaSdY61UcU0HiWB4eMALGzq50hC5Q9LvMtY16tMBH3jTZvf0SZ57zwqX5nIeupjw8B/1OHcj4/2TFej1UKpksZtxbCTwVjskWswFuc1Y5hSy5OBwD5Ti4OplXvyD32Xn/Ov8/r/+n8jTIyNqo+NQ/dhxtKqFVjFxZcFpK8RpDDGXPcogo2obdDwTb5QhFNi5QqQa8Zf2j1jAr8MtnuYW/jpC1/V39KgZDAaMx2OKUcL0S1vfscVX+OIheT/+huNKKYpc8eJnNsmzkiIvMU2NNC/ZmsaoQpHPMmQ/xjElloQ/evOAteou2+MB/+L5TfZFSSUIcMcJd2kmZhHTO/YkVywblVWpNvZ5PZQ8sBCRkpAWIxp+yb2dq3x3xWfB6uL7EQ4a1fkv4zX6SHuXLK9gVK4RzAT53gFr+eu4RUw9fZX2yit08wOeXVSkaUmWNhBRQrpVI5+7wA2zySi8QiIkYjDG2t7BCgsMMkYkGF0bV2swcBcZq4wDwwAtw7QMrkqfQLqE6QLt2ZDl5AArDyjDkItVgdA0jvsNWllMI5sw0nx+rf4hnvHv4+dtg9cOMjRZUlcttGgZU7YIpMRRkqoVcsPZpykq+J7Hu0cPUpsuUph9NCWoRfO4mBT2BN875DBL0A2NlD5oUGQhW4bGrFD8drTOMDpGV0543DxL57F1kmSbAh9XRZxqvYEtp2BdZbh7nfbSMTI5xS9NHha3o7KS6bPXKPOEYhbdJAarZpWO28HRHX787I8zy2YctA/APlrT+KaPrdtkDRP7/g0UijiPqTk1sjjD8zzOnDlDq9Xi+77v+2i320yjKWEYkswS9rf2Wd3YoO9WOXbvg8zV5inKgpr00U0TzTSZDfpYjQ4iHRGLCJUHOIbENSWGZvBf3vP3adktcnUUpx3mIQfBwdvuF8/wONs8i63bNOwGw3hImIesV9c5PzgPcLNMKiuO7sdZNqNiVKiaVa6MrvDU7lPsB/vM0hlpkR6ZEiuFkAKhS37ykTVOzHlo1SrPnJFcbcWsNRucqVcw4oCsjMinfaTUsQuYu3Sez87VuWGX9MucL7TrzG47g6r4XNYXSNp3Ik/W0eIOhunyRfkajdLhsfhv8C+uRVy9dp5jxiLHwnnOWWcxS4u8v0v25d8g3f7mpv3fCXzbRI1pmjz88MMcHh5imiZ5nnP9+nUGgwGNRoMbN25w/fp1PvnJT9Ltdv+zz2+VLoYl0HOXiVjCWJsy2C/Z3z3N1qBCEI0xlEa1egJNgBWt8VSxzStZmzhRbMWHTEaHxComthV2d0xZDLFDiydrS1xPC+JyjExs2vkKqfK4dEznoJrzvHGFRlLFbDfJU4FwPGSs0Iuc87tfxpIxEzfht1brLCc5fv0sdsUnES6aOI6WZiTCZRD2Sb0qWjLjpfwC0+Yi05Xb6Yo2ShOkcU4hofCmnLS2aLQVcfskpZay4EzJNMmF9m1M9Dq12RRr3OOj/BG+dUikQuazPlLOWBAmup6QyQI37LBgzDA9SG/PcFZ/HyPLIS/INAc/jslGCxRpRC5CUnsC+yGGMNHiHK+mk3cPkdXqzWvh3Hcf3iOPAOB5p+l0PvrtNp/vON5J4aPpOre9671ohoHlesSzKcFoQLU9TxIGTHtd8jTlQG7irbdJo4Rjx36W9PgmRX2ApjmM+zc49fDj9LZuMHdmg6Kf0LWHrCmLllaytXOJcTyiFJIrM5NSs9BMg87GKWzDJpvFyCRkNYL3xLdjFjqi2qe0MqaYxI3HoDQZJBnO/EvsHGzx5mSF7egRptW7qX56jnBqoOkSUwkic0ohY7JqF1PkRws9s2CRKgeNkn+U5OS2z0hl2EXJ2DVQpkYRT/ArDjOjQXXa4yHjAp0b5zHSBPKMUgiUZROVBmY5xjRcRrnOJK6wGS7wxuEdzBXQwKfhKdbNCFvoRJlGmgsuzuoMEw3f05n3PFJRIcty0sMbFOkYRE53mkLQJy1DalJDapKD7SmHpzyEFIS6oLV+jEo5xk16TPd6NxUzUju6xkrBlZe6vPnkHmlSoJvaLUXNLfylgLz6OerBU4wPQ7bKnHH1Amq4xcWn9lFlTtWdkad9vrC3w1eHU8bRlOT5X6S7+xoNUnrNs1z88v/CV/zb6RewY1TYnO4yth1yzaTVWCCc7dMOCmaaRSrXsO151pSgUzlGnpfIMqUv7mDaE0elgrpArChUZmBYBW1PY0EFFJMRd4db1BghyTh27GU+d24PbW4HbW6XvhJURgLfDFisS16OhtxR9aDjotV1tJPLVNTHUNV5Hu60kF/dJvj5n2d1+zJacoVm00OaFhkOU+WRnLiDP3TglfoK5wcXeDqImAiBXfW4fGyduGbiyioXTp7h6uISN1yHlfgzfN+75/gfHjhBZRIz1Cy0siRV+8ytHMcyBe86+QC1ZsGKs8ATX/hD+gf75IMeanefrT96mlmQsG17jMMDtOmQcysL6INXaVo6fqWCV4PCKJCTESuLi0ybCrFaxZ+ZlEVBkOSkUkMpsGWFqHdIolv4ccpS12RqelScOvvzde54foAzzbhj26LxYo/0sAd2larZoBlKSj3nUOuiYZBXTDJyDve3ydKEwe4Ohu3w7G9/krIoyOKY2XBAlqWYCx6yaiB8nWJ4yPHuSwil0DyddGfG8jDj2CyHJ3aOfGyAiu5R9tKbasSvn0zf6i1v4a8bvr706T8lYq5cucL29jZllFN8p2J3c0UxSii+Lvnvj/H0tQHPXxuwfXFIGuZ87nqPA0/wOaukWze4Y7VOkEekmxPm5hwyR+PFccjHb1Ps9btcHcfsJxl+FFMzBPejcb8hyESB1Bqkg0WK7u2Moiq1w2us6iF5OcGXJir3eLAM6WhDqv4ET02wrF0cY0QpDkhn65RaF1kukmgVrrZavLaxgupEuM030McwpIuXpIi9RaxIYaQKoVKSfoq3aGHnCisvyLe3sdIaQqQYlsYjN14mKVy29CWmRcShShDMsCzJhfopfM8gM6tcMF3+b5u/yM/u/jZhkLBlCRLTY9FuMJdOWS5mxLLG05XbGVqbXJ1d5Xcv/WseODGiHls0FdSExajIkHmFNa3CS+4VjNREiITSSPHGK9QO/g61cJlWucZcfBJTZCyYBYUs0T0PQ69TqdyGbleJVquUpSJOCn6scS+L8VneO3eG+IlrlMOUNHeo1SHQXuCULZmvVcjzKfW5BQQFJ9Jl3MJkttsj7vZRKiN4aZfozSMvxtON0zy8+DAAlmaRFRmH2SG2ceQF4xs+ju5gGTaBiClUQa5yKlaFOnUcx7m5Qb2wsIDjOARxQCYzhmJInMY8dOwYd5w8TVFtUnPqhHlETXiYloNuGMwGfRZWlmnoEVM1QcgYl4wvvPYbPLf/HOfa58jLnKRI6IZdzg/O8/vXfv9tbVsTGv/g3n9A22nTclr0oh5BFnB3525e6b7CvDePqZkY0iApju6NQTygYTdo2A0ujy5jaAYVs0KYhzyz/wy/9MYv3Ty/EILlukNBRCEUh3WI71nnvzm1QtOxaemCrEwInQo1x2IWQWV/l4Gbc6gr9v05DjSd6402A8AbTInHJsGddf7V2TqpbrG+sUErNxnKJbxBwZe6PTbUBlYsqF6Y4tkuWTAj6xWk1yffmf7im+A7oqj5pV/6Jc6dO8fi4iLHjx9ne3ubJEnY39+nWq1y/PhxfuRHfoS5ubn/7PMXWUpKitLmscIcf2GGVij69Zy1yRphOsFwBXnWRykbmUpKIXEyhSZqpGlJmWRkRcHAmFFjh3FykYve7/JGuc8wLZgyhjcNzKiKzCR1t4tbVLEDRTpfJaprKF0nljobYh6vgLLIsNyMyrTPD19+gfnZiJI1Xpx7DxfOfheRdxxhaYROgdIMdKnwjIJRHvNi5zgv6Kf4DdOgV14nmYwYq5TIO+AO401OeYd0y5jUDDmmdxFJTmJabFwUdLoj0mCIqwmc4iqHXhNj/rdB7TJXCvY1A103ca5ItLUI6WbEKwXadAP7aQ2RCgppUIkDHvzw38PxjyF8F6EbyO0UfTBCDAOsygIUBdJxbl4Lc3kZc3UVACEkQmjfbvP588VbnVel1Wba7zHc22VudY00DAnHI/I0JZQzrIZPFsfY9gpiqWR/+w1sa4Wnf/v/IBgNeO9P/S1OvftxFIor9g6Pmic5Y7m8q/oATqBQccYgnKELhTQ1nEaTqt+gVl1jEI1oT6ZUYh1j4TaGRcwV6/v5yuoD9MoqepljlTWobTNTC8z0Ji9eWGGuhLF3nML2qDVvYHY2iXJF2tzi8Ni/R89nWIUkUVP+5uj9xFqHzIQEQVWZnCgtxoZ25C80CVmq5XylkHjljHPxM9Sm29SZYqoMTYAtFHEORhFRZAJpOaRKcn72OFf6JzBkye1FQc8tqJp3U2YWWumgaRUmeYUrqoqjg+HZRMon1D1EY56ymFGonFlWUMy6OCrBExlooHJF51SN6JhDryhobqxjxYdYxYjk5V26m1OUAvmWwgulGO4F7F8ek8Y5lqPfUtTcwp8MpfjzyHAX0YD5xoTBXsB5veAPtBFZ/yoXnz0gizIcOWF6+bPUvvj/4t/d2OZLr36Jf9UruPrSb3OXkTPq3E1smQWqAAEAAElEQVTNrVK9/oesH77AyFT8yvh1/m3F5WoZMW0co9CqhEmLRljhYOfv8MbsMbw05u77383yShtDxoxYQ+Qa6/lF1r1X0cRzTLsZ+0IyMRWfyL6KbZacDa/R0sa4+oilyufYNC/AsVcZzD2D9dQ+3/2pFLOwiL0PU9c3KMNTxDWfvTuu8Purj9I07+bi6Qc4kwakN/okL71JK5wgoxtUGw6fWJ1DGi7/Tgo+t/kaRjpCmjov1ub4+Weu82Y3wpYZm2nBM7M3KdF5fnGeV9fPEPgVzpg2kRVRs3WS/YBJpNHVMg7yGa7U0eOEy1deQRRPYmiKtmVw7113ous63/WTf5t4NqVSq6EfP8lHP/JhVBxx5dmncCsOevcqXrVKPB0S5zOMskQoBUJQabfRCSiynGmcU0odt2Lwnvc+TM3zkEadketirBynSGMYhoR+ja0TDeLleVZnc4gbVxFpzvrHvgfr9jtZrq2SFlPSaspJ8xiBlqLpGqNhl3A8IhgOeNeP/RTv+5m/TWtllSQMePXzf8DhtSsA7MZX6KZbzAY98rf81aRnEL3R5+5+xrlQ0ep4pGFG1bewdYsyKVB5yX94ZpO98VuebF+X+vSdKlW/hVv4yw5d14mTlC+cPzzytVOKdC9A5SVxHBOGIWWSU8bFkbHvtwmVFaiseCuZ7WvnK6Oc114/5MrBlHCSEkxSXt6dsKmXPG8UBHWTtabLuLFHjkLTJDP9qKRU3thFEjPNcrbiADvVcCgxi5wPIHlqc5FO0kNGLvbgdvS0Sc3WWFCDo1jnsoF+fhNtcgWkib/wOndvfBpPOrh2jO+XOP0VdBrkIidKa5j6kMA1CM8sMt26n7X9RTq6QfNwTHnJwo4L7jP7UCZkwsduTNHCHJpNppbFOMnJhaLi+ux7dX5r/hFeidcIEAyLEC0BkdnYWk7NSehXqzw1/wC+Srn98GkKXNadFf5Ju8HLcRcxHrOlWryWnGJiOkTpFoEMebN4jVF2hVZgcjaYsDRLGeUpsqhwJtogzWM0TScXO+y2rlPRPIS7h1faGMcEfuTRrJxi0T1Jw2wBNpY+j++dwarNsXznIi1N56dinUf2WtyePUax2mVQ+wxusIHUDPRyiOcf59H2fazUj9NcWMSvNWgaDTaSYyAEm0++SBqPKYuMtDsh7x4FDqxV17izfSdCCEzNJC1TZtkMz/AQCCpmBUd3cA2XIAtIixRNaNiGTVVUsWyLMDsqmS1VyfXZdZIkQVmKuBbjzXl0HnmYB3/oh9k/OMCRLgkZIikwTAvNMJn2e5zYWKEpSny/htBKauEBb37q/+TK8DJb062jBKe3lC6H4SGu4b6t3QshjqLFpc68O89+uE+URyy4C7z32Hu5t3MvgqPv+PVETctp0bSbXBlf4btWv4sH5h8gzEJe773OiwcvkpVfU8MVquCfP/PPeb33OsNkxDAdcF/VxdB17u9dxy4LopUTzKuXuWM+wi8KgjzCtW2ueUuEusmXGytcrTRpDvbYGe/y6msvMJOKWR5z58a7aFQrbLqSe0KwrFXci3Ooood+AVqORh4GlKJJ8Q6ljd8JfNtEjZSS973vfTSbTTzPo9Pp8IlPfIKPf/zjvPvd72ZxcfHtpnj/mVBGyKwwyFIHKwx4wThDSMK+sYVh+iS+h5ZN2Nx7hVkJIi+wpUO9nFIMTGqigWboZIFiX/YpnYxc6HT7+0xmIw7DBs8NnyXcW4bA4/r1uxkIgSZstDTlytwy+yfvobQsduZWmQ9X8AoLKCm1nDwMMF74CmrUo2oUnJsNGLoOgoJYpIyLQ+YNG0sb014/JHUs7CJAlTndJCcuoMxzLGFgajMCv4UotaMobiumFvV47DDhx/tP0No9RA9CnGRCV5zj2N5jLF3v8IvujIEhWE1C3nAlrpAYX+0S4RD7BowKRDhFCzXKPEHqGo1JH9efx62so1V8LGMOfSRpWS5immFWF5Gui7D/chkGfydQac8x6R4y3N+luXKMJAhI44g0jpCahul6RwbDqkSqJq9/5iKmtkFv6wZJGCClRJoaVHTetK4ShovcYdzNYuwQB5MjGaNZYggNhML2KpwyV+k4y0wthc6MYbnP2G3y5olzvKm16Zs1rqUzJBlGLyeQBpGzTlmp0st1bmgFv732GL3U5jQ74F2jKFr01j9PYQlyc4KRg6cEp4J53MznZetRpqXJxkBxPJZkImeub3AirdDWdklTHb8cg2dSLYY0sgCbFD1L8A93MJSNJgyCpMBcrhD5FkYWk5kGUkYIrUEmEkZ1kzvrByykkqpTY6W1SG7XKTRFuVBnkjsMCgtayyiVAwW6yGHW40NaxELQxRYKx9RozrnsPdhgVBR4y8vUzDGaVqCSjMFegHpLUaOUor8bEM+OvBeCUYLtG98Q231rAXILb8PsAJ77t9+6+ZtSUGTf/PVvlS8dOQlPaFWGjLsRU6dk313mQqwz7kVkUYpUIcb2U9zVfYYf6P4h5/ev8VX/dra9Y5xxDcZKI/MXuLP3HP/vi/8jjwcvMCymbJGxq8GBW6NiL+Nl96AFGu1WyfXrMXowQQU2vXGDVnPEGe13EFbJaXGFB6u/Q5EZ2JWEkT7jUBuwONtG82dYaoY2TnCybWZFj8QMec2LeckfEp1ssv5wjDNxmf/MkL+//xO8uf0YI91nx9+kUB6moXNNrmDs9DloOPDBv4GoN4j2A3IV88CgZIrNeQGbcgnTaFN4FQadNdZjxcuHMQfhdWZFySQK6FoJQ1txzavixgFN5bI93SYvc8JeghICkY+YS20OX3uJthtxcHjIaNqlKDK0wSEimFFfWGTj7D3c99FPsLg8D2V+pEAxDIY721RapwlHAxaOn2S4v8ull5/EEgKUQiBwG01QM7Ikoh9mFEi8hsVtD2xQbbbRVJWLx5ZRj94JKifc3MfQXf79+w1mCx5WHCK2LmG0mhgnztK3jqGVHpatqC9VWcodhumIul2nNAT//oVfYKiHzK2uH6UVui5xMGO4v0c4HqGU4mD7CsPeLpNel7I4MjKUtn7kQzNOIMxx16qkcUGraiF0jUIIsijn06/vszM8WhC8pUu82Xyjl7vfORXBLdzCX1Lous40SvmPX7zK/n94k2w3YPTbl4kvj0iShDAMUUmBivM/leRMKUUS5+8Y01umJVrVopylqLee39+cEu/NOHi1y2CWEs8yZqMjT5rL44heltPTYL4UBF6Etqy95alS4swyNL1FXa8x75pMkgwTGFoJT5mQZA6z2GROPcXr6iSTe15kpk/QUw89zvHTVWrhPFNtiaKcoqiTWJcwchvjcJWp28cwE7S+xnRS5Vq5w2jQQncmRIsTum2LpFvHvTZjeTthf36O5x5+gMg2MKNryDIlq66wFARkfei3Frh89ix6AbFmQqPDtu3zZf8ke6nENpqoMsdBMSlGfGTvCTSt5FBavGic4tdP/S1erN5OUjpMMp2r7hle0bpITIIURJwxRZKWJeveGoam2ImvUzMLFuKLNPoB4yzDM+7E797Nw+U9dOaXWG63uV7solpT8pXnsdp7pOKz5AtP0KqeomX9HPf7j5JlJXrWxPNOYxh1Ptpp8kDN5Xu2M8ROgG0uMRg9QRZMaA7eh206+LpkwfxhWt770Eybxvw8tuPxnuReToo1kFD2UtAyRGEcETX9CNTbTeRNzSTMQkpVYmomwE2ixjM8gjwgKRJ0qWObNraweb7/PP/s6X9GVmaEechnNz+LKhXKVTx49kGuzF9BSYHjuui6zm3V23hg+UGi8RjdsjAsC1UULK0fp5plrHdOULN83GxKpV/QH+7zT5/8pzx38NzNxKa92R4Nq/GO90jbaXMQHFCqEkMz+Mnbf5L75u+7SUYlRYJSikE8oGk3bz7/B07+AB/f+DiTdEIv6uGbPv3oaymweZnTj/r80pu/hG/4xHlMqUqkplMlxRYeszxkEr/JmTWD8fIJmqMex30XZWtUJGwqQb9Sh0aTpFrhhavX2Mty3ghv8OxkymHbIvNL6smMjckdLExc0t7LFN1XMfWEKIqYysY39YH7TuHbJmosy+Luu+/m9OnT1Ot1zp49i+M4LCwssLa29rXd728RpiUJS4t4EJDqDkxOUEhFPAshtfjd4x0+3QjJyogo6yLiFGekc2Ba7D2rqM0WsKp1ol2Nvf0b3IhLEtkkCYAsJcxthmpEkYbIxGQydhhnFjVRYGVjvry8yPXqnZjz6yhjnWwUYGkC4brkZYqpCcpwhgqG5MUMPZacDvtM0hIvy9ANCyOYkWb7COtNcgl6OsUpI5QqMWyNuTkHWanhy4RL9iLGJEVPCjrZJnaasLLV44Pbv8ZqcZ5RawGThOH6kEo2ZOOlHfr5iJEeccYRXM4UpUrRdZfSKJg2BNa2hjkqkEaLvJVxvCJ5INiBPIc4B11i6fPopY3eaiEyDdPvID3vbYqavyrwanWm/R5JGODXm2RJTJYkpFGI1CSGeZQalacpIlskGggq9qOIdIloNjy6GaVAX/G4LrbY9rf4wUqHY6MEx64wJ1q0Vm+n6i3iCZtZFnFs3MDT5jgwdKb6FvvZDdwo56naHC8aLp1ScCEYooTCyBYYhQ/SrSzTrbfY9Y7xWzJmT4QobYYjXAozIJguMe3fy3hwG1HlGmYJKnIppnXuFcs8aY7p6wprL0BcKYiJQZZMN3T6nQrFYYQmY7rVeRp2jjcd4FkCiaIa7mKkOUiT0qmSWCW6a9OOJihRosoJL0YWsR4yrL7B68sNCj8jcW0+fvc6htEgKDQGVZ8iF8SlgWg7aHoFTRRESUIZDKl//ikODjL0okTTJA3boGrpOJqG2WrRSLsIp4JSBf23iBqhCdKo4Au/dJ5wktJc8unvBFiu/rY0KKUUeV7y2d6Y5BZRcwsA423YfppvuehDFfDkz0M8/iaPlfDGb0E6QyVjPDFENyHSQ35K9vmXE8Ewz9FEhqAAw2Gq+8zPNnmleht96XA4fx9rpmCUl3SDKanmcKXzAP7oNbr+HL3aEluaYFeUTOvnEKM1qmELc7xH2ywwypzrz465PlzHkPtUtR1KLeDL1iIXrMep5FXuiL9IoV3lkG1GzsOoYo98zSJ8+QDfChhKhzmzw5P7Pt3IYv62OrYzpejMM44lawNBvQzIJgn9yT4rSchtvs33jjTcxgZPVU3CaYNi/zoq7rF1/mUGBxOyvOTjxYTtvEFNr+I6FcbS5oxUbAeCsV/QKaGMCvo1jYq9zylxibW9XdRln3/5/L/kte5rBLMZVb2gUua4PQ3XmCefTjl721mCSgPHdUjDgGA0AI68y+750HdT9QzyOCJLE5pLyzQWF2kuryMNh/rCIvd8+LvZuvI6RpYdKWoQmI5HkRvsXz5PJi0KJQGFpuucfew9VNwFCl2iNyt4jQYPPvoRFtwF0E2q9Sa2zLDX1/Aeeogt/Thfde9idCjZ6V7BNA3uvfsxJsWEptukfuIYn9/+Q15c2Ee9Vd5pez7RZMKke0g0HaOUYtI9ZDroMz7YPyKhAWFqmEs+xryHVrUwOi66gJWaDY6OalqMxjG7w4i98VtEjXg73xhfGFJObxE1t/BXG1JKoqxgfxBSJgWTz91Ab9hEr3ZJhuGRoibKKdM/XYrk9jDi//kfXubCxcHNY2VaEI4TylJRBilay0ZlR9HbqlCEX9oi2Q8ZhymH/RllReM3rxwQxhmv70+YxDnDLKc2yxgaFf6Duc+NaJdBkmHogn7/LGvJAhuOSVyCaox41drkXDPh+UKwUtkmK01+bWJw2TogSnNk5mAU4IWLmNMGg8oSYxGCqpHnDbYu3kfy0ipKBkg9Qh6OeeqCjX7lBNWdHrNplVmzi3ALEmzScMqZrstznQkDc0QhDGR2gF4k7LeXObYzYzEXuLYLCx6W6SANja3OMZTZxrDm2T1xgobToVqW2Crhf+00+ZQ7JCirFGXJqKywZJr8TvsTbBdLXNEbLOdz7JNS5AUNzcTXckxilLA4md7Dw5UHGapdypWv4jTfwHMECEnV3SDz5vnZ6Q9i2S63VWwmacBUu0yleZzTjQo1GeAbkorh067P8ZD9EEmaUr3xCM3aYyzMfx+61JGapP7Rddy75rBri2T5kEp0L7IwsC0bT4A7uh1PnEHTbWzfJggvcCLR8E0fIQVWbKFkikaFIogpxgmqOJq/KqXI+xE6OmmZggApJEII3nfsfRyvHcczPK6MrtANu5jSxDZtCqPgM5ufIS1SBvGAaTplkA7QdA25Jnn09kfp5T3SMkUIgeM4aLlGy22jNSuYrkt1rsMd7/8grcVFVtqLtKodFhpNPnRM0ZhfYLK3jy50fvPSb9JxO6xWVrk6vkrdrr+jIKNm1TgMD8mKDEdzMKSBJjQEAluzCbKAN/pvMEkmVM0qbaeNq7u0nBZVq8owHpKVGe9ZeQ//26v/G7vBLkopsjJj0VtEIPAMDykkUX604a5XPTyjTlqGDLNthJ1x9cR9rB+8wh3WmMLQuK1SoaZrhJUGW67Ll+c90moNpUp60YRxFPKrpy0OfUUUBMw0aJQlu60Z0eHraFbKJdnmf194BBX96YjdbwV/6eO5VVngmzbBqTP0l0/QNhuUheJ2VUPfucazFZtrRoLVrGOmASLKaE1c+jIFa57wClSdNmFfR+9P2T+8RFAskaR1tDRBlUfKlyweMhiX+I7ByeAkrVCjmusolfOh8ymZdwedmUNqGMg8QvgVCpViCp2aYWLPxtSuXWYaWbS332CWlDx6zUFGJTtrVcos4ugqCrI4RKUxNU1SrwiOLyREFZdmNuCad4JM5bxULLGgjZDCQuohhhpRUy/RXTrGRnPAtB7RmN/CTCZs9AS2XlINQn78t6YsjjLCuodhOMzoovcUchyhWy3i+QgRL2MbBmUQkl8/RNcr1Ny7kZmJ3m5jFB6G3UCr1RBvRV3/VYLtV+luXsewbEzXQzMMpKaRBAGafvS/YVmkcUw60ZBSJ5/55AnMhgdcfOqrKBSN96/zEw/+JCqNsXIJ44ymtch3lx/iTPVOZF4wp7X49OXPMk2meIlB7je5rvboRzvM54KTps4IyfsNA79dY9xqMZVtNq+v8CRrdL0aB4XFuNAoVIll5CijRWbGMJrDGR6nN24R+3v40sd3zxIJm9XMZV+7Ri5LGgsaRn+IciTXlgP2ignnjQjqGr5ncMmq0NRGzB328GwNqUCEI4pJTJ6CkCaphMzzccd9bK1kgMXVqk/iDQiqm7hWzoljz2MbKcfbPkIaFGXOlWJClRzd9MlqGlLWqBg5e2HJE/FJZiNFnJeESY4A6qZOx9SZM3TMRh3nZ36Cl257P64vmUxjsrRAk+KmZLmx6LJ6e5N4lmE6+jcoal758g6/8Oous/xbMzO/hb9imO1DNITyW2wPZQmHb0D+dmPIUimKIodXfx2iESpNKfIS3VNY+pT3ZCPumL3OXa0v4JoxojJPZHhMNI+5uMt5vU0j3OfY5h/SMU1kmbE9OuTnT/09/qfjf5NPV0/TUyVSc9h3W1yLh1y01gkLh6Vwg0QobPuQVG/RO7SI7HVMFWIOhsxdeoXJDC5ub2CHBtb2VeJSIzYmDMQJDD9j8rCO8WCKXN3lomyzZBbY5gjHGFFUesSJhXniDqLWMrLUeKDRpRNJbjtYZHEU8L5JytKKgeE0ePjRYzxHzsSY0Tx+lbI6ZTuJ+eX6j/HG+go7cY6nS+pmhXEBa0VBTWjIuSWaeUgSxrzGHpa6ymP9Z2lEE9bUCX7qzE/zRu9NksEArbeFOTiganusHqthBtdg2KODTcPQyNOE2aB/pIwEEAJbhWjTCdFkzPzxEzz4iR/ixH1rtFeOIXWd6tw8mq6jx+mR2kQclQZJY4PXv/R5TM9HIN4axgVnHn03rdoyj7znDmpLJl6jyfc8+mP83ff+XU4016lU2+gaJB/7GeLlsxwcJoSrNaqdNiuyydLnXkN/7nlmRUDLaVEue8ylHpNBj1k2O5pIV2pMeofkWUo0m1LmOclbpbrTfhch5JGixtWpfmQd+44W1qk6Ws1i1bX42MYcXs1iq6rziy9u06naHE4TLh1M+fJzO1QT9ccNmGKSUCa3+slb+KuNUZTTi2Ga5uhrVZCCYtXCvnuOhW0bkpIyzMnjlDAIj9QIf8JGz9444tX+jJcHs5vq3eCZfZ77pTeJZxnFNMNoOaj8KE2qCDIuDUN2Lw0JBFw+/xozY8qvvr6LigrCOKdlaAwmCf4oYWfW4InNiINxj4ku2MgEJ/sO7xYm9xsCx0iZNQ8ZFBGe+ybPzr3AnBdS0ObRYzd4dnsOUZqIzEBXOoaKUROTXM4Im1tEocXh1gMYwwpJUMOVEt0skJHCDRyioWDp6hssjAvW4xLH0rnmC169t4XVH5C1J7gZiNKnlAZ6mbNQ7hDUOqw7M2rhjHeNv8yvbXyMwDexZMLQuQ1NOOx5HlXNo6EEhlLEZU5NM4nyER2pMIDHgqs0twZk7gpDFeB0JyTK4ffWTjMtnmXSOU8le5qySHnIvJ8PdGymeYQW34MmBZ4TY0mdU8dPsfH4WUSoGOQ3cLIbfH/bYL7Sw3XXudtxqaoxK47He5YepF6vMxgMiMsUmzUsd4F2+7sAgXR1NM/AvbeDd/sSx479TZqrD6J7Jp7h0bRPIBMb6RlohkdJRLf7aULvs0ySA5ACO3NRTobp1sEoKMOc5PKIZHMCuWL8mRuoWYZZGFiahRRHy/XbmrfRtJts1DZwdZdPXf0UvuljmiYjMSJTGXe27+Ta+BqH4SGe6aHrOomeUIiCSTohLY6Immq1yng8pr1+nCeal+kmPY7f8wC3Pf4+pKZz1wc+yrGN2/AadfLeDe768HezafU50zzDw4sP87HjH+Px5ce5MLxA3aq/4z1iSpOszNiob9yM8wZAgG/6PLv/LP/kK/+E7ek2tm5Ts2p03A6u7mJpFvvBPlWzyvdsfA8fP/Fx/vVL/5rfvfq7hFmIqZl8eP3DnG2epW7V2ZpuAWA1atTtJmExwDRKwmLK2dU5wvwNiuBFMl3QiRW3zxQjp8Lnl1Z5udHhYn2OThJgeQ7pbEbz2mtUDYOq1JloR4qdi3MFaRFiGnCQ6WxXPHIBRfFnU1b/l56oESJDSsHW2kkoCmIjQnNsHhrvYuUBDT0nnx5iztcppEBpitSdEhGSuhWiQUjFajHrZ6TFkDTsITIXq2zRKUtkUeKZNYo0wS9KOm7EbcUhtrDws5QPDq5gjGPMqYeZZ3QrJsEshkqdLAlwhcRvLWJoOlnDIJgIZqqLb5RovaP45aljk2EQaVUs1wPDpiwt2h4I22YifIIwoFIMGGqrZGbJYQ5CScDEr83Y318mGfW5rblJze0yCddITMUTj1b5vpcdWkqSLOpY7/LIZUFAfuSRkmcYVg0mAU5rBa2oYbGOtExmTzxBcWUXXa+yeuxvYTeOofkVWtN78Kqn0efaNxOf/irBsG00XefUQ4+haRqGZeM3WkTTCbplI6TEsGzSKGS4t0N1WaO/vYPfaDDt93nti5+lzDN02+TDZz6GQJGmEWVWYCQ6LdXhq93nuJJfp1ba7I/2kb5BJVWcsOq0bn+Q5Ttupx3M+BkRsaIJbk9hv7HAdb/DOA4gTfhgteSuyQG6gFl+FNph6yVFUQNtiowcZkQUoUaUddFKnTusdfJmBnH9qExICCpGTHpyhdIWaFISJyn7hcBfyxnMz8gKl9qcjezuY9s6EkWGTYFJmumkYUxkmIwqDcaaxXm9ztWyw0G1BloVXRScVlPaYo+mCBjHGbNEIUVOKAI6WoZSJj0rpqTGgqPYnim+nN3PLHcIc0Gal0hd4hsac6ZBx9KRmsbKhz7AsXP3YNsGFAkHoxjNkGRJwdKpOg9+z3Haxyocu72J5Ro3FTVlqcjigsFOwCzKSW9519wCwGgbktm37FOjKFHJUXT21+Ol4ZA/2N1GjbchC8kLSDON9gkdjwmGv0AnG7KhfYFsYUTuzrEpfHax8aIubhFzJjvknuErNF/+t/w31j532oLXvRNcpsJ2rjObaRzffIBxucJzkx5S1tATMHpVeqrF0JswtVax/AoFDmIrJ7iuoUqJFfsQ2RSpwaFr8d7PPcNSmNPdjqmP+8RyQPaekD9Y6PJp22ZOzpjXJ9SKAQP7MruqTfX+B6gtzCMwefdim783fT8/In+Qk7MCnvwjqu87hrlcYWO5yq8aBVdVCq4FacjIyHlaO8EXOxX6tmBgj7hkC6YaONLgEUPD1hdYDlPCIuOKVWIkl7HSAuWVHHZ3sXomh5dnhP0+bjjBHoY0lMbSRocGXXbefI2lrEq4vYkQkkmvS558zcDTKWdUvvR7XH36j6jOdVi5/U4WTrR570/9NJbrYXs+86snMA37ZumTUgqntkwwnh6N3UKiUAjeisy2LNZub+C0Em571/twnQqri6t8KLwD122iNZsUi8eZBjALMnJXo7rc4gcq7+YDl224+CaakDTsBteTTSpDScttcRgeHn3mapXR/j5urU6WJORZimGZ5ElCnqbob22kCCkwl3yc21vYpxpoNRN30aOxVqPqCZ4i53PX+jy4WOVGL+DffPkqW9eP0m0AVHa0OP1ORRLfwi38ZcXvvd7lmZ5GrBSpI7C+a5Gv3HiebF6jcqxJPbIp45wgjnjtlVd5/YkdsvidCcxZkrNqmmwNwpvHsoOA9CA8CgoZJ8jaUdkKhSLeD/jfh2NudANiQxAmBYOiYNEwMGYFDSE5XrGZjGL8KGFvqrCkIswTRoagVoIIJeuyYDXP8IyIN/ScQRoQZxmf6NzgttoOBjZL3ksEeyc5rjuYwQwtVeSVC+SnIRUzwsoVZkGBtqvTOrCZaQs0tmJa0wM6m8/QDnXKKEVLE7h6iM4UqwipGAG95eP84rvvZ6D2aWWCQ6fFTG8iSsXy6CLXkgZfdCSN3St0Gwu85N7Hpn2MOiGbWodIWuwJRT2JaSOP1CRJQEubI8y7tHWYKxL0acE9zhjDtCjNnE7RphGu8vnZDl3xHIf6eWrx08hswvwoQKYXcaXNbHQaVImnZ1hoNGtNlk4cQ51wmbFJmuxzh51Stfaw7WXKcgbKpG76nGmcwnVdJpMJiUoxFj0QXwsr8R9dQqtZaA0LY85nYf4TWHMtjKqNJz3Wix9HJMYRoaN7pOM+ybCPPd/mIH0OoUtSP6HUc3TLR5sz0Rc8pl/ZYfbVHcokJ++GpJtT3G1xlI70VrHqH5dG+abPB9c+yBuDN6hbdQzDYDPbxDM8bmvdxvnBeQ6CA860z2BbNgpFVERM0+lNT5harcZkMqF991ku2vscBAdo+tHcWwjB2p33cOqhx2jPrzDe2WVp9SSxXrDsL/PTt/8033fi+5j35ulFPapWlXeCLnXu6dxz0yT5jyEQ+IbP5zc/zydOfALEUbmXb/h87PjHMDUTU5rsB/s07Aaa0Lhn7h7+8QP/mOvj6zyx8wS60HnPynv44dM/zEfWP8LvXf09sjJj7swpFipz6OaIlcoCSRFz++ljHM5XGER7aJqgguDKC4f0xzmPjXO+f7PHfZsXaU36YJmc7/a5OpvyyFyLtqmT2yaxI5j6LjRdSlJ6GUw9ncMsYTf6s1Gk/qlX4WmakiQJSZIwnU7/3DwfBCUTc45KnGCZIU9WzpIsnMGZpeSzCcvBhEoyo5dYXK+sUhgQpCPStMDxPKq+TZ6Ko9i7WhPHtnGQCGUyV4CVKxbsZYRpIDEIr9xgQwWYwkKQszAdEokSNbbRKorh0hpDs8mwOodKAuJKk3R+lYU0Z3/0Oi1eJsu7ZEKhcokqE0Iq5NIk0htMXJ/CdSlMA9Mq0aVimNtkUYqrm+izGoWUNESEVpTkwqVV7sKlCUUsaTS7lCcUK08OKH2d8wsJCSHvkW0ye8RszSDWLIoMhChpOGepNO5Bm5bY1QW8r9Sp1dcgy5h8+tNUH3wPhlFDs13cBx9E+j6mbGPU56l84APwV5Co0XSd9//M32bx1BmElFiuh1evE00nmNaRJ49TqRKMhgwPbmC19th+83Xm1k8e7WT2DkmjCCEEmmHi1muMo0OkrqEZBubEoJLYvKZfoRaXjMZDEienFAVqWnD3Rz5Oc20Vqz9geTDgrmGX9W7Af/2m4OMHGoUOXjbjh+2v0Jnu0zJybOPIuFmqBC208I0A9JjK9Tc4/fQfkpOg+SH3HEqG5iZFYbMm6iRFQiCXKLwVYi3FUJJQQdee51gScFUNOHWgY5DByZO4boEqCtIcMqWR5zZBnDDTdfqmQeBW2RMak9wkTzO+3H0vr8qPMqcmmCRYSmcwS5hEBWU5I1VDrAyy0iR1ZyhRoyUTglSxP9FJagaZAEsrQBN4UuDFJXfoJpM4x5SS+ZqDynLWXv4kL1/cPkp3KhRu1UQvU2QW8dgPnMCtGuTZ0YRq0o144TM3CCcJZgnZrdKnPxe80zihlGI6nRLHMUmS0O/3SdOUOI4JguA7P55Mdo7ULcnXRSYqdXRcqW9DUaNQSQD51yV4KMXecJ83D7aO1DrxGFkkGCJmQ/s1qlkPqzZHIx7gFIdk5hUKzaTUbca6hxMcsJAc0kmHrES7+N3XsXe+zDN2ypzrkBYxVaXwglXaWycpg2WIcxpDRU0qjFRDUKMbuUzF7WjjLlmSMb2YE48t9PVFmnkbLa8wzTw+9bjLGw89zrntDC8/wOztkk6bXJw22IkMdtnHkTGqjLBMi1IkiFEN3VmiZdbQKx5t+2HcSMdu1OjkAqkFTFWA//4GtXKf04seA18SOh3MokJw3KJrS753WGK4OpfdXW44goFnc7njcKe1yaGKOTkzUO0Wg1YdKz8kTTLyRCPVJuTDnM7WBtV5WHEsVv0OwfVL1BfmaHkFexfPU9EaTLtdnEqVab+LlEf9pgAcS2L2Dti7dB7L8W5OeOdW19F0HSEl993zMVxZu2mzW6IwTIvTj7yb6lznrYn6W231pspbIDXJifsfRmpH72flGlqthj7XxvJMZsOUJC2QpqQ0HLLX38A7cxtWqOFKm5pZ443xG7zrno9w54kHuTG5ARyNQ4PdLfxGiyJNiaYTnGqNOJihGQa6afH1emshxc3oUmlpCAGelvH0/oT/+3tP8rFC55k3Dzm3UOFR3YS3PGlUVlJmxZF8+xZu4c8Yf1HrCaUU1/sBV2YGhYIvXNrk9y7dYH9wSBzHTFRIEpYkYYrhmuzvHrB5vkfydfeFUgqVlzfVM7O4oJIousOIolRQKspJiq8J4llGsB8wS0uEIVFpyXR3xm5RcJClaIaGU5tn7Hv8xN1LnEDjDtfmVMfHyRWVuiLKcxxZ8Kyp89U0YlvfIS1jbDOkiaBl58wKG00U7Byc4NorjzCeKlrYtExJO9Xo5CW2puMYHkosUzxyilgk5NUpWaahjUfo4z4jTzF7WWe66SAO9mhNC6w8xzBrGKGJ5of48SbH8zcgM7hkzeEUBvU04fnaKof+GmZZ0I76bCcFXxAJRjBiZrlcLl0muks1H9E3agRIdC1jNY15f+DhlDn1smQ+zhH5Lq7MOJH+Dle7ghcrz9FvC5KyYC5v4czmmGlr2FaHBMFxx4W8j5XfwIoEDdEi1yoolWOICTaQpxlIQXqXSyrHQIGu19B1A9teQtddlFqhLDKktLBtm3PnzmGv1HDuaN28/kII9IaN0OXNMUQIgbHk497TYd1fpzqpUqYF0tbRdZ/Sj0h2h7iv3wULlwmTa5iBhbQUulnFOu2j1yzMJZ/sICR84ZBilpEPYqqJR8tufdOyojlnjs3J5pECpdOhtlxjyV/idOM01yfXuTq+yvHGcTzbQ5c642RMlEc3iZpKpcJ0OuX65AYtp8XubPdt5xdSIqXEb7UxDYtmvUPbbbNSWcE1XKpWlZbdou20sbV39jMVQvAzd/wMZ5tnv+F7PLr0KP/0sX/KD53+IX7o1A+hCx1Ls/jBUz+IJjQszWKUjFjwFm6eq2E1eGDhAbamW2hSw5AGtm5zsnGSpEj49Yu/zlcOn2SlNkdhbnHv/F2kRcqxxRqt1SZpPsWSgpZtMI0y7ikUi71NRO9VvuvyBRq2RepWeN1wOb+whh9HeMmAPIm4PHqSLMnorlfYyfYYC5jqBUY6xEhn/7ld0p8Kf+pV+I0bN3jzzTd54okn+PKXv/znZ86Z+bzOY9RESap6vGE4XK0skGQOMstYPuxSQ+PCyQcpkEyLGK9oUGh3oCmDcwsmpekTV+ocLJ/ENCUiGFFmGo1Bxtw4I7U7mBUPT8FkkNBN6pR5RqFZjMo6gWnRW7CZ2il7rSW05mM0ghwVh7wkF3ixVkfGEU4V5OwiQhoMNYPE1UlLRVcZKN0mlhV2TYep36CQkiIRWDJjZHSIpM22Ns/5Q0Ejh0eMLTQcRqJJK93lYM7nX33I5fKiROvV8C90MT0LaUpmVsaCKillTiDHeNsxldAgdSooy8dwmuihi1FvI16M8dvzmKurtH7u5/Buvx/dqCFsh9bP/RzS95GOg/Q9Kh/5yFEh+18xCCFoLq3cnJxbnodbbxBNJxiOjRACt95gsLNNlgb4HZPh/jYn7n+YSbdHPJsSzSYodbSr2lnfoDfbQWoSa61GIXIafZ3QivlAoPETvffQy0wyXceT8PS1MdO8pCgKPrdZkLx+jWR3l1b/gKVAJ00z7DLFKyOcdMLDzgGqyCmDMUY4AiUw5YSxtcsnT11h9/SD6L0fYNQ/zonRWYr66+imxmOje7ltOM9ufBtR7jNLQsq0IJeQCMnccETXsLjakRRliONKIMBMZiRZSZ5LyrLGrCwYlUNCIvTWBrqhY5kGeZbyWrrIk9FdILuUKsfNSn7jcpdhVNJ0FB13zG9OH6aX2qTWmEj5OFGP09YIQ0UYH0pw7BmuHrPgZWhxwq89cZ2dqyO+eOGQOCsYFCXpaIr+zBdJXn0TYUg0XeDWLKZf+ALTz30OzZDohnZTUTMbJXS3ZkSTDJGXtxQ1f054p3EijmOeffZZ/t2/+3d8/vOf57d/+7fpdrv8yq/8Cr/6q7/KcDgkCAJ2d3dJ0+/ArsT28/Cl/w/0Ln7tmCqPvGWcxpHXzLeEEtIQ9RZRo5QiCVLCvTc47O+gsgjiEVraw77/E0znbqcqFaI+Tz2PuVFf4pXgeZCSChnCdCjTCQ9FV3HjHmEyZColV3ae4pPRdarJ53CjZ5Cp4N25S619DX3cRm35nLosMGyBqycYus6x53e4PlhE7984IpJcA+0ja+hWgl3oZGZOlitolXRvNzCm16H5JSJL5/dTjVyPKWWGrwssrU0PgVNbwZZLuLd/mHykMFMHveFQHE4QUkeru+iFgdbwePbTv8P+p/852hf/GT957xxFPmFaO4UjLZ6avELV0nhgFlK1BGlFMdQh0QVPVEZsWzFFLmklBc7GGQrLZd1YQpUtCC0SNeX6a6/Qj15C2FPuiCa8+46T5FmA12jQnJ8/MhBsdQhHI2y/QjAavU0RWnFK0gcfYzIeYbruN726vtVEU9pb3IdAHbk7cveHPsbqHXfeVNm8vRb96HlvC00QAq3RQJ9fwPZNhgcBpqujBCjbI758BfvMWdyyglOaVPQaa401vvtjP8uJzhl2pjsAuLU6bq3O+l33kiUJ44N96p0FpKbRWT/xjUYz3Hz7o/YJNIySne6MlVLgd2OWDJ33nWjjjRKi8CipQiUFmmsclT7d6ipv4c8Yf1HriaJUTKKMUmhUHclAs/nK6zeYTqdEUUQ/GPMHhzr/x2Yfre4wHU3olhfJ8vSmb0jei5h+aevmOWdJRrUURFlJVpQ3S6UsCbNBzOjGlG43QuiSMsnp7Uyo+ybbRfEWqWqhhM5jWzE/ulDjh45rbDRtWqaG3UypWjlrtYLN3OLxuQNmxSGhl9JV4JLwQGIwiVxqvs4gjohliCJlNIsQA4Mah+hJStX0sJRPNta5+tx5pHFIKUOEYeGEMa415XLrJYaB4uKhRmHbNKKUlsg4bM4xLD10KyFJVvCmFfywSbOwaMQuSiVsucf4V+t/E18UVCjIshl7Zkn9DomUilR30KSkHXdZLidUix5LKmQ1nnLfgY6PxM0cVtOELBsxTa6xO/0Sv+h/htA55JpzDVfzMQ2PhpTEtR9kTq+iYfNRe5O/0RbQ2aO1fT8r4TK3L8+hyQLX8liwdFAJQgiSLEGTIUUR4thL2PYShlHHNNvMpm2kVkcIHSEEd911F499z3sxj1X+LwNxpGdgLHr8xOkfoxlUABC6RNd9WA+xVzq4yRncRYd991cpZAZWebRRvqCjihJ9zqUYxISv9pC2RjFOaIb+TZLiP4VneFTNKnWrTqPRYGV5hRV/hapZZdlb5sLwAmfbZ3FtF1u3GcZDNKHRj/pM0gme5xGGIVdGV3jPynvYme1803ux3u5Qac9hmQ73z9/Psr9887Gm3WTRW7xpdvxO+Pryra9Hx+2wXlunZtb40NqH3kZ+/bHZsK3bLPlLN6+BEIKqWaUf9TGleVNtpAudk/WT/JtX/g2v9l6lbldZqczzXavvJy1SknLGgl/H00xMkbPoWTx0vMk9jstYS0j0nJXVdVaXl+h1VlhSir7pEr75Kuy/yrarc6VtICZ1Doo59EJHNGx6qWA6Aj/5s1kv/6mJGikln//85/nKV77C5ubmn8mH+WYo04QdZdHpWrTkSb53+wJzacQoFhjVBq1ZHz0ruOBUMLIukV4glI1W6MSmS0cGBHad2Kszrd2F6S/jhhGGZqOrHKUKErOB47iYaUCrZrA5CxkPL5OmYE/mwTT44t0mcT4jzFN2DIk5PPpsy5Uug7ZD0qyw3EgpBl3Sso2eWBwaBWFRsqAyNN1jpnnsWx6XVk9jCMltesL8YISmm9xZnfCkcRuHUYmB5F3G8/yR/W76pc2edUjPMtjyZnSrDaJXRzCYYOYFtqXQaxZydoiV1bAqAbX9HDsomJUg3XkMpw4DRdGoYszP47fnaPzkT+I++ACG0cCy5o9+bF1HmuZR2tPX3Sh/lSGEYPHkGWpz80z7PRz/qIP1anVuvPoSjYVVqnNN7v/499JcWiEcT7F8n4Ptr5JnCaos2bjvIe77ke9HGBrmepWhPGTe6nCffY52pnE8mSM29hn7Y1IR8y8/e4HL/RChSabKZaeoMJsN2J1s0/UshKZheVWmkxlJVuAlPTQpQNNJervEliQVKaUxYuIscqDdSdg7yf7YIKjtYdbOoynJ6eB+1rcrOEMbkJzIjnPX7DZKDTIKnFCRlbCbneZV06GdjNhPFUZ/F1MWpHFB/+pJ0F3+xuhpNoYvc1gDzRCILGSZBGlLmodTimwPRYKVRowPr1IzShqGYNXuM808hrGBMPvszRxsIt5X2UP3bMq2SdsNaLiKuvMMe/3zXO7O2BvHvL474Vov4Pev9FBSw7v3bubfeA1NF2iGxKuapNeuk+0c7QJohiTPjna6JqOY0X5AEmSoXJHeUtT8ueCdxgnbttnY2KBarXLu3DmazSZPP/00uq6zvr7O3t4e4/GYixcvEobhn/AOfwooBekMqsuQRV87XqRHZI3pfuuKGqUgj2561BRZyVO/8iKTvUscZhlldQmiMSLsoxMzXX6Eiu3yuVwnkzkHVo1udoA0fZr5jB3X4Lc8i6YoOCFifrOxwJdW7uRSY5lqOuPK9vNUhp9j0TjJqWzAsWLAanqS22YPUB+VmAl0bnwFfXpAbfMKh3shuhJYlRZC13iy7nCoBHYeIet9NDtlwdplO3uTvXaDY69e5Iv3Ci4lQzACLD1n1TJpORukSsP0F/CNOzEr96ESUKmFsCF46kWEZaPXHazV29AaHkkUcfmgBKFzxplRBlMGHOM/6ou8NFmnlgtOpDanz1TR6pKqqbFQt4nqHrFnU5M6ZqLoRuDEioXBMnpSoS7qCFVSSEmlWaOXFNQaDfJaE63WwnQ8vFqNxZOn8Wp1LNvFq9cRgCrLm0SGZ5eM73kAu1LFegeiRggBQtyM5/7jSaum6Wi6DhyVPn3tBQDyG0rphBBYp07R+NH/AtMxGB2EeDULBRj1CsnVaxhrq1StFtXEwt9r8z21j9/cGUyLI7LSqVT58N/9h2zc9yBlkbP95mssn72D5vIK8xsn+Zqs5z/t38TNQ1YZMSehMkgwEfw/Ti6yqOu4FYvuKEZlJUWYHRmeJvnbv98t3MKfAf6i1hNpUWJKyR0tj3nfIjFNdvpTOp0O0+mUaRYRWxo3LBhqAse0mPZyDvdjuptTpl/dJd2aklybHNWiA2FSYJVgaoLhNCWZZnw1zxgbguHWlDzJGXQjhCEopin9ccLtHZ8DcaS+iQqFOU0RByGLDYvtdIudKKDtCOLxmIZVMm+HWIbHcXOPqIgYejM+7QwZr3wFa+iTzAQN18Rb7KI3xhi2ZBbrDEMLrAlebZdaRaOZ6hxzv4JT/f8yX9XRSheldLxSMRBXebXyFK6ukduSuNOkRcJdwR4T02KkW/RfPE7Sb1AmBkJ53BGV3HvQoEgD0F22qdI1MhRTcsOhaxZEJ1x8kXHOCCgRrCaHLKVv0uj+AvVkSD2PkU0dRxmY5v20F++hQo7LiKameNDr8LhdZU/tItMKTq3GnJ6yLLusyoy1dJVqOqQpdbK5KWVR4290v4fj9Tq6DTXX5IeXVjDEwdHGSpKg6UcbLY67TrPxKLruI+U601kL0zyGEG8pMYVA1/U/1TroJrFgWqiwOHqNFGiaR5TfwGkt0/zI7awt/kNyTdE9vo++ZKIbNZTMUHmJkIAmKacpxoJHMUp4j/4wD9n3flMCxdEdVipHxAzA8dpxNuobCCH48dt+nP/u0f+Ojt/BNM2bRE3bafPJS5/kv/+j/55EJZRlySAccKZxhn7cp/wmZeFutc79H/5eDNPiR8/8KCuVlZuP1a06P337T2Np356f6TutNw3NoGE3aNvttx33TZ/D8BBbt99G4Nw/fz8PLTxEP+oz783z3z7237LkL5GXOXuzPRb9RRzdxFNjHlmt819/+Aw7wT4j3UR11ohP3s6xhXmC+Sq3Xb/CYjAlPP86e9MuCJ1XT52jGtzF4ayBV9hIXxIWgrDQ0DG+rd/gnfCnJmrm5ub46Ec/yj/6R/+IRx999M9tAT+1bFLdpDGVHC9MFva3aW+OmASCuDXPfFzgxCVCtyltnb3lRQJpIdKc85UacWmg5To4DYq4gtLbzM80lFNFczIKWeJmHoU0oAxpGRNOxa+ycnANrBwiG0fl9HVopAmtPGBY08hnNpSKOa2L40M+X6cihmSWQeHVaXuClgWyKPGzmNjy2HcW6KAR7qQ4icLMNapbE6pFwLnsAsPARRMGuhLMiQFvJA36uclWeoNQAloKRg9nkGJMIvTJDEsLKY77aLUCfVBiohBVjxRBEqW47jq630AblRjr64zuuh27VkdaR4RAtXqOxYUfvPl7C+uIqPnrhHPv/xC1+QWmvSPJPEBrZZXm0gob9z1Krb3Bufd9CN0wQEnqixW2rvwBX/rlf8Wk30WJCFlPkY6GuVqhW9nDwuS+6WmmmiDOC9ZGdfrikEE+Ym8UsD0rULpAR2DbFlJ4zIoph4kiR6NwPJ4edwgsD6TE1AS27xHOr/OCZxEZVQxH0umdYr9wuBHqTMuCnc5rxHLGtdoWegqyaiGVQitLzkUbPJDeQ2IIGonEyDI+Nk25e7bG034VXwvxVUKaZOi2gygy2irD0G3W4z4LyS6BqTAdSUOLOCYC5rSQ9sEmZT4BYWOLhFOjbTa8lDwZI4qSMNYolI0Q27zQaxIqjc29CloiCXRF1RiyvlzBcLrsDnqMwozdUcTFgym9WULQMFm8d5Xa938fJ+ahPr2IbmtYrka6vU3e64JS6IakyEqiUvHV7RFxnBPNUkSuCP+MTL5u4e14p3FiOp3yC7/wC7RaLeI4Js9zGo0GSilu3LjB0tISS0tLvO9976Ner39rb16kUBxJ1FUyI6suURbZ1x6PhqDbYPpHEdvfAsosgzRCZTEoRbnzMvHuVcLZgK5WoZy7DaIBxGP2h3vsWx0qtseFFNBNhmXJYZmgJMwlPTwZ86osqaiEE8x4zW/z2bLGDavBzxYuj08+wuM8yF2V09TSQ/JBFYFEJYuMY4GWJcztP4s7mmJ1fBb6+0c+KrpH5Fd4WuakysLKJpzoHSCMgiW75BLXubL8MF+89xjX0ph37Tts51OcaZvvcuHuynFOJimW8Jjb+QSyNFFRST6IKWc9inGENA2kZ6KUhfvIA1iuTWy0yeobjJ/7LXRd8kfbM4a1mCirI5QiyWZo1QjNPcWSmnF8owpSslup40+HJHnJWCi8cMZ0XzDbGWAkEyzNJ0stmrUaK3MtOvMLzLCoP/ABDMtGMwze+5M/h1OtUess4DVaaKZJlsRfox2EQLdtqu0OuvkOMu0jF+EjDxp4i7R4K1mJt4gcdXTs61/0n5IbAoGwHYyFBQxLY9KNqDRtlAK9VqWYztBbbex6B3OiOHgmxhzab31MQUl5838pNYSU5FlKf2eL5vIKD3/fjzC3dvyorb8TCf1WlZavK3724SW0gxC9adMsID8IsDsO/TijKErKWUbiG+TpkSogeoeo4Vu4he8E/qLWE2FSYGYlP1aYrFsmUxTSqbBx4gSTyYRMKhKRcyIruDAIuO/cA1wV8/yz3z/PpecPKacpeTci60WMDgPyQhGmBY4maddsbmxP+PRvXeJ/7Y+4lqQMr02wfYNCKZQQ5N2I/TTjRNUhlJBkBXohWDQFzm0tkkHEeDrjq+cvcXbhVT43FOSpjYynRCrjC8MVojJnW0R0tYAyF8ShTjpL0KwblCLEsiQ6dUTaxssF1dSltfZldGcIqkA5KVpepaqBkTbJSzBmU4K6TdWuYgmBpdkM2zYqmdIeHVDoimESM922caYxSuWUvS7nZq/xbq5jqJSedMilxpNaxEUjY1SZQ+gmV0yXUHNw1T5jq4qbzXgewVBNmcSXqBUaT5bn2On73N66h7O+xz3lCIoZbc3kEXWMtncXU3tGtezQaFdptix+qvwcd1r7/ODd34Wmu+hphbjsszUT1NMa1VpGxQ+x7ZCF2h1E4SUA0nSMrudY5gKW1eH48X+AlBbDwTniaI31tX+IEPqf3JD+BAhDo/rBVfx3L4MATXOZBedx3VXM9SpWo4nSFPg5SsswjDqlOCLmi2mKuVZBGBKj41IGGdV6k/g3tsj78Te8lxSSD69/mI57VJb78Y2Pc7Z5FjiK8a7bdXRNxzKtI6ImGTLnzHFpeAmF4iA+QAjBJJ4w586RFim5+sbyV900OfPIu47SlKT+NmWMoRk8sPDAN1XLfCegCY2HFh6iZtXedtzRHYbxEFt/+1i+Ud/gHz/4j0mLFN/w2ahtoAsdQzO4MLzA8epxqoaF3v03eFrKQt3kYv4b9OIDdqOSZ+0FKrZFV2TEtsPabMjdoxkPB5dZLDd52W+S+yZap8COSwi61IWkK3cR5l+woqbb7RJFEb7vc/Xq1T83qaIR+HxgU+JlBY1pSkfU0XJFKUz2GvM0Qh1rVuIkGtN6wbMdyUhp1NOIaa3JQG8i0gpt9wGMuCTOJGGSULo+Wlpgx+DMmpSVZYoyBmueuLbMWpGRlilJGcC0j5bFWMmI05MuthgcmdAaJlZaUu3vMpZg6gmpa5NXbDp6yYpjUbEFZCkISRpndMIR2k6AFZW4MmYsJEv0sLKYNLKpFEdGqYqSiZT0+g1qh01iWdAwK2QqRoYlccNDdANWtCb+RoxBBWvsoguHuFphVhRkocR1N9D8Cs7yMWpLq5z6gR++aUAIIKWFrvtHbCYgDAPp/fUiaqSmYZgWs9EAy/MB8OoNHv/Rn2R+/Qwbx/8rNM1B0w1Mx0b41wm6Gleef+bIx2b4JN3xp5GOgXQNpG1QZgXR3ohxGjErSiqJzTjfpVQRneYh22FGVmaocMa6NkCzGpjLK5ApMl1nhiIodeq6jmUZGBpYQnGjcpJfzTOywiXQFKvD0wxrPXbKgrRe8P9n70+DLLnuK0/wd+/13f2t8WLPyMgViURiJwCCOymRFEXtGyWVpraZWtqqqnumW9bTH7pmesampm1sbNrGrGaszaqmNF0aVZVUkkpSSVSJiyRKJAUCBAgQawK5Z0ZkrC/irb673zsfIpHYuYOQSnk+APE83/Pl+X3+v378/M8pdM4YuFpdxUwEp2hgOwaT50QjSbs8wYw8zswaOLbknoFmVkdUNoTJJqfHuwc3VK6CPGFGDmlLRatI6JiawjjgViz7Od1pzn3XX6Ty2xhchGzi+Tl5pVn1d+g21ilEi1QLytohLgMujDuElPx4cpGBViR1ylw4Zu5Ek/kTCdf391nu+CRxjCs0l3cmjIuK9k/8OOHD72Hu7/0tnn/uUc6ZCtuVxIMB8TQBY24qanKt2R/nTNs2tquQ2pDUt248vh94qzoRRRG//Mu/zMMPP8yxY8f4xCc+wYc+9CE+9alP8Qu/8AvfOTnzajz/H+HqXxz8XSb8+5mP8Lyz9Mq/712E7jGwgwNVzHeAOs/RZQHlwaRJPfUrzOgXyMMehT9LtvwgxH2MEDyzvcZTcU4j7DLFYtu6jVQqBgK+MHyJvTqjnl7latTl4+u/j7f1FBernOhFj90r53iv1eWh6L18avbH+IH9X+P8zISxOcwD1h+x3Pg8mamRZU54yCf1JX/+rnkoKoQumBQDSn+Rk5c/haxD3GIXazwlkYpDrTM40scL5rm0ejd3JEdZypt8bZLTPB/QKn3kf3qadgqB8bBUG6EsdFZBrSmvX8BaOIxsNZGRjXRsnpMR+4XBNinPOQ/xp49fJnAsnh7DA0sJRw5foxMo+vke+bVzrGUNunuXcS89RbHf51x3gV55naMfO8JEgJvGSO3iCIlJrtCda9Pt9Yg31rCGfe4+cwe1UDRuvw9lqQMPmmYLKRWdxWWavVm8MLrR+nQwBoU48G858dB78BuNNz/BB2wMGA4sg41+nYmjfBPFiXijOfWrvGxsVyGkoNk7MHRUjYhCuGxsGXQteKB5F+XIUGQHE2Qp5BvmV1Ip7v6BH+LdP/kpHD/Ab7ZuKHy+OSwJ7797DmlANRysrkf81S28Y21iBXlWU8clv3Zpl0vTjK9c2OP3nnpzCfwt3ML3Am9VJ4wx1HWN1hqtNVVV3fy7ruvvekzujTMa+zn3Tmu6tWRU1kTdBezOEqPxhNq1sH2b2zPDhbLCcRrsuTZZWpKlFXVcUm7HTDH8d//26zzytQ3ipGC24XB4JuT8+pjPr+9zj68ZWAYzzqnaLtO0Yv3SiNH5IWt5xWLHp11DXO5hij16jRL3XT5lFVMmGbe1LCbrbc71Izqpw3q5SMeZ8q7ZHWwvYqwVSmaUcYUpJc06penaTGIblQbYFfjVDDOTEZWeobbG7ObPU4uK0rMxRRNHZEzKI0zjCtnvUwnB8f2QLJPY0mU9KkjyMUJJqnxKVubMNzI8kxKQcnfneeaqK6x623SsnEaSoV2PTS/grB+wFXYQ7hITSlLLh+kf8+/cCb+58nHOuw7d4D0cj0OapcceASe8ORbzjLOXLFaCBfzqOg3boZRjRB0SSJfjM8fwGy6WD71iTCQHLHUXEbKFSgMqPcRZ/RJlc0DJFkLWlGWFsk4wnpzn7NknyPJ/he+nWHYbgUQIGyEEhw4doaoMnjf7XRGHQgrcw03s2eAG0e5SVVN8f/VAaRk2sCwHt3mwbdtqoU2BkIJ6XOAshEjfIrs4ROsS5y4Xezmi2nlFafyyPxLAJ458gp5/oDZ5PYkCr6iZXcs9UNQEPeIy5kjzCHEVAzDJJnS8Dtpoyro8+B3q7/739r2AEoq/e+ffJbTD1yx3lENWZ2/wxpFCEtkRXb97U+UjxEF895M7T3K0dZS/c+Zvc1dnlVoXSJVRqDWMSEntPRJ7G19JsqDBltfk0JULhJ02ncM9AgpiY7jS2qXvWNS2QoucOQlb+hoiUG/Ld/AtEzXz8/M888wz/Ot//a9ptVrfx5YYyfJ2jEwzWnGHQ3EHbQDlkIU94nqfqqqZn9bs6JjLIsZEEf6gz9CLOF+8l7OrTSzp0is0Y7fJnl9gS0OZZkhtUaQ1lutTFSmx1eVqcBIGe3iuS+WMEJMt7CylHqwzWw1pD8/jLGY4tkM17NJ8qWZ1NsexSgpHMnU9rochnxEZri3JqprtaUEz2+cnhn/ASXYRpaacnGP/0AoL9XWqKqNTWrRUSZ7UpF6HfgUmrljpW2SW5JDrkeqcVIB7LECmih80NitxQfe5o/gXG7S772W3EuwfO4pljhJFtyEcF/fkSZQfMHf0+FsnOQmBbLWxZme/T+f2Lw8s18VofZDscQMvT8xddxYhJNKy8Jttzrz7b2PSZWy7QTIakmUbFGYX/95ZVGijPBsbh6rMqXSC8C22onWmWZ9Cj+i0X6CPJskSWsWIM9VlZuY62IdaONLC7hxhsYho25rT9TrMNal1iVUUdFCoI010FTFBQmqxUCm2mpA0UuJRGx0fwTaKQrocldvMzPfJ8pTejMTKBWcmh5nZrYhCl0kKOpdYyiETU5QlMRISt+IOeQXVbGEPrxNmY+YKh0xbaKVodrqkoymFO49uHgNCBALXSyi1oG32sFRKZdp0HU1Shzy3/yCViBBZhjj/Ete9NiWGrj+lrhIcp+D6/i63zze469wjnLn+dYrf+LfkeYl9551Y3Q7e/BwPKIO5t8Fg8zL7lsOgrCizjOrSBaqiptaGIqnY7Vg0Oh6+EbcUNd8nvFWdkFISRRFheBAVGYYhUsoDSa7nfff1xBjYeBIGlw9elilPmgZP6fCGp4iBnbMwfwe126Cqvj0fnLrWJKMcXeSYqoB4F3SJnKzR9DfJvVl8b5Z9/wQm3qVSLkGdspbmNFYfJNaG3domlxYjAf9zfo0/DHySdI9MSEZek8qa50hyhN6wR7dUWOk+xbQg3RmjJy9y3ukR6xaPcj9LvIDjl9jFGDcckbXgun+G5NAZ4qpmI3uWDfc+zNBlWI1pjb7IfjbkQqvBcvvnOKRmme39GYsmQegZgqlHO/a493zG/NUfwxMfY/7ouwm0hx2EKCs4iIGOFPnzT2IvrmJ1O6jIBl/xBy/usqk96nrKb+1YfMW9i7gZMmkeBVNy1IoJXIHOYhbWJ8RScaq/xz1nr/C+7at86Mk/p2sMpSkYVpqw1kTCo92cJ5nsYFYL7rj3BC6a4fYmrh/wChXy2rFzxwd+gCP33I/faKJs+1Xil4P3nfnQRwla7Tc/0UIcpHvc+NCBR83B+BI31DavnrwKXtbfvG5CK15RutiuImg6hE3nwMfa9sjtFi8+OSQdlfzIifdx7K556htG6G+2PiEEK2fuZuH4yVf9Vt6q7enVMDck+OCd7GDN+ngnOwhH4SyEDDGkSUmdlFxLC64XFS9cH3F9+J0RmbdwC98K3qpOZFnG5z73OX7rt36LL37xi/y7f/fv2Nzc5Hd/93f59V//deI4pqoq0jRF62+/pi/NBPzMfYcITnWxK8Mor9hLCv7Fo1tsDWMSIZgNQrpUbFYl14cphwtDs4aq0uikpNxOODfnspZkPPGldQY7CauOYqnh8vi1AZYF94226IuKS7Lil69s8tWNIed2Y8ZrY3btml7b5phU2GZCpCc0F9Y5N/jviTtPQ1FwzM8pyoJVy2WRnK8lPUJR0Ks0rtMiyTRu5VKmNrYtWHYMHg1G0wI9DpBk6BLyZIxRFVpO0ekGUtfUboBKFBVjLm+cYDpsYwmD8RY4dXaevJ5hvq8Z2hUJGhyHWgp8S3Fv9CKBGXLS2ufi4gnaPZ+JaXI8u8ihy+dxqoLSiRg5NmPHIlYLFMk6fSfiUuEyr0IKP6FbTviv1h/ngVSzVzdRnYRjR3yEeJ507k9otc6QpJcIhSAzA5JxzUl7lvd/4AzTeEySjMiQCFliWS00EcZvUtdDrPazXFj4M6blFp4X0ul4WGqZvb1tNjY+TZ5fBHbw/WWUFd0cG0eOHOGnfuqncN3vroXn9ZDSxXUXcJwDMkU1PFrHjjB7so1tt1FWhDYZKNBJiVitKaxdyu2EWL7Itv9bBPfOUu4kNwkaU9RMv3ydAwu1b2xR4bouZ86coet1WZ+sMx/M0/W6LEVLTMoJlm1RFiW+5eNbPnEZ87Xtr/Erz/4Kpf7OlMffSwghsOQb288c6eBb/hsInJf/bdafvembIxA8MP8A5wfnmQ1mmQ/mmfVnSMuU3XSLrM7xIsGuvMym/iqeFOwUJV1ybKHxfvRHaP3cL9F0PYwUDJ0+VZ4y8TJK/wlmrRKtCkQ+fFu+g2+ZqDHGsLCwQLPZxLbfnj6sN0PuKupcoksfk/n0a430FDgBSjYYDoYYbI7GhrHfJrECrnQWSOKcifHJrBle7MYEdc5sKdC1Yt8kaB2QJzEFNgNrwjCMKfKEWrgUUpBOB4RCYFlbrCSXaUqBG4/4cPYcd22fZ2KPUFKhq4qy2aMVFDiyJqUm04qX8pTroymBEhRaEjmKNT3LheAOPmQ9D45DEVVseT6eshHKsGxXPLT/WeY2L5BYimGeMZcVtHczKk9x3BV40hA7hmopQ0kPoTW6lMhtKOsEFS1g7IDmPfewtPxzeN4K9soKjU984lv6vqP3PEz0/ve/zWf1Lx9sx8XxAxz/rdVEyrIImm3mV97N+3/xl1i+3yYZDsjyTYqyT/CuOZJ0jBuFyFphlMG2AAXTYoAtLJRd4qot9uox0zLlVGA4EwiaLcGQKXUJRwYdloYWITFWPWRrpgmioiyn+FHNKFCUWchmptF2wmJ8lUb5El51kfGF96DW30NPNhA2iE6D0xyjSUYYprhScCjtsNTqoENJaUdQSSLLhSBDqCnGkWzPwdHWkCvNFSbYROmYqMhJkBgpmVYWSa3ZC0Nu36kwOsCIkFMzT7Eyt4E0ObGI+Ep8Ly3hMdaLfGbtQxRakcwscPWBH+PoXIfKhEDCYNAnyRM+5jzO4WKbO3evcvLS1zl04WlCoSmqg0mZDAIcIfDKIf3/8Z+RhSE4NtfOX6T4vV9nup9SpRVNBP2motnz6UlJdstM+PuCd6pOYGoYXoPJ5sHrMqXKpryU1TdvuRlew3SP8dXO/fx2Grxywz28BqP1NzVlhRuJVXsZT33mAjoeUhkQT/8bTDrirLPAP7/tfVhC0nFtvvbYADPaJBU2rmWzHseElk1cazKRkimLphVwvNJsyIx9KTiGYjh/G4OH/hk/tHOKD6oXOa16iHRClSRMNraZVDZ1FmKrjOfSWUSjoudsYJuMVHl05IDe7nGG4QobwmFpeoXdzGW3s8HIisnH6xyKIty4Jnlqjzv3DjMbXCe0U6ZOFztV/HxlMR9XLIt7mPtbn6DtzBIUHsK1QArQBtW00MkAnRUYA309oIosXtydUnghiVXw51PD2W7Ap2fvwek12dmJyRON8WuysMbTKc1iiiyGqEbFvILWi88jpjlrly5S65q5hg9bfewy4sh7PspuY58HH3qI+z74EaRUWLb95j66AvxGA7/ZZOnUaSznFYPDl9uWhHzzia04YGi4wbLw+pamm61Pr/GoERx41Lyx9enlZcqWLJ/q4AYHvwfp+ySH72ZrLWGwkxK0bO75wcNUpaYqai4+ufsanwBjDMm4oMxfpwq8ua9vMmjfZN4ePjiPf8cM9lJI56dOYGzBCENcVui0ZoLh8iTl/M6UYVLccqq5hbcNb1UnPM/jgQceIE1Ter0eUkrOnj1LmqYsLS1x7do11tfX+cxnPsP+/v63vd2GZ3Py/YcITvdQeU1W10zSivM7Cetbe0yKmmBcMiN9lGvz/PaYo1piO4qkqKgsgUkrBp7i8ExIKQ3xtKBjSZZaPl/fHXMHFr4e80I+4euipCE07qkG/zGo2Ldgd7TB1bXLjC1Y9Qw/uxDR8H4b25lhujwgFprJ/i5FmTNjpyz3rtPPDBU2ycTFLgOKUtIYLlFObsNtCFquTTlq4zsCWxpkLZFT4PYxJ45/llBZuK0aqgJQ2Nv71GZAkTt01Rxly+Ns6wSPOG2KMGD28oitoEXsH6GyLFTUwPM83HpEyAhVFXw2vAvpC74yOYSxbSptUHtbWLpipp4irZRAtehXCeuypqRNWDjspZfY91bBylm1LrJWzYBMiEuLNLxEKc7jDTtci6dE+BgrYbc/4SEKQiCOY7QpibMaISykjCjLENXrAVNsp0PujCnrfSzLRqmKIOgxHLhI+XUG+3cjAM9dwrIar3mYNDc3h/weJ90q5RGGx7DtV1p3XH+GrDxP4B9GSZdaZ+wv/hG77f/ILp9mt/n7SFeRW9cZT59GNiX1OKfaSSiujtGTkuzFfUz5zZXiLxM5h5uHuTK+Qs8/SG3qel3GxRjf92kNW5RxSWRH9NM+f3DpD/jhYz+MLb+Pc7hvE7ayCe3wTYkaS1qvJWqE4L75+/i5236Oltu6GW8+Lae8tH8Otz5GqTJqK2Yzu4iiZlrXhGVM6HvkeU658j6Wjj1MYNs4ZYO6qtiIrzDI15FpStmaRYQzb9iX7wW+5RHpOA7dbperV68yHA7flp15M9QKEielDmqGuWJbawpXULbbeJVLmWmQDt1hRXPkYSubpDuH6HTo+j6F5XK03mW2jPErQ1RKgiRGawetDVMnQOYlJBllWTBJLCphUfsB0ajPgjclyvo8MN0gShMyDbWumdagpELICme6RlEZlJYUBfjTHDe7RLNj4woLYxS32zsUWc4j+UmOW9cZh20GrX3mihgpDF009174HKeefYzdeonZbsbPHH2WpTShsZ/SWs6ZUTErnkOnYZMdSqiO2kytGu2EZJtXyOt9smoX12tz54c/yuEzdx+YWx0+TPjww9+aIZbjIJxv7N79nyMs1yVotb+hnFxIyR0f/AH8RpPZlaOEcxXxaI+yGFJVE+LxDl/+jV+lyFPKJKUQOUoaoGZvf50wbGE5FqFxsSJD5vscdg2rwQw767t8eriFVxmOFwJhJLnXY6/sYAezuLbEswXJ5AKWrqnLNgNCzjamWM42J8WLOMUQxxPotImfBaBjsukHiK7ex8yMh6NaWIHBJuLOwx8m6xWodguFTVcrRpYkkTY4FoPQcL19gi+3TlAGkE/B0WMSJJ5R7GibzPEw3YpTM0+SZR4XE4WUT3F7+wVONodgMq7UM1yddZgIQafXpCNSEtfia52j/LftiF3/IVxHsv/cWfYGfVrVgDv/4Ffp9Tc4sfUSM+mIrm0oX1bEKIXV6zG/fo3q9jt47Od+iSgK+e2vv4CdDUlHKU/8x0sEx5t07uxy+P5ZulLdUtR8n/BO1Qmq4sBAON4/SOCZbvP+/lcYj7YPotl1DXUOdsBauMIfDlKql5U2L34avvB/hTd5emSM4Qv7EzZHGeLCZ6me+LdkTgj7l2G6zW+130Nmu3xk8EV6nmJg+6Q7lxhrgbRcsjInsiRxrSlIsJTNyeAUP1AoXKfLIWNxvIK9sMlo8izNScwp+Qi3V9uYPEHrPvV0h9nHLH74UQvVFsw4KWWjy4r1DLZMuOIsMXEC3GmDURkwarRYvrzD5vKnWWvtUwcwaVksBwEzJuD6f/os8+sZs2rMiShlGMyTJz6t64dQjQX8joO9GHL6zntZ3O0gQ+uAFBltEq4OEVYJtaDIc/7n8/8fLh7JsFVGZsAKPaalYTLtsm4dYX/WReYBVS2YejHbzZxWUvH+s18Hx2eUacZXLqAjh7rIyKZTPCnpBT7p+CrJaI5j73oIKRVSSpZvO819H/gBhJQ3W5Jeoyy58aeybB788Z9BWfarFDBvonx5NW6u7oaZMK+oYszLTy55uS3JvO6D+rUy8VcZEUsleOCTR3AcdbDMD7i28oO0FhoHn9UGKQVlXpNNS649u09V1uhXkcsvfHmD7SvjN91deP3+vHr8Huy3MQbpWkhHIZRERQc13vIUV/cTnu5PKGzJelWzO86o35BsdQu38L3DW9WJJEn4lV/5FU6cOEEURczOzjKdTsnznLW1NWZmZlhdXeUnf/In6fV6b72BbwAhxEFscloTFzWeLelPS4osYFqCGE3wyoOWixc2xiwKBRqe2h/xG6ZAe4pYG46f6JJLgyg0TqmZD2wOWRbHaoFUOXGVcpdQjKqSvq65mOR8Oc/wsk0ur2/ypC+YSYb8QWqzU9t02u9mL49BaPZHY7So8Nnhw6dHfHB2TNO22U9LVG6Tl4bCrDHKfZQ3oP384+hLMXecfAald5FTQzAoKYMEp3OeaGoTqIOWXaHBnhZUukSZJtk05zfvz1hPczxZM0LRGMe45jCbTZfEGLTjYg4fJnI1S0HMetunjGqkrrkom/zTU/8VRbfAmWwzm+7SiXeo7JKj+ZTNaJ4t16WhXVyrxaVyzKbq0g+OUkyPc0EvUdcZWRmQin20htbmNe5TLVrM4DglkzilrgVp0kcpxWyvjW03sKwQKT22tu6mKDsIAa7bo9XyESLDUhFCSNrtOYx5EK1/Ede9F8uex/OWcezu92hEvzVsu83xY7+MEPZrlg2HTxAEx5DSo6rGpPZVdDRlb/rnmPkE586AemYEAmo7xpSG7PyQ9Jk+9aSg2j8wgv9mMGVNsRkzW3TwcFlprPCRlY/QcltMigmBHxDsBjiWQ+REPNd/jq7XZTla/ksdJmMJi6bTfFOiBuChxYfoeq+c39AK+YXbfwHrhv9QaIdsxVs8tfMUp5vvZVTsI2xDnnvExQCXCsopnh+yubXJb/z273EmmeJZFs2yxFPygKjN9qkGI2o3RMh3uPVpb2+PX/u1X6PZbNLtvv2D+2W0hMKyYwovZZiUoAyppcnn342sAiw7QgcBaqdiftPGVhmh73Fi+X5WM0PtWjREBkJR1zVeoVBJimMEtueSdJs4RQXbYzSQGYdch6Rhl56e8rD8C9J2k7//6O/iNmu+xgq6Nlha02gqTs2NcVRNmWlyFHpmAWUkbVVQ2DWWVhgEx+or3NffwJtoXFFym/0SvXKTux75Mlpr3O0JlrvDnzzosmc1MWrKfXNP4lYTnCJj+fCAnlMSpg6NMIBuwGR5gHGGyNCnvEvhza6SJJdYOH6G3uEjtGYP0pz+OqQ3fbewHZeo3XnrtrAbOHrvu7AcByFsWt2TJNNdDBohFOfO/r/YvXqBMs+oZY0ONEpolM4Zp32CsIERNUfcFfygIo9aLJctRH4IL7HZH0siKekqQSBtJjrA760yGeUseAUdEdMpcuayAde2Zrg0nGcy2mQaZ8RagTVg+V2fQap5qr0ZhJkg00VcbWPPWwia4GgapoNdNMgsRTmzjBIOh2lztuPT780hLBuhBL8dnuDP3Tm6rYQrSQ8lEzAFR4s9Ms/BtGboWy6PxJtcvXQbYriCEIIZf0TL2gFtkRU17YZkOi4YhopVZ8KT4l1cHO3Rv/I8T1vvwnJ8XtgxxFXNV+3j/PvGPcyGBUxLgirmoeRRysEu5oYBrHP4MEfOPk/a6eDMzNCKQno72zAdEfiSq0IzORUhAoVqOUQI0vp1N1K38LbgnaoTlDFDr8cEST8v+Gzd4XSxRTC6wlZespfnGF2DchipkI0kYbe4YTycjjDjTRhdv7k6Ywx1pTHAH+wMuLxxhfnqcazhWVInQtshVf8cQ+PwieFTLCXrJHXJZa/N/+X4P2HH7RFjEVATCqiqAp+M00j+ye4GJ8NTtOwFPjYZcyQesBV1eHLzElkZss1pltM1jN3AGm/gVbuckyVfPdVlbi7k7pldirHHwvU+tcr4ujrCNTuiViUaw35bIRzJYzNXGSkJbcM4UsgiZWX3LPb1aywm57D1iLlqi7mFeRajJsFwlnrlbgQjEIL7u/dyx+ZhVOiAEpjRDt7cAKs3Rz2pefTKkLPnb+eFcsJuIFirJLLdo6wrai0h9KikRlYeUvn0dzfYX1vDvr7G8a0dyhp6eYYYxejWImWWkCUxkaXohQHzt7WYvy0lark3CRaVpkSPfPVmK5Ix5nXqEXFTDv76J6NCiG9+DRDi5e4n3qCoueFf84Zlb9Gq9LKiRgiBUvKm+MV2FVUFd3/kEPNHWmA0QhwQNWlcUqQ1V5/vs3F+eGMwwmQ/Y7KXvY4futGg9SaH9K1Ve4HlWTx2vs/v74xoNl2u1RXt8KBF69bV8hbeLrxVnXAch1/4hV/gyJEjzM7OcubMGT75yU/ysz/7s3zyk59kbm7uezKfFa7CrjXTrGKh6bESuEhxiKmzwNA9SFay85orcc6sayGF4HpR8sggZr2sGE5zFls+47zC0gZZauyNmP8dHqueBbLgZ+auo5aeZreoOL8zpiElnxMlZ8KcrfVdFiOXfRNyJfHYnnbpn92j2LoN1zFAhRspXBPS7l/jZ459jo/Pn2NajwjcmsifcmL1qzRO/hHh6peQLUWdWDj6Em4/gbxAbk5JLv0cmTbY2zV2NsLoAl0aKrdJXTuQ25gq4/xMiVeV+JRI20LlJYdGMZZjkxY5JYa9wMZWNZWy+XQgGIttsBRh1EObff6gtUblJCyWKRGKkc6YNm/nmebtnJUeh2qHhuWR1ymV6vBkeYL/EP8SzJ8mCm2qOsC1V3DKRRJxhQ9ahmbSRMkciYcwAaPRFr7vMzPTQhsHpSKUsknT8AYpA0r5HDq0gG0ZHHcW3zuMUjYnT76L+fkzfPRjv8DRI3+PhYWfpN1+8Lscyd/CWBMKz3t1tDS47hy+v0IUncZ2uownz+KEXY4+8I84vPJ3aS6dgdMxzOQ0m/eQFdeRnqK4PqXcjqkGGUiBTm7MYYy5GQv/epS7B3HyztmChbrHanOVj61+jNAOicuYMAzp9DoEYUDH7fD5q5/nwfkHX/Ug5C8ven4P13pjq5oQgk8e/SRL4dJrlkkhb56HyI54YvsJjrWO8vcffi/aLVGeRZ7M8sLWNUR1jReCx6gDn69On6Az06HY3yOyLVqOTUOAiUIKcurhBNk6sMh4O/Atr3Vubo5/+k//Kffee+93H5/6bSAoNC4VnpPhKIPlQkbF0JrFxGAIyZSLVgLtRMzuC37x8adYTXzu3EvQBqy0pMRFWAfmTRKBp2zcwKfu+NiOpmHXOEphexISh0VnlQ4xrXKD4UJIeWGEWl5huw4pEoMsSzw3R3ghi4yYii655WBm5lnwDY4p6agaYUABDZOx8uwLHN4bIoTiVPk4ftFHJQn7mwHbF1s8d+YIm6cOEZk+xkkQ1hRl71D5EuWkhHWMmJbIe2pcf45i7FKWI8oyJfrJjzL/qX9Ilq1x9J73HhAOt8iZbxleFHHojruQ6q0Z0ddGlgsWlj9GOumjq5q60uxuPEEynjDd30P4kmGyidAVnrKQlkIawSDf46Hgfv5WeoxD/ipyOkc2XgHtMFcs07YUgVYElk+vN8v7f+YXYfYY3QC2dYOyHXFk4yKldBAaFott0rRiWDqU6Rg7uEpaRbjhmPrIFaLchlZJJ5eY2qWgpGc1IfO57q9y3n83wkjaScZGULDeCjBCADlWDYkuEfaAthgwzQOO5ev8jZ3fIrUEQ+MTlRJ3e0o6tTB5gDZHyaWHDm1yvUBQjYn8gxuH0lXs2fM8o29nWhu21XV2jI+2Aq5FXWytWKyHJH6Id8jHWlggazV539lPk/zyP6K6ev7AjO22k3hffRT76ac5Kmq8xSXuuXwOnWXc/YF5Vj+8RNu2qA0kwuBoSL+DfvZb+PbxTtUJE+/xq+6d/K5/J1/dH/JS7XBEpBwfvsijZx/hv3jhKi+IFudyzajW3O9UnI0zklrzq+6d/N7MByjzycG6jGHzwpBHf+8idW2I84Ty6m+y4F/BydcRjsc4mCdb/zpjd4bbqj5ROWaQJVwWNhfCFXa9eQZa8IP5RcKLn+O/fPqf8ZPJc8wrj6Vkg84dP8o0vJPN1jKRgU1dsjZKSeo2W615grxPYq8ye/ZRZvbWmYQe7eIwS8UO0iicc31G6xFpMSHzQ3KvYBBuoPycq4f3Gf3CB6k9Q+TXhEJxB11KfYXbH/8NDnkHSWtKWRir5ujiPCsnfoi5oMOhpVWEkx8QIZZCNRxkZCNshShHyGKH6MM/CaHPl4qSaNzjqUc2MG5E311mpB/G1YbjrZIogobO6KpFZlsrdHIPpjHldExjqYUta1pRRHfxCE1xJ7YXMdnewp6OObJ6hPf+/E9zdPpZPP3KONJpSrG+Dlq/7Pl7kM/0lgTMq1qVbpAn35CAEK+87+Wx8HIZPdDw3CB7zOs+9AYz4TcNzAYDtmthu4rFE20aM/7Nz5Z5RTYtqQvNdJgx3Ipv7APEo5zpIHtTRdC3Eqf9ZhN4AdSO5KXNCdvK0Ioc3j/X5B8+eBhtDPWtdtFbeJvwVnXCtm2OHDnCoUOHCMOQQ4cO4TgOrVaL2dnvzuQVQGcVGxfX2RsPcaSkymv8ac1tbclLuaY3O8Ndiz51IGjZFloIGqGDAnZFzaJdc4F9dnYnzEYO46BCC002SRg+fhUn0Ti1pqoL5st19sM+eW3Y2p/ykLT5wbkmS1bFfhIznxsK+ygfa2fs5fP4Fx3KnVkcd4LngRtIYhUyrZcQ8hyzewVN16Jx2x8yM3eNtpxlf7qAdHaZ3tZDr3SQUYE3DypNMLbP9Yt3oYsAuVagZ0rc+9aoMk3CPPPFHFEyxmWPduLQGW9jVRlW2+fK6hJXTchUhGQCyqpiyZkwtiz+5ewcFzyHht6jaec84F2gOf4Sy7JkbbHJXJHgSZ/NPMWuFzFaYPSUxcGAqHqattuiJVt8ZJJTxRLHD2i2Aihc4vWPY40PUbk7UFeI1EaKjIZqgYmI412CIKDbbVJXFpbVoKz6KJViOyFK+QdR26JGmxzXnSMIjwFwxx13cMcddxCFHTqdd2NZDZTyv6vx9J1B0Om8h1O3/R+R0sX3lvG8RcLgBJ63yPz8j9Hs3sVUPosMLLrB++n3/xThC6p+inAV5WaMvRSRXxhS9lOqfnrTs+bVMMZQ7SZU/RR7CO/xHiQUwU1z3aRMaM22KA+XKKnoeB36aZ/bZ27/K/Fw/765+16jmnk1vhmhG9kR5wbnONw8zHzUwmpbNMMGTWuO33v6LK4eM3D6PCtHPFE+w0BF6CwjVJKk3SOKIpLeLIVn0/Q0mdN5wzTge4VvmagZjUb8wR/8AV/84he577773p69eRNIbZB1ic53mItqPL9CmIpKamYyjaCBwubojINjCXprPp29Fnq0y8zOFv22BS9sk6cltr4RhSxtLOngBD7C7BMVlzBljCugxS6qNBzRDu1qh5FzkiuHDrFjXKzIwZvsYywLpCT04Lw4Q2u7JMkcMiugRJKWGlHlHKmmFFmFU1eEkz6m0CykOQ6CDvsURqFqTXLEJfs7kt3OLi2vTVxY5GshRg4xzQ3iw020rQlEmyIwDBYCPLlIYK3g2isIVeHMLBKs3IGQDkp9D8w5/5rBb7a46yMf+5bfL4Sg3T1NVRZce2qDFz+zQzLIUZZNf/0q+rBgXOygi/RgzNkWV595CtmwWC2WuKvoYhWaHV+jjeSshENVm1CARLIgO/zIR3+YUSn52qV9cG36JuK55jJfPXY7+06XZStmRo8R3Vk2wsNYWlHHIVe8iuDIF9hin81Ss+8UOPUhtPYYGkOnVJSWYlooks0YI8AtS0CwWztgBHad0xUVwmTsE9Nxc8rc4ni+x1y8Tu05uMbi9tEavXGMEgIvq9m4doZR1UY3NP10nkAPqVWJKzWi0myqBvuFhbZccuURC5dMwKZl4xaGQ+k2jm9YO7VC9fB9RB2BNUoQuuSl569S1Rp7cREbmL30Ih8+92ncE8fwn3+OOGpgJ/ukRUxbQJBMmWqNMJDfImq+L3in6kTZWGLaOckFIh7bH/K+aoPIlHyovs6hJ/8FPzLb4Z+3Psx/e2GbjSTlA9aUpycJn+uPGA03+OLcB9mobpRDY0ie/CO294acHcf847Vfp5VfpfIXMEYSmYJpc4Xp7gUuy4hYWPT9BabTAYfd8/yg2KNrweUTP85/s/U7OF/7FXaiwxzffYJDyQ6X59/NpKoR1gxTeYxINbg+vU6Zw0RHvNRwGZpVHr/+HhrpDsFwA+GfwksMavMspuqiylny3mEsk3HvqSalPaFsjKG5R8cfsfTgw3Rc+IEjz7GYarxTsP8D23gfP03xoI0+3MEpQpRvuHNpFlVYSP8M9eYOWtU8/cefITm7i6k0quFApRFKIpIdRPcYySFJ6WjOpDbX5TyWb7HvB5xvQWDgRLXBnFeDpRlGBYUTYWc1gRthORF33HEX77//flqzXWYOfwzL79A7uoqla9pFQuT7+I02+oUr1P3+wWnhIL1Oj0aYsrxBmrxqELycof0q8+CXyZGXX7+VAuXmO16O5zYH/9cvv/nldYuDJKgbq7vBvrwxCerVippXLzOA5UjcwMb2FEiJ0TcUNUVNOimxbQttDPGoOEifMoaqqEmnr23NO/DUEa/s31se05vPBYQAy1G8NE7plzWWJflbR2Y5XAksKW76gt3CLXyv8U7ViWo/48nPP8lTj59HafCl4IPCJppc5ZIueM+JHkIZxILLvBHcvtgkajoElmKnygjcnCf7LzDOErLJPjsYmoUhHqWkgzFO18MUmsIYfj87xSg7wowrcCSckTX/ay+gSktqO6K7lTIpbBYbu+xlDWI9xImmtBtDfAc8p6LUNdNKUigLTyyx7PeQ9mUaYUK6PYs7OI2ybIrMx6u2wQG7M6Hu7/P0yj7GFNhTBzmwcf+ojdd5GlPAtUGPlbUUNx4ghaYXd+hUKUFdgKpYb3g0Q5uZZJ/hmdtBKW4Px+xZDr+rMvYomal26OSbdNvbLGdr3BuPaInrzFQ1He1QlruciGvC2qJhRuQTSW8UcEofYw5oFDVhDZapsZTBrkMam7ejRis02yXGKERiIUVKQzSJwkWm8RZhGCJETVVZKBnS7/8RVXUBx45QKsKxO1TVBIGk1byfZuMuAJRSKKVe98D1ncEBofSyP47k2NH/LXNzP3xzv6LwJLv9z2InPfSftkjP7ROrc1DWOIeb5BeHOMsR4y9cI35sk+TJHdIX96F+c0WNqQ3kmp+WnyAsDlKSQiskqRJyJyfxD8jS2WCWh5cepuW03rCev4z45LHXqma+HUROxLXxNWaD2QMTZRkzI7t4okNlBng65lRwG9f0JSYi5tlhRVWUtJOa7Til2W6z1elSC01HjunjvvXzou8S3zJRY9s2q6urSClZX19/e/bmTWDqmCrbwZRTVsuEKh9jGU0iNTOZodE4RFB4ZLogKgROXJE5c9SMKYebbPpDbL9BVR5MeqRlI4xEli6r4b30kiHe3tPIUiCkQpclvhiyuv8FvHbOI2qOi6rLiz/+ACfK5wkmuxSNiFoJWiZjmttE29uUtUvmzVNqQ4XEMwXzSR/l2/hFitgbMnAbNOIx1l6CpadMtYuowfhjss4uKohZDTawREl+JaeqSvKqTdVZIHZmqKlIfcGTUU6kV1m9coITd/wSwsqxblykPHceKf/6ecx8tziIbpXf1sXbcnzmD9/L8NwM7Zl7SNeP01lYJJ2MkSuKvB6Tp1Ok7xA0W5R5TuHW1FspT7hn+dI957h822W0Nly0alZcC9tWYEtEDbKAvasjTFYTzc1TS4et2iW2Pdy2x0l/jOq0MY0QmxxH+IhqlirThH8ouHLpOGtJzOa4oCp7jEvNpbRi356y4U6YZAqnKsCpMAV0VcowLTCOJKgHHC+38E2BsQReM8DZ2+PII48hU4ntSkIs7sh2yAqJJSWBNWVv32dvEFHpdXaTDg05wLZiPtzZp+dr+kaSZwJsH9VZwd8uqbVFI6ixixoZFLz3zBN8PjvMi8dbRNYG07yN06j5nS9fYJpXyEYD//77oaqxrl/HWV6m9n1ejFqc+9e/xt5fPIL33LO8+3d/k8TUKA2U+paU//uAd6pODKXPXZtf4lD/65gi5s74IqYuuLAfcare58fDElMXFAa2pmPu2foS1/rX+dzOHj+fPM2hRpO4qg68bMqM1fi36Nu7/PvNbY5tPUrDthilLUQxJcz2eEm0+P/e+V8zUR6DsuBFZ5H7zR7/4Nr/m/sGL9EVmn7nFG6Vkq+8lycP/zBaeTR2n2OndYwnn7tAK/fYTz5MKjts71/gwboBtuG69hlW8+xMFphWFuOdgoz3sdfrMx5vku812eBD7NmHaaZThNwiriccGuWcnf0CG3IXIRucLBZ4fvcDLA4HVEegXKwxx2x2TmTsz7UIFm7Hazks2R4m3Sa/8gxlvEPt2Zx/7C/It8aIloWIFNUgw7g99P4+1/eu8S/TP6TMNlhWFVsmY+qV+C2XL+8blBFg2RRpQpanfKVTc7nZwRcQBRbzR1dodnscOXmK+aPHefBH7mTpPhfP92iFAe97/jFCXSGMhUgMejy+qQjReU49mWDKEilerxQxN8Tar/2l33SoEW+ifHkDDsiP16Q+3fi/hAOPmjd4wrxxvTeVN69edkNlo5SkOePeaId67fviYU5nISRoOeRJheGApPEjm6qoX7uZm9Y836D36VUeNW/2llZgM601WVGDALvtkr2wB3sZefXNjSpv4Ra+E7xTdULYkrQu2VkfoaTArTT19j6eLlASFjyboiqpI8ltjs1H2yFB0+X+DyyjdIGcTogtl1rVDLbX8ZVhPpwiHZt+YXOhKsm0xti3EesV9oYNDrUglAKx/EdYXcnXndtZC1bpuRbzvT7t1h41DXaWnqNa/QyHl6+zOFNwaPlRlrzH2CqnpPFRktEXmd0fEtgTAncHN1H01nbw13cRVURUPoFTt3BmRhgVMHUywuk+s58tUNcUzoVdClKE7XJJKFSSIMsp0vdZUie4q5US1Bl2nVL7DqfnXA7Nd9mdixgsaEqvya7dYg6b+7Skk2/h6JKvND06zhLtcJZ4+iLK7tEsPIoq5e7JFEu2GMXXGdkrTPbmWC0qfm7wInaWMqMs3KpCSI2jA6zQQ5VLWGpyEJbi+0hR0BSH6YYnmU63iKIIbQryXKCNS5peQymN4wRIaWPbXYqij2U1mJn5AI3GnX+pH1wLIXCcGWy7eXOZ684hpMP8vZ+g86Mn6Y4+Qr/4LKKtiB5eJHr/MmpFoA8PKdYm6KzCmvHQ6et89jToSYE962Mqg3JsTHFQRFzLpdIVo3xEaIcIITjePs4/vvcfvyHi+y8jXt/K9O0itEMMhp7XI3RC/t6xv8ft6SkUTTpBgaimvPf4+yjti9SiYi2dMIgnJJtjyqZFODvPZqMBosaM1phYhrfr0ca3fDa2t7dptVp86lOfwvO8b/6B7xGU3MGyL6ONpqamKhJcbbAcg0hybCuiO0pYs8e4meZwVePZKVMhqHFYyi9QiQDqGsoKtEHgoCuLoGrSnJaUviJPc5QSVFmBp/cI959BLkp2jM8KU4bLMzyXzOPkJZY2aCRiXNFM9rCnKUb6FHqByIJAJziOA1WJI0vcIkcXTa76M7Qa11HPXqQwkqQCLB9RDqixqJ0JPSchXPGwIomrLVoqJO7MsKYt0mSAmEhsR+KqOdTVkk7nQYSVYKkQpQJcbwkpv7fxcrfw5hBCcNvDH+TYfR/gtocfZLwd017uMnfkOHMnZlF+SlHnWL5D2OlSZhnLrSV0UrLj7nDfqUV25oaYQNJ3aiJpUJ5E1xoZ2uisovPcPkcch1bTASHpF9DWFbmIKWzI5pYphUs1neJaNufWPs5PVz698RwaH2FXlHmCzCRG+2RGcjbcYmCPca02TRmjnZS6kMzZhjU94WvH9nB1RnP3Gr0iZ80y9K2cepSzWO1zfdRGm4Kggvm969CYRRrNpdlF1rwGw/ECVSlIsxbHuxN8OeRv2b/KNKxoeNDIE4RQqMYhBv2CpPJZDjKCRpuqXeG11rlsekz5PHVoSMcayxrj5Ql5pUFKun/n76DnZ8m2YlSng3Xf/Qw6M4yffRZx9Qriz75AY2ebcVXhJTXHnhjztl1Fb+Em3qk6UdYVt6XX+Jsbv8//4fK/wE120XXJZh7QrqZ00i3+b/oZPjbTpJ8ldF/6fT46eJxPzTjMeS6h4zHdv4p5/Ff44/0Rm+mYSb7N7riPTPaYL/r4QY5E80TnPh4oNqivPcaSMDjK5oJq8dPZC0Q65/TeY/hCU5U5JtmnOv5xtNNGR7NUGMbhHJPdPpMrimt7q8SiwcfWFL1E4XkZ+/sLPFL9NEkdcW71F9mZey+brSHTWjPeXqc5+AxXFj5Nd/AY3QtP8bnRV5n6TZYmfX547w4CVTOZFnw0FWSjNs7edapZqIuU0jSoZ4a4CyFB5zbKyZTsqQHBQ/ewdbti/YyNffp2Jnt9kt0ho0sbjNa2qCYFWjTJJxX57oDBRknaWscKHyFqlCiZMuvuovYzlFTI5WWa1ChdU0YNrhmJp8EPfOaOHiHsdJk/doIzH/pBWrM+tqvwfZ9udwb78jnEYIDQApKaejC4eZ51kqDjGFMUCCEOftKvnqi9es52U/HyLZoJ3/z8Ky1Sr4niFuI1ipqXo7kxr0uCenmf3pAEdfA221fc9eEVlCVvkkdCCJQlGO4kNGd82gv+Td+BMq/xIgcMVK9J+fjubz5agc2MbxMJgRICq+lSXBhi1YZsnGO0QRf1LX+vW/ie4p2qEwWCtKioPINtSSqVsRlcoGkaLCuLzSd36W+OqX3BoU7IHVONUIKFuZC2owntEh01iBZcttYu8gMLf4brXEMrzci22R3lDG2IsyZOZtGp9lhqJPyQCnlueAdPDF5i4M/wwZkJ7TsLHj72AtreoMwtNioYVhItc+aWvobyrtIZfI2i3qKu58nULqN0Fy01Ih8hdh1mNj/Lc92czh3/Fuv0LvaaAG+bWvnIsSFoDRnGFonfY9RcZKOcYxIskDdCpDFgGe62vs7tyTXua1xE1DmqypgsajYWJyw8/F6uWeu82LtCFG+wFzT5ybTgf9PfxTUZe0GXz9FDiiNY/jxxOWEgOvh0UMJFlB579kN0yzvYGkccm5vQClIWxyPqoqYbDmhOxljC0NM9ooUIsoiqmgKguwHSdZjaPqG3iBAHniq6LigKn1bzR8mzDfzAQsqD66HjzpEXuzjODPCd38i/k5DS59Rt/wONxu2olkvr+BnIQZxOqeSE4L45yu4We97nsOcDmh9bxep41JPipleNMeYgFcqANRugIhvpqptJUZa0kEKyk+zQsBsA2NKm4TT+Sn5n3y5CO2TWn6XhNFBCcXrmNJ7l0XKaiDrGGQ+5a+kuXLdmtbXM1eIveDZ7FrfYou9/lf35mubgeaSQ6HxAUSfkb1NoybdM1JRlyaOPPsojjzzCzs7O27IzbwYtfUoV4hVQ2BZaGBwj0JZGUiGUAjQb8QhdazpFzSn/zxkUEboyfCA7hz/qY1kCVeWIfIJyfBQFtjVmagyx71BnCS2vRvsBOA4qtNFVSlm16dY5++Fprrh3UvstBAqtHKrMUJQZsgZV5gzrBVzPRdY5pR1S5RNUvI8DFAOHeHGB6v5LaCGp7QhbxJjbAjBjamlTqQpbTYnv3yC9P8eqWmjbJT3U40KakfbvxBJduq6P3ZpFNZpI6SHUgZROCMWh5b9x4wJ1C98PdJcO8fBP/zwrJz/MzMoSwYxm/tgJnGZNa8k7MK0L3ZtRsSd7t9Hu9ciaFSc7J5nqmFFjxFAmhArEjTmL1faoBzluVrPg2nx+Z5s5z0MgaeQJF6MejhGI3m2MsPFNQcvKyWufXmyQ0SytULHrCibSQsiITtrEEjZJ3sKIOSwaJO2E0uqD0ySUgqvBmDV/QNNu8vhcSi/5ClGVMrA0+4VgvlNT6JK0NDR0gb91ntqN6Ja77LSOs9WcI88j4tEZFgaahjdhUa3xpaPvIpc2P73yZe6R1/EljHJJltcI1WPBneJ6Mwg7oqKkbzRN9zq0mjjxCGt2hmWZkuQVg6Tk2a0pMpRUcYFwHI7+d/97HjhxhNbuDp2L55kfDfDDkFFZUSUVxZUJRVa9s4PlrwHeqTqxlG9zKgrwHR/nypcQugTl0pYJskoQ8R5dx+JY4OIriV3G/Ojl3+DDaozUNZHOide+xvjiF/l/rg95MjhONZOgJxsMW0fpDc4TVOeYKo+rwQrW9nM8tPc091oCx3YYuT2OXf08v7P0IwT7z+LVGaqcUqYD1j7zBCcvTdnzGuy4h/AnFmdEgdp3cfKMGdfw3i9OKDYdvLLmtAe11SCSQ/Z7ARsz95BGMaZ2mE63uVx/jeeOjhh29kitknVT46g7Wel4rG4/ys93rlJMt6hWBsx7Qyi3KJ0EIwx1mCJUTHfQQqUNqBTZi2NkN2LPkcQ6J68qiiQhGYywmi7ZC/vETKiMz6XRUYrJGHtXEbd3WbD/DHXHMq1KkSuHsLSZ5Jqh5dFRGgdBKgRbSPxSEEZN7v/hH2d25eBp+qtT9o4ePcq973oXJs8Z//pvHLRbFZp6t8/LRIieTjF5jinK13EhrxAJb+AUXuFpviUz4YOU7lcral42KD5YyWvTnW4se5PWpzdfdqCoWTrZvsH0yJtqHMuRDLZiWr0Ar2FhjEHXhjKrcTyF7arXRnTfnEt/g9Snl7f7pooaQehYHF1ssLDYIHAtrIZDdP88wUJE/0+vUaxPmH5l4xt/Z7dwC98m3qk6gadIfKjTHNu3CSyJbWkWqoh3iR2uv7CLFjUJNVmgqCYF1bjAq6Ft1URWzrSW5EWBThNW/MdRYoiWCX1ZY+Y3eTIwpKXFUdciMhM69lVaWvHM7iJPDWqcpuBU+hLPXXyStNxkkiTMFh4XL99DUWpqE1CrIUU6h2t2Ca0dqsShnA+o25Axi85biNJQeyU9wFI1ohdhPZVQmw2cZgenWqAaf51Nz2G6vMLZ5TvYL1cRqs1RK0GKCmNZ9Opt/HgLv94G1yFggpYj9tIXyPqXWQ8mVE7F8uQFtk3BclnSqw+ubl9sdLgSPUysWoxlA8uaxTgthO3RwsMvaopS8WPJbbzX2Wa5cQUpSkaWj/TuwXhbDNIdLG2IiojmcoRjXKoypNYWWkvqWlF6E7pLM7RaPr7voU1GGFp0u7dRFHsEvqKqd1la/BTzcz8MGDzv0F9ZwkEIQRTdhpTOgZ/M/YuE7eNcd/8Xrl77l1BrympE3RyhK410FVbXo7phHFxuTIkf26Qe5QhbYvV8VMdF+hY6q9FFjV0rZvwZPnflc5wIjx2QPH+NCPnQDjnUOHQzwvvAE2sZV4UombMUanp+j9XGMVaio7jhOuNyD6feIonX+PzVL2L6T9Pymqz+wMfJnYC4fHvuMb5loqbb7fJjP/Zj3H333aysrLwtO/NmqC2PSvlU0yFbxqDVDBaKTFYoVSOVRAiox0NkoHDQLMhnaTgRrqh518YTdKsYKwyQ8YR4Zh+r2USS4DtXKaSkCEK8doP3zbyI3VZUtkCGPlWlyOUMwQj0vsKtUrxWgDA2xnLIVIM6aGDKiogSUV4jE02kbZhpXyIwCW4c06khXZ/QOBFRt2sK6bAue1iBJv7YAN0VIBxyrTHCYM61qGWMFF20JQmcKXENcdrBnV+mbVm4nWWclRWkcpHSQakDg6hO52GUCr5v5+evO4QQSKWwPZ/3/MKP0Dlicep9D1MUOxw6fT9GVOxuXGH9heeYPXwEoQTeyTafXPko8+4c42LMv279LhtyDy0118qryOaBgWe5HSOSCq8ybLVO8UNem9tsiZzusyUdDo2HrEwcKqloqZJAlSywQe7VTFdOMyxjLst9/EIw2RvgJPtEKmUaS/Zih+E0omVZVGqI0T4Bc6QUWNIiFA12BDTHZ5mtYD3wmfgGtynZaFaY0YhGfBklJiR1TRD3aT57nmGrgzQw2TvBYDfjT9fv407r6+yFEYerNe5OP09/HKOikkuzL1CVmowmWzMzPF6+G1ucIhQLLLX38Kwu+aF3YdkC6+jdWMmEaVbw6Wc2+Fd//AKqHECRg4Gg0+bkwiy6N8OJvV0Wjx3FsS1GVUmWlEz2MnavTcjiA2noN3LJv4XvHO9UnRDZCOG1YOk+KOIDpaIdcNrZPVge74LbZMl1mPMDLCkhG8H61+DSnxFd+Cx7ox1+zbuLGUvw1OIHKJyaB3YfY6NzGkdKLlltrkerNB0X0j521ucoKaqyOVqcof/Qf8nXFj984MdSZ/j5kL1gjsge0Ngfclkn/Ef1YSZPQEenNIoQ11Jcmn6Qa50W1w650LIILrZZHGySeWu8eOT3SXwHE07wWyWTmYjteY/F3YpnPnA720szVP0fpdpyCcOUWu3Q0T7DwVdBTDnKZcShWaxJBzDU7pj+9AzOxh3I3Mdpd5COjXEBDEJKkvGIqNujilMujZ6hOjelH2yx5fQJZYeRE2PckEiPsN0Z1myJyFOoLWwZEmO4bjlY8QALw9gItBG4fYeo1cJvNFG2/drzJ8SBSeTsHI7jUm9uYvICaftYVza47/kMtEYnCcL30UV+YEdjXjaPubmmN/n7NUzNNxlI3OxROqA/XkmVOuBkBNpo3kCMvH69byKyeXlfXutDLG561Di+xaSf4YcOypYYDcmkII1LvNBG2ZKqeOWJ3cvJVG9+TDflRN/wUCPP4h9+8DjLHZ+GZyEbNq2PrtJoOkyzivL6lHIjfuNRmFee2t7CLXy7eKfqhPIUuWdIAk3UcuikMR/2mhwKZvGcGr8tcXzJ9s6YnXqPcjhmfHHA9hcu81CzQOQTaiSVUdzeOYznKoQsGJWbbNiauBxwvs5IjaBba2yT4qkr9G2D75QEJsaMrjPNUvzIxXIzfL+gW+/j1TUdmVEUCiE96nKOycoMhV0T7JZUYRPVLYi2m1TZArbWLHYiPrExoigOU9R9zCikLhawkxxPBmxnLR479gDXuvP8+sp7SUZ3U243+fiVP0WWExISpFUwOHMnlcoJAouiqCk8yZgtvtyJWZ9fZTe4nQ03Iq5j2sJCWQGJMfyJZTjZaPHHrfvYlEucdOaIlOb6JMOrLWSS44saOfcCs2obIWtKbZPVmtDM4kSKpcPPY+mU+SMzLN3RxQ48qqpNVdpUtUBrG7thaM60CUMHz7OpqiELi49j2MR2ZrjjjlM49pQgOHpgEix9fP/Q921cve2wBI32nWTJOun0Gru/9xRZfwt6JcIHHVdY8yH55RHJUzvEX90iPbvP9NFNZMPBPdzAPz2D8Cx0Vh2859Et7p29l+vT6yyeb7D36y+ikwpTaczbpAz5y4SO2+Ef3P0PsOXBXKTRaHDvPfdwqNOkG7rMNCtCO+T+9k9AvkLMVXIyOu42mYlZi6+R1hPaboundxL2BhVD/fa0C3/LRE2e52xubvLYY4/xyCOPfN8KdKlBWx7KFCimZEbjKJsTV57GUholNViSRjzEJ8WpC6x6iCMyQjvFFlN0XaO8FoqKQBf4vXuopUayS60UJoioFo5Reg0sWYBloRoeV+1TbFcNyAyL1zdIVIhwbY4HV1C2YOrPISwPq65pILhcdnghC7HcmpnwHK1qysqgz3gsWVs9ThHE5A3NlXaLz8UncJsBeTeharvoGmJdImWI3nTw83lCbxntGERjCCKATBL5Tdr+Av6JM3R+8ReQ0kapg/jTW3jnIISgPbdEUj5JYT9CUfSZX70HK3TZWb/EdH+P3uFVyjzHvb/L+T/5HC/+8R9z5fILbI83mNNNsrris9GfkwQFsZ1RbsWYuGS+Evzy7AyHMkPHaGJviq5K2r6F6xYIW9C1a3LpsF3scK6bMWq1aIdjRL5L5Ddwzz9PsXUJy+rTVHusONtc21skqCNq11Ald1J//cMs02De97B1AJZLLSq6uc16EDK/YpiRfbKu5NjGZfTVr1PYFpUwpJWDuHKVoRCkZQ1G4FLzQnWar9U/xIPF5/jb4jfxVEwlNMoV9E2J0vCsOU7SOMpj/gxl+neo9HFOdtYYxHfw5yWsLd7F03MfZjYeIn/z33JuY8T7lkOCwECZgz5gsVWrxaWZeUbNFo2HHsKWkqwoSOKSNFL86a+9wKWX9m9euy58bZvxXvZODpv/7PBO1Qns8ECd8PB/AVKB10SYitvTJxFSwXQb/DaHPIf7O21UNHcwbp74V2hj6I0uMrSafMJs8fedPle9QywVe/TKAV/yTyBsF7tK0UISSQVCkXCFueIJprXhFCPs0z+G8QKuNo6CqYnyfTa5l+dH9xMPtykqRTldwYkW+GJziuv2kQjKqxFX/ZJU1ngzkiqxmUazXJprkVljjs9+jbvsNg1l8ZX3n2JjsU1rz3DZ7bPx4x/jUy8+z4mrT1L2Lx7UQvs2gvoZQua5raHpzj2EXfTw/AUqa8TFqw8R755AJA520IQ5RSEy3DBCWTbJcMDi0duwPJft9Ao7h7eZ0mcjPEfo386YEYWyuadxnOutM7wnsFiuY0ReMJnx6DYt+pZLazRGCaiURVOXmMk5Dp2+4y1PoTEGJwhwPR8zmWDSArs7S/nYE/R+58sUz59FxwlWr4dJkhtKkdet5NUhTzfXe+P1DWXJtzIixQ0C6OXxa8zLprxv1j71RlbmTT1q3nRDryhqvMhGWhLPt0EeeNP8ya+eZbAZE3W9VxQ1N1Kg6uqNbjlv2JYxb62oEWBJyQNHOsw2XJqefeDVpgS+Y5G7kmJ9gp4WbzSprAzp07u3Mrxv4TvCO1UnjDHIrGQrrFCLDs08piczwuUWlbLJi4yqrLm8M+KPN7co05QxgtF2RlAbqqJACUNawQk5j2cJlA0b6goX7AlFmdNwaoxt4zgGS0u6boORqljoDTh1/Hc4yTq5sbAnEVYpCL0coUu6fhdPVOi8R13lVNUs44U2sW0jLu2R5w5OZ0JZzHN+40PIrT5WUFCnEzYmAlNX1DRJLhxBXjc0yoJ91eTF8BDDquC4a2D3BMOrbYSeInXK8+2rXG6U7DcsfmN2hmPdmqk0jFXFUAqmxdOk4f0oOcP/FEmecQSx1WA9WuRe0aWO3kchZ/hAY0oznvBjecpd8lmKUuHqkKyGrmORNS6i/JJaCAw+pRmCvI4nJnS7LyLMECEVxoVrC1vM9DzSFKpaYIxLo9HCsgI8z8KyDEWxh+dG5PkmnreE60mqah/XnQUkjjuP4/S+L2Pq+4EDhc0pjqj/mpb1Lkbmq0xeuEilx0QfWkSGFlbXo9xJkJFNdm5A9PAi2YUhquWiuh72coT0FDqtqHYTsvMDzoSn+Uf3/CP81EYGFjouGX32Ctn54Tt9yG87bGVzvH38VbHpB0bOf/PdR/nAkTvYz/u4ymXJu4Pt/YP7axV6jItNHLuFLLap3Iq212ZnOua+fko7f4eJmiiK+PrXv86dd97J6urq901SNikMlbaQnkM4vkRncBVHSpbHawhRY3SNCGzuGl+nc/08lptBPabOrzLrXQClUAhMYbB8m9YU9FSiRQVmghGKJj7Ka7AdHcVISa0C7DDlvDhBbbVBGdr1PpcznxiHZmBwLU3c7GFJiaxrjsQvMNuTXK8cagGeJ/F3JfbGhLPRAn9+/4Pc0zxLZqVsu2PmtSZyLYRjoS2PHAXCxclr3NyiUhqEhYliWos+kdXG95q4bptGdBqhbGQQAAqlQpS8RdS807CsBtPpC8TxBcpyRKNzCDv0sSOPH/4n/w3dpUMUaUJV5CSjIV/7g9+lHE3xdnOIU7LK4ZcO/xznyxGfvv5H1MOcOq95z1bO4l5BN65p1JqpN+QjScBqbwlTncVXGtOZYRSsMCVjt75KaDQ9OeLu6XmcAsrWDMXMEYwbM6MCTpRHidMmWbZKxhxlGjG4Yvi4UzBnF8wPJzjSRTiKWntsKkPYA1XlJDYc2byAmg5JVIgMPaaVhUxG+FZFYTtsyQSpS2wHzLjHi+WP4lo12tbMRJradhjqeag1FzLJe/RZVtQ614M2v+s/yHyrZG1/kWEv5cvvO8yvXqhRacrks3/EU+c20JMYr+EznsRc2twHQDYarC2vcO5HfgLv7rtQvs9wOj34jTb2iXYf50/W9nkxzjDA7tr0mz9hv4VvC+9UnSDoHhAvugIMJpw9IGiqHD3Zhv1LEM2z5Nr8/SPLCL8N6RBz9EN86djPkiYDtHE4svUo83vPUbstrHCW9dZtiL1L7MuIhs4JqpimMEytY1wx95Gml3i453OX/jw+Bdnuv2NS75FhOFwOKfNVdjclnZ0xs5+zOKwaNE9GXLHbeFmMpTVBf0igfpBOGWJZG4Rthz6StcbTHCs3uG329xDa4vb9mH6rwupKWt0lLowvsJ1YnLr2LD/w0p+jHt1HzLQIsvvotZeJ8nuR+TUaeRvXncVzl6nkiCN5jScUekcw2NjjC0/9Ghs754haHQDi0YD5leMIW0Gjwfp4jc08xneuMd6HZiOkbHSZ7nX4s+kRTl27zEOjCWGdMJwXfEju8uNX17D3R1jGUBhYqEt8O6G3evQNY8KUJeHTz6CMwXZc/CDATGPISqywRe3ZPPqReYaf+U/UkzHW3Bx1HN+gR272JPEKa/Bqpua1CptvRtO87EPz8lpebQ/48ma00a9J/H7T9b4FOfKm27tBArm+hRfZuL6NwXDiXXOELZetSyOaPR/Xt8iTEoPh8U9fZvfa5Bus+Js72Nz8/oCZ0KHpvdKGpqSAyDkwqizqNzxh1WlJ8kz/TVNGbuEWvhneqTqRFhUmL1mMziFnEpbjLYrJAGvJI3ICJvGYMjWUaYlVFmhTMaxr8iKjTAVKeSglSWqB0BV1OkUYQ5ycolV4aF3T0BnG0uyqElMrgniFnpriWkNct4/tCOx2j7RvIzTYWnPSvQ01dbClSzVYoixz4tgm9Gt0bZDbE2TShPAy9Zwk3rew0jFhlKNMhi5AbD/A+fadPHr1EJd35/EmI6qgg5YuOhtz2hy0nNu+x7TpoCwQDYu+qPHLHV6SOUvNEY+fGjLwIJWKfjngl0bX+Yf9Lf7WeMS6HfLPD/0NnoiO85E8B3UbjxfLdMwUWaVkeU7uCSrZ5n5xEu3Bjy13mFUZzWZKZQTC+ChLcsFIhH8NZXvU1YgyrRhPxsRyizgZMR4foq4kRtt0u10syyPwuxTFDkXRxw9WyfNtXKeHrnOKch/bnkEI+Z+lBYTT6eCsreKfu5t04SVKZw8pbITHQSKjI3EONwnuncNeinBWGqiGg9Vyb5IQ0rfQSYkuNNZcQJC6fGDp/VBoVNOl2JiSXx5Rj/J3+nDfEQghcCzFexYfZtafxZY2kWuxPZQcaR5jttsgdzS1miEutslURtttM84TyuQqtlV+8418B/iWiRrLspifn+fSpUvU9fcvDcCPE9wsQTkWjevnkLrCFTVNP2M1fAniDBNZzO6u0SyGNOQIUU/xowGeuUieS1pNhbu/xrAjSaYOZqwRVBgRo6VC5RptuawFS2Bs7AowE7R0mRoHpWqQGRfLNrtyjgvmFG3LZigl7Wgb5aZY022GY8miP6bhu3iWzcwE5GDIUa7wCb7EXtUHUVA0JR/4wuPcOVQ49ixB7ZLrktCyCP0a984c7UwpRIJY3KUXHuEnZnssLJ3A8+ZoNO+8+f0IIW8YCd8iat5pKBXgOvMYU1JVY1y3jWnUFE7OtPwydqAY7+4w3tul0ZvlgU/+BDNlyOzQQacTdjLD0ekSX52MuJZtoIua2BGsVoLOY9uUUvCAifjUkR/i9EAw688g9zZo6IJJoZnKBp6SaGqUsli2TnHX7AfwbYt85Ti15yOsFKk0ViK53w7IYwvr+WvoXGJZDXqmRFGQF6Bzg18LSq/NVZ0gCpf/ZeZvEo1L7LhPWZYk+OSNkNq2oIxxzAhjWUR1G6VLPA/KpMf59HYKWVGJnNOdfcbSZidv4gDdOmbefAlHF+xsTdkXinPeEVLrBLf1LhIsXKNRevzGsY9TYVjQKcO1HaRnk6c5l7cPVDLe7adY+NTPcfITH0O1WthhwHgyJnIVx6o9GsNziLTm/3F5i7iqKdIK17e/6Xm9hW8d71SdQDmAgekO1CUTKyJVPlO7S1pLGF6D5hJCCCxxQODgd2C0zl/YyyTSw1jzyHxE9/pXaJmEOVXTHl2iXQ4o7QDbcmnkA6xiwEveu1kfnGY8ukZcx9jZLq3nf5tPXYJl1aJKXFavXWc8DtCFZn7nAg0pQG1zzh+zVzVo7o8IA0GgxhTiGF4lwFqjNV+jJzZ5Nc9SlbI/PcFyZnPk4jW0GBHKXQ4nIfP7H2LO3qZxZInZkw/grn4AOiFiGNKw78PdOoZmgu23qKsMlyVqxvzg6mF68wH1Wk2ze5hjD7+b8fYuC+II2tRs99dptucY7G2yk5es7/fZzsfcrQa4LZc8iEiwSOOYYdSjPPsM3qBmbjpmpKCXD7nHO0xdCfR0TFFV/HjD48ydP4UXNt5w6qrtbcLf/33MH/4h2de+xtziIexWGzOMUe0u7k/8CMP7jlFnGcWlS1hzc+g4fkuPmjdyMa+wKt/co+bgPweKGoN5VZLUy61G5vXJUebNo7jf2jfmVculRNwwvJSWoD3nYzsHhMmRu3ssHGvRX58SNh3c0CZPKupKM9xO2Lw0urHCb04+vdVxv7z0fSd6PHS0+8puCRCRjY5LZGBjqteaCuusRk8LzK0I71v4DvBO1YlisIcs91kOX8Cwze31OtlgDxP8Dj3bUKgUKWyCuuaU1NSmwm9NcVqbmFIglUdFfUDUiJpa56BrLDuli8KxXBplSi1qdhgghUN/JMFcZ8UfYNDUYkpW1Ph+jrINtvRoCguVXsIVOWU8C7VPUJQ4IkbiYAnN8On7KJ77AA3zFPfoNVzP4OdrCLfNkttga3+Ffznzbjaac/TdgPf7X6FudKBUSF3Rsja5z/oLpFE4roVRLjiwC6hyj13bQXoJG8GYLAJtuZSWy89d/X3u3LvMvUnBQ40H+IvgXcTuHM14i33hUBrBNNkmEjECm2thi129wCcHD1Caio/OChZNg2Yjo6oNQjsYo7heaqxghG3ehVCSNM/p9/u02xFZljIzcwwpHVy3wLK/gDEFvj9PHJ/DmBrbbpFnmzhOj6oaY0yFZYWAoNN5D0L855V+qxoOwlFYdYNgYYV6cR/bmWF/8BdU1QFp3/zICuF9c3R+8gQytInevYA1+8q9oXAt6mGOkGB1PXRSYqqDa7r0D/7N6vmYrPpr3dZ6onOCf3LfP0EKSeRZjKch71/8CF7gYjyFreaw8MgoabktKp3S8w8I6LcD31Y895133onjON/XEyg8D5sYJTX2+kVsRzOnX8JWGScnv4d7+VmMlRKO94jcmgUSkB51G8ZOkwldes0hjcFZBtWEzvqf4cZ9hK6w5Bjbtqlcj6yuyUQTY1xkXrMlVrme+0wqEKZkVBkWhKCTpljRIqJKGZY5fvAS1RHJvu4wDRUL0//AqZ1r1CYmS3ao90fMWSNONs9xZUah0Ki2T/P6NdpFTbTZY+bFDLdImbdrjB5SnCzQniYpr1MeSojyQ9y28lHu//jPsrz8M3Q7732VXEth2a1bkdx/CWBZDU6e/O8RSLQusKyA1Bkwdvvs7f8plgPP/dnneeGLXyAZjzh817180L6PE2YZuy6IgfHFfa6KEt+PqMuasS0RnsLZSRk1FHf1NWf0LKdrhap9hht9VByTlwVpUWObksgekZoKN23Q9GbxXAuTd1B5BjLGiIKqrHk4kVxQLzCtHagtOqWNt3UUylnGrSXC0uPoNc0FpljG48jOJr3zfY5cmdKLLJxWjykhZxdOsx11aAUNulkFvoNbedhVzpxVYmMxsQOMPCBE73evEBQJlilYCTJ+dudJGuUAq87ZaEtGCHaIyIIWgRoTWDHtSrDtzVCdXKG5d514ugsWyAqyLIdsjDj3+/zkvXfwwc5BzGHg+3xotEvgWhzKhsxM97jXtllwbYZZdWDsaf/ljyH8q4R3qk4gFQiJmW5jvCaX8prBaJu1ImK3CkDZ4LUBqKsanU/BCan3L5F6MzSbcxwzVxFFTHf9K/zy0/9nVja/wlw1oWtylFTETpMgHzEpR/z/ej9OUMywn435s/3nqYqCa9eaPDi9RO/UD+HaDcK9PplooxoeIzWHmG+zph/hsd1r2GWPcPsSkTeijjO85Q3mT5zF6X6JonoOXQr83VN84FqL6RXJ9etj3LwmdBxmHY3dL3lvOsuxuXXckw/gnv4I9uoHoDcLqWQ8eB4rC1G1ZHriSUgV7t5hTG1w5GGuVNeoyoCw+z7C1SUm6zvEVyZM4opia4qe1si2Ta0sikKSanisc4gXjk3YcwylUTRsSWrZeM0l+qM+rpC4QnDnbXdy9/uO4zg2IonxjOZjs00+/KNnkOqVJ+f1aESxtkZ+/gL54iKj3/4PJI8+yulWD39piXpnH9ls0P2b/ysIfLzTp8mefQ5rpoueHqSCHIww8Robmldw44V55fW3kvokbpoJi5vvfrn1ySCoedmjRtxsh3ojKfMm5MjrhT+AkPLma6kE7/rhI/ihc3M/23M+UgncyL6pqKkKjeNb9NemFGn9Jtt+Bd/oaF/9VR3uBiy1X5nQSyEgsA9k8w0HPS0YffbKzWhXnVbUcXmLqLmF7wjvVJ2QZYatcsJAcz0dYBlDPRpSlM9gxWP8do7tONR5STWckOmUNesyVjvB0hauE9ByFeiCZLSLERWea2gGhiYC3/Ko8pSBEOgqRtUeg0mC9Ho0rV2oV2l1U4Qz4tCdn8eTBZgE57Z/xam7PofjFpgEyBsYPaWUU4RwKboOelgi1hXWZJ/F3XMM7lxEOxUZs2xcP8pjk1Mkdc3JxgjRc2mFE0K9RloaXFPRLa+zknyV3C3RoqSSHlpVbASzZPkeU+VzvY5JZElWbRMUKTbQrEd4siIOFpg4ZwikpOwG5EWOsRxutwfoeoxvfBp2m2lqsGpIpjYwRO49hYlncO2cXBvIC5SQmCBHiIykv4iSEXGesrOzQ6/XRJBw5MgqluUhZIuqnDIcPo7nH2I0egpMjWPPkOUvEzUThFAIYd1Uj/xVNRJ+SwiIHlogfGiRIFwlKzew7TYXL/7fSdNrANQqxqjqgNQRAv/uWWT0ysNIYUuqfoqMbgTmvHwNFwIZWNTjAqvtot+mFp6/KnCUw9HWgfo3ci1c0eaTR36K1KSUlktp9ZjzD1EaTcNuoEzMTOS+Jhzhe4lvK557a2uLJEnY2tr6vl1ctWPjmhilKrSjEJ5hVe1QN1vIDGxT4rJD5VqMZyQqX8M4Pca2Yk8G7NtzzDAEqSnrgsoPEGEDoxWiTgjrEjsAp5owLduUxkMbm2fMCfbiNofHQ6oKRpXkwe1zLF09T1aWLMldjK7xVEm2GPB8dpTO+mXe9VJCXV1DyxGZ2QHbpteAzcV5pnaBLWDY0ugzs1jJhKY6zWzWwbNsVhyJnQUU5T4ISW2mmKLCGQYsLv4sthtiWU2UeiXOUAhFFJ1G3CJq3nEIYdNuP0RVJwghEdKiMdukNdejKHZwQw+pFDuXL5LH0wMTyckmURAQOpJdU1AcgrGvaTfuIjM52PKg/chRHF5qYqU1V57d5YQlofSwdI1bp7i2TVaWbM0t0Kq2eUE+x5PWOSyjMHVBVmt2AoORAxAJtRToUpDtLbPXvh9jbExSo55sYI0sPHOMTw1/gpm+5kX3Kp0k4HAlWLn4PCcvlRyNRoioySQ37LqS2WXJki05tllQNdtoXaHrGplX6NKAERTjDhPrGM5kl5mtNR52H+NdjReYT9foNFfxS/jTrQkT7TISPfrSQ1eLhFKRCtjXFtcbbYokZZJCXSRUtc00Kaj6O1z6tc/yxEvXefle0IpC7pM1jVDiJCO0b1Hsjjm0XXJ2EFNiXnPjeAvfPd6pOjHSgkGlYbrDMDyGZx2nl2zwYrlAohrUbgtTpnD+8+xd7ZNPEgxQTrZZafc4PHeEM+NnqZ0G0rI5tP8Ct+1+jXc5JXdaitwYBirEUBOnOyzvpbhFwF6Rslke4quTn+fqRsjj+S+xv/gz2I7NFyPYsAMWTwXE0RJXwwfwxymJ+wy9MkK3arLBeRLRxZ3ZROuzZKbkEbWKZWnuu/I8++pD1PsROzsxxgja1gwzKiVredxrxzSiCnGkQ2kmCL+JdmqUHWG8AteZR22X7KsvMJN/DIYOUgeU1zMu6zVGsuSJ/oAnJ88Sb/XxpjZHJ8dpiBlGgyGrH36Q1soiOvRI65D/SbyX/3E05t+nx0mDFh0KjJTIOke1GjhFQc+2uP/+u5hZatKIfGZn5+g5Ft1OG9tVNyfPxhjixx5j/9/8G7IXX2T/4XcT/J/+B+rhELPbx1k9TLXdR7gWQhxMU9zbb0cnCarTvaGoeROPGngtOyFeUbB8I2XJaz7Aq8yEjX6tmTCgjXmdiuXNE57e0A31ZpuTEjQ3v5fuYoiy5M39bM35LBxroZTEDSzypCKblrRmfW5/zyJFrqmqVw66rjT1q9uUzFsft3gVEfX6GxspBQTWQVpIy6HazyiuTTDFwQT+ZTXNLaLmFr4TvFN1wrYsbBtslXF2uIuna2Q8oi76VHmOyVNqJL35ffaMz/Wmz7V4REbKke4MzWyJWRlBlVNOxgihaIYGLGhosIsabeBFk+FJjagkrvJISp9A5VTZKbrNKYFf4PmX8PQIme3iXx3hbVc405jA3cDem2flK5dBx9TGIu5I7HKKMxrhlAHdrccZRkMyy2XLWqSzcZkr1gxaCz5q/pQ7FidoV3C8Ps8D4iV0PGbFntJ0tthdKDCWoZIeNSV9YZhWCXZwhLNBk24WYuuKOW24bbKNVcS4psAV8KJcYNnWPO2s8MdzH6O0Le7gHJ26wDcRod0iUi7zomIgU1JdMV3/Ktdjl0kNtTQ46R6R51DWMbYl2bvWQlQhaZEzGo0IQwvbMQixg5QxaTpLr/dRpvFL+P4qg+GjSOVhO12ylxU1dXxDmfif74M3IQTWfIBzuEEQHMW2mjh2lzzfoazG1HXCiy/9U8bjZ1/zmVdf14UtqQYZ7rEW8gZRo5MS4SmkZ1GPcmTTPbiu//UV1LwGkWvhO4qW5zMuxlROxMTqcqx9FFc5OLXz/2fvv4Mtye77TvBzTPq8/j7/6r3yVd1d3Y3uRsMbggQkgCAI0YkUuQppqBlt7ExwdijNTqxiZ2dNhGJNxJrZ2BhFrMThxojLocihlQiCMCRB+CaA9tXl7avn3/U3febZP15VdVV3NdAwjQaB+kZU1Lv3Zp48eTLvPZnf/P6+X5pmh8Ioqm9ZcPyd4dtKfbp48SKPPvooR44c+b6xlaUQ2FQISxCvzlF6Pm6tTiUs+tUsWla4Mma6vMyGN+GM32fqzEJVIanYzm1mdp5mlENeFhC4WNmETHhklaA2GVHmUxw95bmhw7TyMJVFYmw+/Dd/xkfPfp6sUJTYzG9cQtkug6hHly20gYqCUUvQ3Ntl/rmnef7RJS490EGTET7QRB6weYv5G4wcMyMttJCkbcHwp+rkMwnusQdRB1cwSjCrM9Q22BuaMDyCdHKcnQBVOq/JEAthcXD1f37fo+YHAPvHSCGFvsnsK5orkqVTyxTFCLed0DniMunvkScJZb4vY/fCBqEleWl0iavxMywdOM+nejlfnblMy0CVFZxvW/hLNSwhMP0EYVUoJAfmA5ZqEs+2iLOMq/VZJk5ALWywmxUUlSHOI0ZWyVZqU7f30HpK37fpyZii6JAUFsIoCungDHukeha0ok6bru6wlU2pHElsa0aUuDfG1MwEq6YZxzG16uvU3b/BUSlKWvQ9QZaPseo1HEqsJOPBs89T9GpMqgPsVi6WMLTFgI49YsM+yNd3HkWlNfJpiTIuu7S5VjlcWPslGibEmbmEcGO2WgvkWhIri8woclysp75Ecvol0ivrfOaZS5TVTQPQPKdTZhy7+h9IB1usN5uM1nbJP7vB713cIcYg5H2i5nuJN2ue2MgrTkc5ZrzFRe9xNi40mTgBL5lVMuGQJGP403+O+eJ/Sz7YA+0xFTaJURxpdsnrSzSnN9j2FyAZsbv0Lox2mTExX2n8FJdkix4NStmmGg+Z25jgq4ChDihHT3B67HJ6MGBdLLD5hdMMzm/z2eZ1zlsRni5pDy8wdhaoby1QmjGzZZPznS2s6BrD1jJalmRyljxSPG5FeFZBV435m5PvoRQuc5MeZZrzxFbALDH9zoDlSQ9LJRQnhowe/CLMpOiOh+23qdkPY7U7tB/+MNZoBq+2BEOFIqQaF+xafV60nmZSxUjbJgzaDN0IP1ZIr87uxhpf/fwfI8sBXTtlI59n72oLM50lKhWVsklmV7GEQktDWZXUjaJjSQLfRimJZ2mONBosC0G32XzVMUvPnCU9c5bs2jXk6ipiaQlpO2TXrmItLlJu74Cz/4TKYLCWFrGWl1HNBlUU36QZ7kx9utOvZh+vfPXtlT5BdcfV6i3upTR3qFhu+eDcQz3zesiRO+u3bi1/K9rbYKh1PN7+scMICZa7byY8HaaELZeVBztUlWKz32GfOzJceW6Xqy/svWrnX8tM+LWGQwnAVdQ/tIqqOxQ7MdU4o7opiS8nOapmY/L7RM19fPt4s+YJbTtYKLSZItIhThShioQi3aVyXLQ3wGvHdBa+ylAJbjg5B4+sMpzm1AuHeLjOZtwntDVe3UMIH7uYkCcROimwkiE1BZ4ccKiMaLYFHatBy0pQIkMMDhCngqXl8xhVUqUDxDBDv5Tgf8XBfdEwc/Vz5F9MEXmGPc2Z5BVn6jFeQ6KHMTNn5gGHXtpEWA7P5IvMH1hkM8150u2zyiViaSi04LDe4oPiGxSTEf7oGooR7sbT6CIhx0aSMyGh7zWIrUW+UZM8aixayqVhBRzLEoxU2CJlR3fYlnUeNHtcqBY4LU8xpwUfLM9xdHgOkdtIbOarku5gwCVnB+oB5+M9RpEiKSSFyHGzIaoyhJODBH5AMqhj1w4zbOZEUYRlV9RqDtr6PMacxrZCarVDJMkGvneQkyf/Ja67iG21yLIdLKtNWUYIoQD1fTmP3izcug903SU8fxXfP0Sr9U7yvM9w+A3SdIck3bxrnTvT+aStcI82sZdqN6O6C6pxhgothKMoB+ldv+tVXlLFP9plUI6WtHwLz7JQQtF2G8zUTvCPHv4H1GyffJhjVMGuCG/fe3yv8bqJmsFgwHve8x4mkwlRFH3fDlxhSiwkmIz0AQnKZew0UE7JmnsQx4dGVXDpsYc53LjG5pEuYzoUWYYtSmLh7ct1nYq6HlA26lRaMMJiN61w+7sksaA+t4YMJqTYWL5PTzfZaB1ACEFcaSwU06JiPKqYMQaZXcITFcYTjMOC2dEGzz0SMhUwlBMskyGPpvQftBn7LqbocUgrLOFQ2SXR7BaVLJBGM6WNli10McBPF3C369RqJxGy5Oj7/g/4jzz6muMjhEBK+4dP5ve3GLbdvWlkJnHqBq+TUpYRebVN60iKMYaqKtm5eol0nFNkBVaVYWuId3v8i3f/x/zkA0/wV/Ycf9baIxvHqBkPr+ujBBwZl6hAY8uK9z3aoVWm5P09ssowUDZfqD1Cg7dgC4fUpGQyoz9JGZVrxFJQ91pcGCQMxs/QyiTSCEQJVTiDsev0TYusKonDgtqxFstOA9uy+O2ZGqNQU3YWMX7IltdjGsX0o+eJywmlXdCvzpBUijQfIm2PIE0Jq3WcjauEw5CN9SUGpcTVEDBk3u1zNu/yG88d5fz2EcgrnMKmX9bpS8koXSGQNnMzn+fkgSHnHl1k7rE98kaX/sp/QqUDVk8/RfS5P8eOI5KtK+xO9o3QqvEYs7uLPPN1nL1tjp46gdndQU0Lst2ENUrSH+EJ6I3AmzVPOFIyxCLaucB5+wRpZnG1cRRHPYLSIfbeWczuORKrxVfPXmZbdhiXFqlyWKy3yPwZMh1yyV0EaXFVHuF5c5QvxNt8SfQITEi46ZKIOWRp0CEsNzVHdw5wMArxZEoydQmDkukn/5D18yUqnjCo+ux+8ctY2R57Yc7S5lUeen6MPShYa2XMRmvM5X9CPJ6jL+aZGUc4LzxNKg3/w+H3kIspletxuHedTAgeuBRTp2TLOUl0dYNyMiBJNjEzU/KT12gvvB3b79INPoT0PZqrf4+FvX+M98AsRBptQjCCZupAkvJk9ijvSB/H7y5wdm6Ny90rdEcBVX/Kc1d3uR45HO7W2dFN5LTAtSWpoxgV8DdBF7soUYXGJA5ynPGP2z6uUkgpsaXE29vF7+1hpq+IeK4qip0dTJYhpEDVaiAl9Y9+FHtlFXtpiWJzC2x5e25T9TqtX/xFVKOBKcubyUrcQ6pyi/C4+dfLzMjriOcWN414zW3y41aTQggqYyiq4h7tvFJRI1+fUbkQdylqYJ/MuQUp92O7hRBYjqK3PuX0F9Zpzvv7uyMEe/EcL/z1DZJpznA3fpXJ8GtdG7y2i87+divAmvHRXY/kXA+UwCQ3FTXTHN3xMD/iEvn7+M7wZs0TSml0YRBVwmEro1wYEz/QpzJTMBmOf4lGZxPt7OK1oSxy5rqKPBXsThW6FlPaLnNBgVxZx+BT7G2SJQlJmqOrMd3WUzw0c5W6HBG4imZ/nkdmPosfXGF3OqW31sJWu5hqlSqaYq1rrGuQjl30sxXJVkKR9fCWQ2ShmUYlMTAnzzFcaFJ+bUSWWlyLAnJl85XyOJP5x3HzPm/PXgS7RjQdUVY5jshYdXICzyV0NZWu4V+/gMgjMmPhiQrsgKHboq1WsMuUDxXbjO0lXuz8XWZpMQ47uCKllzuoPKZVncYqCxaTKb84+QvCYYoyI0Rpk5WG9bLFzsw8R+cP8/CjGTTOMBxX5FkNYywcoZAyRQuF53u43hzLR3+NLBD7Sj4SbNvg+zHGrFGvL+J5HapyP6HTc5eQ0kXpGlLaaB1QFGOk8l7J0//QwnFmOHzo15mb+xjLS79CnvWJoku02+8iy3bv+j6VZcRg8BTGGISraHz0MMKWN4makmIvQbc9pKMoJ/ukzb6ixpCc6TH4xCV4gwiIvw2wlGS+7qKkpOE0WKnNM+s1ONY6RGjV2LyySa3dYuy0Kd4gc/3XTdQkScIXv/hFPve5z3H27Nk3pDP3QmC7zExKykzS9sAqCzbjFF1tMREu/XLAdHObUTJlLr7Kw9ElnipnmZQaRcZkqtkxB9g1ipKcQuR49ZLUSHq6iy4zLCkozBTfShhLzaaQDEuHT6x+iELZlFJglQW547GtQ9JYsmNi5jZfonQSZKgpipKk7vHAdEQpIygKqCZ88a0x/275JL2wDUzRxqNwCkwFjd82VOMpWT1gVhzCspoEzeMsdn+Wdvs9SKGpHX4r1uLi92287+O7h23P4Niz+1JF5ZOkGxhTked9GosWlm0jpWK4s00yTtm8eJ5kZ52Z2S5lXuCP4SMPLXFu22FP9iCrOHk9In9xD1MaViclpWWo4gF5nNArfVzLBdtGKEFagJtpXCxKK6XUBTTXmVhbWMnbaW6vksQF4e4GejSFqsCxBNJy8FWdcJpR5BA7I9x6xPu9kNyUfN4Z0e9AfOQYlRcQyxEFhjjfoYZFrlP02vOE69uUpUAgOba+jte/iA4DokmdPCqph4qFRoWuBvjFJtumxYyVk6UCk5Y0sCkqj0KAEhJfSOb8PrP1mJ0g4MHF5/EaNtOsTaVs/GGP6OnnkEnK8Wyd03/6B1STAdn6BunFi9grKzSfeILVtz5GI17j8Mk2pyawrWEre2Nc2n9U8WbNE94oxhtYDNOMr1YrxJXHS8UThIMFRBGgkwGjQjFVdWZ7f8aF1Od65BA7M7g4tByP0g6YNBe52lhmY3fExNg8Y4XsFedplC5lEXJteJyCwwhbULtynodf7HBQXCe0AtwoZMFXxG/5KPLEA3zsMhwmZtnexDnucFntkTzR54NXK+bGKbgOyVaPnhqyUzjsJgEyUeRb2xyuvsQHDn+FGes8lxqzNOIxpWtjd44hpM1A++RWSWVicm+HUk7IZm4gX+iipI1TziMsSbVnUOMm0tPI0kFkLqlJmRuHnPrwR1BjqHoVn67Pc+zJt3Hm8RFfO3yJz7lf5Vpu8YXpEc7W38kwqGE1JRNPETgQpBNesgPqRcFMuMjS7EEsqXm0ESKFQClFVymctTXcG2tUwxGmqqiSZJ+oHo9BCNwHHsA5cRKpNQbwHnsLs/+r/xLn2DGyq9cx1t3Gu/UP/12k592Mnb7Do+ZWrRLc5UkjXkFHmG/lUvMKhcytpW/zQYabOVDmDoLoHqVP8h6mw7f6cOei8mVC566bVcOr2rQczXA74sF3L3LgZHt//6RgkoVc+PoOe2sT0mlOb/0VpNgr277z/dcYDSnE7WtzayGgnORY8wFVUuyPQVSgms7+a+5+ansf9/Gt8GbNE0UWY2wblKZGBAsFyfIIIxWIGMea4ugR0opwnQlQ4vrbNENFr58hnRLftjhWbBDVbmDwcbMRpirIRYVdDqivvMBbV3Y4+vBpDhhJmFxBxWeQVUoja9K5FjN69hcYD9pIu0nj6YNYex5fe88henlGVLmEsaEz2kEVFlIFeBOJP71OzjpWo6DwXRJPkSDIjeTyX/859Wgbe3yVEgevmmCblLplsMQUu9PGtR1kKmjZJVorokqiRIG2a2xJgbAX+clOl5VKMa79KheiOuv+Mht2hVNNyJXHKZnzhHqe/xl/iEgM48vLZEbgOobCiolNQT9rcC0vsDttjL3F9uY7qLI2QjYpCo1v2UCK60uUpdC+xq/VWV7e4vDhElMlGFOSpTvMzMYsLh5HKRetQ/K8R1kmKOWhlI9lNZHSpSwnKOXzrbPufjgghMb3V1HKxXHmyPIeabZNGD5AnvdvL2eMIUnW2Nj8A6Daf7Bv7ZcgC1djkoJ8O0LPeAhHgdk3FQYwhSG/MaGKCvKN6Y/s77vvKP7Jew/jWIqG02A1XKCuFFoqmk6NbFJiAK0Ncf4mx3OvrKzw6KOP8oEPfIBjx4593xQcNc+jfmNIOTWEVYLMM/qTkqKzQlFWnA1mOefO0YgqzqcfYnMwy3Y1izSasqjYK1v8gfoYV3NJYtno+piWvY7SisSdQ5U5dlXguIa6nbKdVVyJKioj8I2Nk2YcWrrBg4e+ht1w2GnOEe+O2bIbVNmIsTWm6dYpjzYZO4agb1BWiVIepVsQBhVfszewtCLXJcp45CahMjZmWlCKlGw2xZ12EdKm9eRHaHzwJ9FWHal8+CGuufxhhecdwPNWAVAqIEnWse0Z8qwHMkUoSdDqMOntEo8mlHlO4FrMtmokkxGf/O/+n8x6glPzIY3AolAl6ydGpBtjyrxAu5ovnhtzZgwXdiV/dqXErzyUbXNKTxFFiZWDLiWCXZxAkuotjBRUCfi5Tc3RNOKS0BZoneNog1Ylsj3HO9MObVnD9fZwEp8TmSAuBuQmZWcuZ/A2m8gO6Rc7YEmkFEzKMbVS48eQxTFTN6SqDMRrLLU8KssjNUsElcB1Kjq1DIsR2lFUcsrDi2fwqowiLbAraJj9HyfLSCzAl7uEwYSJEbhWSqs1JplICmFRZCXjnZTECnlI7VD90Z9z/avPcu3yBumFi7gnjjP7z34d96GHONidcOSBJss3Mn7h1ALz9v3Up+8l3qx5Ik8qelsP89fVu0jWIa480p0AXQqyiQ9SM1Qd9lSXt0WfopcrLlmHGFhL7D43YGZyg8QKuDCzzL+dOU6vNqLhKy6ZDkfMLiKzGDe6DMoDVGkHphWjyGV37u10OUtmcoxVUm7vsdNzecaH7rrDAzdK1E8t8+KPLVFhkbwjpPeOeRq+oIi2ePof13hqxRBNM9715S+Ru20OzIV0OMc7WjewrBeZO3QB/eABwtYsXpxiiZD3zo0Ij4KsNIlYoyjGFMUAs61AQDnJELbaVz60XExhUEVILXuSa+YSVeizXXcRUcV0e8wLccpL6SXWRY/f9z+DDH3i9hIPL9n8j8+P6bYEp+pDBi1NWIyZVTbzwmZRwWPvfpiP/vL7OP7IQYIgAPZVHG8NQ2ob63THI6rRiOzqNXq/+f8l/vrXGfzxH+McP0bj53+O2k/8OLB/USmEQCiF6nTQ3RlKK7upnLlVanSrXGi/GvyVF4/3Ot1uL3JTUfPNqJpb6wuzn/P0sqLG3DYONrzsUbPvRfNqbcq9fGHEPW4ixM0+vVJRY+4knm7C8TXv/aXjLBxr7ntrCVBKEIsORSHYuDgkzyqyuKC46SVzSwl0z319zVG4SdTcZGqkpwmenMc+UCO7Pmb06atgDNasf5uoqUYZ0de3fmQv5u/j28ObNU9UoQarABNSFVPknEW+WGE5XSw7IQgLQmsXgcJWQ4RKyaqvcvDQS6jRFuLaJWRlkU0UG+kSVeVhFVNklWG5FSbpUeQu5AMKawc3+Cuas79PWQiStQ8jKkkRX2FvvcvV7REWTcxej0oJLnQSpg2HK0FC7EqqQYTMFEZX1E1ANOPjN0q2ZxcZHPEo/Tp52aaZDqikZNlKsIspSS5YkCPcKqaZjKmqCNsVbNYVn1606fg5ptXFamgkGU/YJzlehfStDqetI/z3B/8XtFgAb8j/NPcxLgqJyKa0rIKfHm3SyS6xKq5RlxXptCQxObadI5yYdOqxvX6MoweOIZ2EaDJk4/oxGnKeioAw7NCuBRiTIFTMXn+Mtxrh+grP2yCsXaCq9omYopxSVds4TgcQWFaLJFlnNHoWKR2U9LGsFlI6gMHS9e/LOfSDBm01yPMBedbH91YpiwmwT5z3+19iMjlLnvVe9eBAaEmVlPsqmrqNdDTSVghHIZTcN4yPCrxTXbJ7kP8/KtBS8vBSAyUEx5rHOFxfpmkplFDU7Rrgsz0p8RrnGOe9N6QP31bp0xe+8AU+85nP0LxHvfkbhSTdY5AbRApJ5SPTmG/sHmNj8jAjz+PG4jLj7hyON8twO2aDA/jaxvFq5Cgm7QbaquihiJXihtWlb9dwbMmutUBlayypsHSBrxIWpnsslAlCasLAIBcknfou9foGB1ojGnXFiWSPnrRQSlHoklqQMvllgQ4bmCOgdYrQmsKX1JSNlgnSZBgKhAywhGBaQSkVedVnunuaYDxHGB7HX3wQ5/BhlPTQ2kf8kNdc/rBBCMHMzN+l3X4XsB/ZncTXcd1Fsnw/nt0JPBozs0x6e0gpEVKyWhc8NH0O2/UpshSKnI+4N1gZ90l0xlfLbzDe6TOxYipbQikZFzH9iWJSKtzcRtgej7Yb6CLHSQ1d1cCVAWVQkZUlSI3O6ugyYb6ZEcwe52CzTsMTaFlhqxJ77gkey97CATmHpXcQEx9RuvhKcDD1KRcq9mYv8il7iW1lIx2Lrl3DUQ46TajFFrPxLqnnk+sK7XuEviKpwFQ1rCInrRRlVNBwLSa6icM6S/XnqbIJpioppikzZUVDCry2x9Wwy0B3GHs+sRHspos0ZzTCuASNkN8/+uP8v9/7q+x0D3BEDVlMBlz85F9RCYFJEvTCAtJxUM0mfsun5qQ0Oi4njrZw1X0i9HuJN2ueqDkFZ+YP4h/7GEvuBomxKKkhtaBvDkNZsJM7XM9qnKu9g7HxueqcJFk4RXn9HOL53+PfzP0cfdvjOeXwxdqQiZLsCA+v2mE4UkxrHcZFi6JaxsoEqqlwiVCpTeeF58iDCdHuiDgxvGhPqe3F6ExwLdvlxWSdbjlP9vzHiGnTa3qEqWE9r2hMKsTegPqVGwztOYpOjSkZ5XgZJxjTOvQ08hcfQ6yukg1fwtIhC+5zJA+Osd050nSbqkooshhiBUJQ9hMqUTLd62PNB8TbfcAmTN/B5domTtHg97Y89sqIQTKhF6X82wu/w9p0G1u5qFhR1VrsxQPeEb9Ilx7dbEiNnMfnGrRlxY9dMiymBTOLDbzQ5sc+8D5qtZfjtyWCoxfO8vMzdYq9XYqdHaZPfZXBH/wh0Ze/Qu2DH8R78EGspaVX3agJ28Z7yyOUdvGyAfFtXxh5K4bpnpTLq7mC20zNa3x+15a5uyjoZeWMuKW2eVUj9/Ko+SapT3dCituy8pfJqHuTK0pLFo40b5YH7C+oLUFSeNS6PuO9hKqscG/GeO/3/h5qnZe7+JpjIW+Wed1C+M5F7KWQ6LkdZGBR+8AKMrT2pfO7MeO/XiN6bhfeIOn3ffxw4c2aJ6IYUpNhRAMvjzFOReZYCO1R6CmFjHCrLTDztL0x2hlzpa+IZUazWqej4dTy13AtzWRtlSLyKRYrwiNbGJGiWi5Ty6UwUxKRM5x9mmx2DxGE9M+/jYmcUkUjdpfXGVcGbY5hioJCQpRs0Gm6XJkTpEFCZGYxseFidZGJOsD5TsjCfM4f1x7mP5x4G6JyGUwf4O35GdKDksfVHr6JmRSajtlX1HjlGCfaw9UZ22XOc2rE8XYfZMzc+ALGFLxzcJ0PjxL6OFwQb+OZxiN8/EiDg61jNJJVZvUi5AkiL5jv21RFjq5ymjrBEjGTOMOYMZUsyExBlXrYco6s2mLYK/DkDA2nzsam5NRDfw91+MfJqpLKjBmPCxqzFmm+SZ6PGI0ukuV9lApQysOymlhWCwDLbjMYPMW58/8SKW2U3idqlHKR0kFbje/befSDBCVd8ryHweA4s5RlhDE5YNjY/EN29/6CvBhizN1qD2FJ7JUauu0hbIWw5T5J4yiEJSn7CdKW2MshxW5017omr0ivDCkG6Y8UOf9zx3+Ot3aP8avLM2gpeXT2CbLwGHONDpeSv+CNup143c2Ox2OUUmRZRhzHb0xv7oE4FVRJjpfErOkDiCIniQTNv/xrNi1N4ULlQjhvkXpwqQp4kXlKYWPsGpkqOKSnKM/FIHkmX+aG6BCMR/SGLmWtibUXYVUZLTdlMRpwYvcSOQqrOUW8cw27ijH4hGKEGQwgztktYWEsWaiaSDmhdHdZCWqIBYkWJcKyiXRBUgje6odoYWFMxWAnpqk9JlVKbksm6XmqSz1sp8vxY/8C++aP0r60L/ihdjH/YYVSzu24dNddoDI5vn+ILNvDiBS/HhC0W0yHfbxGg/rMLF7Yo1Z7ltVH3kJzfpE0mmLtXsNcvoaRFcf9FaZE9MIxRVFSczQ5KVIs8rAbot2QpDnLW9yMlWxEUFYckDPspAFfCARxZVBaMRk7JOk1VLWNbJ6kufsSdlmSGwsvCBkFhiAO6UZdDBkTs0KOS0s7HCo8Mj3lotjiy/5ZclejPIe6UHx80MdWoOOS7rjPfDyksF1UZTHaE1TSkGNAaMoKymmfUNWoqoKDjTE1ZwhihO8ayrRkpqyoIdjVJf+jOs6/lx/nr8UjlGj24iZSTXADC93tsNldpZqb44pscDW2iZsu9Qtfx5Igmk3spaX9uxIpUe02dSfl/b98Am3f/259r/FmzRNp6bA2U+fKtW3KaJdSFUwzjbAkk7SGKXKiQnJ+XGM3O4LRNkn9OG9X2zxQ/xueTQ/SunIUkyXsxRP2ygy9fBKrHtBLdslMxV84F7lhdymyDiqG3C+xzZDhcIHEj5mb9sm1S14vUMam9+C7uTE/x7/fuUAvXsefuKQXDyDOHuLzYwvfmePquGR5N+dkOaWwW8xf3KCxsQ6BJtAbOGKClE+StXYQI4ci28au5onFZVJniB3OopSHlB6mLDEJIAVFL2Fva43h5hb5nGDtS88RJSOe0zGfe3iOi40Bk92cF/rX2MmnmNzliZWf41rtH/ITh/4TnMwithzKE6d457EOoyimubdLN8+Yr8Y83t7lH37kCDO+wnH2ze5t+26vNKEUVprSPnCAYnuHYnub/PoaVTRl4f/8f0LPze0vd0cS1O11hSD4uQ9RHXJ5JcRNcuNWKdLLMppXGNaIV7x8PalPtxU15lb4E+KOj/btiwW3CqBufXKnSkeImyVXrxFJdZei52Y8970UNd8qSlwAypLkpY3fcKkqQ55WhG2XaJTd1Z97r39voutWt8o7VENCCmRgYbIK76EOKrSQN6Xzk6+s78e9hhbmPlFzH68Db9Y84VJSqAzLtHl8cBVfgJcvEVUOyh0hpCY3Y/J0Fkvu8Ki+RLV2hI0kZCb9Gq10i+XWUyyv9ml4l4lLTdyNsGdu4LZv4M5rtlyBryf4QqKTw1QLPsq3sKsYEV3BFQ4X5r+KO7bIrxxBOCEjt6BSI+SDQ55fyajNGKaDgmTNJooqpnkN6dT4M2+HgedzPVmgTGq8GL+bPRFxwxmhsx38QDMJOlgqx0gL7cL1pk3cNmxEOdta81eLFv+3dk7f8ZhaIcF0ixcaD1IYw3PVAvN+xkpjwMCEhLGiq5ugNEmucCOJrjxMmdBPU9yZbZKkIM0skmwboXvMH7hONBgxmX6eyeQAC/WjeNonjxs0grcxDI5TqhLkBINHGOacPfu/A1EQBCukyTqW1cCy2rjuAbRuIITAsWcYDL+BEAqt61i6Qbf7AaS0kdJF/4gqaqR0SdNtauFJlPIpijFXrvwrqiohS3fo9b+MqQrunrP259HwXYvUf2Jl/7WSyNBC6P2k2Xxzimo4++bCcYnJK0y1r9SZfHmdyVc3iZ/dfhP2+M2BEAItNY5SnAhchBD80gO/wH/20x/hLQcWcS3JYr37hmz7dd+pHDp0iJ/92Z/lV3/1Vzlx4sQb0pl7wVIWdllgDYds2nVKaTM/7XFg6xpHS0OjmOIXAxbNebZrHpfzkCtRxfbEsOYcwxcJZjJAex6yqlAC9kQNd7jHys4NYn+OJAaVTfDkhH7QoqhgVEj6qqSwephsQiV9VN3DCTN2dI6VBbiDEU4KpciZ4vBgmOFYAl1WYAkKy9ArJafs/bpLgCyqmLEslHbB10zTS7Sf/Aj+296G68zfJmak3K/BvE/U/O1GrXaKRx/5/9BoPEaW9QBDOA9By6XME9zQoXtghSrXTDYNBx99nMbsHOPeHvFkRDIaog2kO7ukQUHPG2GiAmlgIirm5UHeZ7Xwam3OHjiGr2CumKIcqKcOiUrpG58cidaKSarYOfMpRumATCdEyTVMabg4LfFzQY6kQmBKQWFpyjxkGikWY5fWxEEKw16mMDJBOxa2sFFViS40jiUpLHAYMTPd5HpzDhxJZGKEhM26IrPnoCoI7JwqDpCmZDnYw1Ylg0Jj+zZ5Ae1hgYoKdn3FZXOAi9Ux1vI6deEwyZtk1QBhK4bzB3BDyeHaWRIv5FOTFS42XRrtmLw06EOHsY8cAW7+0LbbmGGfoOHcN+B+A/BmzROlLohrU6pxQT0SBHKCKgJ6VKRlwNRto7Rmu19n0DuOqLeY2C1MPsXJ1/nd7ZMU21P6NzaYpD16Zcz24gzLHY9JXOA8/zwFm/S1zSjzqdkpg/AAY+sQXLnG5ZXrBIMvU9l1eu0brEwfY0O8n6qYpRP4hEmMEgWp51Fac2QzHSI5y1Uz5mBeoxuNuLH4AMFTffyzp7GDGRw6uKqiPXuQfC1F3thEZAPUOKRkQia3cMIuttVBShtTFpgUhC3Jd2J2rl2mH+3xm1v/Fk+GCC357JUv80xR8uzqDQaXRxysFpnYFQKbueZ7ONo8zODsBF/OgR2wnVX8ydJDqAOH8MYDHjQFTVPgaoF57gsU4z6O45CcPUe+eXfahLAtZBhgLS5S7O5S7O0ibBuMQdXrd5MT9yBR5FyDMqxeLgV6eWGMqe7wqOFu0Yy588WdfMk+1fKtBTUCYbhru+YOMsXcsY2XVTbf2qNGvLzCHbsib5c+3UVUvR6vBSGQEiwbgqaDZUuSSUZzzmfc27/e+Gbx3Lyq1y/jztKn2+95GmveR4X7DyGEvS+dN6UheOscwpaYN6hG/z5+uPBmzROFEfiqADr4xRDPaeKUK2xOfILmkLLySEXGYCtAeRFds8Y7dhxODsaYYpuq2sVW23RXLhAsnEY2BjjaxbUyGit/htPpMS4lCT0sYbMp383IAjEeYw824cIzNK1Z6pOSF2ub/LvZr2G8kPyhjJZTsTurGLgF29025aBH7RnNzz17gGHqcMDscl5OWZR/iXA+jxdnSOsiUcslVVOSSYpEsOnWORd6fLK7wG7D4ze7Prgb9OcOsqUEL5mII7rG12eO0bOb/Nen/ms+N/djdMoRU6moVdfJoxcYVy6upXG1hdEOqbEo9YB4UqesCoZpydCU1MMGWdpC64xud4O5uTPAFYJwgtTHyOKKZFTR9hrYlo3r+kjL4NanrK48QK2WMBo+gxAlvjdPmm1jWS1cd4GFhZ9F632Vpm3PMpmc4dDB/5Rm80mUCpif+3uAQqsArYLv23n0gwSlPI4f+9+wtPRLCKFZPvCPSNNtptOLICQChbaar1LUwMskvBACYUmsOR8hBXrGIz69h+7eVNu4ivj0HtHT25i0JN+JqL13iSq+mQr1I2g2LBBopTjUDZgPZnmw8yC2fGOsFF43C2BZFktLSywvL9Ptdr9/8dxpQVmWaG1xWk7o2y5v23mJ2rjH6t4WM9mIdrXH0vgbGGF4Z3+TxXzKnJOSxCk5FnlVoQIbVeQEEnqMyQ7EtCa7VKJDTSRYJkGZKZnlUtkuaSXZymIKLyOTKVVlYS+sYQ48zV5jl9ZeirIsZG7I84i27eB4F6j1DE5ZIYSmFA5JFYIcIaREqQDHd6iLAmV7KN8iq3qER96KtbBw134r5aJUwA973NwPO4SQaB3eZrqF0ASHn8Zq9JGWwcgYNwhZOLGC5x2gMduh1uny4l99lq2LF/bVNu0G5ThiEEaIts3IgriseNEWqChgTq/Qtpf5hT3wgzkcZVN4FaqS9PyUdlEitEZiqGyBKAyjeELv2l8wTXq4WpIIQyAlZeIwomQ6NSSlR1m63Mg7HJwEhOOClmqzV9oc8CZIt4I0w0xz4qKBZUsyu2TsGqwsY9EOocxRnsI2ho18g3xvC1MkLLdtVFVDUFK3+yTCZyw02t835n5olCFGGS+5giALicc2D5VDaqUmzbuEXor2FNuLB1lVezy28mWabZu1OKC3fIwXDp/gsweeoAjrqDuk1ardpuz1KEcjisHgTTsvfljxZs0TiT1iwF/SaAfUTZPShqb2sb0Ko3227SZaVegsYJrVOK1XGRSSfj7L5tYZTCm40vwdTvzFl9E6JhEJn7jxdca9AbWppFzvY297LC8EqGCRdeEyFimTaggbl+m1E66vxEQpXNZnOH/gt1novoCb1/j46oO8TQXUD16ksZRSFfCB9a8RVw2kapL1DDeGBdeaIaKfY8gJrUXEyKJWHKVRm6fRexeqVWDIkJGPY8+jXA/b6WLbXbSqI7AgF1hdn8bHDlKZirQY4w8L9twdRE0xCQOUPYscrJJlkq4SrMtNpqLgyjijOdhjOxFcWjxIrB0OGMWLhWankCzNzfKeMsJKE2zHYePcOeqdDrqqmHz+8yQvvXT3QRECGYSoZpNqPKLc6+E98jD2wUP3ICzudZ68QpVym3+5SW5wS4XzzfKL7ljxtkfNN8Gr1Dkva2r2V7+ZNPXKVu5Z+vTNuwPcVfp0e9Wb3jjfSlFzq0++mxG2XGxPU+QVja7LdJDescy9iZpv9s1UUrwq6EPVbBofPgR6f03paKo431c3aYl0NVVcfMs+38d9vGn3EwY8y3B6x6JKU5y0idx8Pxd6D2O5fZLMpSxdqqqLkQWq2kVOdmi8eInJQy2mR11cax5trqHVDgun92h9YxZfpXj+BlZtgl0EOJ6N9usURsK4pCxGtLvPc/DqhFbZZttOmR2W7Ikt1uoR5+fa/GS+yjXh0zUNPuHEpI06G46LJWqYmsdS/gJTUfLphW1icZUj1h7xZI1pRzId9UhHE4StSHiRT3spG0GL//tsjdRykckml5vz9KRFIhVPTPqcUwUoxTkCtmWD5WSLVaciiL7Ele0vkiJx6xLsnMINGKGJzIAkmaUwDqYs2dnu0CwMcVzHdVxsa0zae5zW4U8wHi/hhw0818cTLR6TR1Ba4XkBUkvc+pjjJx7DsvrUag9h3yRn9iO3W9j2DPNzH7/pQQOW1UTrkHb73YTBidtR1UJI1M1r7B9FCCGp1R5ESgchJM3GW5mZ+RB7vc9jWS3a7fdgWy2qKvvm7bhqX12jBPZ8sG8y3HYRAtwTbUZ/foX04oAqKpCuRoUWVZwz+vRVqml+W23zowYhBI/PPs5PH/npN+x37AderhHrgMTysYIQb+qz05klpWJU72CGe4iqJFUhTr7D3HqPd33lTzm8t8aj6VMcN5cRns9gpkPqpFhFjkNFSsaWSchNSaFzkmKCFgqqDFyX1A3wlOStC2chyChkgeyNMTOC3WAPU3PxNwcoTyIyIDfYwkXKgtpLfeqZYCOVpKWg23oEKSVKNxHSJ1yM0GLCel4iPYW0HBxn5lUHWEqXVvPtSKnfnIG/j+8p1E3DM6U80nydSuyh7BIjxmhHUz+0zep7c9Zu/A8oN+b66efIs5RwrsPM3z2BMoI/an+WbBa2Vcm4KLlWDilMBUYxTkrecTXCbRxH1ZfY0SMiq2JsSprTHKkUkoqkmqK0g4knxDtXiVSKXWhcJA0EzUwQZUMyI5iOPSxmKcojSJXiuh7vX/8J+nlJIS0KS9JcnoVByaBoICyD61uMfUM6jXHTmLGoML0dvK2rNIeb6L0dqsrFaZ6lyFawdInnC8Yi5H0H/4JfmfkD7DLicP5HhMUm16qSd0xyatOcf5D/e+pJRlV26Qbg2TDWDqtiHYs9tO+xJ0MuihlSV/HX3ZPEUQRlzjQt2B4lqFabotdn+qUvM/7kJ9/s0+I+vkfouDPUij5/0fq3vPSWL3LZrdBJxWFvjBEWfV2jHVbMODWqeoPr5jiD3Zi/fv4If2xH1NI95voJB9YTLGMjpWBvMCbq93ks/hDFwYc4tPsQO/oCh1YjEF+iMCVGKoxvk9Ysaj92BOOUdJsdqvwquD2yIkWvD3DjDOa+wqHsAtbudY598RM8+cKzzNPBC1xeaq/SPphiP3wceXgJywqo/AS7nMGihect4Sw0KXWFMiGuewDPO4i22pi0y86lHSzRRLqavavXuL71Ep6pcdlcYjVqs3loStmFiechRJtpr8EkLbH9lDScIy/g4t6QWm+X5MBhTh9YxS4q3n8+5W2jlMixePRd76PT6dDv93FsmxtKM19V7P3rf0056FOOxhhjmD71FPFzzwEC6Xuoeo1yMqGaTgje+z78t73tnsfw1Rd5AnMzqeKuUiB5y4D3HvSMeOWfdy70Km3Oq3BrHXE79ekmd2Nevli6U1FzKyXqValPNw2P77mfd76Q8raJ8l37/624J17mlGrOiLDlEDQd3MDCbzivKn16LaLmtVOfuMujBvbNJ61Z//a1inTVzaepgNovjUovjygn95P07uMHEzUtWQwizvRsSBNqm4vY2x0G43mEtcHa5AQxbaZ2kzyr8PQmmj66CLEev4b92DZ1vUperqHMLnp7iv70FkpWQAMj92hfT3D7GdrxSPOMbJjxjU7B2Npjb7WBdNpMTImbVNTsGf7sHQ6faE5oJz12Mp9l1WTPrYgWZpl4LlvSpS76hI06oRNiOU2wLOa4SJX12ct2mRYRQiqm7TZjN+cX9rb5hUHJf7W9xy+YOSLbYXFyBstdJCgy2pXPtihxbBtDBXnGTLYLZcqMqbCLDUKlcDsJU+8G/brLoOPTrxoMspAkn6WjbDQKS8TkRQPfaYAYkY4fZLr7Ea5fbeAHHsoWOHaNjqkhlMRxPLRr0VlJsXSTJLnB/Pzfo9F8AtddRAi9T9RYbeBlEl/rAN87iGW1X3G/JLB0A6V/NBU1r4QQgjA8znj8ApbV5MTx/wbLbtPrfZEk2fim60lHI4RANR2clTqyZoMQOKs16n9nFbSkHCT7JVI3ifns6oh8Y8r0a5uv2fYPOw7UDnCkeeQNa/8HnqgxlGArbN/i8OIaB1fOkfyDGleWDyDGCTE2O94qZ06eZK30MBU0e7tcy04wP9pjoTNhRwhaOsV2AgIHWggEK/Q6XVI1xdR9hO1TmZwpir3K4tTiNk/MnsaogjBKCa/eIPYr1mzN1Jmy0KtIHi4w5b7RsSNCQCHcCl0pzqUJgzxBkyHFLNlEUUQWhoJzRYvnJyPEo8dQYRPb7rxqv6V0WFr6Zf4WHKL7eB3Yd6l3sKw2jjOPkRFuzUNZBu0qhKqwPEV/8GWUnVNkGTMrBylNibPawAtqFCZFNR2+HvYYZAVGVkR+xXZNM5gkiH6CSAxoyflojZ4XE5QVc3hIpaAs8f0LNGWfE2e+Tq4mPPWeY+SOg7AhnpmyqSCxYsaWYWd6hHah+dlxB8QQudihFjcY5hkpGmXPIAMb1zj0FlvkMsNyIToY8sCBCuKUTKXMaomTDAhGfRgNuXr5CXYv/jRr41mUI4gtQV8EHGls03bXUCIhK8/QTi4zZwr+/sZF3rn5LI5Jccno1C0SIZlUewwvD+mKdZQYEdWblKHP1dSnma7zuH2F0c4a2cUv8afPb/C7X1tDNRuUgwHF7g7Z9bUfyScAP5SIJG4/4/zgWa5VV8lVRjad0tq7jEGRigbGpMzbBard4N1XcuYmFduTJl+zZ9FTh5PrIZ3cpZvVaFPjgFgl8OeQ1Vs5d2SJg/0pQ71NOv0i69bTKFGAZxF3XGSzxePdB5Eq52BrhY4OWJr5HHk44hMXA2qXwN/0EC89g5mBcwcXqCnFj8sG07cXzL7DY+VUwfw//XWsJx/BWCWiZlBJSJVm2F4Xq9lEtgJqx48xu/ARLGcWqZscbP9n1KMlLNFC1Ww2T59l/RPPcrmZccnfZLyxydnJBRI3JZEaL3VIdYMoS9md2+View4lJXGUsjjaoe+4zOVjZsqEuqU4FKTMthocPfUIp06dYn5+Hse2GZQlzumXiJ97nnI4pBqPqIZD9v7NbzD+8z8HAdIPkGGIyTLKwZDwfe8leNc7X20efK+UpJsMieBuRkaIWx41N1Urr3yK9Qq+427Gw7xa/XLXRu/872afBHeQKbc+NS9zQvdIfbqnmTAgXsVFvVpR83pImjt7+WDzK8wuWtQ6Ll5o4dX2zYS/lRz9nkTXTbzSTPiesCQUBopyX1HjWww/eZns+uj1dP4+7uP7DrfYZD56Fkv4KCVxhxVe0SctPUTZZjxYYlw0WZhonHweXU6w9q7jO2+lufGTBF9bIbjeQ5cBRuaUWiLKEjsJGA2OU2VTDpyPsWK5r0QoNEWs2UMyHEz4/DHNTn6ZWlIg5hcJqXO+PmZqZQSmxyhZ4oAqSVXGRleSAJ9tP8yjzpS8sYCWXR7eeIw0XOQh9y/xi1368QTZ8JGBh7Y1u0oxIywmbhsXjS4KhkGbIh9huStcnHkn/8Wx/zVbVo1cOpQI+lVGg4ph5NCdujTzKV4kcMKYxEvZ9o5gyll2M5vMSK6vHcR3Jaurl6GWoYREiTaYKa7vMxqukCQFSZIgZvZ46987gm44IEDrfZ9CO+yjdUBeDOl2f5z5uZ/eV4fqxs3k1AN3HTut6xw89Gv3VM4cOPCPcJ3579NZ9IMPy2qRZXso6d42Zt7Y/AP6g68Sxde+5XWvcBTNnz5yO6obLfFPzQCQ78b7ShslMFlF0U/JtyOSc/3XOW/98OGWuuuNwg88CzDfbjDTbmPPn8Xvfo1r+iUSFTFWBWVaslcqruUFfT9lELbZfuwRajLnub0ujFNmN9bwygJPlZS2sy8HNyEKn2EQIF0X0apRWk2kgspKqHoTVuzP46kdhOgybrSJXIuJLKhUndiHpV5F1NmjLBJEqVHBAoaC/AlFuy05FM4zEYZk+hS+9XaKqUs6mRCEx8mKMdVWSPHAB/DbR+/5w/OyrO++j8YPA6R0UCrAtjqEwTGkLgjaNSzPRlo5UrpgDFF0Fe1JtO3g1RuYsgIEje4sh9UyzWaHv+mco9SSUAfkMieqKmquRVEZkqsDClEyyMd8oznELhOapdp/clsWlFUPJ9rG3r1OpV1MHJCqgg1hOBPe4FIvIhO77O59lXLQxC0VahqSzbbIuxO8MiAUHqWxmaFkZvEFHDeg1xiyY41ZmyuIpcBUBav+LkfUlCQ1BDJFRhOK9hyZG1JMbzAtU1ARPRkwESEyz6gKF19mZE6TX69+j18afZ7V6Q6/XLnMZBrfz1hruZxxQ6ZL/4rdOc2ZlRWkJbl0aBHrZBMpFI/zEv8w/10qAb/zl8/yf/mzl9geJ6hGk2o0pNjZpdja+lYRMPfxPYIxhqqq9ks6XvH3rX/fDZzxDm+7HHFMPkgvn+KUPowiLPMSOfAN66cYVosU04xJsYualnxo2QN8ZsRbaFRtvKlL0fF5oD7H3//rirf0NR/+ypR8rPF9G3804rD0uXjuK2w2EqgqJjLl0opiT2fo3gBETMeBhx7++5SHjhEc2eORL5zG+1pG+AdT8toeW8sRwwPLrDXnWGp+CHWox4GlDZx6hPvQKSzXQUgfWYfwxEGKaIr0LGQYImbq1I8fZ2Hx5xlXFkUi0UMbP51hvBGxYw84X/Wowjn+aGGGhcXH6W9tUD13g9NrXyeTkmaUktdDykrwiWzITjpCuha1IuJYPmT72V36lwvKQqGloJFPOeU5KAGNRoMPf/jD2LbNZDSk+PKXKHs9quGIajQmvXoV94EH9tU1WYZz/BjCspBBiLW0iPT9b2NOew1DXnEHgXL3WXY3aSNuv3t7PfF6S59ub/fldKlbfjTmjs9vRXa/sp9CyHvEc/OqPgv5ao8acZteen3fCU8MsKyKetejtRBgOQowpFFBnpaY6jVSn75Jm1IIynsLgl5eXwhMWXGLu1INB91yKEffXGJ/H/fxZsEEMzhFzmH/OpOgiUlvIEY3ECbmzM7DNGrPo1TFyfWEudPrWMaD0R4qOUp99x1YaR97fYhdLiGkhxPW0LVFatFPs77egdyjYRQil2R7I6xxRpAHxEZztRmw0W2iB1c5ti2oufNMi69xSi8wKw9xvXR4buSwON1lYiK+9EDJyLdxSk0jy7ngdahGLjprEHtdjBqwMOOhbYlftzENl8xWZFITZlOuBfMUxrBZ9MlNxtSUTOxTrPvvZuLMsCssdmWAEopCago35CODiHIzx9Ow4vrIcpPU0XwjPs545yARGUrFRLEGNaXZ+gY4OYHrk04CBIrmHCT2Nlle8tJLL2F5Eq/r453qgjBsb/9bqnJKmm4BAiEUSnk3TYIb2HaHTvt9dDofeIWPmaJRf+RVvp1CCHz/0O0SqfvYv99wnLnbiVlSukwm59nb+ysuXPi/Ysw3L1EVQqBqL4cDCCFA7/vZFFsRuunuz6fufkJU0UsoduP7HmVvEH7giRpGOZZxGIfbjFEMsSkqC8fPEXlB2DbYwSaWnHB+8Qin3ylo+tdwJikmKenOnOHkeAOvyHDb19D+lLNK4h2/xlRALgR23SMTPlprvOAGVl7iJ1tUVYxbznJF54y6TQYFHJA1xjULnRf4yTx7B2Gy2EWqEKjwnvdxS8lD3ScopINlIqLsK8S7s1S5Q6P+CK4UWJGFbXc5ePA/3b9Jv48fakjpoHSIZbfwgyN4jYCTP34cN2girfh2fWmabmL7Gstx0Pa+aWNVFDRn5/nJ1gd4oPMAUdlDuYp6XsMIj65WtLRir5Vw+pnTvNC/QmQK8tEuidllpjXHaP4AA+2QuLMMdYv+wQeo6i2U0vypP2a7UfHlcUAhMkw2JZw+RxmNUHGJyeqo4UP41QArd5hTDYrKxsnHKGsTRwtGWrEZGDx/TF7EZNKjNrrC4nSdvBziVUPyPGe30eaK6zHcvUqRRZSmIjaraGpMpx7kDrpMwKmTmoB/eOm/p2Z/jqVsBj+20GLCpnC5xCKRk3ChPebFxnsppUdPpoT2LrNOTuSssKsXaKqIvxwt45qEKMoQjkuVFxSb65SDHqa476nw/UCapnzyk5/kD//wD3nxxRf5rd/6LZ5++mn+5E/+hN/5nd8hiiKqqiLP8++ItDG+4YnrhrdsvuumZN3DqTJK+yUKp0d+4yAvDR8lK+Eb/ucZPBGxvbaLHQpW+w+BrticbXClJTnKEocvjvGub9F+YQvFEF0LKR9YonPmGu4gZliDOM+IKfjrn2iyZyKcnRK7gDC7wpMzjxGrNm9f0DgYvvrIO3n2LU8S/1hEs2aTd+ZxZw5S60l8q6ReRZTJgCTZoKi7KBMifIXT6lKMJ0hXI1bbRHMVRmjK3ZSrFzz2Phsx+cYmkz2f7EKdNTb5m5mQPz0YckkJgpmTFI6LOzFsXr+KXWvgy4pNFxquojewcEuHdmDTGGVsD9u4pWC3cBmPJePJgFaV888Pzd/02RVYloW6+c9sblElCUW/RzkcUmxvYx8+hO50GH/mszhHjoCUzP76f8HMr/3afpzQPXDv8pybyhXxSjNhCaZ6bY+aO82E7/xIiG8tVhGAuVX6JF52qDHc9il+uSjq7n5+y/250/7mFm6mPn1HuEUS3WyzPR9w6n1LKC2ZO9Rg5/qYv/rts2xeGr4GIfrakhopX4eiRu5L5aW7/9TVOVin+VNHqCbf2Xf4Pu7jjUZfhYyrLo+H59lyHapql9SL+RX/3/O4eomz7gsUvUMYLyY8P8TKbaRjUzk+BREisJB7TRpfnEGVdYqzayRejeG4jhQu5D5yO6HYSyg3EkYXC2bWYkzlkB0QLOvr1F3J41cO8OneEkKUnA0/Sso8a7KOsSua4z4VJcNAUgpJzY453Wzy/1MpapLQr3fJRJOpA3NhgWdLfAlZJ2CkKgQaheI5q0OfhOtejbSIGDlNhnKZRM6ipGZYVuxWNggbp1IsRRd4r3iBKLWxZIuZFNLxWVTaJMsUvvJIyzFKj5ib3cQKU4wsKcloqpIsTxFSEcxcRmtQSnLy5ElWV1cRrsB7pEtlMoajvyYIJxTFmDi+fjPddt+E1bIazM5+5GaS4X3bh+8ckjA4jm3vpxDtp9BWDIfPEMeXvyVR81oQtiLbmKJaN9VRDQd7MaTsxZiiuu9R9gbhuyZqjDEUxb7h762/jTGUZXn7ve+q/SLDFLvkDZvYSEochKxzqBthR1P2rBdwZr+BICetMjI9IlxUPGStEz1WYFpjFtwLzCyfAVlwvXWeXrjJ19XTSEtiTIl0FZnwkVLjWzGT5S60NVCRIDmbDRms+MRVyYzXo9EYkziCUHZ5Ps7ZrRSiCBGVT14f4g3adMPjHLC6HG0+Qhg8yeTGQwg8fP8wNadFzfi4Qf2mKdYPPl92H98dpHTQOsR1FgiDk1h2SFK+QK1xEHSElBbaau7LPusOc4ePorSmPjtLWRSE7Q5xr8/g9EUenl2i3RU0ixoTy+P3GyVqnHHGv0I5qtEfNkmbbYbpgNPyMro0fOHAcS6vHkdaNonXYGvpw0weO47U8Ow4oScKrk0VmZ0gioq0SoisfP9i3VGsjB/CG78VmTuspgcI0ubNsj4I9JSdySxjYXEiCsmzAYPKZinN6eZblOMpnirIPY9t7eBnMVUWU2UZZeYzGbdxTI1BuoysLNq6z4Le5Ir3IF9z3glmAqXEEQLFgB4+17O38Pnd9zJxJH3HwsiKyknoewuMxQz/L/Ef899Of4LMcnDTXR6RV/j53a8zvRGx04/JrtxA5CMo7vspfD/gOA5vf/vbGQwGPPPMM7z//e/ni1/8IqPRiNnZWa5du8aVK1f44z/+Y3Z3d7/t9ivlouOCmaHDXNIhymIskZEONGXd4A8Mg9EiIyfjovcsF8zvku2C5Q7wdxq0pn1urLQ5M/cgcxcO0Uwkemud8289gjW7zqQ6TGR5LF64SjezcUOXqJiy5FksWNchSjHPb+L1J1hrL7KzoxhEDm5/xKWFRUbHHfT7HoVgyuiFr1JORhxVj+KajCSzoTGkyAds3/gUW7OfIa9vYrkNlOWRD8ZITzOcv8alxpBxaSi2Y8rrLdI9zXSjx9bulHp0hMVwkbHQXF5xSeo1Lgsb5ubQlSTrxRipCLOYTjym4xusSyVFDA92fBqDiK2oINCSpZrFOC7oJWs88cTj1J27o7dt26axsIC9MI9qt6kmU6okptjcxJqfp/VLv4gpS5Dy5tO5GsKyXjsq+jVKn+6pKrnlUfO6z467IqFeR+j17Q7sL31n6RNgxMsKmtslUvf0qHkd1z63yri+A0XNrRSpW8SRkAKl98f74CNdai2X5RMtdq9PMMZw+dldNi8NX/ZW5puVPt1bhfPKDsjQQoX7N1lCS1TT2b9Yv8/T3McPIIaF4KzbYjcdc1lW5K0J5w9uUlY9ot0xV0WPYX2X3vHPUsxWCDJMs0auFNOyB6FDslmgRhKdhQhLI46/i9qghqkq7EnIdHfCudUZdGLRWN+leiEnvg5GDCmqKcJ1WKvPc6MIKPQKN+Qsud0kt5o0dU6v9uN4uoVIJGVZcm3uc2x4I87GV7CqHOMHtAi5rio+MVuAB26W0gsanPdsculTKotLxsUHNlofYAtNbNUQygXtYkxFhU1uDEfKdVpFgVuOoGZj6TaFiTglnmI2O4MnKqrMIihzIMPzLGxnQBVkGGFRlhHyWoPhJEJZFUZt4LoGyzI88cQjHD16mCtX/hV53iPPezjOHJ5XkWd7XLn6r26m3d5SbljMz32cvw0agh9kCCGYnftJms0nAdAqJAyO43n7cedlmXxH7UpPo+o20t+fy92TbdzjLYp+ijXrU95hYn8f3zt819+GJEn49Kc/ze/+7u/y9NNP81u/9Vt89atf5Q/+4A/47d/+bSaTCUVR3H5i+u2imvbJky2MZ1EJh7ya4rkKbaf7nhXWkJbdR6gaLS/C1WMqNaA7k1IJ8M8ElEtDcLcozAIX1SaF6hFZMZYtMaSkoaEwNiCZ9RKOPTClbFUIYfHvJ9ucnkJkJmSmpKJP14uJmxoVTsiNJB31ufHSBfIiIj/UpJpXNNqP82BnkYX6Iqce/RecePIQrr1KWHuAjz7+/+Bjx34aL6zdL236EYGUDlrVmJ39MJ3O+2g230ZZjpk/9DDSHSCFhWW1CMPjVCahOTeP4we87eM/jxuGeLUGg60NvvZH/xNPznapOud40KoRIdmsMv6oPeEp+XUcLVGVYqfewvEbRLUSF2hrzTtnWiTS4trJU8ReC+lItDaM05IwkkTCEM1vI40mmAqWy2eQIiWxFN3dWfT4CexC887rD3BwsIxrC8bTZTrNisFkxKgyPDAytNIR/VJxwL6C7ViU0ymuo6j8kLG2mSmmmDSlihLMxgGSviLe6XJ69xSi0hyuXUDblzE64xviBP3yANIMCLiIET0SYbNoO1zhMRqlwlYVpeiw6vTZjnN6acxzpsOeWODr/kO42iYwhtnpkBubEad7CSYeIB1FNY3e7FPjRwJxHPObv/mbnDx5kpmZGZ555hnm5+dJ05QbN27QbDY5dOgQP/dzP8fMzMy33X4+maD6uzQ3Bnxs810M0yHGSrmaluzZ2xido6c+V+xLLJcH+cjTDk6cM3fmszS2NugOd2maLn55lPjcNuLgCu3BlOta4M3GJNEMcVIjHOyi4ohjXkAhM1r+DLNZiLXZZ/SFL9Kav073r7ZRf/olrl9e5aUvnGFPB+xUCdHgOkbmbB17F8efHFHzY/wgxbZXyasBZTkh7l3HjufJahto3UBKhyKKEK6kv/MCX75a4+Jkj2qacyRZYqYzy9bsJiNrgl25pNMJsdLk3iwdp87F0RRKwzMPv4e9+RXyIufxjeucGgyYUTaFCEmNxUzNI5M5hUrpupL3H5zHFgLtQP0VUdqwT7w1Z2dxjx3Hmp3FlCWmKMm3ttGzc+j5eRof+ylM9t2UwdwiZO42ExZ3kRvcUa7Et/B3udnSt3ATNoAwBikkt2mT24qaV5RG3a5neh2KGm518+X3b5U+fUcQ4rbR8Svb8EKL1mLA8skWIreJRznP/eV11l7q3zGOt/rzaiixn/r0zciaW/J4Gdgvv+coTFG92nfnPu7jBwCz+Q6fd4bsoNmSiqS+TW/5BZ5qGX67VnDSt8nNDn1f8henDqIyh0IV5MTEVR+jKsr1PXLfR+UBTtMjzXOqssLogpntgi+8xeGsm2AXGad6Z4kaDdyRYGTbvOgc5DPqQcYrGxxrDcj0EhmasaojnAeYUynrY4mSGqu0KAOfDXWDLXuNvayHdgM0EquscbrW5S+cXYZmRJgXjITiGUfBVJDaIZYU+MImqZpsWiFj5WIpB61cqspgdA0hNE/mZ3nvaAz5kFFSorMOg36DA+UztIohjvERxqeSLkoLHCfH0gFKJVRVQFlFBPSoihKlawhyPE9gWSlKR0DJXu9z7O19jiTZpF47hW13MBjG4xdx3aXbx+e+5cP3DoF/GM9bRghQOsDzD3L8+H9DGJygquLvqE1r/lYJ2/5r+2AdayGgmuS4J9oIdZ9geyPwXY+q67o88cQTZFnG6dOn+Ymf+Ameeuop0jRlaWmJ69evs7a2xqc+9Sl6vd6338FaAMc6pNohNzYNbfh6tcsl7VC5EtOuaFkWth5yYvkyDbfE1DOs0Q2s3Qp5cUiyEmE5FdPSIykEh4JdYjPEcjLCeoS9dJHZ9WvYkzENf8yRztP7JSDG8JHC4Vdin2mZYISLbynmQ4fyPR3SzhhLe7QbMxx94n3YXp2Z5HFKnaJ1SEVyW8K3fPIBHnrLP8P3DtKpHee9H/5F5o4c+26H/z7+lkBKh3r9YbSuoZRLq/kODh38NQ49/hC61kNIC889QL32MGUZUWt3cYIAbe0/yfZqNXavX2a0u8VcVedycZWF3CB9gaULths5PWeKXZWs+g59O+QR9RCNoIWL4D3NkCO1kLF2GNgu0lYIO8CnwlOGRlZBJTnjPI2lbJo65+jGU5BP2J0W6KKinkiEsliMZ9CJ4onND3Ch/yh1TzIiZ54HEVGAr2yEa2Fna2RTmzQrsDyfxA/wHBs/GlFlBZQGbzhGJAnJXsLY6lDkgmbYY6M1y1OHlkmDGBPYuN55nOwGigkkU+zddW7IJvXiJRwukJTLJGJMoS1avma54XKiHnC2amDrEDPWTDZd1taHrFs+w7xk025QDodv9qnxIwGtNT/1Uz/FwsIC73//+3n00Uf52Mc+xs/8zM/wwQ9+kPn5+e/qAk3Odtmb9/CTKe3JElgVqRtjGUnbMri1IVaQs+Zf5OHRW1l9KcYnJsiGHFYvMecNCSYd5scuk7rF3lsPU9ubUtNLWO4us+vPYdL9OcGqKZqTVUK3Q3+kqX+pRVBaXHj4OPGx6+TTJvLGGtOJi09G+1iPftqg7cRopbEX55k6F4g616iSbR56+GMEYZdKpMTTLUxSg1RDz0IqByNySj2hv7VGcyMkiqfEOwPmpi1KJVnrn2WytUaUjujtbVH5AZuZYdGxcLpdpNfg3PxRrq8cIywrLEqSLMYfKsTKKaRXpxPYIG3wJMtOQddMqSlQ2qD1qyXorta063Vm/8t/jup0EFpjsoxqMkY1bhI7Sr1uEuLexIbkXmbCtzxq9s1wX2EUfPdi3DYEvvnGq8x8X9UPbpIyBiXU/rbv3N6dpU93eta8DjPhW0qZu9+Ur1bUfDMG5dUN3Fzv3h40bmBRrzXprSUsHmsSjbPbJsPfVFEjBeXrIFushQDd9V5ez1b7vjX3iZr7+AFEieFyNmZa5vQrw7iCC1HJi8phrml4mzNlXMXsIbkipyAkijGDY58lDyaY8YSiP+VTzV12iymWjMnFkD9tfo2pn2KLgjMLBcMqxs7HpIMx5x87iOkeZUjJ0FI8f+QwZ7rXqDe/xJ6qeOvZrxEaxYbaV8UZM8apHHRpKBshqZOzZ11nSfr4jSZukqCFw1ltUQaHsaVPoDxiBtTyHebHHj1/mVCukdo+a6rJmnbZUD5eaZiXFl5VYVQdKRSzasi7hgNcO2dzc0xRGkRR0I/GZAWUSR1ROYi4oB4GaGmwVIhNSVUG5GVFrns4ysWxV5FS4XkGz4upqhFVlaNVneHwaaLoMn5wFN87hOsusjD/M3j+6pt9WvyQQ2DpJoF/hMA/gta170hRI4TAPdHGe7Bzl3eNcBTClrgn21jL4fe68/fB94CoiaKI3/iN3+DIkSMsLCzwla98hZWVFbIs49q1a3S7XVZXV/n4xz9Ot9v9tts3RUr0loLc1WSV4PEgZ9a6xEU1ptSQ6BxPCkyVcCDYxbd8sm6DshqhRjZV4lPaAsuSWCIlK1LqwToPeiMOrrzA3Mw6jnqRsTDkUc4NPWXDWsPIkMpkdLF4YJySlxaZkXSdGnXXpXz8Br36BFfbhH4LvzaL47VY/eCvcfKhf4nWDZR0sW9Gyc0eOsLM6rHbZU6O76Mt+1vs/X38sEApn5WVf8Ktr5zWNVqtdyKURVUlSKGZmfkgMzN/l7Kc0pxfoDm38PL6loW2bWZWD6NHBevVFuE0QTQ2yMUQY+e4vkOhI47ZAS3hElYOtuVjack/W5qlY9vshk2uNQ6h2iWF0wBt0fEkrbpEGo9paejMrNKcfSdyJ4Nkg4HcZhwKwsiisBWB1aVGjUZ/lulkFpEoUlvx5N7fIespLBnysDnNub2jTC4K0Arf94jrDTxLYkcxyg+RZj9xwc8iTFUR1UOiBOa9HTYAywwJ/C0GM1dw3LNY8Q52OaJpUpzJkEbb4+R4h06xwTB+iIm0KbWNbyccng1YNIIdq0aSg8xK0gge2P4cH219nW1dZ/uAh/bvm599P2DbNidPnuTQoUO4rsvBgwdxXZdOp8Pi4uJ3/QRNWTbnHgixZExkLHSQIL2EWirJr51mJhtRsySHWKR5KcCPNgjSHmrexTU9vLxPIy9JH4GtRcHQGoOpcFSThluwePkv2cm2EKOYNjbXRo/x8PxbGPZGOGsTglyy6XVQtqJ61z9hEucEWYIjx7Rmr9FyU4LhV5Am5H2HE5oqZNRew86XaXiP4WQLCKXIxB666JIH25QXKswEKjviWv/fEG1ZfGT8IRbOuay/dIZKKH7DN1zZ2sC0XDbii+z1tqi0xTDNaJuCSEm2Gi0qx+Pa8nHmSwtjBP3RlJYn2a4EUW5oBzZa1kgKi93tLW6cfYaT0QW8coBlWa8a77nNLQ5rje52UbUaql7H5DnVNEL6N83xX2/5D9zz+N8ufXrlR/JOj5qb773MxdypV3lli7e1Od+kI9yS1Uih9te5uRvipsrkrv0SIMx+jPir9ue1yIq77HbkTb/iV+//6zUTfmWbd0Iqwdxym/G6YeFIE2Mgi7/1b556PalPgHO0iXOk8XL/pUBoiUnv/67exw8eBlVBXdkkeYyTWwwdGI8jLsQ95lQdN7MY5kN6CqZqSqkNZq6iOPA8zG5hZEXmKi7XIjKlUDrnsjzL8/XLjFtfo6wNKFs2wmgUOS+sKn6j+wI902U1TSnMgBuOjTEe/zRJWCiuMTM6S3O6wQ1rD5NqSpPziJnDLvsUdoJv1xFmwgHZQJHRpsAvUqpsyEF9kL9j5jiOzWZ4nncPN6hPfKZJycPxkO3gQSq3RSU0hX2IAEMt2cUrcyICnqyucFTsgYmwbcVgFLMXb1Oz+1zdmiVKBGduLGOMxCvW0NMxJClV7mLJBD9YQOs6k9nHEN4cUs0ipOTw4RYnT04p8hsU5QRtNahMTpbt4DpzOM4sUrocOvSfE/hvXKzxfeyj2XwrCws/AwiU8ijL6XfUjpD7hsJ3QjoKGVgIS95XQr1B+K6JGsdx+JVf+RUOHz7M+973Pt773vfy0Y9+lJ//+Z/nYx/7GDMzM9/Vk9KoiIjdGNBEeUJbJjzoJLxzNkBYDoXQ2KJEChvXXaMSgpG0KetQ9Eum0kKUHbRlU/kRuUlw7IQV1yZoDAnkafLpUV6wS3LZ4lg4JWSMpVykMRS6xHECEA5pmeGQ8FzWIneOUNkOokyw1H6ij9Z1rEaHWuMUQmi01bxt5nRfzvejjf3jr+5mom++V5UJQtoIYWFZDcoyYunkQxx/+7tvry+loD5XY/XRU+S9MZULlYn5m8nnWc+usp2uUfZ32ZWbHJ3O84+vaZwyRqAQnkbsJWTP7JFbDoku6DvXmSqHoRNQUxWjIx5XDtexVIBbhNjqGPRSohd+n+G1T3AhnuJGktxSWJmgI9r4aYhThsTbdTzPQ0w040lFPlWMlOBq3sRrhjhaUfegfqBJIEvMeAytOiJNsKuUThVj2TZOPSC1fKxqD7dyeObSA/jxQfqWIUq3UaXBqibMmAlP6C02RMbDk4scEHusl3NMcTFa4dp98mjA28vT7LUXKcZTZJFhagG6tPnLuZ9hze3ypda7KWvfPnl8Hz94qCrF5mxIkY5wsiENLrO0+wL1qWF+4xpzpz/D4dN/yvyF69QGe3jHuswXl9gpN5mON0kHfWZf+ndMq9PUrBStByjfx9cWbjXGHeyxsn0e6VtkuxaJmKXb9KhlY7q7Ex7Ydliz6oR2SV3YqCzhgWGbZtim4Y94ZOYsjWafjv125vbW6UTHQW3i28tkT2f42w+jyyaFGOFMZ8jsTZzuLMX1hEKOSPIhvnwvnlWneLbHQEQM/YSznqZ/rMWgVrEne1ydGRPJkjopg92LdC+d50udw7yjvMjAsVkeFehqSobix99dJ3As3MLQdCVVJpkmFo3Q54Nvf5THiou4jkApBUB68SL51tb+gJ87S3CzRE3Wa6hGg3I0Qs/OIpz99A0h5LelrLi3mfA9lCh3ECWv1obcwyD3LjPh10F/3DQTlrfm61sqm9ubfaUW5dstfboDd5Q+vdKj5vXglm/OvcyMb3Wrtegz2sypdz0cX5NE+Z27dc/x2OeZvvWxe9V1jWA/trW8r6i5jx88eFLx/laToXZwcoexrDhsoKsVY1ljEs9QFYqNIsXonFLYnGkb6uIYeecCg0WLSdvCq5csJymZnuG8N8I3NhfLkP9j6BFQw5SK35uf5y8e9QknH2V9cJijhYWrPUo3xlUBjTzFTFcY2VdZK77EBesatbRNajKOlEMqM8Ce22DWnmcRzVvtA6yWFa3hHrP5mGNG8d7pgKNRj0fygkdFzPvimLKfEfS2+NDalzHTmIb0CLyDFKJOm4Jaso3OU6Sq0fVK5uYPUNh9BCVK2cSVYZjOYokuVMfZzjWuP6DuRaAgyyqmPQ9XruHIRZrNeVJ/Aen42FaAEBI/KOh0W1y//pvsbP85WvkYU5AXQ7Su4XkrKOWhdXjfo/P7gP2xriEEaN2gKEbfs7aFo1Chfb/s6Q3Edz2yWmtWVlZYXFzEsizm5+exLIt6vU6n0/muyYnMLyj1gMq1kdqiLFOMajLjGUpLIpSNK3JkodgsKzamMNABHO+QVwLjFuxdqxOrlGH9HK6Vc8weczbzGI6mjPbm+eJOxmdEyViGSDPAkpocoBJUKkI1GsQmI7AtHFLe2T3EoZl3YJU2gZa4VoDWwc0otJf317Ja2Hbnu9r/+/jhhkBRlNHtaEGlfMoqRkiJuvNJtjDMPLLJ7LEmxXhKJ+iQ+RVuM2Qtu8JOch3Ri9hhhxvViP+u+ftsm23KogRHku5EiH7GzMZ1TFWQlpqdvR4busGKl7E37xOEDof0KWSsMEGIPnwCNR2Qt2eZZCWUhkgICgVd08E3AZ1pRLQ2S6NawMLBGIXp59w4JGm+d4RbF3h2iakVLJWbtGRJNhoRterkeQZOk27Rw59ErNwoqSpNYSSJmeF4p8eGnXCmkvxVNIvQBwgAMUx4cPgUkogmD9EtrrHXKMmwCJTEt3dwRjd4wv4qheOxmA3xXItsboZJ0eJcvsQzx3+cL49n2C39N+fA38f3FFvDnLMTjZzucOC5P+KtX7tGh5RuL2ehD8bO8UbneGB7RL1ap3roARrmJfJoir0zgbJA7m0js3XatYjSmWf30I8hXIfi4jVIUw5fe558rsRMYrJpRqmgng7pDBPed9YmDCKkW2LnBpUmzOYOauYQbafPg+EujXqb2tUnyG9MsAYdHEth5IRiL8E+6mEVbUQqkFWdnD5FJ6AYlBTelOloQj7JKGRGXqTYdsi0UTLQGuUucvrocZ5bWaQvhmSmoC1G6L0Bh889y9/ZPMPPbn6ZxWzMW6qXeI5F1kWb2bl5ur5NuxK4ZYS9exl3sM1cM2B1dZVRt40OAmCfRBj+8Z8w+uQnydfXyXd2sG6Wq6l6HdVsoJpNwve+5+WD8m0qal4r9enWn3eVBt3lUfPK1szdTbyiPOpbpj4B3PSoMdwqedovwSorgbmDmLlVXnWPHcKYV6ps7rE9KaGqvnNFza0xuFfp062HAm6K11T4dRspxesiz+Qt9dB3gm/juN/HfXw/YWtDq4pJ3QZ4TXZqx/lAIvnfDit2k5QXig627rKbCprChkixFUX0diM+14d/XeZkj9bRruJ3Tc4zjaOcmxOc4xI3ogFP5h6/cMWgcsHXdcX5Thdv6xBF0qGuOpRVROp9GTHIGQy6DKarbC1WeMFJFC3qVZcxGY3hJk7oEK0eoT60eUsk+FC/x/EsR08HLEZbfEgv87b+Onm8QZYP+a82rrE4GbDRXeZ///i/4IXOKSaWYWZoEK2PsxAe4aS5xkyyy4m9AS0Z4ts+jlOjZp/DVBVae9RCyc72IXx/i6q0KYyh2TxHY3EZu+ZSVg550iHVQ7bOSXyvS1kasmyC7XgIJHk+wHUXmUYXiOPr+6mmaIpijJQurreM5x24nfZ0H98vCLRVJ8/7GPO9UT0KW+2rKvV9ouaNwg/8yNrKBmFIzBhbBShT0YglRdUjsUq0VtjChjIgMYIil6hAMV0GVQtQDY+/aZfEZFTWLrOOYliUDEqbJNJE0x1ik5Oqkp24pCym2FaHSVliCoGsKoQaMsgneLLC0wFz4SKhv0zKlMdnHqLptJDKw7ba3HnRFgZHsZ25N2/w7uMHHkIoqiq6Gc8tkNLGVAVFMb7rh9SYCuwNtFtRZhmtwqMIDW9bfTst10aplLmiwYHOMnu1K6xbTzNlise+l9PXn7qBXzr4D7+FrzirZNKCsMbIrqFCyVae867pFitiAUlFvyoxJx6ksgRR6whD5VApw6AsiR1BPZrDyV2KcUqUO9SmLSwsUDYhAdtOTuYPEAsOxikprCG/uPmHvG3zKYo05dmFB9g8eYI01yhdYuIJJp6S5A5p4XK+P8ehzkvYzjU8q2DgLSDtLnLgcOZKm68XD7JQTJjbuUIn69PTglK2CY0icDKG/U1CEdNQgpV0TP3wHF9YmOd3zAzGbXDdbbLc9LDvTy4/FKh7FpF0keUuw+Yc60falIFEDyPK2IdMYuoDXHeXavIsn80PIrdSDk1C3FKiXIWTTpm3E9orA3pX3k/25LsQS1dha0xab6HLhOkpH3VYMdPfIt/epG0S/INvxZk5wdsWSmRVojNFrb6EVyZMgg1EAaQp3s5R+t5fMpr7MkXeYWPUYFqdoZrkVFaKmrSwygZue4ay0vzujc8QTRMqZ0I8TjDTkqyMmQQpfuwy7ThEtiYq6gh5kOthE0e1cUrJ3NYEd1JQs0K882e5Ei3x6OQvsZPPc7VosptpPNdhpe5yqO4wPPcCo1qDs7rF4ZkQz7LIwxBxK12pqih2thn+8Z+w9p//L+8qcVK1GqrZpPMf/Ud4jz56VxkM5tsPELgFcdMw5uVU65s3/1LeJE723707qYlX8TS3X970qPnmZsI3FTlVdbNQitsMixCQl+Ye5M+9Up/k61LUCClvEzrfqaLm5sr3+PBmKqdMOPKeAG3Je4l/XqPd15H69Jorcz/16T5+ICFEhpNGlGj6s11e0A47Wc5ybwLpACEtpPDIqwYd4zL2XFZMnd8yI+rTMd1xRs1KqaUjvijG/Idghi2douOcbuXTFi71UgxTSAAA3elJREFUIsIUkr3pHA+vf5DD4z4Vir5Vo3ROgTPF7o1oZwNkNcOOjlndlRzMDvCpxp9xo5bguxZaCl5IPeZ2M961bgjSHVrpEMqUmXiLxF7AK0YgNWmZ4pqMQrhsLRxls36Qv2p/iC2vzWoq6Fp1VsMlnoz/lIeGf8WH967xy8Umh4uKrauf4WD0LEa4eEENP7DY6/vUalcIwzVEaWHpisbyIlZggQyRxRyVsvA6DWynyczMDEePzmFbGiEkRT4kCI4yP/dximK0P67SvknUOITBMQ4s/6M3+3T4kYSl66yv/x6j0fPfk/aEJQnfvfS3gE3424u/BUOrEMomzgcEwkdVDnIMQhhS36BlQiQ9LkqbaR5xqrbHsnONSu0hPYNyE7ysJK4EORUtBbFxCJVLpueopRUVhroVkggPcImLnIuJoRIu2vgU/pCiyrBMipIC25nDtmeoihSTjRBC4XkrzM9//K6ez8//DPXaQ2/OsN3H3wqImz4ISrq3X0fxFV48/ets73zq9nLGFBTlBERBVVUcvuqiWiUH1Rz/1D/MobmMOW+W5cVFUnfMg40T4JTUTY2r5Rq1fkLHbvD2h9/C31cObpETZTmx73HRDQmyazxefQGvfg3jRky8EVnDpXIlonIZV5JSC6amZCoSTFZhLIP2DhMbi6XkJNIvMUGdINX0koKKnDhax7QgtTKa+YRmsom0bDalhVAvMexPmV7s4WhJTY6oYjClz4vTd3BBLnKyeQ5P+fR0m0yFbF85wSl3wP+fvT8PkiS77zvBz3vPb487Iu/KzLqrq6pvoLuBxk1cBE+RhLQgMKJ2RM3oGJlm17SyHWlsRztrY2M7u2Yzu7NmM7M7u6MdrYakSRRFihQlggRJAA2ggcbR91Vdd+WdkXGH3+/tH1lHVlVWd3U3gO4G42NWXVke7s+fu2dHeHz99/t+d5jjp3vnKaWblLTAEpCIJn5hOB7N4KU7WGmfGSFolGYoLc9x2Rd8Nc4pZMRy0WWx7NAIJj5RPwmEjsV05QCkPTKvSX3VwIt9hGWxPrXEjh2SNRSb0wdZXNkmeOZ7jNt9KqlC6IJcdXCLhKMq5tzoOBcXQ6bviai0/gzbrRMcXCaaXaBzLKV/3OHTnbNUnnuKUt7DWf44TmmJJeo4NMFWVKdOoipl4lkDrkPibTOqv8Cw/gNyu4PRPlsb0/SCF3dj6osxKqqSKoW/NMNILLNe/2lUatG3KqSxQMUWUZBw3l9jmMc8G6+R2DmF0uSWy+b8Ab565BPkYZnTHZtav8/S8XvBGLJRn//o6CnWw4c4UTU0PIGtFAfrDg+GOfGZl/nrq0/yMbnK0aaP7PdJt7bQOzuQ55g8B2XhnT7N1H/0d6j9yq/AVZNh1WhgTU/j3Xsa6d8wlt3PUPdO3LGi5npBzc2mwBi9T+HG7Ya+u4tvtEWJN1IQBJiCPRU17Kmo4arB7q07vl2ZuFM8920SzHUz4d19GHPDk+euzt3rnOMbepLBKe22Qt2tADOpqJnwk0jXeLzayZHRiEznrDHivxAf5E/ETzGTF2R5G7IRUzslDmaCF0sKWVT4yLDK39jq8e//YIEyB9FxD1e6jEsFidL8/IsBv/Z0xqYwbE8HnFcaR3v87M4TPNj/MtRiVg4+TmwtoswiJV0mMS0K3WQmn6M5DpnrHSOo/Qo7bkQljyjpjK10i0/YF5Gi4KI/R3O0hd1b41R6hfNFC50PWQlOMzbQDhd5oXacpOVQkorpwSzrskEoI6qjAhErRiOQ0TbGf4Xj/ldwkojRtod2C7JkHoGmKGxOZhlulmGSCuFoAYXELke4gQY8rKBGYYd4x5vMz/8Sjz/+IU6dOopSLghFlvcIgyMsLf110nQbJf2rQk0fpTwsq0y5fGpiB/EOYNlV8mJEEBz6oYwnxK5vzeRa/uh41ws1vuuhpKZA4mmFU1TRwsE4AveDhg+XBrQzzZU8Ah0x9ASlwkGahMLto70hFU+xEg2xpGLGcVhPc4RQFI5P6oYUtqSsfNLMxRAyymJeji1SR0DVYhhahFaJQGboPMJ1pnDcKYLSMkbulkTbVu2mN57d6gj76hfxCRP2Z9e3xkKqa0KNjefOMTf7KwyHr1y/qS50hNbJrlBTaOQ4J7XHjLe3WZA+C7UGH/jML1E7doAPPvRRHlh4mNTJ8LMAtZrSyEDbkikhebQvmEk9VJYiheJ9tuA/n7Vo6BE9FfJqbcDL9YIsr0OzRaqgm2nGOcQmZ+PM18mzjEgpWjQwWhDkHqYckUoLLwKTTVPvfZLAScmXuvTyAtIBh61tfMflpy8/j+h+n24/JtEWXm+Tw8MzmCjF5E2WV16hsz2NFAZpPM7mdXr2PCaFpeQcqVac7lzAtgxBYeNlEbGu4OcJDwz+He93LiGTIaXFkHD+OKY1zRkLHFtxZqvPkXPfI+kPySfpJD8ROJbE1w8xVnNk1Dg8KvHtz/51Xvxf/S2E63LFKpN7Vb7nnkIEIQ+tvogtQZNSzLlIX0LVwxtrti45PL2jCV4bsf7KaXqnP48oN/Dv/UV06rGSV1nsRATVIxT5GKHKCG8KRx9AqSqiDrSWcRZmKVdDlPLQOkFku+XftpzFdBJq2wJrKiAaXmb86jpahmjjIxKXnXSOi3mTZFzwL/RfwQoeRsoWZwcXaCcbDBiz2u7i6RFWo4ZohlzxqkgDS6MIPdqkqhXHj89z/5LDqfd/jOVTv8jWiS9xz3yVDy8F9H/wFPq1b/Oh+Ar51hbzW5f5bN6l/Ad/QO93f5dyoRGrqxS9HtnqKkIKZv/RP6T0iU9Q+tDj1z/rvHvvpfqLv3jbjdqdxIr9uJOni7mW+sSeipqr496QR25ukbpl5L072TvKnTFcFWpuTnsS14yG9xzXHStaXk+kutVMWOv9Jn5XvHFFzbWX98z3ThVHe5Bvo6JmotNMeLeiDVQzHz8TpCSMjSaRc1wSB6iMe6TpJg/tKO65Ivn09g/4QyfmXzYVPzNuk0QBz9uHeK16gLHb4FS2DM4WyrIIM5+lZECeRaw4HSwn4OHQ4+D8i/zh4yPC5Sv0vQRptTiweQiVHeQJ9TO40mLp/DIXww+wMt7hoTQiYYRdZPhFRiu/zJGijRfYfMN5mEBE/NziWQ6rLpdHDpdLR/gfF3+FtjvNWrDI2fo8SQtysUJ5ZHFJH2a9/z3iTo9sOMIvJRgSCu95pNoGNNbQY70/R69znMFgi6mpOrPdbSxRIe42KQ0UCJvt4qt47jpgUZQ6bBXQAyqVe7EsC2MSlAoQSPKsi2WVUCogzTpI5SOlTVGMkXLycOydJPAPcuL4f4ZlVd7pqUy4S971Qk2OIcVnnAtWkbiFT6YkuW2zc2KIY3qsJBHGOISiYL2IyDMPg0Mx62IWQmolQWokNgVNK6enbTQOI9PmX1cTuiVDiIvAJjYBovDpZhb9wmIktonJKcsAx8S06p+m0fgQrjNNpfoghhwhJ32WE94a14QaddWjRkqX48f/MbXa+64afu22P+ki3vWxETlCQJ5llBpNti9fxC9XONE4wfLSPUwtH+LI+x6jVKox8gsavTJspWSeZKSg1knBQCE9SpZCGuDCBYINCMsz9LxD2CQMHclwaDg73+Sy0wNlGCRDpBnjRDvYlqEYp9SUwikkVgqJA2lhKOFz/8bHKF85jeUHzDlVinUbkae4UhPYil/ZeYLjcYbKY+aPSVTeZZhu4RqHzdX7KIkx2ahCu/8RorFgIDx2wiNYJqNljdFSkcV9cqvLzFbEXGeFtshQpXXi8glOqsugI7atgoFV0O3kXCoKPuxYmOOLhLUKUbdHVrz11owJ7x4sKQjDGutui9QuYZuCXm2KP3YOoKOIYamO992IZOAyKtewZmdRrkOatYnfV0XUGqhZB9oJH948yyfZxj9/novr97EdzaLzWZr2EQ7vfJ5jgwBVmqdil5iqTWEcB1OtklspPecZ8nKf4exzjJefIZerICx04mHsHG1iyF3Scs60mqdRf5z+8jcZ1wt+s36S1cFJ9EiyNX6MrWHETnvESlLHHx1nR/QYGk1UPcaV2hCvWaW+1aa8sESl1GCejPs2LvHBC5d47OgMh/IqjeQyvp3xnS1JL1NsjTSf+tAj/O8/fZr43/we/SuXOX/2NcKT91D95CfxEGTf+z6DP/y3zDxwP26cEL/wAlf+3n+MsB2E590myEjHQZX2ieV8veSju+JG09Peihpxa6S1uGWbO2k2VyWf15Nqdk14dyt25PX6G3HdTJg7mAnf3vq0Xzz3taPZs1wKjNY3+de8aTPh1/WouSX6Wwr0XcRzX0+4eitMlJoJ71KW3Vke7S/jRT7aTeknPTxvlpeLJokuiLId3HGd3K7xvVqDVdvGMl0GKuZ/Ovw3+GflB3iuqDGSARvSZay3cNwK48oylbJFbFI2RUZZzNEYb7Oquixmy4hii83eOqEKOdrP6Mch0hIs1sY4mcPZrEw1j3lk5zx1BBerp/GExxFRp6ZjpO+yNrSJU8N0cRlLaYatQ3zF/zjCatHxj/Fn4SmsUg0hplBxhziNGeuQT230sIs+SbCNG3ZQlkHZLjpTGC3wopytZBYpXKZnCmamF+mkKRE14mGNsrmIUDaFneC4PQrrLO7U/8yWcz9X4sGeh4kxUvmA2U16ssoI4exWi0oPpcKrLf7WO/tL8Bcc265Sqdw/qYB5D/GuF2oKPeTlcY8XUkm3u8niuXPkbk6hSmz3G6zlLtvJmEA4nAqmuTTucn4wpF/Moo+n6OURntzCUi73uX1KyqKfWcxvVNkSA9ZMRKfoknfug0wxMGNyadHJE3pRA48Ak/g07AxQTLU+hZQ+rjvD4UN/D6MzpHQmv/QT3hJCKKSwkNK/+m+BZYUoFaJ1ita7Qk1RRFhWDW0S3LCEVIpKa4rLLzxLc36RL538EvOl+espHLayOWP36cazfDc8R8fKiboJ4nubbJQV3zhQIrAdUtsijhL+/LkOV8JHGSmbXm6RdTcRbp3oxCFmFqYQjqB36QfkF7bw3BBbSoY4KCDUHlZhuDQOCKZ8AhSnkkNo2yV3H8enRhqX0HYNZTsEgWGmtsVnrQHlQFHz+3haY2cxM7JLdHGDMIk5eO4c47PzpOOCRknwJxshyhS0PEOGxKQj+p6i3F7BiAABhHTpS5eW2iSzBBu2YbBYo7eTUPMNn7BTxLTHpemT5KmkG2Xv3MWf8MOjMCwGLhc/8QsMqlPQ7fB3f+Y+/vbPPkDoO/xcI8NNEmqDHfpehXZqUPUG3ffdT+ptIV+5xEb5EFwa0nr5OT775L/C6rT5yKXv4b78EqXyUZSysHpHOHv813HvfwR/oYaya2RVw2jmJbZm/idysYo2IzKnzY77p8ScI883yIYWMVsUJibPImI3ZSpcoOE+jitmWBNP88fOLC8N51i9uMaFYRXLtYnKAW3tEQ9dOqaLml/mz5bez+8cm+PLc/fQciVuYxbfCfjl7hbN9jZjaUHtEKcPrRL2vseF4D5+4+WMl1a7RFlOs+Sj0oRhFDG7vc3OoYNUjh+n+R/8DUySYM/NMfuP/zMOvf/9zB07Svdf/g7ukcM4R95kjKq4e4+aN0pJuh7VDbvixm2pT9cG2mf7va1PxryBR83Vv/cIQXtbn0BgbqqoAczdtz7dvj959Rzdfvx3F899Q/7Z76UblUA35nWbmfA+m0pxd6lPd5zSRKeZ8C5Ejtu0Vy1G7RqvpYZM+FilBdbLNc6UWyTKZlvWeHl2mSuOTYIhQLBmG74t++QzNZ41ddLCIskCIt0jFzavtB5kVHEZkbLmlFnbUZTZ4KXyPEtdh3K6wWjnRQ4rjXLA+CFuscZCeIlDlYSPexvMj4cs9fs0pY+fxzwWF/zKOEflEYUUqOGQSHpk/hRD6bFSmiaxmxwqu5T9jIvBAmNHowqLcmbRkwWDIMEc+Q5FuSCVGZbw8GsllF0iG09TFAY9GpG7JebcdY7XLlEVBRfq07x4fo5Bf4qSO0QKRaF7uG6fsJTTKkmWa8cY5en1c1sU8W6Lk/LwvUWk3K2ikdLBsq6m4tq1d+7iT5jwHuVdL9RonXApc9nOBXrcwc4E1XQbN7Owx5rV1ALhUVMSaXIy43JOh2x0HaT0sY2gKscc9l2kHvHNeApL2ixuaQZJSqoLlHDJMw/yAX2dUpgMSxgqxma6+VOkfcXh8ixKBZRrx65+GZZYVhUpHZT03/hAJkzYByEkQlqoq61P11BXn0xoHQGgdYxtV9A6JazWcMOQUr3JuNelNjOLZ3nIPTGHjnTYkav8prXGt7wSWWwQGNJLXa54gorl4mUCpRVZ4LOeDul2x2SOYqgS4jxFuyE7ySLNwEPbBcbW+GJEbjzyQoBdYNB43jQWcCXKqMxIlMqIVExH2ejoCF5kM4okmVODIiXwR0jLYiEecXChQqmI8LSmJDo8Zn2Xkh5h5Slm2CUZbwA+jeQKX72y6wTqK4HOMw5YXdrzZYYOfM87SDlXzHdj/t/zH+C5U0cZhTYdL2d72mcYwJyTE5QG9C1BtTJDaALSfFJR85NA1Ik59mqfqePHOKv6iCLDCgKWp8qkzQNYq1cQy4e4N+7iHXyE0nSL9Q9+ku/e91GiQ0cYbxU8pw9gX7LY6sdcPvUIySuvMDXcYfbiawhpU8iCws0pX3yJXjxCTntIf5m27pPVNggv/gzkBxF2Qq66DNOX0EUOBehxQJaPsESNQoxob6+TpTFW7lDjU5Sbf51KLmjXZvhB9CqbNWiQsX2gxEgpvjcb8dzcHB0N2gjGVHhk5wINnTLMYZRHqHMDnDhHeZp/cyXiyvoZTDrirJnn6FyDL3/t28TjMbYCPRoRYVh8+H20Ox1830fYNsLzsOZmCR55hOVDhzj5+c+Tra4y9ff+Y2q/8stv7qIIedeVFW/0oOOmYO39PGr2VtHs9bIRNw3yxh4111a8mvJkbvzzRuvTTTu8lgJ1a8LTPsLT3s2vLbqe+nTzsd4t1/ezrx/OtUqga4KT2E0Dv+Utb78zcqNS5y0wqaiZ8BYpioJz586xtrZGHMe88sorjMdj1tfXuXjxIlq/vc/rTubgrmwz1U5Y614k0xphK3LP5bJfQzllVvMQJ0vYQWMjCITi2fIcZesV/o78l/imS0UXhDIgKTKMsLkU+BRaEullXjQenr6HbcflyXCRE2HM0ugFHogu8MGdFxgoC7teJSq1mcvXeSz6U/7R6L9mIVplOu3SyFyWhhc5lEXcO7hEYtWw8zGl8Yin1cNcSmYZJ2PWpI8/v0QaGazOJVr5Dl3PR2YR1cJmvWQhSuz6yoQRic5REpySh1MCL7TBKEIVE0tBWP8mwU6XcOsHtD2PLPexgzFZYIEQFEWXIl/Dtgqm648w7/rkOkeze020jpDKw7IqVKsPAeyKNCpEqRKWXb0tGXfChAlvzLteqMmKGmdGDttpyoJ0+FZtik0BgWhTDw+gkxKzwqcmu2jdw7dCrqgSruWiC4kb54RCs2RFtHPJVhbjJTm1V8+RFGVm3AqzdgUPSVCyGWYFxlTxhEWoU+pTH8WrSubKh3Cc+nUvEbhaDaEClJpE/E54qwikcK/Hc99AYlsVsqwLQFGMsa0aRmcEtRp+qYxXKlGdmaPUuD0C3lEOQ7PKkeBVtofTfPO4zbdNnzwx7AjDPVmBG0E4NkS6oCpD9HDEKE8Ymohzs4sIS2LJkPRMxkwtIrULXL1NUl8kN1Df+Cq1rE8gAkLLomYyvNDgTzv05Jh2AXZWxTIzPHtC0Xeb0O3w0MJrJH6Edj1mAh+lO9gLOdV6lb5XoeyAzjIcJEWWYPwW8/GrHA0iMstnZHy0kbScNS6UJLFXp2csSkWHchGxoly+5jxI1/XxleTC9hqxTAiNZjA/pig7fPZoi4YS5JPWp58I+o5kWHN4LJdsmAzZvJfkfIQfFbyvdIJsaxv5yAe4f26GOfcgYRjw8mOf5usbJba9Zc63DlJMzaA3R5ypLvBUeBD74IeJH/9ZnM0N0JBlCUWR0rCg2/oa22vnMIM2JumSiYv4/Xvwk8PkokdW7yHzAJOdJhh/iJZ4BGEcVNZCOS7dzU022ucZfXeDp7/zZV44Z1iIxgyDgHVnQCIMXhHzfdqEVsTXGz3ON2fQnsdSZ4Ofe/U7fPzZrzF7ZZNzlzq0d4akiYulQjZymxc3BnScBZL7/z3WejHHZipEZy7T3Vjl29/6Jq8+8wzF7CwLH/soeVEQXE1wshoNnOWDNyrz5uaY+z/95zhLi0jXfVOVo0K+uS/s+8dzwzUp4WYzYXPL7b7hen/STR4se+dwFx41V1ufzE0eNVf3d33oWytq9hn19SqE9i6WErPHo+bNmwm/TvHKntf2a31C3FkSejsVNTdaxCZMeHPkec5wOOR3fud3+PKXv8zZs2f5vd/7Pf7gD/6Ar3/966ytrbG5ucmTTz5Jv99/0+NnRcEwzbFGmiVxlAV/DtQQIxwKWULYdQqvyrG8xxoZoXIIEFxWDp6+yL3FN2naPcp5hBguY4savnTJWwW2a2N6pzmQLqDTGS46Hj4xi2zzl6M6j2cL3NN5Bb+IGTsBsTSUooKSA7YxeJ5Drrv8/GbAgSQiJMeNO8SyRpAOmRWK1/ID9PMWfadKF4UJy3ibKcPUJrcMl0SZurXJshOzc3gbLywILwum9Tm6hQA9wPEtpDtCuV08KfBlQuZYiKognJkmuPI1aiWf+dlZSlabl3QLrSEvBiTpJsqysJxZarbNolOQpjukaQddxCjpMdX6FM3mxwF22/qtEpYVYluViVAzYcJb4F0v1CSFZFgYMm1YKGDdshlKF8OARusebAo+5G1TFVvAEFv6dK0erUDgRClelO32R2qP1dyhl0aUC6j4Y4xVZt5TfLJksAqN70vIXJ4aBHhC4VoOXvk4Xg3K3hxlf+626hnLKl3ty5ww4a0hlbuvwZrtNEnT7d2I1XyA7TTQOiWo1AhrdbxSmUd+/pexPe+2bR3lMM7HzCrFdkfQDlbplp+i70nu7yU443XcQtEaGQqtyUUPlWQM4xiNJnYdsnSMpXyOBEt89sgpbD/BKzKGYYvMRBTRBleiVY5UmpSlxYNrLyEzh/BoxkBGbCUZahSgkmnWRYmu/mm0URRuwcbyFO0WlK0haT5mzZeEecoVu4YdtRFeQNMRGKPZSKdpHh6wWB8wMB7t3Ce2JY4WfGP7F3g6f4hYuczHG9yz+RJ/M/kfeE0d5P+4/B8yU6nRHvYYpiN8LVkRGWNdEA9jPs2A1uSm4SeCmYrLZ3/2OOFWjCxPYR38KPl2TLY2Qtkt+EtfJH3gYRp/6Qs4ucIPa8xjs9EtSEzEk5/6AvnyEUy9wXSrijIpcvb91GkSCBdT7H7xVsEOlVpAMv0dxtvbRJ0nsawxwi7j6IBgNENqddBKESRHcfWHMC98ivra45jUIh66uG4DXWh6+Radly+x4gz47uYlZoVmzRpA06cYJgQ7HVbDgIboILoBPamI3YDZLCIYjQl0jJcOyD1IhcZ2PXAr/O5mA8uyuTz/OTr2PL0o51ArZOg3KMmCK+fO8XKvx7DZJAxDGo0GpaseM87yEu7hw9fPq5AS/957EdZb8BXYr83mjqveoQLlKrsJTNfEBnlVOLnmUXNN2YBrkdQ3zWGPwCPMG2gIghseNUKg2WMmfG2FPUrE7mv7uOHs61Gzz3vNPu1hbzqe+6r58X5DXztP15ftaRt7vb283YqatxztPeEvNLZtkyQJx48fZzQacerUKba3t3Fdl9nZWfr9Pp7nMTU1heO8eVNa5TjEUqCly2znQYT1EK7YQhQOgirSrlCqekwVG2w6HkGRU0ojti2LFy2bH3hVpsOcSj4kG3o0dMCBaAPb9wlLIQ7TVAePUSZh1Yw4EG2yPH6NE8Nz2D3D1PY5DsXrxEYzMDbf8U7hKJBoQicm1zFToxzLOoBbZEjLpsQAshw96iKFpOw/wCjcjcceSZusnfP7ZcWLdsxFsUzLOkuj9HW6CiwxRlwpeJwnWWYDYQS2XSBlSl60qYgUWxRkBIR2iFy8hzDvcoScWqlEQ29RmJQi1xRFtNtJ4JYZGxtL9zlcPM/qyv/C2tq/oCh2K2rC8DCuO3W9AtGxG0gV4PuLVMr3/fB/aSZM+AnnXS/UpFaKsAQKwWwaM5YSg8BkMfMy4HirjO9UsIRNpm3eP/b4WFXgWitU8xS7UAgcyEucSRQH7JAvVmxm7iuTC/CURTjqY6KCctVnOk4Q9Xmmwgaloz+N5c/gOkt49jS1ygO3tKgILFW62qYyYcJbQaBUuK/BWhAcYjQ6S7//DJtbXyYIDqN1xsKJk5z44EdQts2hh96/a655C450GKcj8tfOI+KMkd7C8xVPqIQ+AlELmHGr/MxqTr2QDHpX8MYxB/vgWxa2EAiTUSpPc1RKOiNDJgLs4YBBbjO89MeM021Kvcs42kEVEjkaEF0qk+tNYpFS+CljNFFRwc4CSKcYtZYpkiY7zpDNRg3ZW8OkGRccgbIK2nYVX6RIx8HXbTyl8bcj2uEx6l6HbmETCw/HKLJUsX1e83w0S6ZcHhycozcE36zxN4r/J56bsdB9GeEqtFJ4mcfF1MMtoNeNmdv6HtXyJJXtJwGhC9JXN/A6CUvlKeyqjY4y0ot9DPD88qNcmDuKHhmcOQ84zonv73DQ0jiyy5pXwT24zOUPf4752TrHRB9UgGc3cY9/iEHJQaIwpR3cQCNVRLVe48yJZaKqh0yqWJmHOyqTOjtIpZhZ+yL18Unc1EGnUEQuvWGB4zYIqzXysuH74Q/4w+P3cm72QYJBj7ooc3jpYZQssAY9zmHhbHfIqjN0rZAda55yO8WYEuSKqnFwZEE0LmjULZyKzVKY82uPzPHcq+d48aWXsWyXuarLRRHwyNI8H41jTh0+zMhx8H2fpaUlqtUqQgiqf+kvEbzv4R/SRXl7LTC3Cgk3VdToq6lPtyQY3dZadJNwI3jDIh9xowrnervVVTFEXv3isevdq68KKlf/7NP6dKcd3WRDfLWi5q1a3O1699w66o1judaytTf16Xbx7PZt307q08SjZsJbZTgc8tWvfhWtNQ899BBPPPEEH//4x2k2m3Q6HZaXl6lUKhw5cgRvnwdUb4Rt25halcQPiFNN15mjfuFbhO4YqQtCqRh6O4zMDrF28DMXN4EdkaGNxrGnaJUyytkYv8jRkcTEXWJZ5jXnEAMrZCsvcRhDI9ec7CmsIkZIyWgsiXSZud55jiUX6BdNnrR8bJFT2BWUX6CNQMoaIjqApQuMcrCkRgjFpj9ia3qaXmWRK6XDaCHp5IaaMGR2jqMzLul5GmZMOG4yoImddRGySq24xGe2nyBPHNJsSJoExFELO8vITEAyLmGkh3YDvHt/mVPtHkEQUD78CMaGnJxCp2ghyEVOO0tJ0x2y+BJbW1+mP3iOohhdfZB9c4+n582jpE8QHKHV+uTEz3PChDfJu16okSJkVj2ELx2ayZhIKhzhonOb7e1XsPSAINEoo0iMJOtcZG3Yx897VEcGL1agLURvTKY1P1W5l8cvXsYfrdNP+4i8R5FYqBzKFZdlbXOofpj31UJaYROBwspOYokFlpf/JreeMmVNhJoJbwexG2l4i1AjhCAIDtPpfIsrK/+Mg8t/i0b9g2iT4oYlSo3m9faE/T74bGljjCEQgpCYzfgCPjYXxxnbvQjj18hVji0VoXQR0xVW9Co/nZc4eupeLEshHBhnCivVjIcZmzNLyGRMEQnsnSsMfIfmxnnIBIVwyQYdgryOe/4eUgwiHLLut+llmnLRoIg8Xmw5yECjxYjEsimkoCID1lUfY+cM/WlsW2DSlIEOkFJxJL1Mr6hj623mWoYcwwG26YwE04MLbPmLIGzGuSRyWpiiRJB5fKnzR3xy++vISkBJlfCHmm65zoxIGLgZJh5h8omZ8E8E268QP/kHOAZaqcSqSMgNeTeBssP2xT41z6bop1jNmJ2KwKt7HA8N0qzQi0cYqSkC8Ft1ygiktJB9TVGb53+8J0S7LqYxxqQpWmR05/8NGwdeoagkkCiKImc4HqFqBiuzMZ2A4NmcQEu00XjRSTqJhe038Ks1kjziXNhjyw3ZtnzEoEMpTsi9KqKm8DybJIqYWr1EFNaxPZfVAy6Hj7mU+hH9/ACX0iPck0UU44hMddGWoioSlkoGXcDTzzyLIxUtGzYKm4WlGdTaGq1XX+UDR45gWRaPPvoojUYDAOl5CPuHlGL4Jj1q9m992iMw7PWo4dZ47j3cNMwewURIbGHeoPnpqlnwdTPhq7O4nnO9Z143F9fcekCYuzFSlvJ6MtZ1L5lb48hfj+vv/XfyqLm5bWzXu/hW0+L9hp2kPk348VMul/n7f//v85nPfIYTJ07wpS99iXvvvZfPfe5zfP7zn8f33969djbosbK0QMeqYGUF2yJER5tY3ohAJJSLlKP5FZ4owdxaDXezjK1tenkfC5uablHkXTzhUhUxI91iXTmU+2P+2faH6MYzDOOM5Y0X+cS4jLsi6VpTrLqLfPXez7IqWsz7QxbTS9gFHB73sHVEZuZxiNEIoEpkZtEY0DlRbrMT1nnuwQd4ammR/2qxz/91+udQwOYoodRsY1spC2wjjKJmCspPZfTyOqUigTKoAkzSYjyaoygyDl7qMrs2hbUmiPApIk2W9tECeOQ/QFgeQRhSPvY4zAuGzS0GWpLiEhU5V8ZdomSdqCi4Mu5wZbRFkmzs08IPCwtfIggO3/FedcKECa/Pu16oqToNPn/yr9Dym7jGkEhBqDwuerM85VhsZhmBbKAIkCbkd0KPQ9YcdpbSWm8TdnOypI+VuTgCWnaIFDb2YJN4PMQVYOIpTpdfZb7U5XRpmS+e+FVOugkVywYhGFyaIR+W9k13sqzSxEx4wltGCIHnLez7Aec6LcbRBVrNjxMEh5HSxehdl31jzOs+8XSUg0LSmpph2jesRxcRWcoxbVFNJasDGOc2A08RWD4H1THGKsIZxLzQHmMQRGmPudgg4oL+TszL5TKYHFfZePV5eqKOM+4i84KkkOSuRT23aL0AiYZ+ssq23yUzhmVzBJU5GJXy0mqIHduEmSYWgmpR8Cknp6H6bHkzhCLCibsMnDJG2fjKsB472F6MqDsYCoiG9EUF16Rc9ud5uNfhB5tzdGSddFAm79c4Er3E4ytfoSMF89kG1WLMjl3QtC+ys3gZ4QUUb6HPfcK7j0x5RJmEYcoRaeOfXEanevcLd9VlRgjWLp1jtNVH2mO6oz+jIztcOBaQscpIneGPkjbd+YzxQ00UQ9CQOprcrbLtSfozrzAqvUpRJJi0ysh7jrzxGmNnE2N5FBUwZRcTQj/q8nQl4bXZNh2rjRGw8XyA8Ja51K+RFAm9jXXi8kHu6axxKhlAMaAo7bYMlq0KpbjOybSDaHrsJAUVk7FKl4WpELdYpzpb45KG+12Xg1Kw3V1HCwunSFm7fBEZZzjDEVahqUY9XFMwNdMABPrCRU7ecw9SSizL+tHcQMu7b4F5vdSnW+O5d9WG3eU3b2NuEgmuRW3vrSZ5owYucUtFjb6q1Jjdw+G6kHN9LruzM9yFmTDcbHZ8dYfmbRikXm9R2q+gRtxIzLqGlOKugrgmFTUT3gn2Pny605+3g2XbDDHkysU2mrG2EaGPn2xRyhLEoMOL5iXm1IjqZoNGW1C3BEkxpmSViNKCPNuh6pV5uNwHd5GoiHnoxW/zsd4FfBPzYNjj/fZrLEcl8tRlSzT4RvBRvl9ZpienqVQt7q+P+IL9HR679DSuSMjygzSKLomy6GTw3x87Qo6GfEw/dhiqgPNBhXWluShgTVvUyOgX4FefR6k+xB0C3SEs1pEr2/Ryn8B2GM15HL9isyxnOHfuKKqwmRrscE/7BY6MrjDMJK4WZONNdDFmfe1fo03KffffT2sqoziSgG3RySWrusLXBpLzg3VG48us6RrPpXUsZ55xdAEpb3/g6LpTKHX7/e2ECRPujne9UNMIHX76xH3c2zyJEpLIaOqiTIsW58IavULh+UtUnAdpFAFfUjN80D+KlzvglMlkCelVqN7/QWxR4OYxwqsiM4kVF1i9Q3j6Y0zJs3hyFXf6ASpeA0t5WNZu3365OYUblvadX73+OL6/+OM8JRN+opAcXP6b+8YWKhWyMP+r1OuPX03scNBmtwKk2/0Ocbxyx1FtaWNJi8Vjp3i0tkPBBoNoC2vK5pgleWrdcHZQpi3gYX2IStdF24otNGe3euR5Tru3zpFegU4yolHCZtnH6BQHkHP3ktlNCkcSW4ZMGBIlwPORdp0od7hSXOTFxqs4UhIkNoWtsFxFeyekv3KC9a2AKxXN8/0mn7qyjtIWfdXA1x0WVRu/6lEEIZaElrZQVoRTaDqWS4ZF156nnEYMY0n10kX6ukxf+0TfmebiVoNM5tgmpiKG/FL658zYL3DJ+DSLi6S+wam7mCz/EV3XCT9OzrvT/NaB96EtzVHfQVVrpCtDjNaosuL7x0v8+bmzRFsDotmjjB8oGGTnaVOhZBYIyz16XsZ86QLe9rcpTSUYR2NlmsKxGbopmzN/Rm4N0E6CNzhO8/JfZVFPIdjm2XKF737iEPPHH2TcX6OxfJw/eP8sX915iq/zBIUrGUdDisoB/uTJp3hx8CqZTtnBZ2p7nY9dOUO9sPnw8mle6nRxxobZfo8HV9dpRXUEMG9llLPLzKghtpuTln3auWHRkvy8bRj0Byjl4CZjVi+cRQyGnHrtAl6/h7OxRtMkNMse9twsCLCmpn6k10S8iXjuO4xw01g3PGruvqLmJsFECOQb1alc96jZHX/Xo+aamfCe/ewVg6571NwYWexTTSSuCT17l90Sw2SuC0NvVPlzY9A7tj5dXXxT65MU102C38ij5q1eOfF2RJ4JE36ESNuD8RjLtfCzgqNJgrAEwfBp7OIEF9cyVpTFzw0lmBozkaFmMixjE1LhX9WGXBERobCZlQMsVWWKgrneRT7m/iu80hrHzAr3uy/h5TlReZGOvcTXgp9i1WpSyAq551ITmxwdvsCDYRtl2WT5EmHe4ZmZo/zxqcf4QaVBZofIZMRY1IhVQGHNEokASxygInJqps0QjatWcBhRshNOW1dw6eHFI9JCUA0DmKrj9keE7RcQpgRRhdVinqfsxxlri05mIwsLIQq0Ttnc+HcUIsP2Decv/Bf0kldx7RK5DPmNrYyLmcPKeJs42SC1png+8Tk8/SHieAUhfkjVmBMmTLjOu16ogd0nXH/t+F+hicVQZyx3FQdEi5d2XuLwwi9RV4s0XlpBpZKfdqY5XDnOwpaPVmVSVUWIANurYZsUe7QJ4RRKVXG0heo3CSpNHGuOUXwJef+vgrQR0kWqACEE937sU7QWl2+flxDUqu/HdefegbMy4ScBIQRK+fv6zIBgfv4vX3XKByltjMkBzdbWHzMavXrHcR3lEJaqPPBTn2U628QWCSIr+HbJ4v8zfY4zo4ztwiB0RrlwqRYlfFEBnfOQY+N4Hm6riZ1qUl9iVM4otDFGY9wI6VRx68skliSThiQ3RBJSEsz0YXZyl6iUcsV5ESEiptMSWQhSlBgUFv92DGuvtug7hn7NwnUjXG+H1DWY0OM1u0InHjAuDAjDiZ0r1NNtTv3pt1maX6M+b2gXZVLdJRkPUNGYILDIyiU6o4C2LoOJKUohX3D/KcveJp9c+01KaYeW3mLQX0fMxqiZH+2X1Qk/HuqOy/mqzY6V8ELLJk1z8n5CNuqx5f42r2QJqlzDdm1+tyf4ZvMAWSlhWJRptT/FQsUili6FzkijHezSiMhKELogdzSRcCiv/wyOM41oKJz+LGn7EKV4lrLd4zm/zh8VBjF00WyTug1eHffojWMGMuCK7pNXmvzPqkqvv0OYtlBOQMcJmbUkfpZS24ZDRZmzwoZOhGMJQsuhYhyqrsvj/gI/Y93D4a3nyO95jK/ns2wXgn5/G1kUBFYZy3Io5wnplcuoLEfvDPBHfVhb5XhZUPFt6l/4AjP/6X+KeJttBG/Im2iBef2KGm6uqOGab7DZHV5cW8Jt6sPNXjHyLoSaG54zN1KfbpgJ70o9e0pGrv9496lPN3E1nvvWY71+kG/AtQjufc/znjm8nkfNfruRvA2x5ZbkrQkT3i0Mooyi38dyINzZ4hPPfp3CzulYbZL8AKqQtJIeqSzRdadpyDGlbISXa4Io5hVWuSLHFENw9ZCH3JQFndOYsZmxNjgx7lDK1zFFBsOYH4yafLd9kNrQUMtG1MYXyYcRRil8M+aw2+ap6lHOrV0mcQxdt8QzjSUuO3VWg0MYBGNrhkL4uNYMufBxvVkOyXUqcoORynHVmLLlMRuM+PflHxIkCsvk2BQEeoxQCSorUEmXUlCFIcSixkvJDJlTY2zVCf0xTthEm5xCRjy9MOA3n/u/AIYqfSpunVowT8OfZjaYY5zFWNLicP1eTjVO0aqcvqPX4oQJE94e7w2hRggOVg9jbI8dk+BsvkytvMh9rfv4zIlfJ3jwbyHLRzC9KfAbCLtMdbuDKBKSwsXgY1s1AulgDzagNI174mGqB0/w/o//DKVGk3L5FEJY1+O3bauCkrs/K9tGqv1NRyd9lxN+VOz+bsk9v18KEBiTEyerJMnGHbd1lIOrXFzXx1Y2Ti6p1VpUQ4dNtcE4zxibnOq4gy5ypLJQaYMkibDSHOGGzKtZEkvQrkqYCcgdm+DQg7xyco7vHziA6x8gP/IRAgp0rImEIds+i1JTRCIgEhG+E7MRrHBgNE1qC+KkzlgJzjlt8qFLPKxhlkt8LbAo7B0eMU+wVYm4sjwmjTsEOkcVGj2McMsuO4cdDvS/w0LlAp3UZmh8yr5L6CtONZ7GCl6h7dSQVo3UdemXS5TNKhtqi0Vt+H+s/g/M5V3+dHSC36umjLNLP5ZrOeFHixoNiVXGD4ItfnPZ4pLTY8sbkMddOup7rFtjvHKVnRNf5k9LK2wUirTaZ+gYGE9zQLcYG0UWGnR5xMg/y7kjr6G9jFwUjIUhVx7P6jn+v43DCGcRPbVOZTCDDtZJxRT9TsQ/14JRdB/fHtqspBnGqVJKA4b5iP7MAkN3mro9T2ZXEAvzZF4JM+qRCUEyWmfjiW+xLW38tMD1bSrVMotT05RtC5lD1qsy6sY83/PoZQ5KKLYHKVmScbo1R/H081STiGaaEJZLdNwyQTyEC2f5335gntC1ULUaqlT60X9u/bCFmps8asQegWTPcdy6z1sraox54ynt8YoxV71orpnyCiF2C2j2xHPfCArfW1Fzl0LN22x94nql0Z1Sn25tfbrdo2b/YcVbjue+mu391radMOFHSNPzqUiBJz1ePfJJlNkNLIm8Kt5KhovDvK7xv0x9hrVDy2QzS4xFibAQON0OqUm4lPfpDWyUbHM02+CXuyEfd14iyR2WN3/AsmzzHf+jbO5Af3qe1cPHeTBS3J+0qYzPMxrCyG/RbhxEZZc4UzrJSyScKU5zKVxGIRhqyVp7SGzVWGOKKwufQGgbn5gd4JC5yLzooUWBTcAHy4oDXkY4iokvHqR/6CSB1NjFFpgeBXVq6Q4HvRFyGOMMLMZJge9OEwcLlJeeIpBz6DymUBlfn16n23uahbm/zBHfp2Z7hE6TR2YfYb40j2eX8JwGp6Yf4W8/+LcJvDk8b/621qcJEya8fd4TQg0A0mLsBIylhbI8arVl/uFj/5CyUwa/jn74P6F35nFE2EJ4VTSgxz3GcQ4E2E6DkixjD9agNI2oH6AUNmg15/HCMqXKIaqVh66X7tl2bWISPOFdxbW4w6KIyLIOcbLOnR5d2tLGVS5CGMJSiZJd5tHP/CLV0CFiB1ek2HaXZi4xsWYVizpTxDomS3OG2wY3C1mtFFz2YM0WOMrDP3g/43nJalnQdFys6lFCqZBA4Xgkq08TyRQ/spnrPETdcjkTvkbP1qRSM4iaFLZibCeoNGFThAz9Ds9RkHjTLGeXWanZ9Es7+AoctUEiAlJVZ6AVL4WrWFaPklqlsDx0bqi6BWq6xsHqc2DG5OUGbV2hbc+wWnURSEaOYSgeJRyt4OWanSRkO3cRTEp1fxIoh2UqwuVSGHPR9LjY/kO6akxuJ3SsCM8yYBlWwjOkWGTUGIc7RMqQpRVyEVJTgiywMOWUnco2v1E5QB46UAsYyILngx2eyt7PxqhFTy+SeM9ipw1SNSQxZX61L/mqLfjBk5Jsu0Tg1GFqFgtJ4hcMbElKmZJ3mqhUIZ6bwgiBIsNybWaXygxf+TZlaVG2cpSbU6/VmNcpzTQmywqeu7zNv43uozS9zJluymyjxMWxQORDHvvACXRvQKu/w1KWETZqtGvTlHVK8sqrNOZaV5OLfkzsmzD0pgbY/etaFPdNPU27FTU3hr9R9nKzTrMnuelmuefOu9xjJqyvVtRw9e8bosctrU+3tjntEy+1n+3vtajx63N9k2bC1+O573As1zxqbmp9uotrIq9537wVJBOhZsK7EmHbKDfAG/lc1hWSWOMngqppIPtDSnlIt3+a/kZI4lb47x74Iv+H+f8dod3EH8cctpcQBjbFIkF7h49uPMl0XsIZd1kpFlguj/GKEU/Yv8RKL2TqQMBFGVHfPM8XrqwRVGaJ8wMsdM6gvSoGzYpd5dmDh/ia9zBfqd1HX0rQkrGx+U7zUZ6uHOR7lftwhjssGQMUfKC/xn07HRwKVB5SFQUBMRvbNtvPO4xqM5QsyEaafmeBUeJycXCY+/Lvc3q8hlrtUZc5YhhS820a2z6lb3j0e2tEWZej0wd5ZOokbniCWS9Ax+dx7Qp/96G/y1JliYbfwndbhG6L+dI8llViYf6LKBW+05d4woSfON47Qo3l0V58H7hlZPMoImjiW/51w0A78LDqC4ilR8CrkuUwSgWZcZie/gzNxof4UO2LTA+7MPcAPPhFam4NV7nMHD7Kwfsf5dixf4RtVwGYm/0lPG/hnT3mCRP2IMRuVVeW9VDSJ8/7d7yZtpWNa7ns7DxBY0nTrE7Tmp6nETpoOaRsZwQzIDMXYVucM4YHez65zMjijGwtpujmPOWu8rwr6YeKWeHSlwUjP2fLM9QziMstIj8EAVKVSCLDM5EiKCyOXniIUzsPEMsOX1Fr7OQx2TAkljmpbajPnOaloMyG2WYl8GnX63hKsuYFZOQoqRiVr9DVJbRVx9UZLWWh3CrSpEhV4BnNlJWz49rgBNiiIHMD3CE8d6bMyyVJUeS4SY/O9CqJKymRUdc5mbZRvPmIzwnvPoooY2Fg2C5X6GEYiqfpLX6D0fQ6HTPNXGwY2wPW5QwnxAiLOl29Q2GgMBUyp8ShTDAWCmMEbvQ4G9JhdNxmUPNJJGybEJIW92ddrqQuly9UGPYUY1MlcKp8JBYcywTjRJPuBDRMRl6pYZddBk5CXgrIpMJSFs8fez/PLR7FiwY0wmka6YiHqm2O33+CE80aVePC1rO8P9xi6utf5VRnG5OkrI3g9/sHMV6FrQRm6wE/aEt+a63Gb61I4hP3Mq8LjhhDZbrJ4LO/SGuuhXvkMM7S0o/1mgghET+i1qfdZbf+ZLhVhrqp9UmIqw4xrzOnaxWyezxq2JP+tDvCzWbC14Yzd1tRs3exlK87nTfiejz3vsbFN0ScvULNNUuc15Ps3mpRzPWqo4lOM+FdyDg1jKWLLnXoRDHDsSboCWptRTocUNlsYNqzZLlkvjfivvYV0rbDQ+IY81owFc3RFC4Vb47V3gxzw4sox6EnpkjUNKcq67jKhaQMwmG5fI5H4ucpiXWa2QXc8AgyuBc3GeMPt9EoVmSJYWuecamCb9psKZumMAxnZngpmOXZuYPol5/B7e/wWLtMqFOCWODGLjYZshhQ5EsYkzPUDh0/ZJh7BFbBuDvLzkaFRAVc6Jd5Nf8UfedezIfrfPCgTXwpZTl6hpLbJH3xNV7eeIZessmp2iK6GLEaR7w6GjAav4bn1AisgLpbpxXM4tiN6z6eIGm1fmriUTNhwo+A945Qo2w2jn8aYbmIk78AtZs9Y7zQpnb6flj6IHhVCumQ2nUO3fMgR4/+KpZV46Pe4xxIBJRmEK0TPDr3KHWvTrnZonlgCcdpIIRCCEG5fGrPm9CECe88QjiUwmO023+O7TR2/WLM/ma4trDxlEeWbrFwzxyzjQU85fGz988wVRtwzGljt1YoSDBS8KxK+DOnQIsCpTW/eLCFEypcCrYV3L+T88GeYYMBgzRj27KxEoEUkkxJlBRgfHbqp0ntEQs6p04f2Z3ioeQ0YlgmCnocjJfIlSRwqlSmjlBoh5GqM7AF2irwi5gNO8PgYjpjynmKtixGucGzFNOWYCgCoqHBDg2VqoOKY8aJRVRUmZE71MsWobAIEk1FCVIsdF7jpZkttmfrLNNjKeuS5wZVTMyEfxLIk5SpbsqGVyYxHoV1D97sd4hrL7NjHWchjtjRO1xmgeXiNYT2WFE2FStiECqGls8BnTDUBlJBPryfrrD4o9mEb6QpuhD07Fla1iWm7Ze45GvG4yFn9Fm27Cb4OdlggOwl2K0ZrvQH1EddhkjsmkNfjOkKwbQSxIVk0/V4xllgbtgjt8qYfsZctsHJ9z3CY0mCf8FjYWYe51u/y+yhg/zaN34fznyVX7injJUMufL9F5gv2yw1Qs4PLR6qxHQzzSvlOfzQwwwGTE3VOJc5LP3C55j+B/8Aflix23eLvMuI6jtxU0fTza1P4qpCYq6tt9dI5qaSlT1VPeKNK2oEXOsPulHhIm7M4bowct3GeI858K37vYNacdPSfU2H32Q8934eOddeusUEeT8BaX97m91qorekt4hJ69OEdydjK2fLg1bzJUIzpqkD7ukvcLhdMOOklISkYhIuDcEf2izsXOCw2uBY3+f0luLQpZBpFKFXZkiL78hPontrZEZhZAk3j2mqbT4lv0295LFkr3Aoeo1jzm8yzbcI4kPYlsvzjcd41vslNtLHWHGPs+L6RHnGUiIZKcUsBV2/TBufl2rTLCQF86Gkpq5QoYdtxpRGPYIip7S5QxI1kdIjUQFtz2MUZ1R1GxN7ZNGYkXCIbQcr+TJX7u2xvXCBqWYHM+wR1wf8ee8c2eoGU7g40qNpCXpJn3P9y1zSLQgfxnZmAJgJZzjZOMnU9E/jOC3gxnvjxAZiwoQfPu8doUYIHOXiWh7inp+F2s1PB8OaywOfWNx9o3BLlOYOM3XvB2nMLmLbu7Ha/qlZRKUG9m5L02eWP0PTa07eYCa8JxBCMDX1aba2/hjHmcaYgjTdZjB4aY9pZIExOVJIQjvE6AihI379vr9BYAfMVj2ansWD6avYQcSWu0laxKyKAd8zKVJkOBhObu0gLBtXQyqHmKzDg5cjOk2XdDxioCF3FcIVZFIgHEXqN1mZnyOqruIXEq99gWzHxy4O40chfecyw9oOU9YBvrTzOYywEFrSLmxSDCqPcZOIsTDYUhJWYDrfQfoZVrJJBUXFj+iqEknuU5tJWX6wQxGnBGtncKOc0NLUvDZeMkClOblqooWgm7k8F5WJbaj21ih1V8kK645C14T3FlILGkVEPyzjyow/Gz/OE/ILxPIcG2lAxT9Dgc+6mGVRrCOxiGWNKTXilZbAigPq/RGjvMDonDhpEuHyWpywUU0JUXSCKnV1hnpwmcuVAhMErNp9/jhdoB1v8sL6kwzHq8jmQfpBicbKZXqFoaZdaA/pAkdsyeVSwHQSc7TbYWbQIcaB9W2ii32e/q//G/Inv051HPH+k8dIej7hvYdxOisk4RJH+0/RlBH9Ao4uNFieLlNxBYtlw32LDc61I3zPRY/HTDfLnNkc0Gz9mDxpbuVtetSImyplbnldgDC3Gt6a2/YpxF7lRiDeyKPm1tSnq27F1/YjubmC5cbwNytE+1bUCLj1EohbSleuV77sqYZ5PV6voubalG5ufbo7j5p9Orfunknr04R3KRExPT/AUkOqFsy4VYJug5l0zAEnwfJcPFL6mYtbgLIU7SRDjbZoMGJO2Pxaf4g7HlMYxfeHBxkLB22BICNLHYKiw6nim8z4I+ILswzEEjXHh6jDN6dnGZ97hv9k6q/wNbXEV6MjqFxhewGB7TMzlrgCDqBpWw2amcCNYx5xNvko3+Ke/J+zTJdwMKbc3sDXBXZREO9UEHh4SjEXRigleeTCOaJOTqAg8xxGzRqCDZSVUz0/T6e4QDFoE7sZl/SI3LYIjAAdUGRtUqO5NFjF8xbplj/DxXz3e9PJ5kl++tDnmGp9GqUmD7MnTPhR894RamDXHFW5uwk5t9zxCCFQ9tXDUS6yPIOqzoFz441EOA4iqMHVlqmJQDPhvYbrznHk6D9geurTCATb219hff13SZJV8nzElSv/Pza3voySirpXRxcRRT7gYOUgUkgkklCFuFiEYZmVqR1GQUxuxYzcgthPKaRmKg+oC4vW0PC+rRW+bl/hqcWU86HCHvSwZIG0DYXQjDEIR5JVDlCIARE7xLGFSncoBg16qwcgNeSbCTkDfLfEod4CYRQQ6JBODKkxJJHge7mNkQ7Sjln88BWshSppa5uW0rQ2zlOp7XDfuI1JJH45wna6iJLHTH6RPJNYns/soW/ht17GZIJXRzH9LGaQVrCjlNQ2dMwUab/PunuavDxpb/yJQBbUgjV2hGBadnhN+bxczBPJFfqUKaUvY0SVrpkjKLYIrJieqNOSPf44EFSis/SunCEyLjs726z0xkjhcDn1uFQaUhYFKwLKqo2Ul9lxYWdc8Ep1ia6Yo7rmcmnlEuNiyMgL2SnVODreRIchG9sdIreELFU4bAvOTS0yvZ3x6JkXsTvbDNMIleYk2RwJAleNUX6O01ygCA6hdr6HSHeIU8Go16VVdej7FT54uMmp+QpfOuZQ8WwOTlcQQhCUA6TrMlX1idKCsvcOGTz+MMyEr3cY3VoLI26kPnHNXHi/qpKbzYRvLbi5fQP2CDW7+7wp9elWYeSmKOpbBCJze5rTbfvec46u3YsIrlXu3M25u3Z8dzj2azO7JjTJu/MNejtmwkJOWp8mvDvxjQdBA6HGVJShnjqEzoiw6GLpnKFwydM+0lYEKHLj4Ys6Va2ZDhJ8NcXJ/pDv1JeJSx6Os8OON4+WEpF1MXlKP7UpovM8Mt/l5OZLHBBtRuozPD/1cX5/JiDLxmSWxzBfZyMAXwrCLGNYgDuO8XVBy/h8ufZhnu1X+Pil57HLF6iLF5l59jI/u/oVSue28bpjPBNj+QoxMOhMcJRtPqO+Sq1usGLJ8mjMg2aFQkUMi5S4bnM4/GvU1g6RlkKMKBhkHQYSRL2BZQkibdEbvIjrNLk4uERoh0yHc8yGC7vfs4TCktbk+9OECT8m3nNCjae8PU/a7oBXhqOfgsUPwNQ9N5ZLC7wa2BNfignvTYQQVMr3U6k8SFg6zpUr/4w873P58j+l0/026xu/TxytENoBv37vryNMRl4Mrm8vpeR9c+/j6Kn3MdtcxH//FJfn28xN10jo07GGmATG4z7InLoOyPqbzMYZ47TNC1Ixn4zxKcg1ZEYwRKNsSax9fE9ixzFRorBn6vhFjtU2VNItghc1eiukFk4xnTRpDassmWMsXvwEng7ppgFfT6qYAiAjs+GfiTFPpDF20sBJJa7X5+DWKiYqsOxttOnTdRVeCRJTQcoCz9dUptcxRrIy7hIZD1EUfHo0JiVC2iFDWaEzyukPe+/YtZzwwyOW23Sbf0gmxzSLIdu2S19UyWSZsfSoyG0S4WA6EUqP8a0ebaZo0CaR22yYf4vUEbHVJI0EW0TMGIuVokaERUDKisjxsw49odFK0Jsr8cyBR5hqfJQwH2PsBEsKNsplSllGa2oaPyzx7QPHee7gKaRncyjrokSX6fgyOo1wojFJ0uMbtaO0o5CsVOLb+TKL0y9ihwE6SVHdl5DLDzHsjklilyXfZahcfvnhBe47UOMXPnIvx44dZrbiMVV2CepVZLVKLXSYKrt49v6JhT9q7jr56M4jXG9/um0scXuXE9yh9ek2j5o32OfVKhcpBNroq2Oaqy/d0vp0zY/ldnOc/YtcbqsC4nr1zu6PN17Td9E2dv2L0n6HtV/rkxTX08D3Mze+xtuqqJm0Pk14l5JYgqQ1TaUi+Fhrg0pNcjC8SMl06Q0j+rkkKxKQhtBSJF6Fw1sNmllOraaQaZlE+rzoB3zrvofouD5Pi3sojE3d7mPbMa/Y99JmhrZ7lIbscjhfZTtf4p8c/CJDoZC2R6ALko0X2CmBE4+oFCMuzUxjZ32CLMN7acAjnVVmVs7xcXUR5bxGZbCOEQnNdAvnzDrWYICnh1jjLnZ7h7wYU4k2KKUpLTYo2zEPbFxibtgGr49xFaOaxM58bLeKbi4jTr2PgQvzzSPYi0so36aDxC+d4sj8L3Gxf5GaW+Ox2cf4wNwH3unLN2HCX0jeU0KNoxxcy31jFdcO4YEvwPLjMHP6xnJpgV+/3vo0YcJ7kWtPMpqNjyKVD0KSZjuMRmdw3Vm0SRFIpoNpdDEmz4dcux2XSL5431/l47/wJT5x6JN87vjPcv5Em3uWloho8zWxzWv2AToJpIOUULvIDA6NFY3xGLdUo16kuLJgWLWJpcAogZKSOIZFucBCPkthFFV7AdXbxmFAOW3TyA16IAlNCbsApQ1hOkdzsEiQhQyjMr/a+Tl+3i2Qkc/2+iFKTkBu5QhVIZZTZOMWiapTKkCIVWwno87zhKqHnXpYyRAdF2hstJL0shhtTXPRWuCPzWdIjCHIIyLjshhtUEn67+zFnPBDwbanWd14iBqaaqrwipzpTNKR8yS5T1Np5lWbR7sRuc4J8gusM8OSPsdf01/h19c+y1G5zLPmUZ6Rn6DrFEylmnYB/ULhixxdZNAdIOQ8QkMUzGKCBiupS9a+TOCXcKVi21a4SUZJHyNRIVuzi4hqlYKCe/oX+dKZJ/nER4/heTYHLBfhhLxgNVm5tMnYK3Mu9nHVKsJyMMpD/OL/DeaOM+j2WYwLKi+/gmtJfEchhaDabHHyvgcp+xYfOdbCr1WwqlUqgcNs1X/HhBqkvOsv7HdTUbNnZa5X0Jg9y3Yjjm4aR9xUaXO19ekN53LDN0ZjbjLHvVWouVkYMjeNsa8/z76Czv5GwHfnUXNtqnc2Lr419eluxLO3F8+9jxg1YcK7gERIvHKdsJTycHAZ79gmjSNnmG3COAeERU3OUdIGK43AkZzOz1Mfv8ZIhqALcukxDiQv+wU7QY3nsyVyWaHsJggTMY5DduTP80xaxndqVLOYQtSJU4fxOEE4AYeibcI4Jgs9dGBRa26x4zu0RlscjgfYWxkfvpIyO7iICregM0LsRGiTYI93cAYZVjpi0erjJIqicDBEBMmArO0RpjvIvMBSATqKCBszOGWPUZjDuED5JaTyKGoK7ZVYuudRZv7q/xpsSbNyiHuO/UOm6g8zTIfUvTpKKpR8hz5HJkz4C857Sqhxrd3WpzfkahLU9T/XkBZ84O+AV/3RTXLChB8Tvr/IqZP/FUJY5PmA4fAVPHcWrdPr6xQ6oijG1780CCGwpIVUitAOqbk1/vZDf4elWoOEDpbj8ufkGNenJxS60EzZNTwrIBc5Ne1z0StjoWnPugylwJeCvDAksaaRT9OS09i2wE0t7OwsRbiBLzIKZxFhL1CNA4wrKVxBTZYIsxJyFLC6XaaUVGkUNipx2Bp7BKJA52Oql1+ik9u8+swcZ4OjqChFygGe5fJIep4SI+wsIksi4jQj1SXcmgCh6AuHs3mFP+8ukBUKd7gNShC5OdmkuO4nAi8IWC1OsNO2acaClo4pxT3W9QnskUImMZ/p/FNO9kbEaUKj2Ga9qFOJCo5HTzMtZjlg5nmhmOY5cYS+0Mx2NaHMGBsbt+sQ5DkynyLMjqHjhIFb40NVh/U4IxAWRa2ElWf0XY+S1oyvjDhyYZXPXH4JFfj4MuZgepYPn7iPR468D88WbFUbvCymiJVL2y3TLtXpJYZBeBAjPNCGTDl8XRtiP+DUY4/iP/80JUdhq92P72vCraMkf+cTRwlqFVStRi1w+cvvO4BnvUMf8/u0/9x51TsJCOZqvPYtX/7FTXbC3KSY3LTa7RU1ryuACK6Wk+irVSW3tz5pzC2R2rsb3hoLflcilbgx4ZsqX/ZJudp3c3Hnupi945m989V7RKY78HYqanaP/a1tO2HCjxKV55wcgxQahgotBwRGU6fHB+dGfNR9ieb8BrOyQxiP8Id1HlX/BqcMQ0pYVkoqPWLPIXICNhZOcdFM838/8mu8NHUCI33K6RzGTFF0c7azD7GezVLgU027aLPr7Xf/2ctMFVUSx0U5FgfWrlCXBrdQHFj5Ln5pZTf50tXk8hImlFCy0YFBKI1ybVxH8Jeyf8H0yfcjZqZRhcZLXIwOSKMRzrkRSgYU0YBwaplaxcLVBcVmB+V5WHaFvtclsR1arSUqx0+DLblv5iECK8BTHiWnRNNvvtOXbcKEv9C8p4QaRzq7rU9vtS9SCJi7H5Tzw53YhAnvAEJIXHcKY4qrQs1LeN7CTUKNMcXVe/j975x3v+A5LDUCHpla4D5xgCizcEoBVtUCp8Jh6xhH7WU+UX6Q2Z4hCqaoDNvsVFy6AqakhVECKQRUApqVAziugwrLeLoNWRsnj0iCWTJtUxmXiR2bsQ1eIVFpiEhajCxQqYNIQ3wj6IocSzh4RqDWXuNCGc6Uxqy15uladWRhEQiX+bSPMDGkhiyH1JQodJnq3BZzrsNWGrI6niPVPlqWUOMB0gbLMtjORKn5cWCMIU1TtNYURUGSJNd/zvP8bT+BV5ZF6jf5WPEMh6JtFvOCrBdxofsIepwSpwmit0Xa3UKnKXW9jcw1YthioDXt8FuUM8Exs4Muh4wtl/lYUJcZsbHxCkmpyFhdWWTrkk8ex4xcn+MGykhKbsCl+QQ/T9lRFnXpsJm/QHP1eaz2Ns14m7miwN1+jsZcA8uy8F2X9do8ibAppMXq1CL9oMlSs0S//jir//SfM1IOf3p2h7XtPq7jUD1xnIojafnW7v9vexBCYCuJqpRRjTqOJfnM6ZnbDGx/bLwJj5o7DHD9J4m8TWC54VFzY1+3HetNAtBupcwbTknIq9tcrSq51vp0fR7sEWr2bniLmfBt8711LW47RzcJKndRUXNdiNrXn+dG69MNj5q7MxO+e4+cfXir2d4TJvyImYn6PHZuHSEshGtT0MMdg9PV3NvocMhZoVpe43R3jWbc5eEspBHErDaX6JgyUo9IcRlaNoEq03GniCohZytNzpWOUKgKJTPHZTtn2y1xJW3ydG8RbUFHWwQ1w869AYE8TL98mpdmHiYwNpUrR5lSGdqq0re38P0I37+C7dlIlaE9A4FNUcrxSy6NqTGOHyDtPuUDDyIqJbzCx45HoHxEkRAgsep1ZFigGk1On9zCS2Py9W2E72PZVTZaA9bSARW3uvu9SiosFQDgWR4tv0XFqbzDV23ChL/YvKeEmtAOWaosId9b054w4UeGELvJRVrHxPHqVaEmufqqufoUWL1hTO4DizX+8Qc+TWszJ8kNXjMg1V1W0pxKlOINB3iRYnlsWIzKPLA2YMdKyNBMJ4bVuoVxJDQyZG4hNRjfxY1iZJqgTMZAl4miBG9scVGP+IGzjUyhyDVJeYislXELD5VVKQmbZidG5DbaqjCYKrPpZrw8u83QG/H8ycdRJqCUxJSRSM8mbmdUhSG1ZxiMJH5rh8PDWerfb/DAxZcpeYpYl9iyApAptl3Bses/8ms0AfI857d/+7d57rnneOKJJ/it3/otVldX+e3f/m1+4zd+g8FgQJZlDIdDtH7zj+MN0CsUaifGObvC8VefoZLFbBcSmSTkiU0e+cT5FmKc4JuMui5I19ronZDt8xdw0x0+8vIaUtaJmjM00oSGSXGVRckeMCUMRSHZ2e7gSEMnqCDX1mlGKVUTUinqlE2JyEiccUrFaSGkINeaXx48S3O9zWs7hj9/bQRaUwmqXHIPoQuBY1msVKfZKFweng3ob/X5xpMv8c/nHuE3v7fGM+kcnrJwZmc48rd/ncfvubMA4993H5XPfe4dN8wXPwwz4esr7Kme2VMpu7fJ6Y6pT7dV1LzBXK4KDYKrrU9Xq2XEVY8avXfPdzrE/Y59v8twrWXrtsXirjxqrreB3eGojLmlUufNetS8Fb3lbXsTTZjwo8HKUl4INFvWPfyr1qPkXordV8RRSKjaHPS3mVcjfu7CE9wrv8XJ4km6tuK/OfBLpFaZ0IzIjGIsbOq4lJwcHMnhvMsV7wCFKaG8Kn+62GQ19FgpZVilMgO7z7bXwVUR5+am6Ioy7dYRXrFLFJseTiL5ef17WFnIdFIjjATT4VNI28NyaxSeAN8lOVBDWobsQJX06P0YAlZe20YXECQKqUGEDRxSpqcNar6OrmWIsEXJt/DimHx1ExmWcJwp8kZMO8+puTVAIqWNVLsPr6SQnG6epupOOhAmTHgneU8pHi2/xRfv+eI7PY0JE941CGFhdIaULrZdx/V2W5+MSen1ngahdm+c36AWXUlBqVTGKlKE0OR1zdbmK1yxe4yjbYZxB50UHO7mLMaCRhZyrrvJVJ5gjXJ2dIFUsJ70yYqchWlQSPLAwk1SjFUQa5uxCsAI0qTNGXKMsUALPMdnx4yQ2iLZWqAQLdKox7mtw0SZy3CmQqQiQqGQYo0/D4+zJQ/idtYZz1k41ZxsOMaXNoVy8XERKsHPNZmYx1IOSuasZU3+X7VlcitBSQ8hJ9V1Pw4sy+L48eMkScL8/Dy2bfPCCy+Q5zkHDhzgypUrrK6u8pWvfIVOp/Omxx9GG6zsrDPcqSCGOWo0wOtuEnsl7DQl1x5xD4Qn0Ubh5hYzY9CjMv3193GunfN9+RputAHjHpVBm2DnPA9evoRvBF5/k3vPvoBlDEkUYVk5W9JleO41Hnv1Ik0vRHQt6E7jadDDPqWGy6OPPkK90WROuVhxyiV1kK3tNuNej4Uspx0byAzTZY/h4iGGqWD+m1+hs77NZbfGn+wIrGzEICiRez5SKQ587HF+9QMH79i5oioV7Lm5t3fBfhjsbbN5u0PtG89t9rQ1cUMYua31Sd/Y6I08am5Jfbq5omZPGtPepKbrbsI3C0R39Hi5dfE+6+1XQbTvdK/PZ//XrneDva5Hzf5tU29Zp5nEc094l9Kut/jNk4u8rD7C83YN7IQ8aPLffuiLRLkA5zDBiqJf96iIl/Cy84xsl8uEqNxwcOPPMEZgGxur0NT0kMcbI2ZGK+zQYiAWWfHGXJZwvmaxE8TMlY6xIT0a4z6+GvP96sOcC6vsVKuU0piS6bKYfo1ydomGyDh15jDhOCKasigIGMVltKXBtihKApEmjD1Juz5DPj7KledfhDylZuqQZ3iPfYyyXbDgPo3gLFm9hLBCkAGSnOill5FhBcudQ3lDcqtEaIeAQEoHJXeFGoHg1+/7dVp+6x29ZhMm/EXnPSXU7JZ225NIuAkTriKEhTYplirhefPYVhXQdHvf58xr/yXGFEjpoIvkDcdyfB+Rxlgy50+CJ/hG/jUeWY45VzyDP11DRxlz44LHRiAJsLYuEfY3KXyFFeX4nqKbDBkUXYw9QCDZKmuC4RhtgxeAqEDmaJpbZ+mlNiaVSCVwKZEkKTkZ7Ys+F9IKO1WBF1coZQXduiGzoSQUhd5hqCyesz6Mzi26zhrEHlk/xkMQ5wXlLKOIGwS2oeIIalbCR2afY7V7lIvmAcq2QhiX99hb4HsWrTWXL1/m4sWLKKWo1WqkaUqSJFy6dIlWq8XS0hK/8Au/QLP55nviowySYUo+yhm1V5i1BXPTDYaujSsMr22ByWdIkhhjV0lGGR869xJ5pOlGAlWuEzsZTrTNI8Ntjlw5Q9R9jdlvfxOiiCIa0xh3qNcaWMriQLlORkE66NOI27T8EdOtaUrKpyIM1YqNX7FoTjWo12q0rVmyOOVS3mB2YZErr7zCU90Rg0EfkSRMhS7aDYjaIxqvPssgSmlPHyAajmjaGYMkIfcCpNwVC+R7IRp1jynvG666TxXGXv+V/WphbpZGJNdTn24e5Kb2KHE35ilXvXV29Rl9U9GLFIJiT6nJXn3o9nju21uSbiugETcfxU2tT3dz7q4f335Kze2pT/KqeHattetOv0HyWpjUW6mMkftXCU2Y8E7j5xmfv/jv6LBE1xQsrm6wXq7w3emD5GlGVtxLuZMxrgisqRSZbrHlTTNwqmwOPbyDDt9d/iiedqlEXYKNDeqxoDTuQ+Hw7MZDnOlcxArKXKiX2bZ7VLImz003ODzqURU5K0WFlYZNrCKWN69Qkxs4/WfQOsIylyFNCZaeQ3sZln2YLEtQhYWQFkpE2LnC0jHrwwu0LyyT5QrbdqhkFqI1h3ffw9RcgR+t4Q6+QxSEaOkT4zCwJeONDb7R+T6vjlP6jS9w34FfoOyUr36u3KioEULgWz5STO6RJkx4J7He6QlMmDDhrXMtXURKl6n6B7CsCiDY2vyjq5U1OZaqonX8hmM5no8lDLYs+G7nKWZqOZVmg51WSH35AMVzQxzL0OpmbAQeXrsNlIhcxVQ2phUotpiiUbIZ5zGW4+BMzeG/sIY4cBAr0BhVkJPjDNZIslMoDMLXeDpkVoaMtIVlO5Qoc6Yac3JnhJvEtJ2cTBhKAKZPIFJqZhWtp4gv1BA7dfL+Blm/xZaaYml4lo1zJ6nP9rCiHmUZU0ou8GJyP235cR6On+OyHLEVtZkvz/6Ir9IEIQSPP/44xhiq1SphGNJsNomiiDzPqdVqb6tNpxcr6kmCM10n7eYcLM9TO3KEXuISOg7Dizkve++nSZ9QBTgyxRmvEwc1HAJqM4tc2byM2ljH8eoMRYnNss2KCMmjMU4ec2reJanMECcp5do0YXeMY3nEWYelre9z+P4v8KdrCVVj0yi7uJZk1GszXba4uNajtN3mtbDFWtuh3rnA9wdlDpd7dDS4luB9h6f53uoVFj7/i3xlw9DzBaedhFK0Q61UJ3fuIvHw3cSbcKR9I2HipuSi6//d61EDu0LNzeKQ2GtoLG7ZZv89Ia6mVV0zDr5mGHzDTJibxjT76EPXqnKu1dpcm+LtlUE3hKS3ZCb8Og1M14a7OfXpZn/nN6qaeUt6yySee8K7FK/IuEds8fvCIRKGIhI8FyxTGItUlUnH8zjeD6h5CmtkENaAtpkjkRbr3YzVSkEnz2hpCPIMOyvYaYaEQ0UqFHEl4FLDw7IsIqfBTmWdtTGcKyWcfqVPd26JxC5Ym4HprS7v37zCwWYXccBH2SnzlZwNO0bMbaGTGrb1ARz3eYx2d98npMByXSzdZ5QYau6QabPDghnijfrg+IzyVSrJFl46xEhDnEyTZykbScS2zKjWPf7t2p9yql3jZPN+Hp9/HCUUxuQI6SKF8976nJkw4SeciVQ6YcJPAEIqDhz4NZQKMCYny/v43gJFMUapgKKIMHtbBfZBKkWpXAITcWlwnsSD+vwCR37uU5yrrJDLjNiMKXROoSWW16QcVtFFRqG3CLOcatIh63WoaZ/MBctrUYoilCfIGJDHkkw69JGU7AJlDIWX42YB08UBIu2iLJf50Zg+GR+MD+MlGQN/TIahbACTUmFMSQxJ+1U2XrAQgUIpiHIIDChb0B1XUTojHgzZrh+i7AxplrZINyKmymNik5IW+Y/vIv0FRkrJzMwMs7Oz+L7PzMwMlmVRLpep1+tv+8bQGJcjeoCPz3xQYXZ9k5OH7iG1bGRR0Bj5vCIW2AhnqVbqkGlIRmR5QaITYsumJDTFdJVcG55NWqxZFVbcaTytsbMRx6YcTupnKMuI6cDDTyJKpkqhC9LXtvD/7F/gp+scT/pMhxIvXuebZ3eorT/JcHuFan+AkT7fXY1od/pov8zpBrgLB8iF5IjT54u/+DAzn/sMO8Imtmx+9dED1Eyfw7N1PFvdZiD8ruZNpD7dYYA9P+2pqBFi16bm1nWvKiY3vcXdJADtVnq8YerTHn+Zm1qfxG5LUoG+2UzY7G5obhGI9o3dvqXYROxJfdqLFBJ9l9U/uwU+r+9Rs7f1Se8RvO7023Rd/nkLesvdRoBPmPDjRiQjGnqNiwIiafMn7md5tvERDmKRqApxuIDQMX1ZJSoaSDlkx3KwhCRTNt+Sj/CDaI5llROnmmGtSsfxedWBLQu2jx3gOwdPYvKI6Ujx/eb7+KMDhqnxBZqVMclAUOn3OBFd5PT2ZX761W+wWP8jknsgsEIqSUwYdjGqRp7lGEZYjiTWLjpNKQqHwrdxdIrRVY5G5zikrzDd/i5i1AVseuNXsHSPvmOj05ixH/JS9xKXxx16lsVaQzBWmld2XmHKn8KS1tWHJBIlXeSkHXzChHcVE6FmwoT3NGI3wUAohJBXb8oLjMnxvPndD1+rRFGMyLIdoujSHW+ihZS8/zOfww+s3ejfkkOp3mAzGPGk/gFpEaHLNqLi0Sq5VMRRyrmLP8xpBQeIQ49a5uPhIyNo6yGpfxxvHJEVNknjLHGSMkwlPakIvQItIHdsgihgZjhD6o8QUuH0B8xkdRb0PKFR6JokN4aSLngxtsmTKzgypV9LaT0YkdciLNum0Am1fACOREkbMEjHox1WEF7GXDlG5Bmz1QxXaQIxEWp+EjhcsfnF8bPo9XVkvsFXi69ivvFNAksxPztLfHSOHaWINUxJCRlInVMUGUJpttcuoDdXia1ZRkGLXNgMtEUmHSpoZpsNYlzsYozUFq1yhXI8gMjFGIt2v0Ry6SXG6gyf37xAWfdRvYv87kXF2pM9nIFhdnqKpuUz0A6XE8Hi8jw/9bGPov2AcRyRDLssNUN8zyG1QxYW5nn80Ydp1Oscmm3g2+qdS3B6C9x1+84brWv2e13c4lGzq5jcqnvcHs+t37hKRF7zqNkVam6N586N3lNRs3/VibieHLXP4dyq1Ji9r7251qdrXjJ3eu321qt9ql32HeDW+PM3we6Je/PbTZjwI8aXKcI2KBHRIGNdNLlsqjSLjLNelT+Yn8VU6nz/0GlWpu7BKM1OaYGGVLTq96DVHKlb5sErMce2emhT0BEKN4JYjfl2rcbA8jGF5vGL3yBljYuNEjNFm/rcKibuMjPq8qXLf8bsoIs918e7bJGqDmpgE2918ZfayK6hGHXR1kWMzEgIKXDIi4B4IPGtAgebhdEL1PMN7KyPXh2xORzw/fU/RTg5q2GZyzMHiE4d5pn2K/QLmGs8xBMfqjB79D7O985fNRG+hkCqiVAzYcK7jYlQM2HCexylfNTVSEWQGJ1jjMb3F1HSx7Fr5HmPbvcp1tb+JWm6vRvbfQtCCGYWF/FcwVJlgbl7TlKdmaMdt0mcAqviI5abpGUHnYwweYZtBFkBbQNPNRRBUcIvVSHTCMuQ2BWccIpMTOGIRYQFT9trDIQhiNtoCoba5ZPpUaYKwVhvEeDiDyIWhi18XSIoHyaxMopUUMpSXo4ygsEfMcrbPJlvsVbtYQUJludgKyinAyrFDGQ5CEPq+1hRH5SF64E76zGo7KCExJ48+f2JQKYJVrKKaAW87z/8Rzz26b/Kqy9exN1OeOT0aWx3jlTb9I2k+O4rmCgjTjVhXuCNxwRhSNTvs2GqXLZLZEJSFAIbwWwWEdTm+Cev+PzupQb0hxwzKX/VvAphn7mSRy/KWMsb7GSGQa9L6fy/w/J8CmHxT2ofYu3YRzh47724/YipWomLlJmu+iweWCDONNFowGg0wvM8fM+mj8v9B6dxHZcHH3yQg7MNSp51xwqIdyVvogXm9YWJfTxqxG32vbv/uMXz5Wah5i49c66KLOJa0tQt7Um5Lq4LNeImoWUfj5pbh+YW8WPPere1Pt2lmTB3qqi5fkr2noPbV72z0PPWKmomHjUT3q2MZZPX8g/RFAOqxiYejTByTB5f5IXmx/jTkk+3fpgnpk9wxm4xVhY9u0JLJXz30AKXGzWcUpP6xhWWuiNIE3aEphb7hFnB855H6LgU0qKmBBTbrNuauQPP8p36hzgyt00rGBPKFA9NMZvjPaFhUGMrr6KHlzEzmwRFh8ApKB14GtoBceQS5xZWz4fYw7EEdtzHc2y6OqAnKuRZmQtTDxGbMUIqNqsz/LetFkpZREVOO7f47AP/JT//oS/w6NKjSCmpuHujtwVSukjpvlOXZ8KECfswEWomTHhPI3aFGhmwW10jMWgsFeC6sygVYDtN0rRDFK8wGL7Aa6/9n0nTnX1HCxzFR4+1ONE8hlCKgoKt8RaRTMirFmftNutlm57Kma8mONKmXVL0hKEwhkxliJIFjqDqlpF+FefhL7DUPIRvSohSn9TeoeQKKuNVLFIO5peZ36kwKmLGo3Xs3KKelljaeT9W5lK2pomKiCw35E4DneW834o400u5YCl23CaWDcIVpG6Kk1wgk1cIPIk2mqjscnDmAsqeIpPQO1KiMwKTWggzsen6SaDodFAVDzU/TevI/Tx07GN8p29RnBtQjwtafUHVtcmFy3jLYXM0zbfce1muNGm2dxCWjxuUSXBoNZcopEO7ULhTczyWjOi+dob1kebSuIXd7VJrb/IJfYEkXmdxpkE6P8dKMMd0btguCkoPf57R0k9xLIxYqcxg6nPUlw/SHWd84MgUr9JkumShpCDXhiKN2drawvM8bCVZrAd84sQ0Ugruu+8+js3VeWjp7beI/VgRVw1+3/oAe366ufXpNo+aq2HatyVV36Q2vHGNiLjW+qT11dQnfVX72d1KItB7ynZuDH/LddkvnfuqB9PNy8VNHshvyUz4Dk4z12179rY+3XWlztX5vPEM9tn2h5f2NWHCD5PCDkhkleliRClLaA8GqBxkEXM+PMEF3+bZ4CFWnCqbfpnUiekUCj/q82yjQbvaohACt1DgFoRpzLY0+JHkM6/u8LMra3hxTJTlVOSI43KNg4MEP3fIU0NJnqcmVwk8wXSjSdayMDsWre2P04t88jAlr20RqAG5U8WpdjBb8wjjMSwkS1f6+Ckov4qd9pDBHK8e+BKdIiRLQy7OzON6dRIVENYOsm0pfOVw79SDCKnw7Sqfuvff4/TcoyyWF3FuqZ6RkyTMCRPedUyEmgkT3uMoFdxUUaOkh+NO4ThNLLuKYzdJszZpuk00vkS39xRa758C5ViS/83HH+fX7/3rKKHIdMbWeIte2mfV2eLb2Vn+tcyIcvAG57CGhlc82HEkB5OCc60+PTehcGGkLeaMRWHX8VKJzP//7P131CXnfd8Jfp6nctXN4c2xc0ADDTQSAZAgQZAUAUqiZIqSbclhPJY19srW8XrXe7ze2RmfmfWm8dia9YzOeMZrrzSWKIuSLCowgxkAERpAo4HO3W/ON99buZ794200uoFGYCaB+8HB6b51q56qem6/96361vf3/YWENDCUT1UoTCsjFRGD8irnNMGfek26aR9N95jP38oeZy+ZCKmEDnGok/kGUk8ZjVwe2nw/Xd9h3XZZT02SLAQ95WWzSxicp9ftUtEGJFmCXvDJjbzAIHBwpM60FqBWDtCNJF01fHr0TkB6HtMf+3vY9iRJpshsB1UfwStonP5ff5e5K4uMV0oU7SJnk9v59NYDLKoic/UxyjsRo95hptMaTj8iizSSTJLpeXpBgqNrZGlKLxZshjpLRp2NU2dZ/FaffJpQm5yF2VleGL2VHWeUrSAgfWmHy22Xur/Of3VflSRVqGKR0Mvz0QNlXC1jzNvNnLF0yeRoHSkluq5japJ/9vFjTFd2f6aFEEyVHT527Meg5fZ3gvx+OWpu8r4A8UYlRDcYVq4rQXol4PctDkm8pvQJXil9eqU9NzeUPr2aJnxjadYbiSfqtavddL1dkeitENdqr27mqHl1zl4Val5d9a0kP3Hddt8Rw/bcQ35M8XIu+WrE8cvLWJtrxHP7UZ0UTbNpSEUsFF8buY0p1adjFOhqk/SEQ2+zyabtEuRzKKFR0qpEqY/e7xKJjEmtwFhgsn8xQ6qUMBpQthf5Oes0D1+5zGaqMZUNONR4ifc1TyLihEqlSppzSUyHTK/hhzqDo3MMEocdMUuIjZQRUw88zAGqTHYs8vTwRIQwPUpyQP98j1jUaMkqmT3Ctt4hQtJB4XlF8kYOXcAvH/2b/JN7/gm61EHqjHvj/MqRX9l9fRUhXnnoN7wmGjLkx4mhUDNkyE84muYiNefa03ZNc7DMOq67l3r9QxhGmThqkKYDLHuMNBmQpoObjiWEwNYtRrwRpJBEaUQ7ahOmIX868jUW1WUuN3sEqSTxY0gylsqKwJKMNQb8xz0OXywG+EWdFU9Q7GfITKDpBhomhm4SZym9nsTUwRJwz4rD2XSbi1qH1FQYVh5PVNhDgUD0YaNA2q8RKwvNCiho85TbtzIzmGEgJa0wJCNG6DFr0ieUOoauUxN9IGOfvckpPsTGmRFsJdgbX6JSWcY3BNHwfuIdgT4yQvHe9yCE5OxGl3/79DpZocTPnP4WV6rTlHWT0XIBzynQyNW5rGpIy6bfD8gXZ9E6OcaMItrcflqbTXw/Jg1Sun6IbdlUbBvLcNjSbL5i7uHLayF/YJ9gq5XHGJlGVSo0CzWu2CPguuTn5ll47jQlI2N+JE+UZqS2S1yqUgva3B+coqRHaFJg6Rp7Z6d5+OGH0fXdYMeJkoMmX72VFkIg5VvdWv94Ia4JI9/7D9nrS4Feu+SqAvG60idudNSotyooEje4cBSvZNSoq2+J3SScGxwqXFv3hv3ebHRx43qv79e9ixTy7eXDvLlOc81R8+qy7yDo93Xun7fJsPRpyI8pjeYOW4NtjL6GFvps1qeYSFOigSQwJUeCHS7KLofSAV2ZYyOpobkedUsjIaVrpGQIYh1ClVE1JSYpeyyTEbOAFZnkEgNDpJhuiNMrcMi5TEfmGA26jHxVUI4iwkbMwL9IREpsOmCaHNQ6jNstRNNgKZhgzqhhdxOMXo/Jky9SaWzjJi1cMUCaDmPGgCTW0FttdtRRVieLtNIVGnFMiww/fIFxpwSAodkUzMK17wLHcDgxeuJ1Ds2x0Z/Btid/2B/LkCFD3oShUDNkyE84mnTQNQ945alIDsOsYRhlioU70HSPJOmQZQG16gcoFk+Qpv03H1NoZGT8wbk/IE5jlFLotkkpnzJR0dARHEmOEquAM4NFpBTIKOSUITlNRkvqLGkCp5dixk1UmuFkNpplEKkEo2qTpT66qdOaqDHSPMNPPb/E+PY2TpYnr9exo4yOWSSnl5G6RWTbjMlR9qfjqMzh9sEBrDhG67WQWcbIvM22LsncEifkeczmOlocMikvspnMovUEuoJJ8QQj1We4xd+k+sP4gIb8wBFCIK/+/3vfXuT5jQEhkuN2wvLEfp4WZeydTXRN0ijU+HCpzYkadJodKgcnaaz2sabH8Z0CjXafNE1pJ4rADzGkxvF2B0/XCS2XTeHweBN2Zg9xxZtkoDsIx6Wvm1xJLPKlMqX3P0h28DCaUBSKBdJMEVkOYZzi/9v/BXvQxTJNpADbkORdi6mpqZ+s0qa34jsIObm5gPBq6+nXhgK/age50S3zpl2fXmnP/ZZdn+Ru6dMrhiBx/duvOGpuUvr0mpImpdTrw3wRrzu+63m1BfnbDxN+U0cNryl9uklMz8328mYdod7OMQ1Ln4b8OCKUotuuoGNwj7nIpq5TbTbQUh1fasw0V/nYhW+RCzbpS49LzhipaVHWdGZlRKQZDPSMZ1gijQRTYYhFQM48j92OifxtspYkZyo008BvHMYqnEIZeUa2fVo7++jlZlDhCubYF0hCC18zsYyUw52XqW1cYMQYUJVd9iydxm1I4u0LaJ01xoIt3KSLo5ogJGXRQeydhcuXGCRddmZPMmHEbIQBLSnJOy4fn30AXXN5u7d6udxBdD33g/0QhgwZ8h0xFGqGDPkJZleYcdF099oy06phmbVrmQiadIiibYTQmJz8y1SqD5C8gaPm2rgIDpUP8cLWC7TCFqlKcXWXyUKdn3uPYnHuGb5deg4hJfliHi/MCHJ5EqPEtwOX04OYrpREJES53XDWQ4mDgSDLUkRREsddDKlTCDxu0c5zjFPYmxeIox6mFqOnKQ2ZsqKZuHEOkjyHr3yMyVUTTIWnIO8PyIkEYRjo+T5tFAPDwk4GWHpCwVKIgqLnC1SUMAgtDqVrGJkkG0QkwetDlYf85PLAvhqepeNaOn4QMXvsIL/68GG+WD8Kp57H67ZYM/Lcpm8za4Q0dzoUZ+oIKfFOHAel8OMMz9ToaSa6UCTPPENdSmSthiFSMt3iGb1Gx/RojM7QSwWaaRAN+rj9AVq+htQNskxhGhp2IYdraiyHgtz8LLVHP0pufALL2rWYe5aGY2g/2on7QfA9CjWv1axu6qhR1wsNN+v6dH33pbd5POKV0qdXPTuvVDfJ15U+XX+Qby/75YYKruscNa91vryd9txCSNSbBBe/7pDedvbN7h/fdenTMKR9yI8hppWySA5NNZmmQ19oKF0ntVy6iYXoD0hlhzHnPAPTom0XkGYe6fuMBC3aGRh+n22xQyNfJkjncAkR1jakG7jhIlaQUSoLjJxGI4TA69LCobi4TGfiAN2mg2l72DmPNPW4dGA/Az0lN9gm12rjyT5TxafI/FXMzCVoPYM0AhxzgOaU0aMIEfUpBDuENR3RXyPa72ON1rm7Ms7lfoPl8gRu9RhjpkDXnB/1tA8ZMuR74HsWaqIo4tOf/jQXLlzg2Wef5VOf+hSrq6t86Utf4k/+5E8IggD1fbI/Dxky5PW43l5cZ/7a6/Gxn6dQOH7ttaY5RHGDYuF2pLTRtTxp8uaOGiEEf+nAX+If3fWPuGf8HjKVoUudA+X9vLDzDEsj6yxVm7i1EpW9E+j9mE9XDUIZgC44NSlJM2jTZ5Bz+eq8h65raJHimJwjCFP0OMCRJvnUhZ0ORBpt0+eC3KaNIpWgMsWSoVEKiuzrjmMMxkh8DUWKhca4NoZpFImlILJ9OkkEmkXfmsQxYkpWzA59svafEUqfl5aPsrL+UWSaETkGiRyGCb9TEELw4aOj/J8+egghIIkSvP17mat59N0CRq+D53dYywz27N/LeK1Es9XDHSlSGM1hzc8gdB1cl1o5j4miKDNM3ST50CMMwhgjCzg8WcIr5pCaZNtPaQ5iHMclDUI+UozplPajEGi6TqlUROo6edvg0ydXuOfwJOUPPkRhbvaaUOOaOq75ThRq3rhF9dsc4NW/vVlGza5tZLes6bWZvteLGNccNW+x1+u2yV5RaK7lulwtfXpdmPBNxrjp2DcpfbrJEUne3twJKVC8QWjz1ZKtG8OEb77qTcd++6u+ZkMBGUOxZsiPHWGmsLMEK2hyKn8fXpIgshRQNEgRYYJSUNHPcTFfYKG6B0vLMRa1eW/8DGMyZXR7DSPos+lBK22RI6Fn91nMR5hjXapOTMXqYQQJUeCgPXkLamsEtxkxfff7mdoOcYnJBj79no2olVhvb4LSyRINLVUowyDTdabrFvViD2N6HFmaInMndnOpoi6a1sKvGeTmOmyOeuiVD9LrnUHqRZbn78cde4Bu72Wk5vDd++OGDBnyo+Z7FmoMw2B2dpZGo0Gapvi+z+rqKisrK1iWxcLCApcuXeJTn/oUm5ub349jHjJkyHWUindSKNx27bVhFNE0+9prKS0O7P8/Mzb2s7sOG90lzQZvKaBKIZnJz/Crt/4qutRxDZdjtWM8ufYko94oWskl0RXdYJnLuUssC589WhOhpZxOJaYmuWBssKO12dEh0TRuVXPs0caYYByjH6MlAoFG2A3JwjxuYZYzSY9vRxI/yYjDkDhKeV9yhNsa9yNCjSxJCcIYEehMxHuJKOGHitSOMTMdPeyz2dVxZYIgZEtpbIUbSC3C1BRG3yEIUjRL0Td+oB/NkB8yQghMTRImGcbkBM6Rw9iGxp6RPHnHwNtaI9EMjr//g+yZn6Udpmiew/zxOtKz0DSJdF2KeRtbQsmUiIc+wv/xqS47rQ6elnL7TJn79lbRpcSPEpr9iHw+j1KKew+Msd6NGUQpumFw4s47MQyD9+6vUctZPHhg1+lWq9Vw3V0XXM7Ssd6Bjpo3alH9Ruve/Ptot6PR6xNprhddXqlPUq/f52tLn94qTFi8us21PVwTPK4ep+At23O/PjX41eN+XenTda9v6M70tjJq5A3C0Q1vXR37FdHoWsvx60Wb12z5ymcgrvY//260llfCmF+3qVK78zYUcIb8iEj0HFoCIst40s4xnnVxBk3MbpsoU0jNgNTDGcTcs36Fy/lptCaUehpjg4t8PH2a6cEKji3QDMgHm+zNmiSqz78/dDuLez1yxib5tIm5qpPGCc3cHOWFHSjuJXM1RtUFzGyA6CmyvsuJ7FsMGmvsFA6zlr8VEUfkjCmsMKGAYr65Bl5CaowQRy4qDYkaCaEqwkQZ5/0HaGqKfG4/Sdyi6s3hGC6OM02n/dywlGnIkJ9wvmehRilFu92m2WwyMzPD4cOHOXv2LFEU0Ww2cRyHPXv28MlPfpKRkZHvxzEPGTLkOl4pcXrj9yX5/BGk3FUldM0jTfo0m4/T7px8y7ENaeAZHnkjz0xhhr986C9zYvQEA+UTyJBy/Dx18yJTeszcIMOxFNtpTBwrIpWw7YesaAkX6hFikLKcb5OTVerRKBkpaSJJ3TptYxTlzCN6TdqDkIFU+HqXfYUE0dAxUwtDaRhI4kGM6GXMrRVRYUaoV1iOHPZn+yDust1TSNXHTFPWwwxhCDwjRtdTQr9HlOWZzke4wydN7zg0KZBAgkDqOlLAsfE8o0cO4Fw+T9k1sEyDogEDr4C0bY49OIWy5a5oYhlUczZeuUB1ZpIXNiLunKvw4JyHJ2P21Vz+y48dxdQlFc+iGyQUCgXIIJ93sHRJ248RQnL0yGGklJyYLfMPPrifgrP7M3jPPfdQKpUAKLkmjvEOrEJ+pfbm7Wat3AR13fuvy6hRN6zwan3Sa0qLXhV/JKjsreWPq+E0rwx1oylH7BYkXXdOr3SEem3XJ8Xr5ZObOWrETQ7o7bfRfpM+2tft68b23G88Xpb5tNvPoa62J/+uJBX5Jvt49rchaH83o94cpaCzCmn8/RtzyDsWL/Sx/R6aXWCya3EgXiBHGyuIMVCoKGY62+Rs+AAf7D3HeuYQbvloVo80ElS6l6jl+lSq2+StiFK0xf/h/G+i2S128rDQHOVAcIqHNk8y2CjhRymBZrBeqHO+OsJL579BXtvAKMVMNgx0e47psk5ZG3BRn+Xx7CgiStnudUjNHPS2iBuCDUwacQd/K4TYp3+xRdLViLMeac5ACYuiO4NhVKh4k7i6i+PMMDP7txkdefSdlX02ZMi7jO+LUFOtVqnVakgpMQyDn/mZn+FDH/oQx48fvxaQKOU78EJ0yJCfGF6Nh5TSIU19trY+T693Btj9OR4MFojj1k23zpt5cmYOKSSPzD/CeybeA5qgkbWYzFf56Vs+xt/+wHE2NmpYpiJXSNnshphKZ6MfEKUJX8ravKRvkmUpvpdjJq2wnXTIbJvInmC/LDMa2biNVSpJk/XBWVbMJWqrawhlQAyZYWAKA6lSMk2Sj6ocas/yhajJCxtjHNy6iwBBu6djpDZGZNCLTYq2wNa72HFAGPYRosCj8otUovUf0vwP+WHimNq1cGEhBJ+4e4YH7j5APvapuzq6JnA1QVKugWUhNcFOP6Ket3BNnXreIm8b5FybM42Uv3THFB86Mspo3mI8p+FZGhXPZK7m0vJjiiMTFHN5HMei6BhsdUMQu6LRK0Lq9f+/0t0J4OO3T3BkovgjnrEfAG/Q0eiNuFmYsLjubzfLqIFrRUjX/na9SnC9g+S1oTdZlpFlN8mBEWLX+fHK+te5Y15f+nRdh6jXVjTdhNeZjMTNxai3055bcL3w8sYZNTeKXFfn4w0+lyja4aWTv82l5zd39apMkcbZd1bCJniD9twKlr4NYfftj/VWqAwe/9fQ++6/x9M0JU2HWWXvBpykQV2tUfSK7FlXlP0m07JF3sjhKIWd+hwLn+XRpc9yJDxHlklq6SI57wpZlqdnVhid3sIpxYxY2xhOQqW7ii8jvKhHfbxNYrQ50FikZ48jlWCgoNTtcqXZRITLdI0cphFTaixQ9IoUPZdb6jDIEtpBhlQ6G51tWnGepHUBhUV2KWFTWXRbgsywyDITzdTY7FymHewgNBvXGiGfP0rJruHoDprmMFL/MJY1fEA+ZMhPMt+zeqJpGsePH+fEiRPU63XuuOMO8vk8s7OzHDp0aCjQDBnyY4am2cRJk27vZeK4eXWpYnnld+h0Tu2+ek0ZQs7IkTN2LbRCCHSpY5sOS/EK08VpZo4dZ3a0TMXK00t9UmNAP4owY0le30DTAh4PLC5pIaQ6vqYwRvfjExCLAY2qYqNionkWs6ZBubNC2r1Cy7AQq+sUvSK26dFLwZTjZElIJCVO6HGoPYXrw/12Dr1nEChBYupEnmJnp0o0UEzGGSJ0KL18liwOUZGOsGJ8bWgLfidSck08S792w1zxLMqjVcomzBdNdClwLIPIdsmuZsWstQImSw6uqVF2DcqugW0adGIYLdjYjssETaaLu7lGtZzFTMXl9Eqbf/XYZfQ0xTANJsoOl7Z6GJrgrTpqCyEYydvkrHd3VtKbPfFV3KQU6HWlReJV+8sN417X5uhqQMsrnpqlpSXOnz//muwbcV2Y8HXHcNU1I14TJnyjFnXj8WTq9Z6a15U+cXNHzdtqz331WG/WXerq0FcXZ9woLN242vXf9VkWM+jt0N3xAWhtDDj9jZVr7wXBynefO5SlEPe/z+4XBb1NSKLveoTLly9z7ty51wz79pxgQ36y8I08jpaQC9qMbvV4dPUShaxBXfawNUlvbIrItilnATqCUhwwGlyk1FkhzXI8kcxi2edZLE3j5VZJx0vITEMqm1uDLUa9J5jIGqR+SkqPosrwRcqY3+PwpMOhUZ1NfRSrF2Dpkjk3gKhFTe8jLIXh6BjKQhtE+JYkIUErFTGbPmkRIkeSuEUiLceS55ImTYS0UGi4Vo19e/8RRbuGe11ziSFDhvxkM1RRhgx5lyE1B3+wiKa5ZOlu2HeWRXQ6zxPFDZRSu2VR7WevXZTnzBw581VRw5AGdsHl5J5LzBf3XO0uJXjvvhoIC/QYd+QSQodBMSCxE7rlPM2SyyVf0SZEd6YJPEkv7KEdvJXu3FG29YB9CPJBg9xgh342zbK2nyTNY1oaIRmWNkIYDAhVSs6sUrHGuH9pCmdnlHI8ix3tI3YlfqnH09aAn+rskI9DPL+NilMMkaD3HVZLRQLN/FF9DEN+gJQcY1eouW6ZzOeZyBn82v2zCCHIqQit12UbC6UUy80Bs1UX19QouSaHxgo4hkY1Z2EbkomJCT726KPUazUA6nmLqfKuo+bcRhdrZgZr/z6mSg7nN3vvzE5O3wnfQXLtm5b6KHVjuK64SfPoV/b1Zu25EQiVXXu/2+3SarVeuzOESnfbc1/d5pXyrThMQF111FznUNk9xde4dRS0+hGvNey8tvTpFYHqtTLVW7XnXm8HhEn6qnD0Bhk1SinW1n8bqYWv7v+6QwdotVqcOrUr0GdZSJK0ydLd8w8GMY3V3eD5KNrhypXfQqn06u8MRdIOSdvhTU7yJseuUogGkH33osr17PRDLmz2IGhBlnzX4/T7fTqdzqsLlILzX4Co970f5JAfK9xcmYJXwYkblLVNvASOyMvMJ8/jKsWgPsFicZr/9tZ/ypZZwIn7BNMmkStZTm1GFzdJY8FKOotUiqq9gFKSUmJxuHsRl03mog1iP6QRS4puyB7tNPqRGcaPvMRUzqdpVNDikHbtGG7rswQ7z8PORZTmYzgpViQ4smXg1yOUWUTMHyEUJlka4xcUraMPEEiHBRlBNsD2DqEJDV0aGEaFidwEo97oj3qqhwwZ8n1iKNQMGfIuQ5M23d5LlMv3kqSvXIRvk6UBSdwCFBsbn6HbO31tm/niPHWnfu21QHCwfojTyVnGc+O7y4Tg0VvGmamNIGTE7cd0zJLFortFx1knLZkEXpEdHNZH62y4IVe8PmmakjVahIVpdmSEs7GA5tWoKYdDCSSmh55CknXYcdvYeoE4y4i6m+TMOpaWR3l5upcKTKYFZDpDJ5fR9izWbMGRoIemBEW7x7GZGFfP0GOdZmcvUgQ/zKkf8kOi6BrkLZ3rb4GlZWHPzlDI7QZta5rG/tWz/OuvXebMepeNbsh40aHgGNTzFv/F+/dSdAz21nNoUlAoFJidnb12c/2hI6M8fHiUXzgxhWvqaI6NtC3GijaXt/tDoQa+59Kna+kyQt5YCiRvUnKkbtae+yZhwlffi+KYKH6Nu0NlEPvXhBqlAAFx0ubkF88Q9pNrjhqlFCpKr61z/Y47QcwgSl43AdcbgaK1VZJG44YYn+uzZK6151aQ9mKyOL22zv/nsfOcXGy96pB5g4yaOA4ZDF5G16Jr46bZrshy7Vi7XVZXV1FKkWY+yODaccRxRrsdEsYZSsX4/iKKlCRKee4LiwRnGoSX26+Z8zcwo2QpxINdB8xrVgiCdeL4rbNrMqWuOpXg7HqXz7+4igo735FQEw5iOtv+NSdRHMcEQUB7y9+dlySEp/4N9Dbe9phDfjLQ45SZnQVG9W2m3KehdoFMaJwMpnEJqXfX6ZgFMumxoxvMyAFjWpPN6TrldkABl82toyz0SvS6e8mFVyBLGFtvcCx6Hl0MMLI+iYBkYpILkyOU1Q4yZxOLbdxsG1+TKCE57Y9gDBbRNBsV9hEiBaNJ1u+S8wWhF2MUDnGlPs1XTY10p0eUC8lm7mJQmGEpl2dLlnm628czvGuOv/sn7ufusbt/1FM9ZMiQ7xNDoWbIkHcZmuagaR7l8ntQKkGphCBYJpc7RJL2SJIevf554qh5bZsPz36Yg5WD114LIbilegt3jt5J3shfW+6YGrpmoouE982/jwdm70E3NPIe9A3JYm6SReHy9VKRFb1NQwQYms6IUacdGow5e8g219gamSDzLD60cZHx6JvoWYav9ellA0x0pCExXA2RKYQwSDYHCGFQRCALHo/P9LmUK9D3crgopNIojjvMuMs4BkjN5ezSOIP0HZgN8i5HCEHRNig6xg2VMMK2qf/9v49wnN0Fus490Qb7KxafO71OL0goOLvbOYbE0iUFR+fQWJ7Xeh6EEIwWbEYLFn/9vjlsQyPJdrvl1PM2620fU3+X/3q9Vib09kJx37CE55X3X6MGLF65QprE115fDWSB1zpWrnPUXO9nWcuVWChUX7MnBSojihoAZHqFDMF243OsLnwTlb7SAlyRDRIG315HpdeUmt0RlOLKzgA/Sm8SJiyudq5WNBtP0GmcBAQLnStcbF98/XxcPeL+M+vEq/1dYSFVLO/0efzC9nWOIQV+C9ZPXde5CV588QVazVXgqlAjYbXt8/RjS9emKQxDwnDXFZOmAzQjBXaFjyRKeXK1xTcvbpNlAVG8g0pD1KlP07i0TNwOyaKUzZ0GWXZVvHplKl578iqFsEf2+L8miro3CHObW5+l03kegKAf4/duXh71VLvPE80u/SeeoN8LaPcHXLFzhCrbFViS8KbbXc/WUo/zT29AGpH0usRxhD8IePZzC0SDBPwG7FyAoPOWYw35ySJublJobFH3X0J5EIxphFqeOAFrkDG+uYOhYuZPn2JLOtSTBg8tfp1assV4o0MY21y8Ms/mQNJu6/Qa86SWja25jIslirkDOEZE7Dl0x0o4WsSI6HHH5T9l75lVku0FdCMjciY528qhBxpaaS+Z6WIYoDshfTuiO2pSGn0/9p4HOeuvE9g6eksSmC2kVSOSLpdH5znvvIcnN8/g6M61c9SkhiaHDwmGDHmn8C6/khwy5N2HlDaTE7+I68zsPmFWKWG4ievOk6Y+QbCM686RpoNXN1LR7oX2dUzlp/iNE7+BFK9+jQjA0iRFmVKxy5TfM8VvfOwf8/P7HiXV4EqScF5FLEtFMrCpyjIKRS4u4acKR9YQTp4nDo5zqeBAt81AT4ilwLa7TF0+g+fqKC1jUKmSEqMkiG6EhYYwJZams6z6bCDIGyFS6GSxwQVpEqU9RnKKwC0TWS6GNswheCdyZKLAXXPlG5YJKTFGRxFXc9OEplHKO3z89imeutLAMTVyls6J2TITJQchBA8fHuVDR0bfJBxWIKUgb+u7wcFwXbnU8GL5O+kbFJw5w+CZZ17d9nqRDUGWpexsf5UsiwDBS6eeR8vCa2vcrOvT9aVPQgjEdY6MNWmwKV+TDaR2xZ4kboOQrNofpJ8J4ngbhY/KILu6L5VkqCQjG7zi5nh1x5e2+7RSeKnno7KYreXP0X/26avGm931An2D0GgBcHLzOa60r1zb/pVSryTZDd7NejFps0v7j/8TcZKSUx0WN3aIUkUqJUoIaFxGvfhp/vzUKlu9ECEE3U6LJO0Cu/PUGwzoBDErC51r+lUYhkRRtOuoSfoIGe9m1UQpYZhSLm8SRgsE0YA06ZPELfTTv0sxPkfSjgj8mH/1pfP0w4Svn9/m8vbgBsGtn6Z8pdEh9n2ysEt45Vkuf/b3d/ed7JZRJXGHJNkVb5ZeanDqK8ukmaJ/9f1XeKnnc6HRZue3f5teo0V74PM7rsfTpxvsfPP3UGf/4g3FPnX1M4sGCeEgIf3qf8/J3/8iwfLLhGFI0I8I+wHp0gUUgqW1tRucR0N+8lFpTDR/BJ0YQw/JLB03Z1PE5/Yzbfa2t8l2KuROXSC1bfTeDoV+CzfcIZ15hKnpEcYqLtWiwNS7SMtEWRblpIcVtBj3HSypcA2Dx+UIH+o9Sz5qUe+9hHIKxN02ht4mHr0dCqNYboXQsUisHPlgjXrDxeyVSSxFffpXUKbH+fVnuaM6j+xK2vtMOn/052RBwFrcYCy/h/dNP3jN1TxkyJB3HkOhZsiQdxlSWkxO/hU0zdmN1lQJUdzAdqbI0oAgWCXnHbpaFrVrv19a+vd0uy/eOI6Qu5bb19zF5jWNn529j6JVRK84VMo1CrpB3RBYBuRGNDoqwTB1Dg6K+HpKik1Gho5Bb2KKQ4ZBJdYg7BNKRS9LcJ49RWXlEnqWkuiSQNMZhG16/Q756Qk8p0AgIU4E7STmjJ8wppskyqAXCy5JSaKl3K1/ldRpoRkZhXj41PSdyHzN45bJN3dLCU1HFgoUXZOJosPDh0eQAh48UGemshvGWHJN8rbx5uOwGyzsmhoIMDTBnpr3ltu94xHfWXvnZHWN6PLl6we4+qdCCkmqElYWf4843CED4iBAfyUa+LqMmteWPqEUaaZo+cm13lFKQUuB/5obcUGGQpElASBoxjqpUiRpC8PZLXNSgFp5hqSzwqpskIbp1fKlq46g7fMsL2+Rr97Ov3h5laWv/zuWT/2/af75H91Q+hQHTTIVEqcRp3dOk6r0BlEpzQIuXf5XpGlA4ifE6zv0vvIYvh+xv3IS0h38OGWp0GVNNsnCNtHCFb75rZe4tNUHAVHkAz6pGpANGjz39LfohBG9QUwcpxSDASKUWEFtV6iJJUn7dvy4T9sP6PV9erlL/I9PfZtLmzukmU8S7CDCDqP6y6S9kDBIudCIiTPFUwtNnn1ugyTMSLu74k8jTvnXF0/z+Fe/Qc+v8OV8GXX2LFGS8K8++yJnn3mafqxzerVPmGREQcLC6R3+3ZVN/ptLq6QKWpsDgkHMahDRCXy+NNej0WnT7Q/o9uGFz29z+itPQnOBLAzpP/44WRShkmQ3TyfdFdU6X17Eb/jEfki28SIvtF4iXHoa3w9oBW1+/1u/Q/crL8HE7fz502fx42E3qB8mURTx6U9/mgsXLnDy5Ek+9alPsbq6ype//GU+85nPEIbh6xodfCfIqTLB+y2k5ZBPl0mTNrrmM+L1ORJepJ5d5OWdOqWcS2rbjA620IMu1SBkqvMkd+SbfML5BrP5LfKlNgPHpGGMIpIUO0gZffbruOSYUgH/w+Xf5MD2M9hJF9eKaE8fZGeyzsh4F9e2qI0oohx0DR/f3YumCwrnB8iFkJzfJtEcQqdIO+owV6iT2RV0O6L3/IsQxbSTLkWzyC8f/mUemX/k+/xJDBky5MeFd3eriSFD3oW8KqwYCCRZFpHEbQr5ozSzJ/H9JVxvnoF/hSyLEEJjp/F1crkDbz02kNc1DhcqNzhtXE1j2pJsmSlG3SXe6dJUq2QcplrI0091ZmWGyBVZuvNDzHYCiqGEzEcZFZbSDLtYYbRsM9bqYtbLiDgikRqhSFH1PeRknpiYIMxwPZ0LAdwvfAaRSWAYrJs51MBAJBFBrke1WEKXb94Cd8hPJm/WRejaOpaJNT+Hrmv8k0cPk7f0t7Xdzah6Jv0oudYy+fhMmbJr8PqY2HcZb/N+SghBFoZk/m4+yms/h91w3ZQ4bRIEnd38lTDYDf69ugZKEYuUnhrgKsW55S3Wly8zOXeAl9c6/PFjF5kY2xV2Mj9ma2OA4b2uBRIoRS/bLR2KFGQCpN5H0yNUAGGm4MIXCfNHWQqglpQJMXmlT5R68n9mtDVPJ38Xz2x3WL78ZazpTZLODkJlNIImqXJIkg4Sk/XeGo+vvMhhdWx3+zhD9RLSYkzgr/BsY5uFXo8H/Q7hxg5+q8uofYbVzggtv46gzn/3/L/hH7uPoD3xAn68hwu376E32CFJIoSIiAdbJKf+EHHpNH3jF+m111l5IWNudZnIGiPecsiSjM7JK/RX7+VZ589ZyvaxaHWxbEVjXafV66BkjZXmZWZz84jVPuGFbzJwHmSnn9DwY1Z6AYOTTe6dLtL74hXsh6YITclKb5WLm5c5oNV4zBuQ32wSPH2Sl5+7xIw8Q+vuD/EfT7b4n8b7xJ1VoMHi0gbd2iHSLOPbn7nMUnvA6THJhwsB36hss8fv0BrEFKkgozJ96wPEfo/gyiqdP/g08coqxtwc2UidpT/+FvY9D+KdbTIY9YgHPlJsU4qXSG2H7nqLuGuy2Vxgs3svg4P3s5OcoR938awbnXlDfnAYhsHs7CyNxm7poe/7rK2tsby8zOjoKFeuXEHXdR5//HGazeZbjPZ6pOaQEIDpsWD3MZIOZJI91iIH7c+x7u5nqtqhmu3lrFznXrlIlisx2ugxEf8hWvIhsu55tCShnGvg9/NEFDHiDRr7DlMPy9BdQxou460FErtEknbRtZjeyUU6dYuq5XJBpOydWGJ9sc1AZGg5BzQbe2WHXsnGTju00gCtMIanFG6uwI5loUgJXJtiX8cybPJWHv21rsAhQ4a8oxg6aoYMedci0DSXJOmQpD1Ms45SMUGwjGNPI4Qky0LCcJMgWCW5vhTqDUeE4wWXWefGbkplQ+PuooOmJ6wLjbS1w1OVp/j09Ap9w2DdhCSFi2SEvoPo97AxIe6hDIuUhOX5Obr1MZKwSSRNuoOERAYMxAA78xBSI5E9tFRjRo1gk1JKc4SiQmKWMROP7eVb+VrrPtaWD+Joo6TS/gHN7ZAfd2Q+T/Vv/23QNMquia59978OqzkTz3z1gvnRY+Pcv6/2hiVT7wquy4tRcfyWT8GzKEIF/vUDXDeUIE1DorjDcy88ToYgjWNUmlzXllvRUF2eWH2O6Lk/4NIf/zeUXv5dsizjcycvclf4BEIplIK4E7LZDvCzjCxTtAfRVUdMSqYUzc1tks1NEpXQHDyH6YRoWkSaKOIsgzgg2ThDHG+ws/J5vrjWZDPo02q2CFbP8tHRgFbBBFMiSPmK9jFCPyFL+/zLk/9PfveF/4047dKKdmgFbbRY4OKQZRnJxoDwbJM0i4mSHhe7bc5kCdlOm2CnwTNnrmCpLaquT7rTp7uc8OLOJltPtkj7MeOZzxMLF/jU2d/D0CW6ZhEHDXqrL2HEGc8c1pnOPYb4yhfw2y0Wz12g30gId3ZYe84muZjB+klQDVbokctuZb63j5bf5rzv8IdPf4aeVuGptfuJl8+weKVFpx/xF89e5pmFJnqqCDoRz1xo8Fv/839ge+lZir3P09G+TNxr00sijE7A8h9+HmN1ge7mOhs7A8ZzPqfPL/Htl5/iK1mPj23/ISLc5MrLDcx2yPpGn1ojwT0foKTJht/lpcgmiO9EaNAdjNJvFHj2j0/RWl5m48mv0bl4jsc+/WnWHnuarXPbBNoig+0e8SBADrY4Sof2wGGQ+vTDBsQpC80Kf9ExWUx9fvvrX6C9uoJKh86aHwZKKdrtNq1Wi7m5OQ4fPsyZM2eIoohms4njOOzZs4dPfvKTjIyMfMfjS2mihCAzbS5YHcIgphln3NJ/nu19ebTjZW47uIq3J89FMcae/lmCcgmrtUGnbmDsnEL2G1hJjHcpwOl0SAwHPYlojo8R16YRmUIZLtuWS5KfIM6ViaTA6LvgtmlYFX6ndw7/4ld5xg74av5uzNU8pcn3Y3Z91vMeW1JwsbPA8+E202mGvu8gT47G9DNYqWg4xSplu0LRHGbsDRnyTmco1AwZ8i4mlz/C9vZjpEkPwygCkjDaxDSrCGGQpgF+sITrzpOl/luOhxD8pdEy0/aNQs20bfK3JqtgJggjpGL2WC9tseFu0UHx/LiJoUk6msAxdIKwhy1s1KALukXTXSLRfHxnnguTozS6Ad0go7d9kUFOo9y3UIlGP9iimBV4cPN+7tGLTO18iCvhw8Spi+2X6K+PMWifwGjpHDwzifStH8zEDvmxRwiBtO3v2kVz/TijBZuKZ14by9Qlxvcg/LwTuNYIKcto/P9+m3Rn5803yFIyf/c75loJ0O4rJJI0CcjSgDDcDdGVKFSaXC1muuqoSWIWFxbwX/gTHlRr2FpGN4hp7Gxyv3geeVWIaW+3aZLSW1xi88Jlfuurp0kzhUpCEgXui4uEX/kqtchn0X8eze4iRYAIM3zNIYt9VOMCBdXAXf0sd3zmBRYfv8D/5d/8GafOmeSaXZqmYN41SXXBl7iD5czDty9hGikvrrxAkLQ51T5Dgs0euQcj0Wh3eqg4gKyHP+gR+U26i0/SyUGytYUfNnix+Ts4xha5ZIPe+QtsX3qRomEQZg6JqnNEG7CwtUIrbFLPF9D8EYpPbLC2pFjZeBCz12GxcYEzZ77BemOJuLGOrq3R+7P/O+20Tmrp9PM6H3vxG6SRTRybOJnkqeWn0Xe26HbXCPU8UWrg06ZmnGTWXOMbpx5DkwJHSjqdkM1eB6/9Mv3f/030/kXa0TqDk5uISGNE0xnVJrm9nBD0Oqyut5kyA648/1Ws5CU2kFSWznP79nMsXWxS6gRYJRORZOhdjY/VTIKojx8r7GiMoNSiM3WJZeGz0zqNXt5ALTxP68xJes0cAy1Ha63NZ2o+jXafqNMm9buMRDonc/M8axrE9hZGZjFA8OLSJV7OLvP0yXW+9i/+H/grKz+wn5Mhr6KUolKpUKlUEEKg6zo//dM/zcMPP8xtt93G1NTU1Vyw7+67VSAhTUiFQrN0EpWx6Pgs3XqYYP42QjsjCJcos81PrT5HqXeZltUk1D3OJz9D1LpELz9DLulTznvktYxYF8jeFmYQErt5hJUDKfk922FrY4kkD4lZR+9Z9O0mz6cGGyT45giTi5LqeZCLJuMTj2K4NsueznMzt/Op83/A//Dsb7LP72PuP0Tz4DQDTK4UM4xKhYpTpWAWvs+fwJAhQ37ceHdfSQ4Z8i5GCMFI/cN0e6cJo22kdCgUjqHrBXS9gGGUiOMd0qSPZY3cGC78RmMCmhCvu/mVQmBKQIQUrEV+6T0uE7kxTKloATsatN2QVhyQFB26booyTeh2cITNdrTCIOoyE5mMZxE7foa08kQ7G2wmPUzfxMp0YpngxjZH2/s43tgPm/uwxWE0YVHLCniTkwRJkaLpkUsGqLj3g5jaIe8y7pmv8sixYaDjDUi5G7qbpgyefpqs33/DVYUQIASZHwCwvb3N+fPneSV05hVHDVlMmrZQQCGXe7X06er3TZwklHIlLvbLdLL/DPQSLy7vUNMGeGqAVBlBFPHFp79OoKWkcUx/4Qx7zP+FK+efph8E+KnAbgeMbG+yf2OTp8RtYMXoMsKVgg19gmbhIIXW83ww+yyzxZD85TbrXzlHY+AjtiMWFkYIRMZMq0lo52i6I3z60P18amuUe+MS5mBAELYYyCJ9Csz7M+S6kniQYqTncdKvsbO4gBi0qa98k8bIRbryWSJNx4tfwBEBtdIFtOVLjA80appFmOlEcZGqf5ZfOP81jARm/AuUNws4z6+zuaozlV+lurlBsLGCsTNApB4qmaNu/zlO5wwaJpkZ0iFi74UFJhb6lJc7eFoPs5dR/nKMZuQ5ryaIMo2OVsHmRf7r/L/F9F7mLy8tUBj0iKXAikLsEQfx+CZRt0srTkkbCSIWJGLAc1N7iQsuZr1KGCbs6ZTpan0CzeLh7jLlXpN682usDb4C+g5WBnqUkaVtStYyVpZQkSn5UNIxtlkZ/yJ/5p9nsXGGytgm9qCBWHuex6bO8/Xb7iWotfiPpQNsSx0Z9OiYFUJ3jEsT83SrY+AIdga30wsz9raOk8iUzv4qK6MV+vowGPyHgaZp3H777dx5553U63VOnDhBoVC45q75bgWaVxD9bcLOEt2sQ9HOIWwHv2SxwBLiYgiZIBqsIeQF7sqeItLHaHsWi+Zxdrp30p09RDs/RbHXZ96yKdsw8PsQdDH9AZHrkGGTBj6x0JAodrQaHXOS7U4Hf7vAhSCkIwSbjRxJnGdkZYBMI/TSCNlYnaYDK1PHudxZ4O8f/CscTkAz84x4kwxEkbN1UPefYLY4R8EaCjVDhrzTGQo1Q4a8i5HSZnT0Y+h6DiF0Jid+iYMH/q8IoWPbEwTBKmk6wDLrV4Wa774LhiY0SrqikC4xUyoznhvH1jTaliAJMi5mLRrpAMMqMdAzUsuAXh87syh6JQgDzExDVwGmW8DKV1Ak9E2wDYe8YROYEivRcRMXsX6COCxhqDIFLUc+MIiVS5polJIMK2wisqGlfcj3jmNqFJx3eXjwaxCGgUpTsn6feGODLHp9y2WlFGm7DWl6VajxQSkWFxdZXFy6apS5KtRkEaQOUg7IlKJcKlG0dgWaRNfIUMRBn71ze1nUDxP3LFJ7ktbak9xb7kGWMonPmUaTRrjBXclppMjIvvXbLF5+ihdPforfeeoUWZYgo5hH1hc5vHiJVpjwfGKxmUW4jqT64gWeuTBg2drPlnaIZGCg2jHN/jbHjfPszy2QiTxuGrP3pccYiJBilPBSfYLAcdGjCCtsEQwUW53byJTF9LZi/6UN0jgh3b6IFjfpbWyzk9l8xk5YjvPs9DfolmocbZkYLYeXkpBquE1RGLiZJFaKNBb4zQZj5y9gpxrpSoC7UcSOFY6uU3VW2NvtMRIZ5FSBNJkiCvKUjJhB7JAoHSl9XKVR1Cxu+8o3cTZ6WNo2A7GDNRghWb+dl1uHSZUkkAUupwfIRAMZppTX24gopW8mBKnFmn4Ce6CopXnipACxhDAhtDY5ORvTL+bR9gtaZkxB2OzEFvcZ53j/+c+gFlMGxhrPNi7Q9hwMP8ONoW9F/KewStO9wIjXoz7QKOKSJRYz/RyOrHE2uovVbpGgt8FZeZorIiVrCw4sJ3Q1RaYp2t44KwWNaVmiRJWiVscKS8QyBStEJ0HZefKHIwznrR9SDPnxR+THoTSJL3rYho5WqNK1oT3IkF9cI/Uj6MFO50l6NZ9BaNEz4LR9F3ZhnJ35OTbGDzE72KTY3yFOU7LzCVumxZJVxU8DBos9Bhc2OeSWMXSNtpnRzXqsDjoUvmwS+wEqTZHP9jgvZjDXGpgM0EyX3tw4cblA1a7iGi73T7wHT7dBt3ho5oPcdfi/RozMULjvAX7lyK8wmZv8UU/pkCFDfsAMhZohQ97FCCGolO9j755/iBAaQkik3C3hcOxJ/GCFNB1gmjXSdPBGnU/fFrrU2Ms5Zow+4944+0v78XSDRUsQxymTI3sYLVcpuSaeMgiVQkmJpbtYlUmkrqNci0yLwTHpSQuVc+lU6viRwkoyerpiVFXQDJt8Oofh6WAYFGUOVzmUrHFyhkVezxF4Homb//5N5pAhQ64hDAPSlLTTIW02UUHw+pWUYut//J+I19dBaqgwBKVYXV0lDHc7L2WBT3DyeaJei1R5GEZEkgQUCwVsqVhZXeVFucOLqxeJPvtHVHM5NF0SKkGkaow4S+T7G/SbI9y6/k1OLZ2jGqzy6+f+NXd3n6ZunOWjfoDorPB4s4/MeggUwWCAniTYA8G6+AgHog3KhR3m1xO22116Ai4H+9g+54I0SJMWx7QFzFGHLF6mtHmJ+sWvs5p1ObKxBDIkcQR9zSVp7CF7uc7WZgE3TMmv9HHCgJOXl1h//k+RKqPpelyIAtbTFk0/T7/lsJnPs5wOSIIqJ7e3cAt9ND3gdl9RcHskekI5MKi1Iu7KjRCuRBjr66R5B3QP29pmwk8Z1ybwPIEbBYRjOluVHF9OH6SbKoTZxogyoj054rJHr+jgMUuvd4KdkZ9ndDDFoNkmUxqBXaTXGqWbQE6Vie0yiTDoux1aMz2q2wmm5jIVF5joujhFsGIBZZfAsDnbKrDv0ys8snqWpBsxHUtIUix/k8GGSZK4eK1ZHu8YEGbUooR+mHFB/QJ3nTvK3edepoRO3Siz1ZpjZ+UWSqUHcLRfojvxQba1HMKI6No+WwkcXFnD7kf0DI3fsgY84QbsabQorKfUkn3MbEmstEu+u8atwTRHzxf4dudeGv4wUPgdgdCR0mBrxAKjjzJd9ExQCR9BnG6SdQZYWRUDGyU1qFvY5Nm/NsDxbDyVZ0Nu8d7tL+NtvcAT3gGMVLKjG5w38rQun8ef+TBZvcRkwUczEywSxOoKa8Kni0YYDJhMDGao0hmtkF/vok/sAd3m6TtdNmbKlO0yE94EnlsHu4CQOneO3snRkbv4z275W+TMHDkzNwwSHjLkXcBQqBky5F2OlCaOM/26ciXLGicM1kgzH90okmUR36ujJgsuktcFh6uHeXTPoxQMi8u6QugS4Zr81Ikp8FM836BjKBLLRDk5XGsSJXXalkaPGnFioIKUzLXwxRhdFaFEhmmaVNIiHRsKaEihCNKYMatGDg8rMbktb5PTXDp6Ds3zvsfZGzJkyM0QhoHKsl2RJo7J/Ne7ElSSEJ47B90uFIsopYiThHa7TZLsut3C8+fpP/UUg6RPP3VYTq/Q6nwZ17bRu1t87i/+grWXVvny158m/eozGC+dxdxahimXXuLimpLVFUXznKDUW+OR1jcYN3e4JGc5Eq1giIj57jYTBETlCuAjJJiDNg4pYwurmFvj7O+cJ9H7jG/FWKlLM+7z4hpoC1voUzWu3HMrB3ItQk+RO/8FJl98hvlLXexQ8tcbv8+U3KKi93hv6yUmydO5aND1HJx+jzBsoTebFJ74AsmTy/hWlTVS1mINN+0xYWxRps14XrGBQZbayDAjMxMouEwtd+nmA5RKUbaOTBSVxMHICYQVc+rOo0SayaoTYOgZSh1hx7odO4nZynX4bJqwoHJgDxAyIJ95XKkInvvQzxGY4Bgw2j6CjPLk2iV2upJM6qS1CiKzWRZTmEmewCyRSUlX+CiarE28zNb0CWp+xG0DD6OcUs2KpBrgw1yrzcrhv8Hh5TWMnS53ZZf44/heQquEcotMb5SYWS/TG2QkQUqhO8BLbCrxUazOCAdjC91W+PYmOT9HzhyQmQ5BYrFRPEZgjvKJcyX2xQ5irU1RnEP6AV0d+n6OdR1y559j9sUvs5JTpJWIEV6gvBlyZ2+MsUBjeqtALng3p4K/c0iyhJ3IZ7tYIhE+qbBwegks9LHn95GtNfFqhzk6/V+gZ5LUjakEh+Cps+TyGoWRB2jriifHHiGauJeL9RPkkwGJtNhRGr3cGpv7XiAb0chj4LsRjaKGvpVhOha+DoNBh2qsYxfKBJ5Bzs/Ijc6BZpAWK7RNjbJd5ljtGJpugVsFqSGEwNAM7pm4B00MS/GGDHm3MBRqhgwZclMMs0yS9kniDrqeR6mU70mokRp+4mNKE13qmJqJp5vsmSvRUgrT0ZmdKLKnl9LTXZa9BN9yWDJ8ji3GSKXRJUFTOk6YUuv2adSrZJ5ki3VWtSZGqKHFGik+vUyR6NAzdnD7Dpq00U2wkwxTmDQTSRQn378JGzJkyKtIiTAM4uVljMlJMt8nC4Jr5U0AyvdJNjcx/AA1MoKSgjAIsCxrN49CCcLLl1ETIwySHTb9mC/uKGKlcGwbuhvMjo5Q/9Mdjq5ewW21SP/4jyiffJFgT4+z6WV0XxA45wn9lJY+yYeW/oJbe99mewtqWZcLuVleqr2ffBQjgxaXihm4NjIMyacBpSDi577y/yW2i8yGPaYsD106JNLnRHgRJXV6pSKT7hXO610ezxukbsQtzQtsHhvnYD/HdHKJW4MXOexfZrp3hWPOixybWSLOS7ykz9j2IqW0z8TSRUIxSmIVGfR6iIHJjNCp9zpUkzbj+gZ2prOs+cymLsquse14lB4L+VNrgoWcQ7+so43mcVs5hJ5B3OXS6AYvWg5/aCkuyG269n76Rg3ShC2zxUg0R90x0cwmmjbFkfVDLBUEUe8c1aiDmymmGyG2ahDFLiI2QEj0nEYxH/OieSdGaBJjYpoZQaAxv9On2LlEYE4wjcNYZ4A/UsEKJD5dblvwOT4IaSYem6N1gp6g0m1Sbzr4xcOcm/h5cs0CeWkxn4TkCLDDPmavi9vKkJ4G3h4Wiouc008z1phh7sWvoTfO0/VXsGWEntS57UyOA+s2lXYb3T/FlrtKErb4md69lNbvoHzpPMcbl4mUTyFaxw4WQJjU10ep9xOmghTNfIt/60N+IoizmFW/Q5M8sRLEWJjdDM5exr3nHtR2H0c38USRUFf0vIj0So+cv8webwWnfh9RMsX/WnsUpVkU4mdwRMDkls7EhYC+59NLLtHKDRhdXGHdUzzdb2KtKebyRTJdIuMEzxxjWwuINIVdHUGf3AtAzi6yHTQ5UDrAXzv610AzoH6EV/4Biqv/DRky5N3DUKgZMmTITdGkjUAQxy10bVeoUSr77scTGhJJ0SoiEEgh2VOYIjQk0tWpFyyEpSH7CadsnWXhExomXyxs8LvHPYxcHj9TyEwhwwg58Fks5AhlyKAOSzWH6awKCBLpEhUS1izJqbrBRG8KKSqsVwSt/AALQTcLiIPw+zdhQ96QKIr49Kc/zYULF1hcXOT3f//3OX/+PF/+8pf5zGc+QxiGKKXesoXzkJ8grnbVihYWMOdmUYMBva99jdYf/RGKXTdN2mqj4hjRbCAcmzhNCXwf13UByFRGvLRIUoRub412NGA7DiEtgJnyZO1FqtvreEGb6WYTrZynk61BucPljd+iv3kBqzHOqNmgUZ5ECwZEcYEL2i30upJC0uRKbpI/c3+ByE94pPM1tuwWmq2BUrhhm8b0Leh9n9Puce7ZXkIWUgyl09ATxo0Wl+p7ebk4zpH2Wf5o5H1c0i2efuQBSnd0sY+VmcqaCLvKJ059gV/7vf+ITOGW7W+iFzMaVoe0ZlHvLFFUHYQeo/SEvTspP/WZb/Hxr8aUOgXuvfIi3akabVtxpBujnu3zvmYFiybPHBmwtjfHvSvnGdDn0oSBNWogl3fAtmmkJSLRIRQuKZI7tzK2qdPTXAJNgrvKgc4o/cRHNts4VzqY8TirtTJenJBrbpF2EqqtVTaNS1i6z14zvHq7KCjKJYIkTyU0sNI+pp4hfB17vcn4Zp9a4RIl4z1ogWK5NkK1V2ZHvA+33aHBXpKKSbkuyUybtj/NvoubXMq9l7V4ltAvotUSshQKySamEePpAbONhFrjOcJeyhJP8f7OeUpNgwnjIvl+k3aWo+JfQsZl0sChIH281ho5f4Vn5z+PQcb59RL5i3XmCwnl8YDpjVVGLl4kbXQYkJItDkjjhCBJSI2blO0N+YnDT3w2w4Dnuy0GWUonVcSGTf30OrkH3kvpoUexdi6A38SQLj07I/r2GfLTKcn5c9CNKf+nNcw0w5caF1rfIBiZRe9mJM9dIDtdRESw1fNR2yGNvE4Q5fB2BJOFEkrXcDIdL5K8MLhIJBXWxCRatQbA+6beh6EZOIaDZ3gIzYL3/SMw3B/xzA0ZMuRHxVCoGTJkyE0RQkdIjThpoRt5lEr4Xhw1AoFjOFSdKkLsPhk6Xr+FVpLyyLEJ3n9wBGFpeMdHKM8XCZOY2DCJtDKnHcGotZdUmQSGTigSUm33Zupg4FEszVBIyxSFBRp0EwtTC7CCBIuUMiZaGPF8b51z3gJmFJOYCUIMH5X+MDAMg9nZWRqNBk888QR33HEHn//851laWsI0Ta5cucKlS5f41Kc+xebm5o/6cId8nxC2RbS0hDkzS+b7xEtL9L/xTUhT/BdfZPNf/UvMmWnSzU20TofzhsH2zg6O4wCQJin+xjqqkpCpFrEriERKEOc51XqeQf8KzjNP0/upcbLlNq2D+/nSHQ5Pj+bwL2wz3ReEXY3+5TG2DZNF36KzFrF6GrJYYvTWyAUR38zlWMrXmC93uSfuYOgxhh7jhDsktsPKxDEqX93A/cY5vrxPkCYJG3aFemGb/OEcV/YeJZUpC+ZerhTvZ2+0wmRwmfdtfR2LJkFawdMinrsr4dvl2/hC5VHWzSq3+g0uPnQ33TsPEOTL5HIadthkbFHxlTtyMG5zy5Mt5hfO8tJkkdOuwfyGxoGTITNXMl4oufgli1Y+z2F1DqX5PHviKGZR4ays0XZmYM3iI19UeKpIrHSsnSaBExPWKgg3x1L6JM1+BSfqYG1tE5k5Nksz7JRvZzM/gr69TOxH5NUW3ZJPu7iC1g4gTYn8LtFWhzsvWcx2XLSkgS1CjMBkPOtwuz9gj3uatJWnLQyeqs1Qaec42z1K3/cJZMbieMplcwa3IOmHJVKrwHZSJ8AmDGsktYTQDNHMbURRwzO7FDcDSv4S890/wxZnOaoG1LIl1o86MNig7wvK6RVSlSMujTNbP4kTXaHal0SqQS40KSsb5abENYlWCZi4cAYj6BFqIf2CR5DLI2RAGscMxOuDsIf85NEMm8TuMZayMoNMYz3o0q4WSMsFtGqF8r734yUWDBqY3jRBrowVlbHtDTpbC3RaG9jbTfICNgp11tOAgW2T9CKmz3Xpv5ggjBEGgckat+JbOqFXITYlk6VRTszcR0HZuP0Uijk8O497550YY+MIIZjJz/DP7v9nVOzK7gELAaZ7ravdkCFD3n0MhZohQ4a8AQJdKxCGG7uOGr43Rw2AZ3jUnfru6EJgSkEzTimbOromkY5O8eEZJqd6ZAUDLeeRJAXW0pR+5lBKBD1NUF34HHudTXKazi09g1B5gKKhbZPIGK2XoVsKL1J4/gA/HWD7BbrssKPvIOOELPNJ06GD44eBUopOp0Or1cK2bZaXl8nn88RxTKvVwnEc9uzZwyc/+UlGRkZ+1Ic75PuEtGySjQ2M8XGywYCk2dr9s9EkWV+n96UvY+7ZQ7KxiVxZ4aTjsLi8jA1kgwG9/oC1co5E7yBkm4EKKToVVuOIpfVT3BPqtOdNHh+BZKvLxkSRc0d1Fkoh2pJOJYrpZuucWdnkspnwhJriSWOOMM3Quj5Z6GP6ISee/Sp5pVHa6pMftNCdFN1K0Lwql5yMz8zdStJL2C5IvjTiExgWFw0bc6TD2NgS7YKBnWySqQpBtof97TMsVo8S5OcxtS4D5dGLPPJGgxV3ms2dESIkezSb/fFlxC0WK2OzZA7oSY+sZ3BrzkPN1oiyArLT56vuKrGjoV/OWJm1kas7PGkXqWsOV0yXS6pLYhsYQQHdb2H2elzs7KFRP4K71sZbHXD3qo5eEHRrTZoqYmJlm33dHnPOaZLCCHqrzXqxgtJynDh/B7JVgPyAihFiph061hzL41+lY5pkumBZ2STLV2jYBZoFk8szIXbYIQsFdtCjsBnSzpeRgaSr8ixYCVpfYrcqjAwi/NK3aZXP4QejuNqAqJeRKY26+xK9oka4FRM5I2h2xspYAyNaQO8uYEYd8HewjTVG0pS2WWImfow/H3dZOFTHlgGrYUKnMoGfq5MrrJBaLfJdyUfUHHZrQCrymLkOp8fm+EbhfQSyxOLUHtbyZVreCNHoOLoDdgx5ho6GdwI1u8ZH934Cy6wijBHacURcLHPup4+hVcqUK/dRcA4g+luU9FkOeY+QmzqAWfU4u/YCT1x8DCfwKaG4kitSyY3RyQQBFerbISsViV4+xrqUBJe2yelVMjNPI+9gF2uM1GYpZhZOP+Ho3vdQtsqUf/EX0cfHgd1rotnC7DAkeMiQIdcYCjVDhgy5KUIIdD1PHDfQNO9qrsT3JtTkjBxl+9UOGoYQNOMET5OIq/tEE3zkwO38rb/ySSYffogg9ggzRWhL6qHCFgL/2L3I8UkcoVMIEtYShQRCqRHLhLYmeGzcJBUhmh/zlVmX5dEFzo08RV8OSLSEJFhAyWFGzQ8DpRTlcplKpcKDDz5IPp/nZ3/2Z3n44Ye59dZbmZqaQgixm0sy5B2DcGySRhNjbJSs10dFIe6JE/jPP0fSbGId2I+1fz9Zp00pjqllGRvr62hXruBfuEjQ67NTNMmEjyIiFA4z5Rl8M+Jn7YPcMRA8FZ/hdLJJv2CxmN/kcDCCm/cobMUU9RQlY1RJkTkGfmkOPW/StDLiQxPEZpHULTK3fJGpVo/8589jrp5Heiaaq7FedFk24GKpztmpaewHcvy8HEVzp9lMXf793v89p6u3clf/eUalySOnvsXBS2coNpf5YuV+NpwJQik479T4dweP8oHONgNL8J7RJ9iXNohlwomdb5Nqa2wcL1Cejwm9EnKlyUfji5wdnyGw6qhOQBnBhFsm7cXsnStgN7tkox/HFUfxi7ewtR0S2XW8uMq2MEGXKF2xk5/CMCy8ZptjzzUR1YsYhy8TyZCKE/L3vpVQqp1kpPgtMk9DRSZm0qe0Bt5OhW13m9vO/xHmylk0VcE2NUgkmisQmcUz8zkajknT0WjlmhjtdZJUooVtZKvJ02ISmQbA3eTbRZJcDaUg1+thFJ+iLb5N2M6QrXWSzCA0XNL8Kg1HEqQmLzsuKp/S0SS97jbN2OIW83PkRRPTjDny1YSlLY+taJmTTosn7nwfwo5Z9Mqs5fOEyqTX72G7eVRS4udWl7ADn76Ro7pxgc3mFFHzMDuVI5wcr/Onhyv0whLbTgXbytCyDBkOv5feCZTsEoeqh/CsCqXxX2GQSYruOBeOlliJt2lHHbBL0FnDrt9BfuYj1P/er2KOVZBxxsbWAmNxyMe/8SVWLIvD1SM0OzHN7SL2VB2/ppEz99PSa6TbPgVRJdEMNosGslRDcz2sKMPtJ9xx8P184uAnQNNe18hhyJAhQ15h+NtnyJAhb4hh7ooqUuoIoZNl31umy/GR44x5Y6+OLwVhpshpr34VCQRVp8rYyBRTf+2vIoQHiSBwfew4o5wo+uO3EJTyGCisIGQ+UiTAdmESS7hszut8PQlp0oQ44ynX4KxYpmU1kLrJIOkQtU6DeH0nmiHffzRN4/bbb+fOO++kWCxy4sQJisUic3NzHD58eCjQvAMRgJbLoxUKyEKBzB+gwojcQx9g8O1vkzYa1H/jN8g9+CBZv898qcwdWcb25ib6+gZxv0e/02dPcAbXcYmUTqB7TOWn2NEahPEy+QAWzJTJvE2rYrJSWObDzXvZ37+b3/5ISvtRnfEsxMXnturtjMaT7PV6eBOCJO/ia3l08kwog53cCP0784S5iN7eOtJWLDotBlIgcjrLh+6hrArsUQWuTM1TK+5nVRZYdg/zYPMZau0WH375m5w4fYrAzNMJ8+C3GTgVuprgtK5zxi6Q2A55XTDeuchYuohCoW3rXBip4Pln6OYnEe0O50vTNDnPSGmTbUdQW7Cxn4J2dZRas4nQwTAUX8nfh+tK7t7uM2e22ev0CGfLCFNDr7aIVYHFY7+IX8uh1lZJCl3GVxYZ0yXPj83RDkfobeTwGmsMJiZJM8FKbp3iyCqpF9BxAvRkm3S0xK1GBw+DTGSkZoquF3i2/l5WSgvEVpNTuRWark8mJa3yFNG0y6JbR1mSvjlBvjNCPD6D5uzgjSZMOx06wVk8q425eoWsUCLNV9iUBh2ZETgVLpoGewp/zpHCgC/vv5vPjh/HvXIFV1c8f3yE7t46M88v0R61iJIpzlySfOH2Di8eKnFudpHL2hZrm1tojs1W5Tidp2MCaaD0FD06zcvjT3Jhz7P0hYVXfoINexxTCRpWhqZ20HImujcskX2noAudsl1mtHiAgXDJjHFWe6v88yf/Ob/57G/iGzZ016B2AOqHOG/3SKqT5I0C4c4WHTticmWRTtJjujBDqGWYQUb9XhsjNyAbOU5/4hhZrDNd+nlSofPsLX30qov0XMazAvXYplCbYDr/+m6bQ4YMGXI9w6vjIUOGvCGmUUXT8gihYTtT33PY60fmPsKEN3HttXG1/Cmnv77d5K6jR6PiOpDAttwATeCkMBEJloWinOUQSrLXzwiV4puGYNXu0ooXIArppz6mkBzr6WiJpJ21aQYDttI2Ba2Co5zv6XyGDBnyBgiBzOcwJieRjkM28FFJgrVnDypOiK4sYM7NodfrjP7Tf0rtV36ZvO1AHGO2Wxj1Oq3eHga3dhgd/Qgv+ga3jj/ETH6GUMT42QpJp49bLWGbCRdPFLFdE6/f55YwR9XLYUxVsL0yIz2oeEVygY6x3mDinmWM0QFbZZM41Bjb7nCu5jEotgkqgvXyDOvTFt2aQU4F3KZWmHD3sDj3c/xXM3+d/3Dn+1mp38uEbzAydoBifwXRgYrqwXabRTvH+oaJnXR5snoHgyxgorfDF7zbOK8fYdk4TCI0Prj2eZy0TfHlAe10kpZZpJsrkxRs1uwChrQwa1t4eZ3D/jwdr8ZnH3iIr+ffx8Ar8Z5v/T4bTZ18cYCxLVGOojp5kXRM0qnYZIUObn+dZlpltVpnp16hXyvTC23ycY/i+ZO0vBxqwUBbcqlULpFqAb36Mr99ZD8LtyqCepHWnmnOTNXx3CaW0Ellgq/7GKnEUA53yVm8woBmZPD5/SapIdgem6RxMGPH0Gg44JfGqRp7CfOT2KwwWXyBxPBQqc+4tUQ0UYUMUt3EdzcgdxK/WMfMYCxZ5t70LJGCU+U6m/fOoc+HiFKN9aMHOPm+Ozky7eO0T9DaGbBmaqzsG/DMaANVUxithHbB5MzU3fzOA7/Gc/uOM9s5iyUaNJ0VLokmgRtyRkq0YB7P8MlyCY5q4W2fhcEwN+udxCf2f4Kj1aPozl4uxzY7wQ73Td7HvtI+vtl8GdVZBcMhUQm/dfY/sHjgISyvhLbTZqMkyHQNPwsYc8foaBFaLo9b7GKrLqFKCUyJVqlTrT+Aa+ZQagfp5NBrNd57VjK1AzKX+1FPw5AhQ34CGAo1Q4YMeUMMo4RhFBFCZ2b6b2EY5bfe6A0QYrfT0/VPkF4Rajzt5l9FmhCM5i30FPpmC2EpDATlMGMrdjkUzrCuaQwGCc/lz7Mx6vCtPQZ9v8lUmhAQYmgaezcS7MggjEPiIEaICKMySmB/16czZMiQt0DL5zGmphC2TdpsIiwLYVkY42OEFy+i5XIIIbDm5jBnZrA0iR3HGFGMOzJCIZphZvkj3D3zMzxcmePD9WPUvTqGYRMnbazE5f5pl7qrs7LXwcxXaf7MR0lqRd7bmMY1XMzaGGNbCfkLq8wYs6iNDNs2ODQ/wddnj3MurdGsjeBoFp8qugTWB9iKD/LNYydwXZ8RU+d20eXrI31+t36Yo0nCvn6fi4MK+XWPO/plJKPIwMbwFBeKEX/i7ONyYGNnDT7rzmCbKUfcDOVLcs02nzNmWMzXWbMrDPJ7yVRE5mv86fxDfEubIytkmG4MaprmAZ36QYOpnoHvlfjqLbfz2PG7kfsnOPDiEjPxZVjp4m/4nM/2E7RTnh27hafuu5MzjmD80p9gZ+v09QqPP/wIG/Uq23qBOGtTdFpkliKKdfKLEd2kRiB9olIAOUE5D5f2/yyFzESKGdb0vWgiJZExfdlDT1PusVY4EEoK3QJ3FR1OjMVIDT5TmGPztiJJHNFyHfpKUdRsGh3Fn+zvEtsr6J6DI030o22ePTiCt3WFOG/ycu0KHbVGKBymfEHbnsPrX0H4m+iiy9nSBNG4YDHZz4EgY6FeRUkPKSa4bWSb/nIev38KW/OoVxImVkPa1RLLdcV6YZrtnE7h7LcZ9zR+umfgBXvolDcpdO8iCcF1BiTWgNngGeLWAm39u/+9N+THCyEER2tHyRk5/tL+T3CkepS8mefW2q08OPUgTw2WScM26DZhErI62OS5XJ6BrtAbHYyJcbpaRJTFVJ0qm1kHWSyBU8T2RvATH6VpuIePIGybslWmioawCjjHjzP93/0LJv/5P0crD/9NDRky5K0ZCjVDhgx5Q14VauTV8qfvr03XkBJXSuw3KH0RAqqeThqnbGurmLflyc+XSP2E0yrBL0Lb1nhqtssZ7zlyNZuvj03g2w6j/YDAiNE0jfFEklM2dmZyUNbRTJO4OoKRvd7JM2TIkO8P9pEjlD7+s0jTJF5bQy+XQAis/fsRmoYwjFdXFgItSSj3ehhS4FQqeKnC6LmMemPc607jGg4TuQnm3/so+RdLFOQMkwWTnG6wqXpo6TzHjx7k4IF5jmUeplZibdrDXt4mXV+kPltF65vYWYmx6n7WjRppJ+CFuT2oRo5VvUbXfw8nVlyOr/w0D2/o7M0ViPbUmTf+A5c7fQ61axwKOrxn8SKFzGAsMjAqj+B+8leRBcXlfQWWwhzlvEsuX8fa/hQz5g63xw3KzZQ7v3WSLbOCqO4lPHQHK7n3EVYLyH7IX+Tv4kpSJCkpTMunsOqjTElYjkkwyI/ezY5ps0ZGoyDp6SmHcxvMib1ErkWnnGOwAH/ceS/KybM0MU3g2nRzOram+E+HTtDzcuSijKTxLW694xRP3zWPUjaNTCD6c2Q6DHoZR/wFZrtnCLIc2pkLKG2Cb9TrOOEOSoR0RBOdkFG2yMuYemLxSPUCM97LCAlC65BofVwl8KVGV/Px5DJJarC8fScr5YNYziode4r/bfR9nK2N4PZXGHRb+D2wzSp6qvPItqKxMkeQaBRFyqz+MiNVkwvW/SwM7sUIJvj5z/4JbXOKruNy5+RLjMs8KnE4vJWxWmzjaRHbYwaumeHJFb5NwCBqo9UzJno6h5tHWddLOL08QiToZsz89nnqnTNoYzq6M3RevtMQQnDX2F08MPkAD00/xFxxjlFvFHviDr5YGSUzXfzEp+pUeXrjGVaTbezmgPL0PjblAD/xqdgVGvSRpSLCLeOU9+4KNbpk9Nd/Ha1YpGyXqRo5sPIITUPL5dBKJcSw3HfIkCFvg+E3xZAhQ94Q06xTr38Y+MEIGoYQ5HUN4w0EICEE5ZygJASWlZK7fwJzrsCfTpn0DUF9skJgaXzTvkyue4DTXZ+zQR9f13DCgH4SoCEpxZBLLIrK40Db44ytE2gpUnxv4chDhgx5Y7RiEXNmBmGaZL0e7j33AGDu2YM5N/c6ocZwHB56z31M/8N/iJ3LYff7SMcBBJWlfZiDPPvL+/n4B38N9cl9VH79P0fPVcmbeVZUiCtKSCF2b4bObZJXe+jOVhmUHFS4SeV909g41OUDFOK7+VX5AQ6tLBJIycVmmfdnjzKuj6GJPhf9jPPzf5t/eHAfj+79KL9861/lvx8b456NhNt2Qv7aZ/4Arx9iOAbZkb+KNnEU49Bh2ofn2Ts5yZGjDaz8GI6KKearTGx0Oebdyl2jI1TKeT5Xn8DQTXxng7g6RdIKGFDlRKGGdfQ+dKPPXRcuM6/GeGHPbaSPPoqllUgNA10zWXZqrB2u4OZzPJbbw2Ckwr49E9jCZDr0uQOJ5g8I8yU0y2fCEQhpYCqBlUpceri6JMoOsj41w8mZI4y6q2TaGFnzMH9//S/Y119jfnUBo9MA9zL97g4PtjrMqwG6ptAJuV97Gc24wLxzFkf3CU0TpevUCiadJEeqJfRESsducsF8kUr3GcLM4YL1AMrV2OuVWVdVOnYJ123ilBYpd+e4LT6OIQRzMaSBjgCm1ToFKyVQOoXeHdy/dY6RYo2FO0Z4tnQn/6XzJPfNKP7pBw9zS/82rEDwuHeFJz9ep2kbaH2LnNAILJ2B49Fx21xemySPTtR2sdFppB027bNcaAU4dpPSfETJGl4qvxN5xeX7i4d+kYJZQBMaf+PQX+Gb1SkGukkv7rGvtA/HcFiIN5nt2bgzc6xVBVEaU7JKSNdFlkpQnsEpzTKIB2Qqw8gXQQjGvTHG81NgFX7UpztkyJCfQIY94IYMGfKGaJpHvfbhH1jgnSGvCjXyjccfr3X4B2V4ua2jSY34SJ6v+9vc29PI5fLs7ytay+PEoUlhQtHnHJmuIZKQKIuRsaKiSRzlMiJGcJXHueIoh7QNpBhegA8Z8oNG2Db5j3wY55ZbEEJgTk5S+3t/F/QbL0FKn/wkWqmE5nmMbG0xWFxCTkwCUPnoJxCGgRASQ7OQs1WMyWmMpRKeGROyyvzEHqSUu5k4p1aoRffw6G0HyP7xPJ3/8CmMagFputRLD2PWx5g1cnR0jVBqrCG5vTiLG5WIdlpcuvA48w//TWYdGyEcqvZDxEmfzcYKT2Y1nInDmOUies5AegYyN4J98L3s6afM5+a56/h70B87RS50sO//Dai2mfAL7Hvffh7ZeoovLEp0L0cyscq0N0Vppclou8vdfopXvQdLfpXawx+gE38R4R5k7y23ESydoaBrTNdH8C0L7yO34BgODcvk9PEJ7h9ts7m6zV//8z+i/Au/SivLWJ8ukRUSTtw7ST3t0dou4QQxRVdQXe2Sq+bxikVq3U0WYwdNKWzlUIkbXNHyVBvPIhAsuHkckSEzRdlMeM/Y/XR3Vqn2zxB/6G/wfO8xZrSMsvcQW3bEZe9zLPg2cdThtsJDdNTz3HHv3ZTmy+w522SvzMjpBv/5xAf4f20I8l6eSw/NIO0V1Ob7EJpEojAOlPnMxVs4kZVxkgjXMjEti3xks6la2KpG5x5J1Pd4qGIyOPhxLHOGDzz5Ub6Wnmc7/iwq/iUuW/uZiSzqI/sxdtr06yPkijq5tSbFvYJiz2U5SUAfMDg6T7u1gyikdGoucRxj28M62XciQggEr15/lOwybpbhZzGNoMGYN8bP7v1Z1puH+Fbx09x3/Dhb+SXyaQ/XcNkzeQzTmYD7P4m98W3acR+lFJrQQMBDMx9E1E+AW/0RnuWQIUN+UhkKNUOGDHlDftAdCTQBZeONHTUAttMjDNtIrl78GBJTl+wfK2BkJmMjHtlakZ+6PSWoPssXVp4l0e5DRSE6EsMyEJ2EC1aNn+r8AhUtQHkx675OM9Io/kDPcMiQIcI0qf2dvwNX7f7CMLDm5m5c56qA8wpzpRJL588jH/rA7s3UDeUnkrnZX8M06xh6EceMKVpF9k7u3X3XdRGGgV6p4tkl0nvvg0YL4bq7XahsG61iI10wTQtd0zB0E6fokT8yTd/YT7B8Ftd8tdxTCIG0NUJH59a5cY783X9MsJ3iTOcQmkS4OvI9f5fxP/5jRsqTjHpjZHaReXcUx61Suv0A1ShDWBaO4eAZHm5xDD9ewM0d4p5slXLXZ9DzGUn2Y7lj2KNH4cJp9uZHKOYsjt0yxkfqiinp8dBIk+3i3WxqdU5hsOdCiveowaDbZe/yDrW5CaZXWyQfLCAvGswcrDF5oUO9M6CfaCTmXr62M8Yjjxxh4QsDtoIGf9G7jbtcDSM1kMkAJzeJU/RRus6Sk8M1BKnuMDkjieYmeerZPhv2e3HG5tlZeoK9wmZu/CG+rj9NqWBRsGt0dZeFTLDm+fzS9Ail6aMULn2V6nSNLM1TEpO0Y41DM0WsyWkunDqDOX2Uu2dyvLy2gXNnDX9tk8tTv86lb7xEY/8e9HKdVBq0TId0YLHHKvHRo+9DSJ2cN48C3vPRA1xYj5AXFfFgnLBbxk5SJkYLjBAx9rf+DjNak/BP/yUjH6jTbbp88fFTuFbGRLHAju0jSweQ5h0kSfKD/PEY8mOE0EwKCJphi4bfoGpXKVgF8h/9JL0T+xkvTVMvTiD9HXJGjr/50/8lRqIQbg7HzLMy2AABUkoEAlu3IT/21jseMmTIkJswFGqGDBnyI8OWkl+fGcV8E0dN3siz0F5AoTCkgUTg6RqHx/IYmU65ZHG0Ibksv8nXXvozbh29n14nwNQ1LN3Ech1oQyfVUV0TEW1juR5pIvDsoaNmyJAfNEII0L6z8knpumTt9msEmlfHs+0JlFIYRgk3S6k4FTzD2xVUHAetUkEWdssNpOdR+oVfgCxDr9cRpokQAiUlpmUyVnCZqdewXQdrTxFhfYB4I49r3XjMWskivnOMqiaojxRh5LrzA9AMTNPGu9rRRVh5/ur8T2O4oze492zdJm8WmJr8q4yOPIKemTwyH3JPP2Ph/FcwzAKl8t1oThU3TrGcApqlUbpvgqmlLSoqY7+4wsjI32PeGONp5wyVRFAo347gJTJ3ncp0if/d41+icORhnilsYZsmv1zVmO1d5oV+HbldZamk8+B4mUb1ECN7O3iySgWDxUCiwi63TxxhJiiykb3EjpvnQyMHMFZG2HeHw5LjEieC9pHfYHJ0jofCOeLuJrnCGHffeYQPHj/In1/5M44d2s8XL8GvvedhDlcm0YXH3//pezg4AufPFygUJsiZPmOuy/2523n51DMcGi8wt3ecpWoPu+JRzll4U/s5cXCHx2bvJnYiLgY71GfHSJYkY/Jn8Kr7dp0RYtcfUZ/J88nKLI+tFMlbHj8VmphWyiHX5mfPhEzdN4pmhtTKFSYO7kNI6DobfP6FJSYLJS46XbTCJKZdGAo17yKEblMdOUbDb7DtbzNfnN9dLiW3j94BwGRuEkPulm3atndtW1u36UU9NKHd4NIZMmTIkO+WoVAzZMiQHxmaEOz33txS7pkerbC1e1MmDWC3S1TNNTEKLgbwCdPk//bkN/gbR/8GpmbxxeWncSu34doOVktDK1rk4oy1aZ3NnTZ9o4CBQsrvrd34kCFDfjBI00LaNtJx33Q93SjiqIyqXcUzdm+apG1jjI0hr5arvCKkKCnx3vsAWqm0u1xKnHqdWtFjdKKCZVkIIdAnJtDn5nDNG4UaoUlm7hwhjdUbug1LpRL5fH5XMLAKWFYBXlNiOV+c3823kAaWtav2CKDqpXDX7YiGYs+ef4AmLXL730uaNa6dx+0FFzuVCKdMaXqMol3k76STJI9plOv3MlF9CnM0QRgGk4MuJhq33HILuq7zwfoUKlzC1QSb9Xn2/NIvYns53GKeQ/d8hCOjFubJLQpCQ13uIU0Xw3ERxSKx63JodoLa9l5EbgRdSnRNojkOUkgqTp12NI5hGdz78EEQoOsaE94kv/CAg2tq1+bsrn1jpKmPrueo1gsc6OmMmjqatDk+ZXDkyAgaEq9sYhj///buLjaq887j+Pc5LzNn3uyxx+8vgB0TG2NeCoSXRZRNqmi3C6gvQknarBJVrbbtVa92L3u7972qetH7XVXtKu2uehEtq5RIIRFNIQmFCbHBJoCNjV8Yz3jGM3P2wrGBmhjbGTPH8PtIiLeZ4/+cOXN+5/znOc+xaU9G6Ny2jb3924lPz9HJHBcOXeL4jsMU/3OE+thezN+sY2MMnh0iGU6SiMapMQ6h5jBdHTXc66jDDdmYcBgrkcBYFsZx6BvYx793bKU9GcP+WgzLmiVuaczlM8V2SXUcYnB6kMt3L/PSlpeW/mtx+z3YcpBieXnzLmJHyMxncCydWolIZWhvIiKBFnNijOfGSYQSWMbCAWKOTdi+f6vv5mg9cTfOq72vMjg9yP+U/xsvcohoJIZ7A7K7LA7eSfBf/v+R3tpI2BgSJYu5Yqm6L05EHs1xsGprsSJf3sg1xhCPbScSyfNa325qwwsn1cbzSP34X7BisYcfD9R885sP/Yz2n/6UaC7H2NgY8cWRMAZqIy6x0PJDpGhNeMWy9+/fTygUWvhLy24Ix5c9JubGlppKD7Ism1hzPXP3JnGdGjAQqt1BoTB6/ySxNgZlD/Z8D0JRjDG01kW5HYtguSH27Gpmfv9xrGiUUPdzeI2N7Ojr+2JUk4txwsS27aDTSpA6MABATYOHG7Lp6klR8EL4I2OUr5bBjRJ+/nlq/vXfKESbaG6IUnfknyDRgnXXEIo4OO7CftiLdOL7pYWf80UPq6++70vXkzEOrluHZbk8F/VoCbtYtkdHfQ2d9VGKBUPvoXYcx+Inf/8c9dEQjm1xstGj5JdoPnqU1kgL46lp7C95T1zbJenVkYjEcLF54UQXXswlUe8RDttYoTD2F001gJqIy0Bk4TKVf/i7/VDeyz7fYOkOPc+Ueq+eX134FT8Y+AFN0aZl/x8PLf9Mw8L2li1miTorN5dFRFZLjRoRCbSYG+NO7g4tsYUDaAuI2RbOA5dL1Ufq2du8l0QoQdyNY1xD2AtTm6jB5Ob4NHWDI20HeHtwinK0lZF8gefz4MxrSLtIEBnXwU7WYh4ziWs83g/A/tr7+wNj20R27nzEQh++IMEYg5tI0BiPk0ql7s9HA2xLxaiLhdZWszHEHmwObTm8pucDmKiDCdtLzY7m1FF8/35D2RgDlg3P/+NSg8GEQoS2bgXLwj7wBrax8YHakyfAut/QxtiQaMapG8CfLC4tr3tv48IlY2Eb77kk21IG90IMQlG8Hbuo2dFP9OIgcceCjgMAWNMztG2vpbUnCUBNYoCaxCPW+ZeuK5utW3+C48R5rTVG2DKUcxHCoWbAxg0bOnrrAGhK3N8GLGOwjENbvA2/7OM2RLBi7iN/hmd7HGo9SGTGw5RtvLiLMYbth1uwHAt/ap7wc88tzZ30cH0W2JYOkp9BDZEG2hPtfL3z62uapy9kh8gVc9SEanTpk4hUhDJIRAIt4kS4O3eXiHN/roq4/fAExA2RBn72tZ9hG5u4G6fklEjUJnhh937G/nyRj/JXKO+NkJvO02aSzBU8pkvXKfiFarwkEXkM4zg4tcmly5e+9HEVmPDcGIP9wBw6xhheOdCJvcLcWatc8JqfYkUc7AcaRI79iGbR3yzXiscXJmu27fvNG1h2Vy0sG/b+M9HOr+OX7y8j5D38OC/mghcFd2HEjm0MNY5N7IF1FI66dO6oJ14X/qKktY06McYiFusGoO6LPkspsoXOzjdX/54aSLzYiRV5dKMmbIf5ft/3+fPQMOXi/ctcQ/GFdeo3N1P3/e/plFoe0h5v5+dHfk7MWT7qbSWevTBHTVusbYMqE5FnjRo1IhJojuXgGIdEKAEsnIC8mEqQdO6fNFjGoia8MHGo53hEE1EOHjpIzI7hRFzeufUnJj/JUOs4ZItlZsoeia3NxJOPHsIsIlVmWbhbOpddvvSkuE51LndxW2M4dWu7FbQxBrOa9WRs2HEKa+FJKzzQAicC7sIlHI4x1LkOUfv+OqlJeSQOt66pzsexbQ/bXv1JrjEGO/7lo54Wmkw2jmtRMsvnIzPGLG9myTPPsRzqvfo1Py8RSjBTmNFoGhGpGF14KyKBZhmLpJdcmn8C4JsNtdQ4j76LjGM5NEYbiXpRcCzcqMexLcc4d+sc9W6MHXM3oDTPy9ueIxlJPqFXISJrlfrRj3Cals8R8TSzXBs7sbZLrlbNmPu/Hvc4NwKhhUZNyDL8uLPxoUaNMQbLMhUZ0bTR7JCN7epwVzaWa7sLc08F/yMhIpuEkktEAs02NvVePYlQYuGb4wd+PYrneBzvOI5jOxjbEI5H+N7A69R5ddTF29jf+TztUyPM/u9/MHNn7Am/GhFZjYXREnGMJnKtgi8aNe7C5aaWMexORHE2QVPmUVzXWpr0WGSj2MamLdZG2F55wnERkdXSEZCIBJplLOq9empDq7tNasgK8a2eb+EYByxD/HAr4ajHvqZ9tNVsYU/fUX7YnGT69m28eGKDqxcR2WQWR9Q8MC/YZuaEFi5/EtlIBkNbXI0aEakcXZwrIsFm4Ns9316669NjH/7At6a+7xPaujB3zat9r+JaLhHbpq82wc2B3YQiT8eJiIhI5RgI18CjJjLehFIdccqlcrXLkKecMYb2eDvThelqlyIiT4mv3KjxfR/f91ccUqrhpiKyXgZDT7JnXfuRB59TE6pZ+nPb8300d69vmSIiTzXLhhd+CNG1T6gaRHUt0WqXIM+IQ62HyBVzOrYQkYr4yo2a+fl5fvvb37J7924sy+L9999n165djIyMkM1mOXXqFJFIhPn5eXx/+az7IiKPU+mDnnh9qqLLExF5ahgDLbuqXUXF6KRZnpRURMcWIlI5X7lR47ouPT09ZDIZBgcHOX78OG+99RbJZJK2tjaGh4cJh8OcO3eOiYmJStQsIiIiIiIiIvJU+sqzq/m+z+joKLdu3SKZTHLhwgWam5vJ5/PcvHmTZDJJV1cXp0+fprGxsRI1i4iIiIiIiIg8lSoymfCOHTsol8u0t7dz69Yt2trayGQy5PN5WlpaVryVroiIiIiIiIiILPjKjRrLsuju7l76++KfPc/7qosWEREREREREXmmfOVLn0REREREREREpDLUqBERERERERERCQg1akREREREpGrK5TLj4+MUCgVKpRJ3796lWCySzWaZmZnB9/1qlygi8kRVZDLh1fB9n3v37nH9+vWKLzeoExUHtbbFsAtibRDc9QbBrS3I72lQ1xmsr7bR0VFaWlo2qKJnm3IiOIK8T4HgrjcIbm1Bfk+Dus5AOfGklMtlzpw5Q1dXF7lcjpGREZLJJKOjowCcOnWKcDjM2NgY4+PjyokACPI+BYK73iC4tQX5PQ3qOoONy4kn1qixbZs9e/Zw48aNii0zl8tx4cIFDh8+XLFlVsrdu3cZGRlhz5491S5lmeHhYQqFAj09PdUuZZlMJsNf//pXXnjhhWqXsszo6Cjj4+Ps3Lmz2qUsMzg4iG3bbN26tdqlLHPx4kXa29tJpVLVLmWZ9957j927dxONRlf9nFQqRVNT0wZW9exSTgSHcmJ9lBPro5wQx3Ho6uqiXC5z48YNjh8/zm9+8xtSqRTt7e2Mjo6SSqW4efMmvb29yokAUE6sj3JifZ7FnHhijRrLsir+YZmdncWyLI4ePRq4DtvY2BhNTU2B3Ol/9tlnzM3NBXIHMT09TSQSCeR7euPGDUZHR9m/f3+1S1kmlUrhOA7bt2+vdinLuK7Ltm3baG5urnYpD/F9n0KhwMGDB4nH49UuR1BOBIlyYn2UE+ujnJBischnn33G/Pw827dv5+2332bv3r18/vnnDA8Ps2/fPmprazdkpJJyYn2UE+ujnFifZzEnzGOu+Qz0BaG+71MqlbBtO3AfwnK5TLlcxnGeWC9s1crlMr7vY9t2tUtZJujvaVDXW6lUwhiDZQVv2qmg1lahbS1YG2l1KCfWSTmxPkF/T4O63oK6L4bg1qacqJjH5oTv++TzeQBCoRCFQoFQKLS0n3Rdd8M+70Hfpygn1i7o72lQ11tQ98UQ3No2MieC9UpXyfd9hoaGSKfTlMtlhoaGmJycrPpEY/l8nkuXLpHP55mdnWVoaIhCocDIyAi3b9+uan2zs7NcunSJYrHI8PAwn376Kfl8nqGhISYmJqpaWyaT4cqVK+RyOe7cucPnn39OsVjk6tWrzMzMVK0ugMnJST799FNyuRxXrlxhZGSEubk50uk02Wy2anX5vs/ExARXr15d2sYmJiaYnZ0lnU4vHexUq7bR0VGGhobIZDJcunSJ8fFxpqenuXr1KsVisWq1LdY3MjJCoVDg1q1bjI6OksvlSKfT5HK5qtYmlaOcWDvlxPooJ9ZXm3JCHmSMwfM8PM/Dsqyl3x3HIRQKbcjJtnJi7ZQT66OcWF9tz3pOBK89uwrlcpm33nqLvr4+8vk8ly9fZnZ2ljfeeKOq3UljDO+//z7xeJyzZ88Si8X45JNPmJ6eplgs8tprrxGLxapW25kzZ2htbeUPf/gD3d3dlEolPvroI7LZLG+88UbVuvXT09MMDw9z5coVxsbG8DyPRCKxNLHo66+/XrXu6dTUFB9//DHDw8N88MEHvPjii6TTaQqFAh9//DHf+c53qtapn5yc5OzZs3R0dHD79m3y+TzRaJREIsHw8DDf+MY3qlLb4k7/nXfeoa+vjw8//JCTJ0/y3nvvEY/HmZqa4sCBA0+8rkW3bt3il7/8JadPn+bixYsUi0USiQSxWIx0Os2JEycC9+2LrJ1yYn21KSfWTjmxdsoJCQLlxPpqU06snXJi7ZQTm3REjWVZnD59mrGxMT755BO6u7spl8tV76yFQiEaGhrwfZ9cLkd/fz/Xr1+nsbGRWCzG3Nxc1WqLRCIkk0mMMXz3u99lamqKixcvLk0WNT8/X5W6fN+nrq6OyclJenp6CIfDtLa2cu3aNXp7e5mbm6NcLle1tlwux65du3jllVc4f/48N2/eZGBgoOq3i0wmk2SzWSYnJ2lvb8dxHCYmJti5cyd3796tWl3GGGpqashms3R0dPDyyy9z5swZ5ubm6O3tZWJiomq1lUol/vjHP+J5HtevX6ehoYFYLMbo6CgDAwNMTk5WrTapLOXE2ikn1l+bcmJtlBMSBMqJtVNOrL825cTaKCc2aaNmcaii67ocOXKEdDpNd3c3oVCoqnVls1lu3rzJlStXGBgY4Ny5c5w4cYLZ2VlisRi1tbVVq216epo7d+5w+fJlrl27hjGGI0eOcO3aNbZs2YLneVWr7fz589y5cwfLsqivr2diYoJTp05x/vx5du7cWdVvNd555x2y2SyZTIZ0Ok1rayuHDx/m7Nmz7Nu3r6rfqA0NDVFXV8eePXsYGxujubmZo0eP8u6771a1w7z4+Wxra8P3fdLpNL29vfT39/Phhx9W9c4FlmVx8uRJ9u/fT39/P9lslmg0yksvvcSf/vSnqq43qSzlxNopJ9ZHObF2ygkJAuXE2ikn1kc5sXbKiU06mfCX1VztYair6YZWq8ag1hbUukC1rVeQa1u0Uo1rrE1j35UTaxLkz0dQawtqXaDa1ivItS1STlSUcmINgvz5CGptQa0LVNt6Bbm2RRudE5uyUSMiEhA6AFdOiIisRDmhnBARWcnTc9cnEREREREREZGn0aa865M8e3zfx/f9pYnAHpy13Riz9O++7y/dx37x8ZZlLf1egfvci4hIACknRERkJcoJ2UzUqJFNI51O8/vf/56uri5s26ahoYHBwUF27drFX/7yF0ql0tIEWKlUimw2yy9+8QvefPNNfv3rX3Ps2DFu377Nvn372L59e7VfjoiIVJhyQkREVqKckM1Clz7JptHb20t3dzfHjh1jdnZ2aVb8d999l2KxyNjYGACOs9B/LJVKFItFfve731EsFimVSpTLZfL5fFVvgyciIhtDOSEiIitRTshmoRE1siksDi10HAdjDI7jYNs2Bw8eXLqHfTabpamp6aHn9PT00NbWxsjICM3NzQB88MEH9Pf3a7iiiMhTRDkhIiIrUU7IZqK7Psmmkslk8DyPbDaLbds4joPrumQyGWZnZ5mbmyOfzzMzM0NjYyMNDQ3E43EymQy2bTM+Pk4qlSIajWrHKpWgjUg5IQGjnJCA0UaknJCAUU5IwOj23PL0832fqakp7t27RyKRIJlMagcqG0kbl3JCNhnlhDxh2riUE7LJKCfkCVOjRkSkwpTaygkRkZUoJ5QTIiIrWVejRkREREREREREnhDd9UlEREREREREJCDUqBERERERERERCQg1akREREREREREAkKNGhERERERERGRgFCjRkREREREREQkINSoEREREREREREJiP8HltmM2j8sYEQAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(2,3,figsize=(20,10))\n", + "colors = cluster[['cluster','leaves_color_list']].copy().drop_duplicates()\n", + "for k in range(6):\n", + " plt.subplot(2,3,k+1)\n", + " img = plotcurves( subset_zoom,\n", + " field='RESISTANCE',\n", + " row_axis='TIME_MS',\n", + " series_id='WELDING_ID',\n", + " select_id=list(cluster[cluster.cluster ==k].CURVE_ID.values),\n", + " noplot=True)\n", + " plt.imshow(img)\n", + " plt.title('cluster : ' +str(k) + '\\n' + str(cluster.groupby('cluster').count()['CURVE_ID'][k]) + ' obs.',fontdict = {'fontsize' : 10, 'color':colors.leaves_color_list.values[k]})\n", + " plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "id": "f50fab99-9231-410d-bdd3-1132fc98575f", + "metadata": {}, + "source": [ + "

    And if we plot the curves per cluster, we spot the curves with a sharp drop(cluster 4) and these are the curves we are interested in, i.e. the curve exhibiting the anomaly we are looking for. We note also the other clusters are looking more or less similar. By monitoring the resistance over time and calculating its derivative, you can detect any sudden changes or anomalies. Anomalies might indicate a problem with the welding process, such as a sudden drop in current or a sudden increase in resistance.

    " + ] + }, + { + "cell_type": "markdown", + "id": "9b99a7ac-6a99-4c9e-9ead-0f6d6e5c4759", + "metadata": {}, + "source": [ + "
    \n", + "

    5.3 Create the anomaly dataset

    \n", + "

    Now we create a table containing the anomaly flag that will be the target of a supervised machine learning model or a relevant KPI to monitor in production dashboards.

    \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "cec5b577-b0dd-45c8-8fad-fee1fb1f952a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAJbCAYAAAC2KKMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAAAv40lEQVR4nO3de5ReZX3w/e8vJ04JkEACYggJkqgovKIJhFdJRPStIrpEDrWFKtiWPoAcfECOywJ94DGhlINgqLwKKQJtFUEfyysVxMSAaHMAxAAKFYjQQIEAOaCJmfzeP/aeMJncM7lnMpOZa/L9rJW15973vvZ9jZis79r73ntHZiJJkqT+bVBfT0CSJEmbZrRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYb09QR626677prjx4/v62lIkiRt0sKFC1/OzNGN3hvw0TZ+/HgWLFjQ19OQJEnapIh4tqP3PD0qSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVIAB/0QESdKmrV69mmXLlrFixQpaWlr6ejpS8QYPHsyIESMYNWoU22yzTY/s02iTpK3c6tWrWbJkCSNHjmT8+PEMHTqUiOjraUnFykz++Mc/snz5cpYsWcK4ceN6JNw8PSpJW7lly5YxcuRIdt11V4YNG2awSZspIhg2bBi77rorI0eOZNmyZT2yX6NNkrZyK1asYMcdd+zraUgD0o477siKFSt6ZF9GmyRt5VpaWhg6dGhfT0MakIYOHdpj3xM12iRJnhKVeklP/t0y2iRJkgpgtEmSJBXAaJMkSSqA92mTJHVq/Hl39fUUuuSZGR/vsX099dRTTJw4kcGDB7Ns2bKGV9nOmDGD888/H4Cf//znHHTQQRtt82//9m984hOfYPfdd2fp0qU888wzTJgwoak5ZOb6n+fMmcOhhx7KXnvtxTPPPNPU+PbfqRo0aBDDhw9n5MiR7LvvvkydOpXjjz+evffeu+H4tnNtOxeAD37wg8ydOxeAa6+9li984QsN93HEEUdw1113cdNNN3HCCSc03Obll1/mhhtu4J577uGJJ55g2bJlDBs2jN12240DDjiAj33sYxx99NGbdaXzxRdfzCWXXMLnPvc5Zs+e3fB3bNX25rj77bcf73//+zn++ON5y1ve0u3P31xGmyRJHdhnn30YO3Yszz33HPPmzePjH984COfMmbPBz42irXWbD37wgxu997nPfa6nptupo446iuHDhwOwcuVKXnjhBebOncsPf/hDLr74Yk488USuvvpqRowY0a39X3rppZx44onssMMOXR574403cvrpp7Nq1Sq23357pkyZwlve8hbWrFnDkiVLuPPOO7n99ts566yzuPfee3nf+97XrTk2o/W/R2ayYsUKnn/+ee6++26+//3vc8EFF3D22WdzySWXMGzYsF6bQ0eMNkmSOjF9+nRuvfVW5syZs1G0rV27lgceeIB3vetd/OY3v2HOnDmce+65G+2j9WjUoYceutF7bY/49KYrrriC8ePHb7BuzZo1/Mu//Atnn302N954I7/+9a+599572Xbbbbu07+23354XX3yRK6+8ki9/+ctdGnvNNddw5plnMmzYMK644gpOOeUUtttuuw22efXVV/nmN7/J5ZdfztKlS7u0/65q9N9j5cqVfPOb3+TCCy9kxowZPPXUU3z729/e4ldd+502SZI60RpabY+otVq4cCErV67kox/9KFOmTOGBBx5g7dq1G2yzfPlyHnroIaDxkba+NGzYMD772c/yH//xH+yyyy488MADzJgxo8v7Oe2004gIrrjiCl555ZWmx/3qV7/i7LPPJiK44447OOusszYKNoCRI0dy9tlns3jxYt797nd3eX6ba/jw4Zxxxhn85Cc/YZtttuH222/nn/7pn7b4PIw2SZI60RpaDz30EMuXL9/gvdYjaNOnT2fatGmsWLGChQsXbrDN/fffT0tLC3vssQeTJk3aInPuqvHjx3PJJZcA1ZGv9uG5KZMnT+boo49m+fLlXHbZZU2PmzlzJmvXruXTn/50w1PP7Y0ePXqjo4Vb0pQpUzjttNOA6sjllma0SZLUibe97W3sueeetLS0MG/evA3emzNnDoMGDeKQQw5h+vTp69e13wb631G29o477jgigtdee4358+d3efyll17KkCFDmDVrFkuWLNnk9uvWreOuu6qLXI4//vguf15faZ3r4sWLe/1UbXt+p20rVdrVYOpbPXk1nlSi6dOnc8sttzB37tz1R4RaWlp44IEH2H///dl55515//vfz+DBg5k7d+4G32vr7Pts/cnOO+/M2972Np566ikWL17MwQcf3KXxkyZN4vOf/zw33HADF110ETfddFOn2z/99NO8+uqrQHWkrhT77bcfw4YNY82aNSxevHiLXk3qkTZJkjah0ffaFi1axPLly5k2bRoAI0aM4IADDlh/OhRgxYoVLFq0COj4SFtEdPjnU5/6VK/9To3suuuuAF36XlpbF110Edtttx3f+ta3eOyxxzrd9uWXX17/8+jRoxtuc8opp3DCCSds8Ofqq6/u1tx6yqBBgxg1ahTQ/f+dussjbZIkbUJrcC1atIgVK1YwYsSI9QHXeloUYNq0aSxYsICFCxdy4IEHcv/997N27VrGjh3LPvvs03Dfnd3y473vfW+P/Q7NWLduHVCFSXfssccenH766cycOZMLLriA733ve5s1n9tuu43XX399g3Uvv/wyZ5555mbtd3Nt7v9O3WW0SZK0CXvvvTfjxo1jyZIlzJs3j8MPP5y5c+cSEeuPtEEVcFdeeSVz5szhwAMPXH9qtLPvs22pW340o/XoV+uRpO4499xz+frXv873v/99fv7znzN16tSG27Ue1QN46aWXGDt27EbbvPbaa+t/nj17NieeeGK359VTWlpa1s9rc/536g5Pj0qS1IS2Fxq0tLRw//33s++++24QH4cccggRsf4oXOuyv3+fDap7oT399NNA9b2t7ho5ciTnnXcewPplIxMmTGDnnXcGYMGCBd3+vC3t0UcfZc2aNQBb/PYjRpskSU1o+722hx9+mNdff32Do2xQBct+++3H/fffz+uvv77+9h/9/cpRgFtvvZXMZNSoUZt9Wvb0009njz32WP/EhUYGDRq0/qKOW265ZbM+b0tqnev+++/PbrvttkU/22iTJKkJbb/X9oMf/ADY8PtsrVrv1/bVr36VtWvXMm7cuA6f69lfPPPMM1x88cUAfPGLX2TIkM379tR2223HRRddBMD555+/0TNLW51zzjkMHjyYO+64Y/3tP/qz+fPnc9111wHwpS99aYt/vtEmSVITJkyYwF577UVLSwtf/epXgcbR1rruqquuAvr3UbY1a9bwrW99i4MOOohXXnmFadOm9ViMfP7zn2fSpEk88sgjDZ8mAdXRqpkzZ5KZHHXUUVx55ZX8/ve/32i7P/zhDxvdtHhLWrVqFddeey2HHnooq1ev5jOf+QzHHXfcFp+HFyJIktSk6dOnc/PNN/Pqq68yadIkdt999422aT1l2noPsk19n+2EE07o9P2/+7u/Y9y4cRusW7p0aYdf8IfqqtNZs2ZtsO7ss89e/8D4N954gxdeeIFFixaxatUqIoK//uu/5sorr2SbbbbpdD7NGjJkCJdeeinHHnssb7zxRofbnXXWWQwfPpwvfvGLnHXWWXz5y19e/8D4iGDp0qUsWLCAlStXstNOO3HkkUf2yPw60va/x8qVK3nuued4+OGHWb16NUOGDOGCCy7g4osv3uLPHQWjTZKkph166KHcfPPNABt9n63VmDFjeMc73sETTzwBbPpI26aeYXnmmWduFG1r1qzhF7/4RYdjGj3w/bvf/S5Q3Rdu+PDhjBo1imnTpnHwwQdz/PHHM2HChE7n0R1HH300kydP3uSFBn/zN3/DkUceyQ033MCPfvQjHn/8cX72s58xbNgwdtttNz7ykY/wsY99jGOPPZaddtqpx+fZVut/j0GDBjFixAh22WUXPvrRj/KBD3yA448/vmGobynR0XnmDTaKGApMAw4HpgOTgG2Bl4AHgesyc06DcbOBjm9AA7/OzHd08JmDgJOBE4F3AC3AL4FZmfnPm5x0bfLkyVnSVSlbik9EUFf4RISB7fHHH+ed73xnX09DGrC68ncsIhZmZsNHRDR7pG06cE/98wvAT4FVwL7AUcBREfG/MvNvOxj/APBUg/UNH9oVEYOBO4BPAsuBHwHbAIcBt0XE1Mw8o8m5S5IkFa/ZaFsHfBe4JjM3eFpuRPwpcCvw5Yj4SWb+pMH4b2Tm7C7M60yqYHsM+FBmvlh/1kRgHnB6RNyXmd/vwj4lSZKK1VS0ZeZ9wH0dvPevEfER4C+B44FG0da0+ijbOfXLk1uDrf6sJyPiXGA2cCFgtEmStBWaMWPG+u8NbsoHPvAB/uqv/qqXZ9T7eupChIfq5cbPoOi6g4ExwHOZ+dMG738H+H+BKRHx1sx8vgc+U5IkFeTuu+9e/5iwZhhtb5pYLxt+Rw04NCL2B4YDLwL3A/dk5roG2x5QL+c32lFmvhERi4H31H+MNkmStjId3fttINvsaIuI3YET6pff7WCzzzZY91hEfCYzH223vvWa42c7+dglVMHW89cnS5Ik9UOb9USEiBgC3ALsBPw4M3/QbpOHgdOprjIdDuwBHAE8Uq+7NyLe2m7M8Hq5qpOPXlkvR3R78pIkSQXZ3CNt/0h1G47fUV2EsIHMvLrdqlXAXRFxDzAXmAqcD3xhM+exgYg4CTgJ2OiGhJIkSSXq9pG2iLiG6orRF4DDMvOFZsdm5hrgK/XLw9u93XoUbYdOdtF6NG5FB/u/ITMnZ+bk0aNHNzstSdpqNXOjdUld15N/t7oVbRHxD1SnPV+iCrYnu7Gb1ut0258efaZe7tXJ2D3bbStJ6qZBgwaxbl2j68Ikba5169YxaNBmfRttvS7vJSIuB/4n8Arw4cx8rJufvUu9XNlu/aJ6OaWDz98eeHf98qFG20iSmrftttt2+kBvSd33xhtvsN122/XIvroUbRExA/gS8Crwkcz85WZ89rH1sv2tPR6kOoI3NiIaPY33GGAoMN97tEnS5hs+fDivvfaap0ilHpaZvPbaa+ywQ2ff+Gpe09EWEZcC5wKvUQVbp0e5IuI9EXFE/YSDtuuHRMRZVKdXAa5q+35mtgCX1y+vj4gxbcZOBGbULy9rdu6SpI6NHDmStWvXsnTpUlavXm28SZspM1m9ejVLly5l7dq1jBw5skf229TVoxHxSarHRkH14PfTIqLRpk9kZmtUjQfuBJZFxCLgv6lOie5HdeuPdcA5mfnvDfZzFTAN+ATwZET8mOro2oeBbYFrfe6oJPWMQYMGseeee7Js2TKWLFnC2rVr+3pKUvGGDBnCTjvtxJgxY3rsO23N3vJjVJufJ9d/GpnLm0fCHgGuAQ6kuifbIUACzwE3AV/LzIWNdpKZLRHxKeAU4ETgT4AWYCEwKzNva3LekqQmDBkyhDFjxjBmzJhNbyypTzT7wPjZVA9pb1pmPg2c2eUZvTl+HXBd/UeSJGmr1jPH6yRJktSrjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBWgq2iJiaEQcFhH/EBELImJ5RKyJiOcj4vaI+OAmxv95RMyLiNcjYmW9j1MjotPPj4iPRsSPImJZRLwREb+KiAsjYpvmf0VJkqTyNXukbTpwL/A/gbcCPwXuBJYBRwE/iYi/azQwIr4G3ApMBuYB9wCTgOuA2zsKt4g4B/gh8CFgEXAXMAa4FJgTEds3OXdJkqTiNRtt64DvAtMy8y2ZeURm/mlm7gd8BmgBvhwRh7YdFBFHAacALwD71+OOBCYCjwNHAqe1/7CImAzMAN4A3p+ZH87MY4C9qYJxKnBZ139dSZKkMjUVbZl5X2YenZnzGrz3r8Ds+uXx7d4+v16em5lPthnzInBy/fK8BkfbzgMCmJmZv2gzbiVwIlVEnhIROzczf0mSpNL11IUID9XLsa0rImIs8D5gDfCd9gMycy7wPLA71ZGz1nHDgI/VL29tMO63wIPAMODwnpm+JElS/9ZT0TaxXi5ts+6Aerk4M3/fwbj57bYFeDuwPbAsM/+zC+MkSZIGrM2OtojYHTihfvndNm9NqJfPdjJ8Sbtt2/68hI41GidJkjRgbVa0RcQQ4BZgJ+DHmfmDNm8Pr5erOtnFyno5ogfGSZIkDVibe6TtH4HDgN+x8UUIfSYiTqrvBbfgpZde6uvpSJIkbbZuR1tEXAP8JdXtPA7LzBfabdJ6NGyHTnbTelRtRQ+MWy8zb8jMyZk5efTo0Z3sRpIkqQzdiraI+AfgdOAlqmB7ssFmz9TLvTrZ1Z7ttm3787gujpMkSRqwuhxtEXE51ZMRXgE+nJmPdbBp621A3hUR23WwzZR22wI8AfweGBURb+tg3IENxkmSJA1YXYq2iJgBfAl4FfhIZv6yo20z83dUj58aBhzTYF/Tqe7r9gLVfddax62henwVwHENxu0NHEx1/7e7ujJ/SZKkUjUdbRFxKXAu8BpVsDVzlOsr9XJmROzTZl9jgFn1yxmZua7duBlAAudGxIFtxg0HbqznPSszX2t2/pIkSSUb0sxGEfFJ4ML65VPAaRHRaNMnMnNG64vMvD0irqd6ZNWjEXEv8EeqK053BL5H9eD4DWTm/Ig4D5gJ/Cwi7qOKxelUD43/RZv5SJIkDXhNRRswqs3Pk+s/jcylOkq2XmaeEhH3A6dSRddgqu+t3Qhc3+AoW+u4yyPil8BZVN992xb4LfBV4IrMXN3k3CVJkorXVLRl5mzefCh8l2XmbcBt3Rh3N3B3dz9XkiRpoOipZ49KkiSpFxltkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgrQdLRFxNsj4oyIuCUinoiIdRGREXF0J2Nm19t09OeJTsYOiohTI2JBRKyMiNcjYl5E/FlXf0lJkqTSDenCticDZ3Tzcx4AnmqwfmmjjSNiMHAH8ElgOfAjYBvgMOC2iJiamd2diyRJUnG6Em2/Av4eWAAsBL4JTG9y7Dcyc3YXPutMqmB7DPhQZr4IEBETgXnA6RFxX2Z+vwv7lCRJKlbT0ZaZ32j7OiJ6fjasP8p2Tv3y5NZgq+fwZEScC8wGLgSMNkmStFXojxciHAyMAZ7LzJ82eP87wB+BKRHx1i06M0mSpD7SldOjm+PQiNgfGA68CNwP3JOZ6xpse0C9nN9oR5n5RkQsBt5T/3m+x2crSZLUz2ypaPtsg3WPRcRnMvPRdusn1MtnO9nfEqpgm9DJNpIkSQNGb58efRg4HdiX6ijbHsARwCP1unsbnOIcXi9XdbLflfVyRI/NVJIkqR/r1SNtmXl1u1WrgLsi4h5gLjAVOB/4Qk9+bkScBJwEMG7cuJ7ctSRJUp/okwsRMnMN8JX65eHt3m49irZDJ7toPRq3ooP935CZkzNz8ujRo7s/UUmSpH6iL68ebX0aQvvTo8/Uy706Gbtnu20lSZIGtL6Mtl3q5cp26xfVyymNBkXE9sC765cP9cK8JEmS+p2+jLZj62X7W3s8CLwEjI2IaQ3GHQMMBeZnprf7kCRJW4Vei7aIeE9EHFE/4aDt+iERcRbVVaUAV7V9PzNbgMvrl9dHxJg2YycCM+qXl/XOzCVJkvqfpq8ejYj3ArParNq3Xv7viDi7dWVmTq1/HA/cCSyLiEXAf1OdEt2P6tYf64BzMvPfG3zcVcA04BPAkxHxY6qjax8GtgWu9bmjkiRpa9KVW37sCBzUYP3EDrZ/BLgGOJAq8A4BEngOuAn4WmYubDQwM1si4lPAKcCJwJ8ALVQPqp+Vmbd1Yd6SJEnF68oD4+cATT8lPjOfBs7s+pTWj18HXFf/kSRJ2qr1xwfGS5IkqR2jTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGG9PUEJEkDx/jz7urrKaggz8z4eF9PoSgeaZMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIK0HS0RcTbI+KMiLglIp6IiHURkRFxdBNj/zwi5kXE6xGxMiIWRMSpEdHp50fERyPiRxGxLCLeiIhfRcSFEbFNs/OWJEkaCIZ0YduTgTO6+gER8TXgFOAPwI+BPwKHAdcBh0XE0Zm5rsG4c4CZQAswB3gVmA5cChwREYdl5htdnY8kSVKJunJ69FfA3wN/CuwDzN3UgIg4iirYXgD2z8wjMvNIYCLwOHAkcFqDcZOBGcAbwPsz88OZeQywN/BTYCpwWRfmLkmSVLSmoy0zv5GZ52TmtzPzP5scdn69PDczn2yzrxepjtwBnNfgNOl5QAAzM/MXbcatBE4E1gGnRMTOzc5fkiSpZL12IUJEjAXeB6wBvtP+/cycCzwP7E515Kx13DDgY/XLWxuM+y3wIDAMOLzHJy5JktQP9ebVowfUy8WZ+fsOtpnfbluAtwPbA8s6OaLXaJwkSdKA1ZvRNqFePtvJNkvabdv25yV0rNE4SZKkAas3o214vVzVyTYr6+WIHhgnSZI0YA3Im+tGxEn1veAWvPTSS309HUmSpM3Wm9HWejRsh062aT2qtqIHxq2XmTdk5uTMnDx69OhNTlSSJKm/681oe6Ze7tXJNnu227btz+O6OE6SJGnA6s1oe6hevisitutgmynttgV4Avg9MCoi3tbBuAMbjJMkSRqwei3aMvN3wCKq+6kd0/79iJgOjKV6WsKDbcatAX5Yvzyuwbi9gYOp7v92V49PXJIkqR/q7QsRvlIvZ0bEPq0rI2IMMKt+OaPBs0dnAAmcGxEHthk3HLiRat6zMvO13pq4JElSf9L0A+Mj4r28GVoA+9bL/x0RZ7euzMypbX6+PSKup3pk1aMRcS9vPjB+R+B7VA+O30Bmzo+I86geGP+ziLgPeI3qgfFjgF8AFzY7d0mSpNI1HW1UkXVQg/UTOxuUmadExP3AqVTRNZjqe2s3Atc3OMrWOu7yiPglcBbVd9+2BX4LfBW4IjNXd2HukiRJRWs62jJzDtVD3LssM28DbuvGuLuBu7vzmZIkSQPJgLy5riRJ0kBjtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqQK9HW0TMjojs5M8THYwbFBGnRsSCiFgZEa9HxLyI+LPenrMkSVJ/M2QLftYDwFMN1i9tvyIiBgN3AJ8ElgM/ArYBDgNui4ipmXlGL85VkiSpX9mS0faNzJzd5LZnUgXbY8CHMvNFgIiYCMwDTo+I+zLz+70xUUmSpP6m332nrT7Kdk798uTWYAPIzCeBc+uXF27puUmSJPWVfhdtwMHAGOC5zPxpg/e/A/wRmBIRb92iM5MkSeojW/L06KERsT8wHHgRuB+4JzPXtdvugHo5v9FOMvONiFgMvKf+83yvzFaSJKkf2ZLR9tkG6x6LiM9k5qNt1k2ol892sq8lVME2oZNtJEmSBowtcXr0YeB0YF+qo2x7AEcAj9Tr7m13mnN4vVzVyT5X1ssRPTpTSZKkfqrXj7Rl5tXtVq0C7oqIe4C5wFTgfOALPfWZEXEScBLAuHHjemq3kiRJfabPLkTIzDXAV+qXh7d5q/Uo2g6dDG89Greig33fkJmTM3Py6NGjN2+ikiRJ/UBfXz3a+jSEtqdHn6mXe3Uybs9220qSJA1ofR1tu9TLlW3WLaqXUxoNiIjtgXfXLx/qpXlJkiT1K30dbcfWy7a393gQeAkYGxHTGow5BhgKzM9Mb/chSZK2Cr0abRHxnog4on7KQdv1QyLiLKqrSgGuan0vM1uAy+uX10fEmDbjJgIz6peX9d7MJUmS+pfevnp0PHAnsCwiFgH/TXVKdD+qW3+sA87JzH9vN+4qYBrwCeDJiPgx1dG1DwPbAtf63FFJkrQ16e1oewS4BjiQ6p5shwAJPAfcBHwtMxe2H5SZLRHxKeAU4ETgT4AWYCEwKzNv6+V5S5Ik9Su9Gm2Z+TRwZjfHrgOuq/9IkiRt1fr6QgRJkiQ1wWiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVACjTZIkqQBGmyRJUgGMNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklQAo02SJKkARpskSVIBjDZJkqQCGG2SJEkFMNokSZIKYLRJkiQVwGiTJEkqgNEmSZJUAKNNkiSpAEabJElSAYw2SZKkAhhtkiRJBTDaJEmSCmC0SZIkFcBokyRJKoDRJkmSVIB+H20R8ecRMS8iXo+IlRGxICJOjYh+P3dJkqSe0q/DJyK+BtwKTAbmAfcAk4DrgNsNN0mStLXot9ETEUcBpwAvAPtn5hGZeSQwEXgcOBI4rQ+nKEmStMX022gDzq+X52bmk60rM/NF4OT65XkebZMkSVuDfhk8ETEWeB+wBvhO+/czcy7wPLA7MHXLzk6SJGnL65fRBhxQLxdn5u872GZ+u20lSZIGrP4abRPq5bOdbLOk3baSJEkDVn+NtuH1clUn26yslyN6eS6SJEl9bkhfT6A3RMRJwEn1y5UR8eu+nI+Ksivwcl9Por+JmX09A6l4/tvSgP+2NLRXR2/012hrPYq2QyfbtB6NW9H+jcy8AbihpyelgS8iFmTm5L6eh6SBxX9b1BP66+nRZ+plh7UJ7NluW0mSpAGrv0bbQ/XyXRGxXQfbTGm3rSRJ0oDVL6MtM38HLAKGAce0fz8ipgNjqZ6W8OCWnZ0GOE+rS+oN/tuizRaZ2ddzaCgijqa6se4LwCGZ+VS9fgzwE2Bf4MzMvKbvZilJkrRl9NtoA4iIWVSPrPoDcC/wR+AwYEfge8DRmdnSZxOUJEnaQvp1tAFExJ8DpwL7AYOBJ4Abgeszc11fzk2SJGlL6ffRJkmSpH56IYIkSZI21F9vriv1qoiYChxA9eza1kehraC6799DmelVyZKkfsXTo9qqRMRpwHnA7m1X18u2fxmWAjOAr6V/SSRJ/YDRpq1CRATVLWSOpIq054H5wBLefGzacKonbUyhug9gAndm5tFbfMKSBryIeBCYkpme9VJT/D+KthYnA58GHgdOzsyfdrZxfQPnWcCREfE/MvMft8AcJW19YtObSBWPtGmrEBHzgYnAxMx8qckxY4DfAE9m5pRNbS9JXVEfaTswMwf39VxUBo+0aWvxDuBHzQYbQGb+d0T8GPh/em9akkoXEZ/u5tBRPToRDXhGm7YWLcDQbowbWo+VpI7czoYXMjUrujlOWymjTVuLR4HDImLvzPxtMwMi4m3Ah4GFvTozSaVrDa9OvyvbwHupLoCSmuJ32rRVqB+HdgvwX8C5wO2ZubqDbbcBjgFmUt0a5LjM/JctNVdJZYmIx4FJwD6Z+XQXxvmdNnWJR9q0VcjM2yLi/VRXkd4MfCMiFgPPAqvqzXYA9gLeBQyjOnUxy2CTtAkLqKLtvUDT0SZ1ldGmrUZmnhoR9wHnU/3j2vqnkUXAVzLzu1tqfpKKNR84juoej135N8PbfahLPD2qrVJEvJU3H2PV+p2Slbz5GKvn+mhqkgoTEZOojuI/mpk3dmHcAcCOmTm31yanAcVokyRJKsCgvp6AJEmSNs1okyRJKoDRJkkFiYiMCL/XIm2FjDZJkqQCGG2SJEkFMNokSZIKYLRJ6nMRcVBE/H1ELIiIFyNiTUT8V0TcHhFTG2x/cf3drosjYreI+HpEPBcRqyPi6YiYERHbdvBZERF/ERFzIuLViPhDRPxnRHwtIvbsYMz675FFxAn1PFdFxAsR8c2IGF2/t21EXBIRv6n3uyQiLouIoQ32OToizoiIu+s5/yEiXo+In0fEqRHR1KONImJ4PW5tRIztZLuF9e9xeDP7ldT/GG2S+oPLgC8CQ4H/AP4P8ApwFHB/RBzTwbg9gYXAEcCDwBxgDNXzZb/dfuOICKpn0N4M/N9Ud7L/HtWd6U8BHo6IKR1NMiJmAl8HlgF3Uz0o/PPAvRExHPgxcBqwGLgP2AW4APhag939CXA11WPTngbupHoSx3uA64Dv1vPtVGauBG4CBgMndTDvqVRP//htPW9JBfLmupL6XER8lOpJFC+2W/8JqscCrQD2zMw36vUXAxfVm30DODUz19TvvZMq/IYDH8jMB9rs7xSqgHoROCwzF9frBwNXUQXXs8DbM3N1m3Gt/1C+CByamY/X60dSxeLbgV8BrwFHZObr9fvvoQrDwcCEzHy2zT7fSXU3/F+0+53fAvx/VPH2mcz813bvJ0BmRpt1E4FfAy8Ae2XmH9uNuRn4C+BLmXkFkorkkTZJfS4z724fbPX6HwDfAUYBhzYY+jvg9NZgq8c8DnyrfnlYu+3Pqpdfbg22ekwLcDawBNgLOLqDqf5ta7DV414F/rF+uS9wUmuw1e8/TBVgAUxv97s93j7Y6vVLgXPqlx3No/2YJ6mOoL0FOLLtexGxK3As8Aeg6UcsSep/fGC8pH6hjosjgHcDO/Pmv0/vrpeTgLvaDbsvM3/fYHdP1Ms92ux/LLA3sI43o269zFwTEbcC5wMfBG5tsN9GpxafqpfPtg26Np5sP5c2cxoCfAg4GNgd2JYq8EbUm0xqsL+OXAt8jOo0b9tTw38JbAPMzsxlXdifpH7GaJPU5yLib4Arge072WzHBuuWdLDt8nrZ9mKEt9bLpZn5hw7G/bbdtu0912Ddyk7ea/v+BhdG1A8Z/x7wzg7GQePfuSN3UwXi9IjYNzMfi4hBwP+o32/0vTpJBfH0qKQ+VX/x/3qqixC+BLyD6vtog+rvbX2lddMGw9d14yO7/UXezOzs87o6l9upgu3/AB+gumhhSP07v73eZpMXIrSZW1JdwADV0TaAw4HxwPzMXNDF+UnqZ4w2SX3tKKo4+WpmXpGZv87MVfnmVVL79NDnPF8v94iIbTrYZu922/aKiHgHsB/w38CnM/OBzFxWf7cOuv87z6Y6svcX9dWsrfHmUTZpADDaJPW1UfXyd+3fqO9/9pGe+JDMfI7q9Ocg4PgGnzUUOK5+OacnPrMTrb/zf7UJtbaOa7BukzJzOfBPVKdV/5bqtiKvAP/a2ThJZTDaJPW11osGPlsfHQIgIkZQXe24cw9+1pX18n/VR7taP2swcDkwjuqWH7f34Gc28iTV6dR3R8S0tm9ExInAn23Gvq+jOgX8Jap/42/s5Dt8kgpitEnqazdRHWV7L/DbiLgjIu4EngEm07O3qZgF/DPVrTEeiYh/j4h/Bn4DnAm8ChzT9h5tvSEzX6rnMgT4SUTcFxG3RcSjVL/vjM3Y9xPAPfXLdVTfF5Q0ABhtkvpUfa+zycANVN/H+nj9+g6qkNvotOlmfFZSnXr8LPAL4CDg01T/Fl4P/F+ZOb+nPm8TzqB6gsEjwIFUt+t4sV7esJn7bo22H2bm05u5L0n9hE9EkKQBJiIeonqiwuGZ+cM+no6kHuKRNkkaQCLiSKpgexyfMyoNKN5cV5IKFxG7ADOprko9vF79pfRUijSgeHpUkgoXEeOBp4G1VI/V+kpm3tynk5LU44w2SZKkAvidNkmSpAIYbZIkSQUw2iRJkgpgtEmSJBXAaJMkSSqA0SZJklSA/x/huk7IYdLZ9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "target = cluster.copy().drop('leaves_color_list',axis=1)\n", + "target = target[target.cluster.isin([1,2])]\n", + "target['WELDING_ID'] = target['CURVE_ID']\n", + "target['anomaly'] = 0\n", + "target.loc[target.cluster==2,'anomaly'] = 1\n", + "target.drop(['cluster','CURVE_ID'],axis=1, inplace=True)\n", + "target.groupby('anomaly').count().plot(y='WELDING_ID',kind='bar',figsize=(10,10))\n", + "copy_to_sql( target,\n", + " table_name = 'Anomaly_Target',\n", + " if_exists='replace',\n", + " primary_index='WELDING_ID')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "3ac7c451-2fb3-45fa-895d-e881cc88a9ba", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dbe9eda0991244729344c7a9cebb4f65", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDanomaly
    3261
    1830
    5300
    9991
    3871
    " + ], + "text/plain": [ + " anomaly\n", + "WELDING_ID \n", + "326 1\n", + "183 0\n", + "530 0\n", + "999 1\n", + "387 1" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "anomalies = DataFrame('Anomaly_Target')\n", + "anomalies" + ] + }, + { + "cell_type": "markdown", + "id": "da6297fd-6f49-4619-af30-791db2af90da", + "metadata": {}, + "source": [ + "

    The above anomaly data has the welding ID and the anomaly flag.

    \n", + "
    \n", + "

    5.4 Build the analytical dataset

    \n", + "\n", + "

    We prepare the analytical dataset by joining the feature table with the anomaly table using the Welding ID so that we get the anomalies for the weldings.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "fe4cfcfb-7d91-47e5-a4cc-e44428e51cfe", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "62175dfc79d94e4bbd5646fd055c4db3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDcount_RESISTANCEsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEpercentile_RESISTANCEunique_RESISTANCEmedian_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEanomaly
    570637108597.7712408661676.02029807955392352.4795596378072170.4831573639971286.51173633708574115.06655015743611637115.066550157436117484.280524057440.7249096707674543-1.00640153415498950
    1831280180122.75820553369.41522063694657414.25927750342277140.7209048480726586.13303343939174104.77905816931691280104.77905816931697418.8994494713761.90635898437782552.2020918670737320
    530888142793.8025924895580.33864364172554352.84994686956196160.8038317482990581.96568876456104110.63194606046804888110.631946060468046718.3741346488870.9804755013182304-0.48659350734068280
    9991009167017.7252387674578.48183376623636339.3274318454616165.5279734774702383.15916845787675111.430836619855941009111.430836619855946915.44729860552250.7309353059569027-1.11772798221020731
    3871629252327.6695428601867.734531657172385.3317739232777154.897280259582789.27281066015279107.33433184613271629107.33433184613277969.6347231634891.31458406785533070.234406433063343381
    " + ], + "text/plain": [ + " WELDING_ID count_RESISTANCE sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE percentile_RESISTANCE unique_RESISTANCE median_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE anomaly\n", + "0 570 637 108597.771241 76.020298 352.479560 170.483157 86.511736 115.066550 637 115.066550 7484.280524 0.724910 -1.006402 0\n", + "1 183 1280 180122.758206 69.415221 414.259278 140.720905 86.133033 104.779058 1280 104.779058 7418.899449 1.906359 2.202092 0\n", + "2 530 888 142793.802592 80.338644 352.849947 160.803832 81.965689 110.631946 888 110.631946 6718.374135 0.980476 -0.486594 0\n", + "3 999 1009 167017.725239 78.481834 339.327432 165.527973 83.159168 111.430837 1009 111.430837 6915.447299 0.730935 -1.117728 1\n", + "4 387 1629 252327.669543 67.734532 385.331774 154.897280 89.272811 107.334332 1629 107.334332 7969.634723 1.314584 0.234406 1" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ADS = features[['WELDING_ID']+feature_names].join(other=anomalies, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "ADS = ADS.assign(WELDING_ID=ADS.WELDING_ID_l).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1).select(['WELDING_ID']+feature_names+['anomaly'])\n", + "ADS" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "20a2163c-9fea-4f3d-ab0b-696b3cccaad9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(391, 14)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ADS.shape" + ] + }, + { + "cell_type": "markdown", + "id": "c03b26f4-0fa4-4478-922e-9cb850acbe34", + "metadata": {}, + "source": [ + "

    The analytical dataset we created has 14 columns and 391 rows which will be used to build the model below.

    " + ] + }, + { + "cell_type": "markdown", + "id": "09b3168b-8c53-4ffd-ba75-b26f40608654", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    6. Build the model

    \n", + "

    We have datasets in which different columns have different units – like one column can be in kilograms, while another column can be in centimetres. If we feed these features to the model as is, there is every chance that one feature will influence the result more due to its value than the others. But this doesn’t necessarily mean it is more important as a predictor. So, to give importance to all the features we need feature scaling.

    \n", + " \n", + "

    Here, we apply the Standard scale and transform functions which are ScaleFit and ScaleTransform functions in Vantage. ScaleFit() function outputs statistics to input to ScaleTransform() function, which scales specified input DataFrame columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "d5d0898e-53a7-4aca-9f24-2e2f06ac73dc", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ScaleFit , ScaleTransform\n", + "scaler = ScaleFit(\n", + " data=ADS,\n", + " target_columns=feature_names,\n", + " scale_method=\"STD\",\n", + " global_scale=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "76af7c0a-b1cf-4914-a099-aeaeeb0c4977", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c3445e103d204f1ea97a9885e3fab53a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    anomalycount_RESISTANCEsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEpercentile_RESISTANCEunique_RESISTANCEmedian_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCE
    1-0.44549580137880120.491755163242834470.0582665013373593961.11502008560513621.35397556322812871.82006190703546040.9194382247575821-0.44549580137880120.91943822475758212.0817677950852636-1.0994434098745625-1.0566279679947848
    00.7935251829744480.523797308954638-0.471238281677336331.9938112179994238-0.8067834082724330.4409365865810209-0.57771809233581870.793525182974448-0.57771809233581870.388474702117049041.39880231152042531.5933929191283127
    10.00346709648096439830.191506855383746230.007189680804109719-0.572992840326859-0.0239394435629014250.21488164140523353-0.429876020597413530.0034670964809643983-0.429876020597413530.14170515277163295-0.3998375077234471-0.7211087815327962
    11.81098006189041022.354620840583509-0.55992504846580251.0028942996347474-0.35941535773196330.679603160858965-0.52092471639160841.8109800618904102-0.52092471639160840.658420306806380.493265058504567260.22156809424649065
    0-0.3492894661231371-0.422713518102620530.10517001290583916-0.10977661846737265-0.17302057428269490.12416064757468764-0.4476321194017249-0.3492894661231371-0.44763211940172490.04510877161800008-0.017989719458924348-0.2810964068413063
    " + ], + "text/plain": [ + " anomaly count_RESISTANCE sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE percentile_RESISTANCE unique_RESISTANCE median_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE\n", + "0 1 -0.445496 0.491755 0.058267 1.115020 1.353976 1.820062 0.919438 -0.445496 0.919438 2.081768 -1.099443 -1.056628\n", + "1 0 0.793525 0.523797 -0.471238 1.993811 -0.806783 0.440937 -0.577718 0.793525 -0.577718 0.388475 1.398802 1.593393\n", + "2 1 0.003467 0.191507 0.007190 -0.572993 -0.023939 0.214882 -0.429876 0.003467 -0.429876 0.141705 -0.399838 -0.721109\n", + "3 1 1.810980 2.354621 -0.559925 1.002894 -0.359415 0.679603 -0.520925 1.810980 -0.520925 0.658420 0.493265 0.221568\n", + "4 0 -0.349289 -0.422714 0.105170 -0.109777 -0.173021 0.124161 -0.447632 -0.349289 -0.447632 0.045109 -0.017990 -0.281096" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ADS_scaled = ScaleTransform(data=ADS,\n", + " object=scaler.output,\n", + " accumulate=\"anomaly\").result\n", + "ADS_scaled" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "5cc1ed77-bd6e-4476-9b76-abb448c7199b", + "metadata": {}, + "outputs": [], + "source": [ + "df = ADS_scaled.to_pandas()" + ] + }, + { + "cell_type": "markdown", + "id": "3b3a8548-555a-48fd-88e4-795abaff2cc5", + "metadata": {}, + "source": [ + "
    \n", + "

    6.1 Create a model file using the python libraries.

    \n", + "\n", + "

    The Vantage Bring Your Own Model (BYOM) package gives data scientists and analysts the ability to operationalize predictive models in Vantage. Predictive models trained in external tools with sample data can be used to score data stored in Vantage using the BYOM Predict. Create or convert your predictive model using a supported model interchange format (PMML, MOJO, ONNX, Dataiku, and DataRobot are currently available), store it in a Vantage table, and use the BYOM PMMLPredict, H2OPredict, ONNXPredict, DataikuPredict, or DataRobotPredict to score your data with the model.

    \n", + "\n", + "

    A problem with imbalanced classification is that there are too few examples of the minority class for a model to effectively learn the decision boundary. One way to solve this problem is to oversample the examples in the minority class. the most widely used approach to synthesizing new examples is called the Synthetic Minority Oversampling Technique, or SMOTE for short. SMOTE works by selecting examples that are close in the feature space, drawing a line between the examples in the feature space and drawing a new sample at a point along that line.

    \n", + "\n", + "

    Then we use the RandomForestClassifier to create the model. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The Random forest classifier creates a set of decision trees from a randomly selected subset of the training set. It is basically a set of decision trees (DT) from a randomly selected subset of the training set and then It collects the votes from different decision trees to decide the final prediction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "d847d16a-9735-4482-953d-66c80faf0bdc", + "metadata": {}, + "outputs": [], + "source": [ + "X_train = df[feature_names]\n", + "y_train = df['anomaly']" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "4350a66c-2ff9-483c-ae30-8f17c5d375b3", + "metadata": {}, + "outputs": [], + "source": [ + "# Balance the training set using SMOTE\n", + "smote = imblearn.over_sampling.SMOTE(random_state=42)\n", + "X_train, y_train = smote.fit_resample(X_train, y_train)\n", + "\n", + "\n", + "# Create a random forest classifier\n", + "model = RandomForestClassifier(n_estimators=10,max_depth= 3, random_state=42)\n", + "\n", + "# Create a pipeline that includes the SMOTE transformer and the model\n", + "pipeline = PMMLPipeline([ ('model', model)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "455a3ff5-e8ee-4c9b-909e-3e1a79fa6612", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration : 0.02437281608581543 s\n" + ] + } + ], + "source": [ + "# Train the pipeline\n", + "start = time.time()\n", + "pipeline.fit(X_train, y_train)\n", + "end = time.time()\n", + "print('duration : ', end-start, 's')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "61ff634a-aea7-4966-bf38-30b77547f0a3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 94.02%\n", + "Precision: 93.85%\n", + "AUC: 98.74%\n", + "F1-Score: 94.03%\n" + ] + } + ], + "source": [ + "# make predictions on the training set\n", + "y_train_pred = pipeline.predict(X_train)\n", + "\n", + "# calculate and print the accuracy score\n", + "acc = accuracy_score(y_train, y_train_pred)\n", + "print(\"Accuracy: {:.2f}%\".format(acc * 100))\n", + "\n", + "# calculate and print precision, AUC and F1-score\n", + "prec = precision_score(y_train, y_train_pred)\n", + "print(\"Precision: {:.2f}%\".format(prec * 100))\n", + "\n", + "# calculate AUC, AUC requires probability for positive class\n", + "prob = pipeline.predict_proba(X_train)[:, 1]\n", + "auc = roc_auc_score(y_train, prob)\n", + "print(\"AUC: {:.2f}%\".format(auc * 100))\n", + "\n", + "f1 = f1_score(y_train, y_train_pred)\n", + "print(\"F1-Score: {:.2f}%\".format(f1 * 100))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "60a0b3c9-4a3f-478c-a9f9-2ddd786aa332", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ModelAccuracyPrecisionF1-Score
    0PMML using BYOM0.9401540.9384620.94027
    \n", + "
    " + ], + "text/plain": [ + " Model Accuracy Precision F1-Score\n", + "0 PMML using BYOM 0.940154 0.938462 0.94027" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmml_metrics=pd.DataFrame([{'Model':'PMML using BYOM','Accuracy':acc, 'Precision':prec, 'F1-Score':f1}])\n", + "pmml_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "da084cfa-5c7b-4899-9c9b-41b065546bf6", + "metadata": {}, + "outputs": [], + "source": [ + "sklearn2pmml(pipeline, \"my_model.pmml\", with_repr = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "c35b23c2-c4c4-4601-b374-9d021a4845b0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "source": [ + "additional_columns = {\"Description\": type(\"RandomForestClassifier model\"),\n", + " \"UserId\": type('demo_user'),\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": prec,\n", + " \"ModelAUC\": auc,\n", + " \"Modelf1Score\": f1,\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": end-start,\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + "for k in additional_columns.keys():\n", + " print(type(additional_columns[k]))" + ] + }, + { + "cell_type": "markdown", + "id": "8351d68c-fed5-4034-b00f-fe0379625090", + "metadata": {}, + "source": [ + "
    \n", + "

    6.2 Save the model file

    " + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "7ffc1be2-d980-4468-9fc9-58ef30e5cb27", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model is deleted.\n", + "Model is saved.\n" + ] + } + ], + "source": [ + "try:\n", + " save_byom(model_id = 'model_anomaly1',\n", + " model_file = 'my_model.pmml',\n", + " table_name = 'BYOM_PMMLMODELS_REPOSITORY',\n", + " additional_columns={\"Description\": \"RandomForestClassifier model\",\n", + " \"UserId\": 'demo_user',\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": float(prec),\n", + " \"ModelAUC\": float(auc),\n", + " \"Modelf1Score\": float(f1),\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": float(end-start),\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + " )\n", + "except Exception as e: \n", + " # if our model exists, delete and rewrite \n", + " if str(e.args).find('TDML_2200') >= 1: \n", + " delete_byom(model_id = 'model_anomaly1', table_name = 'BYOM_PMMLMODELS_REPOSITORY') \n", + " save_byom(model_id = 'model_anomaly1',\n", + " model_file = 'my_model.pmml',\n", + " table_name = 'BYOM_PMMLMODELS_REPOSITORY',\n", + " additional_columns={\"Description\": \"RandomForestClassifier model\",\n", + " \"UserId\": 'demo_user',\n", + " \"ProductionReady\": False,\n", + " \"ModelAccuracy\": float(acc),\n", + " \"ModelPrecision\": float(prec),\n", + " \"ModelAUC\": float(auc),\n", + " \"Modelf1Score\": float(f1),\n", + " \"ModelSavedTime\": str(datetime.datetime.now(tz=pytz.UTC)),\n", + " \"ModelGeneratedTime\": float(end-start),\n", + " \"sklearnVersion\": sklearn.__version__\n", + " }\n", + " )\n", + " else: \n", + " raise ValueError(f\"Unable to save the model due to the following error: {e}\")\n", + "# pass \n", + "# else: \n", + "# raise \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "60c0f97c-52b2-407e-921c-75a61ca2d3fa", + "metadata": {}, + "source": [ + "

    The model file is saved as can be found in the left navigation pane in /UseCases/Anomaly_Detection.

    \n", + "\n", + "

    We create new scaled data to apply this model and predict data. New dataset is created by joining the features and the anomalies.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "60fe7dff-a0fa-43a6-aa03-d11aeed2904e", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d07a6981a51e4db19c7fdae5e2a71f36", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDcount_RESISTANCEsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEpercentile_RESISTANCEunique_RESISTANCEmedian_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEanomaly
    3871629252327.6695428601867.734531657172385.3317739232777154.897280259582789.27281066015279107.33433184613271629107.33433184613277969.6347231634891.31458406785533070.234406433063343381
    3451572225618.0533032045676.78441855749419340.6338108095452143.5229346712497172.66592162969769106.393124612773551572106.393124612773555280.3361662933671.40374749654955780.43970636043189191
    326855178859.0644359209779.44978256514692388.6050241978192209.19188822914734104.27611140847034172.13980338906399855172.1398033890639910873.5074104717190.27373796485881025-1.59898200536082661
    1411707217554.7085115232669.20055931911273385.9221118724905127.4485697196972967.96165098216868102.934973854092181707102.934973854092184618.7860042221082.38698574811646224.5244079283770940
    570637108597.7712408661676.02029807955392352.4795596378072170.4831573639971286.51173633708574115.06655015743611637115.066550157436117484.280524057440.7249096707674543-1.00640153415498950
    " + ], + "text/plain": [ + " WELDING_ID count_RESISTANCE sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE percentile_RESISTANCE unique_RESISTANCE median_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE anomaly\n", + "0 387 1629 252327.669543 67.734532 385.331774 154.897280 89.272811 107.334332 1629 107.334332 7969.634723 1.314584 0.234406 1\n", + "1 345 1572 225618.053303 76.784419 340.633811 143.522935 72.665922 106.393125 1572 106.393125 5280.336166 1.403747 0.439706 1\n", + "2 326 855 178859.064436 79.449783 388.605024 209.191888 104.276111 172.139803 855 172.139803 10873.507410 0.273738 -1.598982 1\n", + "3 141 1707 217554.708512 69.200559 385.922112 127.448570 67.961651 102.934974 1707 102.934974 4618.786004 2.386986 4.524408 0\n", + "4 570 637 108597.771241 76.020298 352.479560 170.483157 86.511736 115.066550 637 115.066550 7484.280524 0.724910 -1.006402 0" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "newdata = features[['WELDING_ID']+feature_names].join(other=anomalies, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "newdata = newdata.assign(WELDING_ID=newdata.WELDING_ID_l).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1).select(['WELDING_ID']+feature_names+['anomaly'])\n", + "newdata" + ] + }, + { + "cell_type": "markdown", + "id": "bd7108ab-49b6-411a-a919-4ab7f859252e", + "metadata": {}, + "source": [ + "

    We create new transformed data by using the same Scalefit object we used earlier and get the transformed data for this new data.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "099b4d80-3bb8-4e96-ba57-c85c84ae990a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd54b8613eb14b16835e3bd03d9495bf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDanomalycount_RESISTANCEsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEpercentile_RESISTANCEunique_RESISTANCEmedian_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCE
    3261-0.44549580137880120.491755163242834470.0582665013373593961.11502008560513621.35397556322812871.82006190703546040.9194382247575821-0.44549580137880120.91943822475758212.0817677950852636-1.0994434098745625-1.0566279679947848
    99910.00346709648096439830.191506855383746230.007189680804109719-0.572992840326859-0.0239394435629014250.21488164140523353-0.429876020597413530.0034670964809643983-0.429876020597413530.14170515277163295-0.3998375077234471-0.7211087815327962
    18300.7935251829744480.523797308954638-0.471238281677336331.9938112179994238-0.8067834082724330.4409365865810209-0.57771809233581870.793525182974448-0.57771809233581870.388474702117049041.39880231152042531.5933929191283127
    5300-0.3492894661231371-0.422713518102620530.10517001290583916-0.10977661846737265-0.17302057428269490.12416064757468764-0.4476321194017249-0.3492894661231371-0.44763211940172490.04510877161800008-0.017989719458924348-0.2810964068413063
    38711.81098006189041022.354620840583509-0.55992504846580251.0028942996347474-0.35941535773196330.679603160858965-0.52092471639160841.8109800618904102-0.52092471639160840.658420306806380.493265058504567260.22156809424649065
    " + ], + "text/plain": [ + " WELDING_ID anomaly count_RESISTANCE sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE percentile_RESISTANCE unique_RESISTANCE median_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE\n", + "0 326 1 -0.445496 0.491755 0.058267 1.115020 1.353976 1.820062 0.919438 -0.445496 0.919438 2.081768 -1.099443 -1.056628\n", + "1 999 1 0.003467 0.191507 0.007190 -0.572993 -0.023939 0.214882 -0.429876 0.003467 -0.429876 0.141705 -0.399838 -0.721109\n", + "2 183 0 0.793525 0.523797 -0.471238 1.993811 -0.806783 0.440937 -0.577718 0.793525 -0.577718 0.388475 1.398802 1.593393\n", + "3 530 0 -0.349289 -0.422714 0.105170 -0.109777 -0.173021 0.124161 -0.447632 -0.349289 -0.447632 0.045109 -0.017990 -0.281096\n", + "4 387 1 1.810980 2.354621 -0.559925 1.002894 -0.359415 0.679603 -0.520925 1.810980 -0.520925 0.658420 0.493265 0.221568" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "newdata_scaled = ScaleTransform(data=newdata,\n", + " object=scaler.output,\n", + " # DataFrame(in_schema('demo_user','scaler_anomaly')),\n", + " accumulate=[\"WELDING_ID\",\"anomaly\"]).result\n", + "newdata_scaled" + ] + }, + { + "cell_type": "markdown", + "id": "46bb63a9-35eb-40e9-a4d4-d1aa558b19d1", + "metadata": {}, + "source": [ + "
    \n", + "

    6.3 Retrieve the model file and use it to predict

    \n", + "

    We use the PMMLPredict function from the teradataml library to predict the anomalies.

    \n", + "

    Predictive Model Markup Language (PMML) is an XML-based standard established by the Data Mining Group (DMG) for defining statistical and data-mining models. PMML models can be shared between PMML-compliant platforms and across organizations so that business analysts and developers are unified in designing, analyzing, and implementing PMML-based assets and services.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "16f0c6bb-3551-4337-a4e3-8c2a79fd55cc", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "29a988d766e44b49b4522e5cb63ea9aa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDpredictionprobability(0)probability(1)
    1410.95529042972566050.04470957027433943
    1830.72171872490195710.27828127509804285
    5300.84364078115604110.15635921884395887
    3870.08717783349119830.9128221665088017
    9990.198361185252098780.8016388147479013
    " + ], + "text/plain": [ + " WELDING_ID prediction probability(0) probability(1)\n", + "0 141 0.955290 0.044710\n", + "1 183 0.721719 0.278281\n", + "2 530 0.843641 0.156359\n", + "3 387 0.087178 0.912822\n", + "4 999 0.198361 0.801639" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from teradataml import PMMLPredict\n", + "modeldata_anomaly = retrieve_byom(\"model_anomaly1\", table_name=\"BYOM_PMMLMODELS_REPOSITORY\")\n", + "result=PMMLPredict(\n", + " modeldata = modeldata_anomaly,\n", + " newdata = newdata_scaled,\n", + " accumulate = ['WELDING_ID'],\n", + " model_output_fields=['probability(0)','probability(1)'],\n", + " overwrite_cached_models = '*'\n", + " )\n", + "pmml_predict=result.result\n", + "pmml_predict" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "1f03ec30-32a9-4b13-af64-78eaa88b79e1", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f33dc97734874a128e4be620a57ce1df", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDanomalyprob_0prob_1prediction
    11600.95529042972566050.044709570274339430
    58100.74351152412960840.25648847587039160
    28100.75225481005983020.247745189940169780
    99910.198361185252098780.80163881474790131
    85600.79198281008558370.208017189914416170
    " + ], + "text/plain": [ + " WELDING_ID anomaly prob_0 prob_1 prediction\n", + "0 116 0 0.955290 0.044710 0\n", + "1 581 0 0.743512 0.256488 0\n", + "2 281 0 0.752255 0.247745 0\n", + "3 999 1 0.198361 0.801639 1\n", + "4 856 0 0.791983 0.208017 0" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pmml_predict_result = pmml_predict.join(other=newdata_scaled, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')\n", + "pmml_predict_result = pmml_predict_result.assign(prob_0=pmml_predict_result['probability(0)'])\n", + "pmml_predict_result = pmml_predict_result.assign(prob_1=pmml_predict_result['probability(1)'])\n", + "pmml_predict_result = pmml_predict_result.assign(WELDING_ID=pmml_predict_result.WELDING_ID_l)\n", + "pmml_predict_result = pmml_predict_result.assign(prediction=case([(pmml_predict_result.prob_1>pmml_predict_result.prob_0, 1 )],else_ = 0))\n", + "pmml_predict_result = pmml_predict_result.select(['WELDING_ID']+['anomaly']+['prob_0']+['prob_1']+['prediction'])\n", + "pmml_predict_result" + ] + }, + { + "cell_type": "markdown", + "id": "220bb477-2d63-4672-98a1-cb50d40f960f", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    7. Random Forest using Teradata OpenSource ML functions

    \n", + " \n", + "

    We start by creating a subset for the most interesting part lies between 40 and 400ms from the start of the curve.

    \n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "cf8a84c6-2c67-43c7-86e2-1f31c6bd1c18", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dc6d18df9e254ce8882ec7453be1ab40", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    PLANTROBOT_IDWELDING_TYPEWELDING_DAYWELDING_IDTIME_MSRESISTANCE
    14192025-06-18833184225.50114877088427
    14152025-07-12489287230.52740760760418
    14192025-06-1881276178.16102130409436
    14122025-07-30131122314.408712136953
    14172025-06-3060169198.1165335758247
    " + ], + "text/plain": [ + " PLANT ROBOT_ID WELDING_TYPE WELDING_DAY WELDING_ID TIME_MS RESISTANCE\n", + "0 1 41 9 2025-06-18 833 184 225.501149\n", + "1 1 41 5 2025-07-12 489 287 230.527408\n", + "2 1 41 9 2025-06-18 812 76 178.161021\n", + "3 1 41 2 2025-07-30 131 122 314.408712\n", + "4 1 41 7 2025-06-30 601 69 198.116534" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DF_curves_zoom = welding_dataset_new[(welding_dataset_new.TIME_MS > 40) & (welding_dataset_new.TIME_MS < 400) ]\n", + "DF_curves_zoom" + ] + }, + { + "cell_type": "markdown", + "id": "58c9f479-f2ff-4863-b969-b9b8a873e6d4", + "metadata": {}, + "source": [ + "

    We create various features by using the window function on the Resistance and taking the difference between the previous and current resistance based on time. We will create these features by using the aggregation function on this resistance and the difference of the resistance.

    \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "a227337c-3b57-443c-a256-dd5230ed98dd", + "metadata": {}, + "outputs": [], + "source": [ + "DF_curves_zoom = DF_curves_zoom.assign(\n", + " resistance_diff = DF_curves_zoom.RESISTANCE \n", + " - DF_curves_zoom.RESISTANCE.window(\n", + " partition_columns=['WELDING_ID'],\n", + " order_columns=[\"TIME_MS\"]\n", + " ).lag(1)\n", + ")\n", + "# DF_curves_zoom[DF_curves_zoom.WELDING_ID==138].sort(\"TIME_MS\")" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "cb8c00e7-c465-46ba-99ae-c094969a2eed", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e2da15e86ab4b1385219f642e37e5dc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diff
    62088342.64044827396137.30900299564482314.06522413849495246.0797784074483445.091061561972292033.203832785575-0.5593553778837088-0.6737088126622688-29.856946521200086
    7282132.21433826616104.70467014938446312.7132264322771228.7805413322177257.0992485544289253260.324185480454-0.4527050989025892-0.9189959880168315-27.171428796617818
    75985850.394882182895.93586249651608349.2521127143311239.1375902010662771.379670292554745095.057331073822-0.40798080630716765-1.042277705763781-34.2552297092069
    71177910.2939722271899.59721397994052308.17260229102055217.020317471384958.5803330215977953431.6554169213014-0.28157863829571916-1.0842604382366274-25.294217256768533
    73586983.36964263133105.16013699875654328.7554675173849242.293508753847756.51508057070153193.954331912882-0.5469935212726376-0.7309877203258219-31.729098532553564
    " + ], + "text/plain": [ + " WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff\n", + "0 620 88342.640448 137.309003 314.065224 246.079778 45.091062 2033.203833 -0.559355 -0.673709 -29.856947\n", + "1 72 82132.214338 104.704670 312.713226 228.780541 57.099249 3260.324185 -0.452705 -0.918996 -27.171429\n", + "2 759 85850.394882 95.935862 349.252113 239.137590 71.379670 5095.057331 -0.407981 -1.042278 -34.255230\n", + "3 711 77910.293972 99.597214 308.172602 217.020317 58.580333 3431.655417 -0.281579 -1.084260 -25.294217\n", + "4 735 86983.369643 105.160137 328.755468 242.293509 56.515081 3193.954332 -0.546994 -0.730988 -31.729099" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DF_features = DF_curves_zoom.groupby(\"WELDING_ID\").agg({\n", + " 'RESISTANCE':['sum', 'min', 'max', 'mean', 'std', 'var','skew','kurtosis'],\n", + " 'resistance_diff':['min']\n", + "})\n", + "DF_features" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "f6498373-8b50-49fb-ac0b-b0db7b0cb522", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['sum_RESISTANCE',\n", + " 'min_RESISTANCE',\n", + " 'max_RESISTANCE',\n", + " 'mean_RESISTANCE',\n", + " 'std_RESISTANCE',\n", + " 'var_RESISTANCE',\n", + " 'skew_RESISTANCE',\n", + " 'kurtosis_RESISTANCE',\n", + " 'min_resistance_diff']" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_names = DF_features.columns[1:]\n", + "feature_names" + ] + }, + { + "cell_type": "markdown", + "id": "57712977-e195-4ce9-9867-a7cdbc772279", + "metadata": {}, + "source": [ + "
    \n", + "

    7.1 Build the analytical dataset.

    \n", + "

    We create the analytical dataset joining the anomaly table created above and the dataset with the features created.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "55686241-b413-45eb-a495-9888c946c634", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "DF_target = DataFrame('Anomaly_Target')" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "d4f6e7dc-7a1e-447f-918c-fe675f5d597f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "DF_ADS = DF_features[['WELDING_ID']+feature_names].join(\n", + " other=DF_target, how='inner', on='WELDING_ID=WELDING_ID',rsuffix='r',lsuffix='l')" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "41bca2b7-9260-46f2-afed-f0d611fd232a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5f9efcfa58094da8a6ed2b379fdabc9a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_ID_lWELDING_ID_rsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly
    75975985850.394882182895.93586249651608349.2521127143311239.1375902010662771.379670292554745095.057331073822-0.40798080630716765-1.042277705763781-34.25522970920690
    52152186311.1620955712983.63565446899322371.03290669363076240.4210643330676586.594690177420827498.6403669235015-0.22559943677069424-1.2315781754798603-48.0002499112636660
    12312383759.9491939642582.6451402512838368.3012871516082233.314621710206882.768855744613536850.683481272646-0.2867184557621234-1.3075810926072349-39.5413438501544760
    342342106500.14073297645178.45785277776122367.5445073395069296.6577736294608545.551502888489852074.9394154000993-0.41900879613466196-0.8516234489970328-31.2662921561825441
    14414483121.0162270333478.52177145197345374.24517113960087231.5348641421541395.914049297260429199.504852597303-0.17056032020583595-1.5247519859543917-35.8187551850936640
    " + ], + "text/plain": [ + " WELDING_ID_l WELDING_ID_r sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly\n", + "0 759 759 85850.394882 95.935862 349.252113 239.137590 71.379670 5095.057331 -0.407981 -1.042278 -34.255230 0\n", + "1 521 521 86311.162096 83.635654 371.032907 240.421064 86.594690 7498.640367 -0.225599 -1.231578 -48.000250 0\n", + "2 123 123 83759.949194 82.645140 368.301287 233.314622 82.768856 6850.683481 -0.286718 -1.307581 -39.541344 0\n", + "3 342 342 106500.140733 178.457853 367.544507 296.657774 45.551503 2074.939415 -0.419009 -0.851623 -31.266292 1\n", + "4 144 144 83121.016227 78.521771 374.245171 231.534864 95.914049 9199.504853 -0.170560 -1.524752 -35.818755 0" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DF_ADS" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "f1e3ee20-796a-46b9-ad63-4c4cc685a23b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "71f0699d7bd64abfb869d598edbfa25c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomalyanomaly_int
    16881231.3199315335878.20584184189954383.797723458992226.2710861602606792.612598349474038577.0933730410.05391970417306466-1.3925390208869324-36.40555852086231400
    52186311.1620955712983.63565446899322371.03290669363076240.4210643330676586.594690177420827498.6403669235015-0.22559943677069424-1.2315781754798603-48.00024991126366600
    342106500.14073297645178.45785277776122367.5445073395069296.6577736294608545.551502888489852074.9394154000993-0.41900879613466196-0.8516234489970328-31.26629215618254411
    14483121.0162270333478.52177145197345374.24517113960087231.5348641421541395.914049297260429199.504852597303-0.17056032020583595-1.5247519859543917-35.81875518509366400
    12383759.9491939642582.6451402512838368.3012871516082233.314621710206882.768855744613536850.683481272646-0.2867184557621234-1.3075810926072349-39.54134385015447600
    " + ], + "text/plain": [ + " WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly anomaly_int\n", + "0 168 81231.319932 78.205842 383.797723 226.271086 92.612598 8577.093373 0.053920 -1.392539 -36.405559 0 0\n", + "1 521 86311.162096 83.635654 371.032907 240.421064 86.594690 7498.640367 -0.225599 -1.231578 -48.000250 0 0\n", + "2 342 106500.140733 178.457853 367.544507 296.657774 45.551503 2074.939415 -0.419009 -0.851623 -31.266292 1 1\n", + "3 144 83121.016227 78.521771 374.245171 231.534864 95.914049 9199.504853 -0.170560 -1.524752 -35.818755 0 0\n", + "4 123 83759.949194 82.645140 368.301287 233.314622 82.768856 6850.683481 -0.286718 -1.307581 -39.541344 0 0" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DF_ADS = DF_ADS.assign(WELDING_ID=DF_ADS.WELDING_ID_l\n", + " ).drop(['WELDING_ID_l','WELDING_ID_r'],axis=1\n", + " ).select(['WELDING_ID']+feature_names+['anomaly']\n", + " ).assign(anomaly_int = DF_ADS.anomaly.cast(INTEGER()))\n", + "DF_ADS" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "0199e5db-a881-4a2e-92df-0fcc0a54158b", + "metadata": {}, + "outputs": [], + "source": [ + "# Sample 5% of data for model validation.\n", + "DF_ADS=DF_ADS.drop('anomaly', axis=1)\n", + "# df_sample = DF_ADS.sample(frac=[0.75, 0.25], randomize=False, seed=20)\n", + "# df_sample\n", + "\n", + "TrainTestSplit_out = TrainTestSplit(\n", + " data = DF_ADS,\n", + " id_column = \"WELDING_ID\",\n", + " train_size = 0.80,\n", + " test_size = 0.20,\n", + " seed = 42\n", + " )\n", + "df_sample = TrainTestSplit_out.result" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "d14d6db3-06c1-42a2-9a2f-93c17d30fa6c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "88801a5c9e6e437eb480a662606af2ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    TD_IsTrainRowWELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly_int
    11095127.1795645449144.88744123637863356.36420112865824264.9782160572281754.93373787706333017.7155571458993-0.2307254513118324-1.1858367926106634-32.03203701690951
    18100195.44141325781153.1729060302975369.01676378573256279.095937084283653.341607900425462845.3271334027318-0.4776006642407464-0.7252063427887376-30.307566523428051
    135101079.20526104877187.26783471658626358.73415881062687281.5576748218628649.841284282326292484.153618911666-0.2591425375150598-1.3078073722006127-45.3142813421208641
    1982501.0050051482291.14168264526084365.18561530292624229.8078133848139889.144566161632147946.7536761456095-0.18283169109922082-1.6351004381704022-33.845520531483430
    12187651.6631041502100.06115552653354370.50674200883566244.1550504293877377.731398445349386042.170304269665-0.10823631050168349-1.2142935096694525-35.924492655011360
    " + ], + "text/plain": [ + " TD_IsTrainRow WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly_int\n", + "0 1 10 95127.179565 144.887441 356.364201 264.978216 54.933738 3017.715557 -0.230725 -1.185837 -32.032037 1\n", + "1 1 8 100195.441413 153.172906 369.016764 279.095937 53.341608 2845.327133 -0.477601 -0.725206 -30.307567 1\n", + "2 1 35 101079.205261 187.267835 358.734159 281.557675 49.841284 2484.153619 -0.259143 -1.307807 -45.314281 1\n", + "3 1 9 82501.005005 91.141683 365.185615 229.807813 89.144566 7946.753676 -0.182832 -1.635100 -33.845521 0\n", + "4 1 21 87651.663104 100.061156 370.506742 244.155050 77.731398 6042.170304 -0.108236 -1.214294 -35.924493 0" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sample" + ] + }, + { + "cell_type": "markdown", + "id": "f38cc3c9-6828-4c65-9b72-53ea02a172cd", + "metadata": {}, + "source": [ + "
    \n", + "

    7.2 Train RandomForest Classifier

    \n", + "

    Train dataset is created using sampleid = 1.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "5eef1a68-6211-4b4a-a870-083f6aff1633", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bead7343638f493fa1e329c078fee65f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly_int
    982501.0050051482291.14168264526084365.18561530292624229.8078133848139889.144566161632147946.7536761456095-0.18283169109922082-1.6351004381704022-33.845520531483430
    12106817.32190479447191.7494296610409385.8402275855924297.541286642881552.559225977857672762.4722353915085-0.1999867594892224-1.3022494693454283-31.8261162239902551
    6105201.78708839459199.73777915742855369.66316282209505293.041189661266348.9378547716320542394.91362964935-0.2972221842013988-1.2708881859616288-44.075540597504471
    1095127.1795645449144.88744123637863356.36420112865824264.9782160572281754.93373787706333017.7155571458993-0.2307254513118324-1.1858367926106634-32.03203701690951
    376967.210140556104.14666690623334287.7835576436938214.3933430099052751.091158700261672610.306497335324-0.4833111981907075-0.8441517264101307-22.4506294806287770
    " + ], + "text/plain": [ + " WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly_int\n", + "0 9 82501.005005 91.141683 365.185615 229.807813 89.144566 7946.753676 -0.182832 -1.635100 -33.845521 0\n", + "1 12 106817.321905 191.749430 385.840228 297.541287 52.559226 2762.472235 -0.199987 -1.302249 -31.826116 1\n", + "2 6 105201.787088 199.737779 369.663163 293.041190 48.937855 2394.913630 -0.297222 -1.270888 -44.075541 1\n", + "3 10 95127.179565 144.887441 356.364201 264.978216 54.933738 3017.715557 -0.230725 -1.185837 -32.032037 1\n", + "4 3 76967.210141 104.146667 287.783558 214.393343 51.091159 2610.306497 -0.483311 -0.844152 -22.450629 0" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create train dataset from sample 1 by filtering on \"sampleid\" and drop \"sampleid\" column as it is required for training model.\n", + "data_train = df_sample[df_sample.TD_IsTrainRow == \"1\"].drop(\"TD_IsTrainRow\", axis = 1)\n", + "data_train" + ] + }, + { + "cell_type": "markdown", + "id": "4564b34a-cc44-4d61-945a-696ae04ab384", + "metadata": {}, + "source": [ + "

    Test dataset is created using sampleid = 2.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "be644b0e-dcfd-40ff-ba0a-b5800cfd0875", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "492a163cd1f34097ab58c864fbea4d6c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly_int
    2380968.3856646060691.32685504056975362.0288544976556225.538678731493276.160922442548545800.486107299894-0.06229470076093798-1.2994883640937822-38.240981405083060
    26103807.76297225684152.857497527659383.578384675018289.1581141288491557.6083228236750243318.7188585567565-0.21002500953619418-1.3168188493421034-42.3252110300654751
    6997411.15857106655168.72998702644077362.43335495393376271.34027457121655.080923684897663033.9081539815206-0.19776981850595154-1.3735577645369346-33.541965004148611
    8294048.76279519273114.03951750210967366.35161875486074261.9742696244922568.100843494377364637.72488464568-0.4827546065748303-0.8556540622845826-49.745322557524760
    3393185.74584100883124.65019295111625351.7031928317579259.570322676904859.3547381126017653522.9849364155407-0.3229589598739873-1.046640890827172-40.224341015516271
    " + ], + "text/plain": [ + " WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly_int\n", + "0 23 80968.385665 91.326855 362.028854 225.538679 76.160922 5800.486107 -0.062295 -1.299488 -38.240981 0\n", + "1 26 103807.762972 152.857498 383.578385 289.158114 57.608323 3318.718859 -0.210025 -1.316819 -42.325211 1\n", + "2 69 97411.158571 168.729987 362.433355 271.340275 55.080924 3033.908154 -0.197770 -1.373558 -33.541965 1\n", + "3 82 94048.762795 114.039518 366.351619 261.974270 68.100843 4637.724885 -0.482755 -0.855654 -49.745323 0\n", + "4 33 93185.745841 124.650193 351.703193 259.570323 59.354738 3522.984936 -0.322959 -1.046641 -40.224341 1" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create validation dataset from sample 2 by filtering on \"sampleid\" and drop \"sampleid\" column as it is required for validating model.\n", + "data_val = df_sample[df_sample.TD_IsTrainRow == \"0\"].drop(\"TD_IsTrainRow\", axis = 1)\n", + "data_val" + ] + }, + { + "cell_type": "markdown", + "id": "17422855-50cb-4c77-bcea-89cf782e0116", + "metadata": {}, + "source": [ + "

    Copy the Train and Test datasets into vantage

    " + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "130cdab5-841a-4e65-b4f3-090414df65c3", + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(data_train, table_name='data_train', if_exists='replace')\n", + "copy_to_sql(data_val, table_name='data_val', if_exists='replace')" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "f717da10-a24f-4345-a36e-8554fefcdc2e", + "metadata": {}, + "outputs": [], + "source": [ + "data_train=DataFrame('data_train')\n", + "data_val= DataFrame('data_val')" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "5217c805-010b-4184-b312-b22c7f0b1d49", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import td_sklearn as osml\n", + "X_train = data_train.drop(['anomaly_int','WELDING_ID'], axis = 1)\n", + "y_train = data_train.select([\"anomaly_int\"])\n", + "X_test = data_val.drop(['anomaly_int','WELDING_ID'], axis = 1)\n", + "y_test = data_val.select([\"anomaly_int\"])" + ] + }, + { + "cell_type": "markdown", + "id": "139fef94-8a5b-4cfc-964a-14c1498d8ba5", + "metadata": {}, + "source": [ + "

    Set the session to use the Analytic compute group and cluster to execute the OpenSourceML function.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "72c6f350-9dd5-4e61-af02-b368b8014414", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Compute group set to GPUGroup\n" + ] + } + ], + "source": [ + "gpu_compute_group = env_vars.get(\"gpu_compute_group\")\n", + "execute_sql(f\"SET SESSION COMPUTE GROUP {gpu_compute_group};\")\n", + "print(f\"Compute group set to {gpu_compute_group}\")" + ] + }, + { + "cell_type": "markdown", + "id": "30978fe8-6c08-47b8-8b79-3157a74151e7", + "metadata": {}, + "source": [ + "

    Check the user environments and create an environment for the usecase.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "bb089556-3f28-4ad8-8de7-1506cf7a4412", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No user environment(s) found.\n" + ] + } + ], + "source": [ + "list_user_envs()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "8dcea3eb-0d96-45e4-b525-76b59dba9b98", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User environment 'osml_env' created.\n" + ] + }, + { + "data": { + "text/plain": [ + "\n", + "================================================\n", + "Environment Name: osml_env\n", + "Base Environment: python_3.9\n", + "Description: OAF Demo env for Anomaly OSML\n", + "\n", + "############ Libraries installed in User Environment ############\n", + "\n", + " name version\n", + "0 pip 25.0.1\n", + "1 setuptools 78.1.0\n", + "\n", + "================================================" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "try:\n", + " env = create_env(\n", + " env_name=\"osml_env\",\n", + " base_env=\"python_3.9\",\n", + " desc=\"OAF Demo env for Anomaly OSML\",\n", + " )\n", + "except:\n", + " remove_env(\"osml_env\")\n", + " env = create_env(\n", + " env_name=\"osml_env\",\n", + " base_env=\"python_3.9\",\n", + " desc=\"OAF Demo env for Anomaly OSML\",\n", + " )\n", + " \n", + "env " + ] + }, + { + "cell_type": "markdown", + "id": "c51c6334-d126-4668-94a3-e8e5f9c76b13", + "metadata": {}, + "source": [ + "

    Confirm that the versions in the local environment are same to the virtual environment.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "f529092a-43da-4a42-9eb1-9beceec29792", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "scikit-learn 1.1.3\n", + "scipy 1.11.2\n", + "numpy 1.24.2\n", + "geopandas 0.12.2\n", + "pandas 2.1.3\n", + "sklearn-pandas 2.2.0\n" + ] + } + ], + "source": [ + "!pip list | grep scikit-learn\n", + "!pip list | grep scipy\n", + "!pip list | grep numpy\n", + "!pip list | grep pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "7a82e027-864c-4590-ba76-dc493311fdf4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Request to install libraries initiated successfully in the remote user environment osml_env. Check the status using status() with the claim id '68add8e1-7c66-406d-90f9-1ede4695e870'.\n" + ] + } + ], + "source": [ + "claim_id = env.install_lib([\"pandas==2.1.3\",\n", + " \"scipy==1.11.2\",\n", + " \"scikit-learn==1.1.3\",\n", + " \"numpy==1.24.2\"], asynchronous=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "606ca6eb-845c-4fea-8bd6-ec2e9094b43f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Claim IdFile/Libs/ModelMethod NameStageTimestampAdditional Details
    068add8e1-7c66-406d-90f9-1ede4695e870pandas==2.1.3, scipy==1.11.2, scikit-learn==1....install_libStarted2025-08-11T13:43:37Z
    168add8e1-7c66-406d-90f9-1ede4695e870pandas==2.1.3, scipy==1.11.2, scikit-learn==1....install_libFinished2025-08-11T13:47:04Z
    \n", + "
    " + ], + "text/plain": [ + " Claim Id \\\n", + "0 68add8e1-7c66-406d-90f9-1ede4695e870 \n", + "1 68add8e1-7c66-406d-90f9-1ede4695e870 \n", + "\n", + " File/Libs/Model Method Name Stage \\\n", + "0 pandas==2.1.3, scipy==1.11.2, scikit-learn==1.... install_lib Started \n", + "1 pandas==2.1.3, scipy==1.11.2, scikit-learn==1.... install_lib Finished \n", + "\n", + " Timestamp Additional Details \n", + "0 2025-08-11T13:43:37Z \n", + "1 2025-08-11T13:47:04Z " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    nameversion
    0joblib1.5.1
    1numpy1.24.2
    2pandas2.1.3
    3pip25.0.1
    4python-dateutil2.9.0.post0
    5pytz2025.2
    6scikit-learn1.1.3
    7scipy1.11.2
    8setuptools78.1.0
    9six1.17.0
    10threadpoolctl3.6.0
    11tzdata2025.2
    \n", + "
    " + ], + "text/plain": [ + " name version\n", + "0 joblib 1.5.1\n", + "1 numpy 1.24.2\n", + "2 pandas 2.1.3\n", + "3 pip 25.0.1\n", + "4 python-dateutil 2.9.0.post0\n", + "5 pytz 2025.2\n", + "6 scikit-learn 1.1.3\n", + "7 scipy 1.11.2\n", + "8 setuptools 78.1.0\n", + "9 six 1.17.0\n", + "10 threadpoolctl 3.6.0\n", + "11 tzdata 2025.2" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Check the status of installation using status() API.\n", + "# Create a loop here for demo purposes\n", + "\n", + "ipydisplay(env.status(claim_id))\n", + "stage = env.status(claim_id)['Stage'].iloc[-1]\n", + "while stage == 'Started':\n", + " stage = env.status(claim_id)['Stage'].iloc[-1]\n", + " clear_output()\n", + " ipydisplay(env.status(claim_id))\n", + " sleep(5)\n", + " \n", + "# Verify the Python libraries have been installed correctly.\n", + "ipydisplay(env.libs)" + ] + }, + { + "cell_type": "markdown", + "id": "0c50b35c-9929-499a-82ed-249fc0954e80", + "metadata": {}, + "source": [ + "

    Set the user environment to the created virtual environment and execute the RandomForestClassifier.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "e775073f-81b6-47bd-8696-efee242e3baf", + "metadata": {}, + "outputs": [], + "source": [ + "configure.openml_user_env = env" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "95aa7d9d-dadd-4267-9f13-2526d2d6989b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    RandomForestClassifier(max_depth=2, max_features='auto', max_leaf_nodes=2,\n",
    +       "                       n_estimators=10)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "RandomForestClassifier(max_depth=2, max_features='auto', max_leaf_nodes=2,\n", + " n_estimators=10)" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "RF_classifier = osml.RandomForestClassifier(n_estimators=10,max_leaf_nodes=2,max_features='auto',max_depth=2)\n", + "#,random_state=42\n", + "RF_classifier.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "aae045a4-5820-4f72-a4f9-d4c4487a9ed9", + "metadata": {}, + "source": [ + "

    Check the params for the Classifier.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "ef508629-f7e7-4210-9f8d-9d2f21530a85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bootstrap': True,\n", + " 'ccp_alpha': 0.0,\n", + " 'class_weight': None,\n", + " 'criterion': 'gini',\n", + " 'max_depth': 2,\n", + " 'max_features': 'auto',\n", + " 'max_leaf_nodes': 2,\n", + " 'max_samples': None,\n", + " 'min_impurity_decrease': 0.0,\n", + " 'min_samples_leaf': 1,\n", + " 'min_samples_split': 2,\n", + " 'min_weight_fraction_leaf': 0.0,\n", + " 'n_estimators': 10,\n", + " 'n_jobs': None,\n", + " 'oob_score': False,\n", + " 'random_state': None,\n", + " 'verbose': 0,\n", + " 'warm_start': False}" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "RF_classifier.get_params()" + ] + }, + { + "cell_type": "markdown", + "id": "aca1ef54-8f11-48af-9d9f-ffe19a08b050", + "metadata": {}, + "source": [ + "
    \n", + "

    7.3 Predict and Evaluate model

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "12ca4daf-6b7f-453b-b690-3ca59df0fb6b", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7dba28565d8d45aea0fea458c4379def", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    sum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly_intrandomforestclassifier_predict_1
    110341.49664250232205.03522927809342380.74742538916405307.3579293663017345.52098194783542072.159797495157-0.3214105274578798-1.1819447978660633-49.2578659100591411
    96649.6900333734122.17637448667617366.32142645670035269.219192293519264.876011476483584208.896865096829-0.5753868635026909-0.6683953472392237-41.07628045826919600
    84099.21496523272118.69683849065697355.3352831442057234.2596517137401770.968908185968475036.5859291084230.15449954336904378-1.383727210170674-31.55429269268452700
    107360.61084072788201.71277038171522377.2026817832662299.0546262972921545.1582850104936852039.2707050889785-0.46398574196047354-1.0083162755064483-34.0409350215294911
    119047.29002453877207.8252169086635410.920900680535331.608050207628949.557942003245072455.989615597002-0.6231397861594759-0.8036020482778766-33.4393135710980711
    " + ], + "text/plain": [ + " sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly_int randomforestclassifier_predict_1\n", + "0 110341.496643 205.035229 380.747425 307.357929 45.520982 2072.159797 -0.321411 -1.181945 -49.257866 1 1\n", + "1 96649.690033 122.176374 366.321426 269.219192 64.876011 4208.896865 -0.575387 -0.668395 -41.076280 0 0\n", + "2 84099.214965 118.696838 355.335283 234.259652 70.968908 5036.585929 0.154500 -1.383727 -31.554293 0 0\n", + "3 107360.610841 201.712770 377.202682 299.054626 45.158285 2039.270705 -0.463986 -1.008316 -34.040935 1 1\n", + "4 119047.290025 207.825217 410.920901 331.608050 49.557942 2455.989616 -0.623140 -0.803602 -33.439314 1 1" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#model predictions\n", + "predict_RF =RF_classifier.predict(X_test,y_test)\n", + "predict_RF" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "a6fb0a47-70ed-4c6d-8974-b185f22b5ddf", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "389a0955589845c1b8c4a67bd7749e9c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\n", + "
    score
    0.9746835443037974
    " + ], + "text/plain": [ + " score\n", + "0 0.974684" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#accuracy of the model\n", + "accuracy_RF = RF_classifier.score(X_test, y_test)\n", + "accuracy_RF" + ] + }, + { + "cell_type": "markdown", + "id": "cda02bba-235d-4f1a-b2a7-3e2ea619cce2", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    8. Compare PMML and OpenSource ML model

    \n", + "
    \n", + "

    8.1 Show AUC-ROC Curve

    \n", + "\n", + "

    The ROC curve shows the performance of a binary classification model as its discrimination threshold varies. For a range of thresholds, the curve plots the true positive rate against false-positive rate.

    \n", + "\n", + "

    This function accepts a set of prediction-actual pairs as input and calculates the following values for a range of discrimination thresholds.

    \n", + "
      \n", + "
    • True-positive rate (TPR)
    • \n", + "
    • False-positive rate (FPR)
    • \n", + "
    • The area under the ROC curve (AUC)
    • \n", + "
    • Gini coefficient
    • \n", + "
    • Other details are mentioned in the documentation
    • \n", + "
    \n", + "\n", + "

    ROC for PMML

    " + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "7c4b179b-a334-4dc0-b3f8-71c35f87283e", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ROC \n", + "roc_pmml = ROC(data = pmml_predict_result, \n", + " probability_column = \"prob_1\",\n", + " observation_column = \"anomaly\",\n", + " positive_class=\"1\"\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "32b946fb-e09e-4e62-b78a-c5325d84c175", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    threshold_valuetprfpr
    90.1836731.00.366795
    80.1632651.00.447876
    70.1428571.00.490347
    60.1224491.00.548263
    50.1020411.00.594595
    40.0816331.00.687259
    30.0612241.00.698842
    20.0408161.00.949807
    10.0204081.01.000000
    00.0000001.01.000000
    \n", + "
    " + ], + "text/plain": [ + " threshold_value tpr fpr\n", + "9 0.183673 1.0 0.366795\n", + "8 0.163265 1.0 0.447876\n", + "7 0.142857 1.0 0.490347\n", + "6 0.122449 1.0 0.548263\n", + "5 0.102041 1.0 0.594595\n", + "4 0.081633 1.0 0.687259\n", + "3 0.061224 1.0 0.698842\n", + "2 0.040816 1.0 0.949807\n", + "1 0.020408 1.0 1.000000\n", + "0 0.000000 1.0 1.000000" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "roc_data_pmml = roc_pmml.output_data.to_pandas().sort_values(\"fpr\", ascending=True)\n", + "roc_data_pmml.tail(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "de67ebb4-b0f9-4a8c-9559-e6a44f1c9a21", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9715982215982211" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "auc_pmml = roc_pmml.result.to_pandas().iloc[0,0]\n", + "auc_pmml" + ] + }, + { + "cell_type": "markdown", + "id": "baf0989e-387a-4ee9-b99e-0687d5a97799", + "metadata": {}, + "source": [ + "

    ROC for tdmlOpenSource RandomForestClassifier

    " + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "02a1c9e2-be8c-44da-9e0a-9056a2ec8243", + "metadata": {}, + "outputs": [], + "source": [ + "roc_obj = ROC(data = predict_RF, \n", + " probability_column = \"randomforestclassifier_predict_1\",\n", + " observation_column = \"anomaly_int\",\n", + " positive_class=\"1\"\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "27834036-13cc-49e9-a34e-b2bcb2c192b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    threshold_valuetprfpr
    150.3061220.9750.025641
    160.3265310.9750.025641
    170.3469390.9750.025641
    180.3673470.9750.025641
    190.3877550.9750.025641
    200.4081630.9750.025641
    210.4285710.9750.025641
    220.4489800.9750.025641
    120.2448980.9750.025641
    00.0000001.0001.000000
    \n", + "
    " + ], + "text/plain": [ + " threshold_value tpr fpr\n", + "15 0.306122 0.975 0.025641\n", + "16 0.326531 0.975 0.025641\n", + "17 0.346939 0.975 0.025641\n", + "18 0.367347 0.975 0.025641\n", + "19 0.387755 0.975 0.025641\n", + "20 0.408163 0.975 0.025641\n", + "21 0.428571 0.975 0.025641\n", + "22 0.448980 0.975 0.025641\n", + "12 0.244898 0.975 0.025641\n", + "0 0.000000 1.000 1.000000" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "roc_data = roc_obj.output_data.to_pandas().sort_values(\"fpr\", ascending=True)\n", + "roc_data.tail(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "ab90afd6-b0c1-4edd-9492-c97b16c8d4e0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9243589743589744" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "auc = roc_obj.result.to_pandas().iloc[0,0]\n", + "auc" + ] + }, + { + "cell_type": "markdown", + "id": "abb98428-872c-41d5-b8b1-79804c772a8a", + "metadata": {}, + "source": [ + "

    Plot ROC Curves

    " + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "93ab97d1-cbd3-4044-8546-0f170a5ca9ce", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAElCAYAAABXtb2CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAABcxElEQVR4nO2dd3gU1deA30PvvYcSmpQACV1UmjRFQVBExAL2ggV/FkQ/FREFFMWGKIJiRQVpdkUFQVAECVJVShAQpHcCCTnfHzO7bJbdZBOSbMp5n2ee2b1z595zz9yZM7fMuaKqGIZhGEZOIF+4BTAMwzCMUDGjZRiGYeQYzGgZhmEYOQYzWoZhGEaOwYyWYRiGkWMwo2UYhmHkGHKs0RKRwSKiPttJEdkoIs+ISJEwyzZVROLCKYM/IlJURIaLyEoROSYiB0XkJxEZGG7ZQsG93jcGCVcRiQyDWIhITRF5VUT+FpF4ETkiIr+JyKMiUtqNE+nKeHM4ZEwvwXSeQWnPF5H5aYhfRkRGiEiLs00rhLz+JyJ/iIj4hPk+a5JEZI+IzBGRqCBplBWR0SLyp1sv9onINyLSI4V824nIJyLyr/s82ysi34nIIBHJ78bpIyL/iUiJNJSnuHvv/y4ih115/nTrbb206CZboKo5cgMGAwr0A84FugGvuWGvhFm2ukDzcOvIR57SwFLgMDACuBDoCUwGkoA3wi1jCGWYDywKEF7Rvf6FwyBTB+AA8BdwN9AZ6A48DvwLjHfjRbr18uZw6zEjdJ5BaTcGGqchflAdpjWtVPIpA+wF+vmFK/C2W9cuAO4AdgNbgTJ+cWsAG4BdwP1AJ6AP8KmbzvAA+Q5178V5wHVu3boMmAAcAy5z4wkQCzwZYnmqAmuA/cBTQA+3ng4BlgMrwl3P0nyNwi3AWVQuj9Gq5xf+HXAUyBduGbNYH0Ef2sBU4ATQOsCxe109Dsou8gaJn2kP0HTKX9Z9KC0Bigc4Xhzo5v7OdKMF5AcKZHCaGa7ztF53n/OyxPC7RmYHkN8vXIFRfmHXuOEDAuhtL1A7QPrjXePUySesgxv2chCZ6gLNfP7f6aZfJITyzAP2AfUDHBOgTziva7ryyqqMMqFyBTNaY93wSj5hxdzwzcBJd/+ov2HDeWt/Deft6YS7f8/3ggDRwFz3zeU48DPQ3i+dqUCc52K6leaFAGXo78ra3CesI/A9TqvoKPAN0MTvvPnAIqAXsMKV9b4geqoGJAITghwXnDexdQF02wGYDRxxb5IJQFG/81PVLc6bpgKXA2/ivKEecI/Vc3W82dXnJmAiUNavvOq3zfeTNdInfhzwPjAAWOfqcRlwQYDyD3Xjx+O0Rs9z/09Npf496ObbKoS6GunGvQ0YifNQPAB8BlT3izsA+MHV0RH3+g4KkKYCTwMPu7o7BTQHiuA8GFe75+9082kYII3aru53unVoE/BSajr3OfcDV84TOG//ff3SH+Ge1wSnHh8B5vik75teCeAV4B83vV04D9yGPvrz3wYHSivUeznItVrn0UEAffsbrUZu+EM+YW3dsAeDpF8E5176yifsC2APIRghN34F93oPTCVea1eWB0JMV4ERQeruYJ+wqcA2oB2wGOe+fcktx+8B0q2K8wy6zycs1foTbCtA7iMSOIhTMRCRAjg3TGOc5vEqnCb+Y0A5nDcrRKQszgUoB4wC/gAq4TTRCwEn3P70hTgPkltwmu23A/NE5DxVXe4vjKqeEJFPgKtF5EFVPeVz+DpgtaqucGW4BJiDc/GvdeMMAxaKSDNV3epz7jnAy26ZNuEYxkB0wnkLnxvooKqqiHwGDBORqqq6w+fw+8AnODd/G5xur+I4hiJk3frwCvCVW27PuGM1nAfKUJwXgTrAI8CXODcFOG+W77vluM0NOxSkvB7aAw1cWeJd+T4XkUhVPeDKfzPOA34KMB3njfZDnC6i1OgG7FDVZSHE9TAcp47diFO3nscpVyefOHWAGcAYnLfvDsBkESmqqq/7pTcY59o/gGOY/8V5SSqJU4d34FyHO4ElItJIVXcCiEhtHCN9DOe6/g3UxOnehBR0LiI1gF9xDMt9OA+eq4BPRaSPqvrXtTk4Oh7rlikQ44HeONf+b6A8cD7OtViB88IzExjN6bq8MVBCodzLQc6rhWMkHwsioz+RAeTo4u6D3W/xIvId0MszToXTXTdbVeNDyVRV94jIOuAinPoajG4pyXKWlAY+AsbhXLPjOIZomog0VtW1PnE94+YfQrrqT3JCsWzZceP0G3YDoABOd82NOBb9Lp9417nxOvid/yhOy6CS+38k7ttqCnl+j/MmVsgnLL8bNtvvTSTO5//5rgw9fMIqAgkkf0vbAHzvl2cpnLewF33C5uPc/DEh6GmYR08pxLndjdPGT7evB9DZKeCcNOq2kxtvVgjyFsAZM/Bvgc4n8JiWR9ZIn7A4HAPo21pr5cYb6P7Ph2Msv/RL73I33tRU5FwHLAmxrkbi11Jxwx9ww6sFOS+fq483gZV+xxTHSBVNJe/8OK3hwyR/030Xp+UTMO9UdD4F50FT3i/8OyDW5/8IV857g6Q93+f/agL0RgTQYaAxLf+0Ur2Xg+RxlZtHoK40T8u2AM4LV2ucl7QlQEGfeBPduCl1149x41QCKru/R6dR1veAv1KJk6osAco4IojeB/uETXXDLvOLWxSnwTDaLzzW9z4Ltf4E23Ls7EEf1uM8/PfhKOMNVX3V5/hFwBZgsYgU8GzAt0BBnJYBOG+Yv6nb6vFHRIridN1NB5J80hGcbowOwQRU1Z9x3sau8wkegPNQ+sBNvz7Om/4HfnIew7kx/NOPU9XY4GrJED7x+/8Rjsxt3P+h6tbDLP8MRKSQiDwiIutF5DjOtVzoHm5wFrIvUdX9Pv9Xufua7r66u033O28OzotPZvCl339/mRCR+iIyTUS24+giAbiZwLr4WlWP+weKSH8R+VVEDuCU5ShO95tvGt2Bz1X133SU4yK3LAf9rvs3QLSIlPKLf8Z1D8BvwGC3LrTyaYWkhxTv5RSo5u53Bzn+CM71OI7TSi0B9FbVhHRJeXbs5rS84SAB+Nw3wK2LM4BrPDMvRaQpzpDKez5R01p/kpEbjFZfnLeenjjG404Rud7neCWgFqcfAJ5tqXu8vM9+Wwr5lMN5a30sQFp3AWVFJCV9vg/0EZHi7v/rgB9UdbuPnOAYXv/0L/WR08MOQsNTpsgU4niObfUL/y/I/wh3H6puPQSSeTTOG/n7wCU4BvFy99jZfLqQrLtUVT1dQp40q7r7XX7xTuG0bFNjK07Z0y0Tp7upigC405i/w7nJH8bp4mwNvIXT7efPGfoUkV7AxzgtwYE4YyytcR5yvvpMrb6nRCXges687s/5pJ2inAG4G3gDp7fkN2CXiIwXkWLpkC+9ZfPoJ2D3Ic51aI1zXUbgvGx85Ds1ntDvt+M4Qxh73d9prUvHSf3+8NzPaU07FHZr8qEOD+/hzJ7s5P6/DqeVP9snTlrrTzJyw5jWalXdACAiP+D0Xz8nIp+q6lGcSrEZZ9JDIOLc/R5OP4wDcQCnS24CTtfKGahqsP56cC7mE8DlIvIrTuUf5HN8r7sfjmN8/Tnpn10KefkyH0fu3jhvMslwb7hewHpNPp4FTtfFGr//AB5DG6puU5J5APCuqo7ykSnkb1DOAk9ZK/kGum/4FUI4fx7QTURaaoCxzHTSDucB015VF/nIFOw+DabPDao62Of8gjgvXb6kVt9TYi9Oa3hskOP+rbdU66qqHsGp+8PdsaV+ON1oJ3G6uNNCesvmuQfL4hgFf3zHMBe5984TrqyeFvv3OONovTn9EPYizjek3YAFnoe+ON+YdRORwj4vV6lRzkfeYMzD6dLshTN+mhoncMb8fAlmQIJd0wU4k2muFZEFOC9OM/x6BNJaf5KRG1paXtwL/iDOg+hON/hrHMt/RFWXBdg8b9XfAm1EJDpI2kdxFB2NM0PmjLRSkW0jzuDwde52FGdg2cOfOA/5qCBy/pF2jYDbkvsQuFlEWgeIcg/ORIpnAxzzN0YDcAzgr+7/UHWbEsVw3rJ8uSFAvBM4feYZxTZ3u9IvvA+hvcxNxnk4vurTevYiIsVEpGsaZfK0Krz6cCcVXJbGNPy7N6/D6SXw5VvgUhGpSnCC6fxroBmwJsh1D/XBGxBV3aKqz+N0nzbxkYUg8viT4r2cAuvdfZ0Q44/FecA+7mltqeovODN7H3Ynu/gzGsfg+Bq0MTjGIdA9iIjUFpFmfsG1cZ4ZQVHVpTgzUR8J9hGxiPjWrS2c1reHS1LKI0CeitNr0g+n9yuC5F2DcLb1Jy2Df9lpI8iUd/fYUpxpvEVxxlYW4LQO/oczu+dinC69b4Fi7jllcGYt7cb5dulCnIf2B0BJN04LnMHr73Ae4B2BK3DeZsb45D8Vn4kYPuG34wwQ7wDeC3C8J84D62M33Y6uDC8C//OJN580fD/jlm05TjP9CZzZShdz+uPiyUF0+w/OzdWN05Mr3vaJF6puO7npdQ0g2zSccbs7ccYiXseZkOI/+Dse58F1Fc6kigZ+skb6xI0D3g+QV7KBZpyxInX10APng9EtOK3qt0LQq+fj4j/dMnfy0dVWUvm42Ecvndz/FXEGspfhPCz64/QcbMB9HviVZVQAmW5zj413r8cwHOO8H5/JJa5Mu3Fayre4deJaX72loPOaOPfXbzi9BR1xjP3/+eqN0xMxzvh+jDMnTyzBaWld6urlCZx75V73eD6cl4Sf3fxa4Q7kB0irDKncy0GuZxGcmab/C3AsmL6HuMeu8AmrhTOr8z+cGbQdcV48PB8XPxYgnaE49+J3ON9/tcdprb2E84J7mU9cwelqPkOeAOn6flw8Euce64TzLFqKz8fFwJOuzh91684InLodaCLGthTybOiesw3nfhK/4yHVn6Dph/rgy24bKRut7u6x+3wq4wicN6kT7gX/zQ0r4HNeJWASjlE5ifPgeYfk32k1wpmQsMtNaxvOlNKefhc1LoBcZd1zFOgepFztcAY497s3UJybXzu/Gz5NH33ivIE/gvP2ehzHgC0Crk1Btx1wJiYccXUW6DutVHVLykarglu+/e72Aae/L/G9UargDN4eJsTvtALklcxouWFDcW6seBxj0d6VY3yIeq0FvIoz0eaEq6vfcMakSrlxIgnBaLlhF+JM8T7upnmPq0sNUJZAD9F8ON1T/+K8DCzA+X4rDr8ZkTgTf6bhGIN4N78XfI4H1Ll7rDqOsd+Oc6/swHngXusTZwShG62xbrkP4jykVwH3+J3TB1iL82LnrR/+aYV6Lwe5nh8DPwapO4H0XcjV7Qp8Hs44ramxON5S4t069S1wcQp5n4fTzbiD05PLvsV5mfD97tEzG7lJSmXxiV8C595f4er2BI4xegmo43cvv+Tmf9jVRRvSaLTcOL+55z0T5Hiq9SfYJm4ChuFFRAbjuKypr+54YV5BRFrh3HDXq6p/t4aRyxGRTjhdapGq+k94pQmMiEzEMVjtwy1LOMgNEzEMI124Yw5DcMYqD+G0oh/B6TL7NIyiGWFCVeeLyPfAQzhdvtkKEamC06V2UbhlCRdmtIy8zHGcgefrcbpu9+PMuHpYVY+FUzAjrNyN83mKaPbriooE7lfVn8ItSLiw7kHDMAwjx5CrprwbhmEYuRvrHnSpUKGCRkZGhlsMwzCMHMXy5cv3qGrFrMrPjJZLZGQky5alxWG3YRiGISJbsjI/6x40DMMwcgxZarREpIGI3Csi77tevZNEREWk31mmO1BEForIQRE5IiLLRGRIKg5sDcMwjBxGVncP3oHjViXDEJEJOC6A4nGcVSbguCB5FegiIv00ZUe2hmEYRg4hq1siq3F82V2Fs8z6grNJTESuwDFYO4FmqnqpqvYF6uMszdAX55sLwzAMIxeQpS0tVZ3s+z/5MjTpYri7H6aqf/vk85+I3IHjk+xhEXnFWluGYRg5nxw75iMi1YGWOM4W/VefRVU93sercOYKuoZhGEYOJMcaLRzP1eCsyRJowTZwHJ/6xjUMwzByMDn5Oy3PAmspfSPg8dIcaDG2LGHS8kl8uOrDcGWf+zi+A+L/C7cUhpFrOLqzAudHleTF61eEW5SQyMktLc+S7EdTiHPE3ZcMdFBEbnWnxy/bvXt3hgrn4cNVHxK7MzZT0s6TxP8HiUdSj2cYRoqcPFycte/2Zdlzt7Irrmy4xQmZnNzSOmtUdRLOQnG0atUq0zwHx1SJYf7g+ZmVfPZgwySIy4IWZXGg7AXQdX7m52UYuRBV5f331zJ01I8cOZLAqKfa8dBD94dbrJDJyUbL87pdPIU4ntbY4UyWJWvJKgORFna5Xy9U6pi5+ZSNgciBmZuHYeRixo5dyvDhC2nXrhpTpvSgUaPy4RYpTeRkoxXn7mulEKeGX9zcQdyHsD/WeYBnFyp1dIxJvVvDLYlhGH4kJSkHDsRTrlxRBg9uQsmShbj99mjy5895I0Q52Wh5Rg2jRKRokBmErf3i5h7KxlgXmWEYqfLXX/u4+eZvUVUWLBhAlSrFGTIk506ozrFGS1W3isjvQAvgSuBd3+Mi0hGojuMtY0nWS+gQUyXm7BII1BWY3VpZhmFkOxITk3j++d944onFFC1agPHjO3P2/hzCT7Y3WiIyGscd0yxVHe53eDTOh8VjRWSxqm5wz6kEvObGGRNObxgvXvTi2SUQqCvQxnUMw0iBLVsOcvnlc/n99//o27c+EyZ0oWrVEqmfmAPIUqMlIi04bUwAGrv7Z0TkAU+gqvp6sKgKNHD3yVDVGSIyEccR7yoRmcdph7mlgNk4jnNzBim1qqwr0DCMEKlQoShFiuRnxozeXHHFOeEWJ0PJ6pZWKaBtgPD66U1QVe8UkUXAEKAjkB9YD7wFTMxRPgfjPnRm4fnOwLNWlWEYIbB48XbGjl3KRx9dSvHihVi06OqM8O+a7chqh7nzgTRpUVUHA4NTifMhkM3mgKeTSh2tVWUYRsgcOXKSRx9dxCuv/E6NGiWJiztEo0blc6XBgpztESN3sWHS6W+dDMMwQuDbb+No0mQqr7zyO0OGNGf16hty3HdXaSXbT8TIM3jGsqwr0DCMEFBVnnxyMUWKFOCnnwZwwQXVwy1SlmBGKztRqaN9nGsYRorMmvU3559fjUqVivPJJ70oX74oRYrknUe5dQ+Gkw2TYF4nZ9sfG2ZhDMPIzuzceZR+/eZw+eVzGD9+OQARESXzlMECa2mFF99vsGyWoGEYAVBV3n13DffdN59jxxJ45pn2PPBAq3CLFTbMaIUb+wbLMIwUGDNmKY88spDzz49g8uTuNGyYuydapIYZrXDhmS2Y2V7RDcPIcSQlKfv3x1O+fFFuvLEJZcoU5rbbosmXL3dOY08LZrSygkCeLjzT261L0DAMH9av38vNN38LwE8/DaBy5eLccUdMeIXKRthEjKzAM3blS6WO0OYNmy1oGAYACQmneOaZX4iOfpe1a/dy663NcoWD24zGWlpZhY1dGYYRhLi4g/TtO4fY2F1ceeU5vPJKFypXTml927yLGS3DMIwwU6lSMUqUKMjMmZfRt2+6XbHmCax70DAMIwwsWrSNSy+dybFjCRQrVpCffhpgBisErKWVGfhPvLBZgoZhuBw+fJLhw39iwoRYIiNLsWVL7nZwm9FYSysz8J94UamjzRI0DIOvv95MkyZv89prsdx7bwtWrRqc6x3cZjTW0sosbOKFYRg+qCojRy6hePGC/PzzQNq1qxZukXIkZrQMwzAyCVVl5sy/ad8+gkqVijNjRm/Kly9C4cL26E0v1j1oGIaRCezYcYQrrphLv35zefHF3wGoVq2EGayzxLRnGIaRgagqb7+9mv/9bz4nTpxi7NgO/O9/edfBbUZjRsswDCMDeeaZX/m//1tE+/bVmTy5O+ecUy7cIuUqzGgZhmGcJadOJbF/fzwVKhTj5pubUqFCUW65pZk5uM0EbEzLMAzjLFi7dg/t23/EZZfNJilJqVy5uHlkz0TMaBmGYaSDhIRTjBq1hObN3+Ovv/Zz550x5uA2C7DuQcMwjDSyefMB+vSZwx9/7GbAgIa89FJnKlUyB7dZgRktwzCMNFK5cnHKlCnMnDl96N27XrjFyVNY96BhGEYI/PTTVnr2/NTr4HbBggFmsMKAGS3DMIwUOHToBHfe+R0dO37M+vX72LLlULhFytNY96BhGEYQvvxyE7ff/h3bth3mvvta8tRT51O8eKFwi5WnMaOVGexaEG4JDMM4S1SVp5/+hZIlC7F48UDOPdcc3GYHzGhlNBsmhVsCwzDSiaoyffqfdOxYg8qVHQe35cqZg9vshI1pZTS+iz8ahpFj2L79MH36zOaqqz7npZccB7dVq5qD2+yGXY3MoFJHW0vLMHIIqsrkyat44IH5JCQkMW5cR4YObRlusYwgmNHKSDZMsvEsw8hheBzcdupUgzff7E69emXDLZKRAma0MhLrGjSMHMGpU0ns2xdPxYrFuOWWplSpUpwbbmhi/gJzADamZRhGnmL16t2cf/40r4PbSpWKc9NNTc1g5RDMaBmGkSc4efIUTz65mBYt3mPjxgPcfXdzc3CbA7HuQcMwcj2bNh3gsstms3r1HgYObMSLL3amYsVi4RbLSAdmtAzDyPVUqVKcChWKMnduX3r1qhtucYyzwLoHDcPIlfz44z/06DHD6+D2xx+vMoOVCwjZaIlINxGZIiKfuf9biciFmSeaYRhG2jl48AS33fYtF174CZs2HWDr1sPhFsnIQEIyWiJyNzAR+Bvo4AYfB0ZlklyGYRhp5rPPNtK48dtMnryKBx9szcqVg2jQoFy4xTIykFDHtIYCXVQ1TkSGuWHrgQaZIpVhGEYaUVXGjl1K+fJFmDOnD61aVQm3SEYmEKrRKglsdX+ruy8InMxwiQzDMEJEVfn44z/p3Dm5g9tChfKHWzQjkwh1TOsn4GG/sHuAHzNWHMMwjNDYtu0wvXvP4uqrP+eVV1YAzixBM1i5m1BbWncDn4nILUBJEfkTOAxcmmmSGYZhBCApSXnzzT948MEFnDqVxPjxnbn77ubhFsvIIkIyWqq6Q0RaA62BWjhdhUtVNSkzhTMMw/DnmWd+4bHHfqZLl5pMmtSdOnXKhFskIwsJyWiJyBxVvQxY6m6e8JmqenlmCWcYhgGQmJjEvn3HqVSpOLfdFk1ERAkGD26CmB+mPEeoY1qdg4R3yiA5chdVuoZbAsPINfzxx27atfvA6+C2YsVi3HBDUzNYeZQUW1oiMtL9Wcjnt4c6wJZMkSonU6kjXPhduKUwjBzPiROJPP30L4wevZRy5Yrw6qtdzMGtkWr3YA13n8/nNzjT3rcCIzJBJsMw8jibNh2gV69ZrF27l+uua8z48Z0pX75ouMUysgEpGi1VvQFARBar6ptZI5JhGHmdqlWLU7VqcZ57riM9e9YJtzhGNiKkMS2PwRKRkiJSW0TqeLbMFc8wjLzC999voVu36Rw9epKiRQsyb15/M1jGGYTqe7CRiKwADgIb3O1vdzMMw0g3Bw7Ec/PN39C163S2bDnEtm1Hwi2SkY0JdfbgRBzvF+WAQ0BZ4A1gUCbJZRhGHmDOnA00bvw2U6euZtiwNqxceb05uDVSJFSPGNFAN1VNEBFR1YMi8iCwGng/88QzDCO3oqqMG/cblSoV47PP+tKypTm4NVInVKMVj+MgNwHYIyI1gf1A+cwSzDCM3Ieq8sEH6+jatRZVqpx2cFuwoPkLNEIj1O7BhUB/9/cM4CtgAfBDZghlGEbu459/DnHJJTO57rovefVVx8Ft5crFzWAZaSJU34P9ff4+AqwBSgDvZIZQhmHkHpKSlNdfj2XYsJ9QhZdfvpA774wJt1hGDiXU7kEvrpPc90SkEHALMCHDpTIMI9fw9NO/8PjjP9OtWy0mTepOZGTpcItk5GBSNVoi0gWIATao6hwRKQDcCQwD9mFGyzAMPxITk9iz5zhVqhTn9tujqVWrFNdd19j8BRpnTWq+B4cBj+F0B0aJyGs4TnJPALeq6heZLqFhGDmKlSt3ceON31CwYD4WLx5IxYrFuP76qHCLZeQSUmtp3QZ0VNXlInIu8DNwv6q+mOmSGYaRo4iPT2TUqF8YO3Yp5csXYcKEruTLZy0rI2NJzWhVUNXlAKr6i4icAF7KfLFyGBsmQdyHsD8WysaEWxrDyHI2bjzApZfOZP36fQwaFMULL3SiXDlzcGtkPKGMaQng2eLdMO9UeVu9mOQGK3JguKUxjCynWrXi1KhRkhdf7EyPHrXDLY6Ri0nNaJUAEn3+i89/wVmixD6yAMdgdZ0fbikMI8v49ts4xoz5lc8+60vx4oX49tsrwy2SkQdIzWjZK5NhGMnYt+84998/n6lT19CgQTn+/fco9esXCrdYRh4htfW0bGViwzC8fPrpXwwZMo89e47zyCNteeyxdhQpkubPPQ0j3VhtMwwjJFSVl176nWrVSvD11/2IiakUbpGMPIgZLcMwgqKqvPfeWrp1q0XVqiWYMaMXZcuag1sjfITqMNcwjDxGXNxBLrroUwYN+oqJE2MBqFTJHNwa4SVNLS0RqQFEqOovmSSPYRhhJilJmTBhBcOHL0QEXn21C3fcERNusQwDCLGlJSI1ReRnYD0wzw3rJyKTM1M4wzCynlGjlnDPPT9wwQURrF49mCFDmptnCyPbEGpL6w3gC6A9sNcN+w54PjOEMgwja0lIOMWePcepWrUEd9wRQ506Zbjmmkbm4NbIdoQ6ptUGGON6v1AAVT0I2BoDhpHD+f33/2jd+n369JlNUpJSsWIxrr3WPLIb2ZNQjdZ/QD3fABFpDPyT4RIZhpElHD+ewMMP/0SbNu/z33/HGD68rXUDGtmeULsHxwGfi8hooICIXI2zgvGYTJPMMIxMY8OG/VxyyUz++ms/N93UlOee60jZskXCLZZhpEpIRktV3xKRvThLlWwFrgceU9XZmSibYRiZRPXqJalTpzQTJnSla9da4RbHMEImJKMlIvlVdQ4wJ5PlMQwjk/j6682MGfMrn39+OSVKFOKrr/qFWyTDSDOhjmntFJHXROT8TJXGMIwMZ+/e4wwa9CUXX/wpu3YdY8eOo+EWyTDSTahGqztwBJgmIptFZLSINM1EuQzDOEtUlenT/6Rx47f58MP1PPbYuaxYcT3165cNt2iGkW5CHdNaAawAHhKRjsDVwA8iskNVm2WmgIZhpJ9XX11BjRol+fbbfkRHm4NbI+eTHoe564F1ONPd62esOIZhnA2qytSpq+nRozbVqpVgxozelC1bhAIFzM2okTsI1Y1TGRG5SUS+BzYBnYCxgL26GUY2YdOmA3TrNp0bb/yG11+PBaBixWJmsIxcRai1+V+cLsEPcRzm9lXVT1Q1Pj2ZishAEVkoIgdF5IiILBORISKSprtLREaIiKawpUs+w8hJnDqVxIsvLqdp06ksXbqTiRO7MmKEzZkyciehdg/WVdUdGZGhiEwA7gTige+BBKAL8CrQRUT6ue6i0sJKIDZAeMJZiGoYOYJRo35hxIjFXHJJHSZO7EqNGqXCLZJhZBpBjZaIdFDVn9y/jUSkUaB4qvpDqJmJyBU4Bmsn0EFV/3bDKwM/An2Bu4GXQk3TZbaqjkjjOYaRYzl50nFwW61aCYYMieGcc8oyYEBD8xdo5HpSamm9BjRxf08JEkeBOmnIb7i7H+YxWACq+p+I3AHMBx4WkVfS0doyjDzBsmU7uemmbyhcOD+//HINFSoU4+qrA75TGkauI6jRUtUmPr9rn21GIlIdaAmcBKYHyG+BiGwHIoBzgcVnm6dh5CaOH0/giScW8/zzy6hSpTgTJ3Y1B7dGniNUN05zVPWyAOEzVfXyEPNq7u7XqOrxIHF+wzFazUmb0WohImOBssA+4FfgC1U9mYY0DCPb8vff++nZ81M2bDjALbc049lnO1CmjDm4NfIeoU7E6BwkvFMa8vK01rakEMez1ElaW3a93M2XbSJyraouSGNahpHtqFGjJOecU5Y33ujOhRfWDLc4hhE2UjRaIjLS/VnI57eHOqRsgPwp4e5Tcnx2xN2XDDHNjTjjZF8Bm4FCQFPgCaAj8KWItFPVPwKdLCK3ArcC1KxpDwIje/HFFxsZM2YpX311BSVKFOKLL64It0iGEXZS+y6qhrvl8/ldA6iOs0TJlZkqXSqo6nuqOkZVV6rqIVXdo6o/qmon4FOgGPBMCudPUtVWqtqqYsWKWSW2YaTInj3HuPbaL7j00lns3x/Pzp3m4NYwPKTY0lLVGwBEZLGqvnmWeXlaUcVTiONpjR0+y7wARgJXAN1EpKCq2jdbRrZGVfn44z+5++7vOXjwBCNGnMfw4W0pVCh/uEUzjGxDSt9pRapqnPv3exEJOLVdVTeFmJcnrZRWnKvhF/dsWO/uCwEVgAz5ONowMpM33lhJnTqlmTKlB02aWOvfMPxJqaW1itNjSxtwvsnyn1+rQKivgSvcfZSIFA0yg7C1X9yzobzP7yNBYxlGGFFVpkxZRc+edahWrQTTp/eibNki5M9v/gINIxBB7wxVLenzO5+q5nf3vlvI/RaquhX4Haflc8ZYmLvkSXUcbxlL0lKIIPR393+qakZ0NxpGhrJx4wG6dPmEW275lkmTVgJQoUIxM1iGkQLpujtEpI6IRKbj1NHufqyI1PNJrxKOBw6AMb7eMETkLhFZLyLv+slQ03W8W9gvXETkOp+8xqdDTsPINE6dSuKFF5bRtOlUli//j0mTuvPEE+eFWyzDyBGE+nHxNOAVVV0sIjfgGJgkEblHVYO5eDoDVZ0hIhOBO4BVIjKP0w5zSwGzcRzn+lIBaIDTAvOlHPAB8LqI/I7jib4kEMXp77xeVdU3QpUv3eyyT8GM0PE4uO3Vqy4TJ3YlIiLULzwMwwj14+IuwCD39/+ArsABHCMTstECUNU7RWQRMATnW6r8OJMm3gImpsHn4FbgOZxxsHpAG5yW407gY2BSWpz5GkZmcvLkKXbvPkZEREnuuqs5DRuWo3//Bubg1jDSiKhq6pFEDqhqGRGJAJaqaoQbfkhVc8U6CK1atdJly5al7+QP3QfPwNR1aeQ9li7dwY03fk3RogX49ddrzV+gkasQkeWq2iqr8gt1TCtWRIYDjwFfALgG7FBmCWYYOZ1jxxK4//4fadfuQw4ePMmIEeeZwTKMsyTU7sGbgKdwxp8ecsPa4YwpGYbhx99/7+eii2awadNBbr89mrFjO1CqVOHUTzQMI0VCMlqquhEY6Bc2A5iRGUIZRk5FVRERatQoSVRUBd566yI6dqyR+omGYYREyFPeReQGEflBRP509zdkpmCGkdP47LONXHDBNA4fPkmRIgWYO7evGSzDyGBCMloi8ijwMPARcI+7f8gNN4w8ze7dx7j66s/p3XsWhw+fZNeuY+EWyTByLaGOad0MdFJV71IkIvIN8BPwdGYIZhjZHVVl2rT13HPPDxw6dIKRI89n2LA25uDWMDKRUI1WcWC3X9heoGjGimMYOYs33/yD+vXLMHlyD6KiKoRbHMPI9YQ6pvU18IGINBCRoiLSEHgH+CbzRDOM7EdSkvLGGyvZvv0wIsKMGb1ZtOhqM1iGkUWEarTuwlnj6g8cj+mxOCsQ3505YhlG9uPvv/fTufPH3H77d0yevAqA8uWLmoNbw8hCUu0eFJHSQF0ct0uDcXwB7kmDuyXDyNEkJjoObp94YjGFC+dnypQe3HBDk3CLZRh5khRfEUXkEhxHtMuAbUBHVd1lBsvISzz11BKGDfuJiy6KZO3aG7jxxqbmM9AwwkRqLa2ngGE4zmxvwZkpaGsoGLmeEycS2b37ONWrl+See1rQrFlFLr+8vhkrwwgzqXXG11HVV1X1GDABx5u6YeRqliz5l+bN36Vv39kkJSnlyxfliivOMYNlGNmA1IyW97iqJhL6FHnDyHEcPXqSoUN/4PzzP+TIkQRGjjzfHNwaRjYjNSNUTER+8vlf0u8/qtoh48UyjKzlr7/20aPHDOLiDjFkSAyjR3egZMlC4RbLMAw/UjNaN/n9T9OCj4aR3fE4uK1VqxTR0ZV4992etG9fPdxiGYYRhBSNlqq+k1WCGEZWM2vW34wdu5TvvruSkiULMXt2n3CLZBhGKthXkUae47//jtK//1wuv3wOJ06cYvduc3BrGDkFm1hh5BlUlffeW8vQoT9y9GgCTz99AQ8+2JqCBc3BrWHkFMxoGXmKd95ZQ6NG5ZgypQcNG5YPtziGYaQRM1pGrsbj4LZ377pERJRk+vRelC5d2PwFGkYOJdRFIAuLyNMisklEDrph3UXkrswVzzDSz59/7qNjx4+48855TJniOLgtV84c3BpGTibUu3c80AS4BlA3bA1wR2YIZRhnQ2JiEmPG/Ep09DusWbOXqVMv4rHH2oVbLMMwMoBQuwf7AvVU9aiIJAGo6nYRicg80QwjfTz11BJGjlzCFVfU59VXu1KlSvFwi2QYRgYRqtE66R9XRCrirF5sGGEnPj6R3buPUaNGKe69twUxMZXo27d+uMUyDCODCbV7cDrwjojUBhCRqsCrwEeZJZhhhMrPP28nJuZd+vSZQ1KSUq5cUTNYhpFLCdVoPQJsBlYBZYC/cdbZejJzxDKM1Dly5CT33PM97dtPIz4+kWeeucAc3BpGLiek7kFVPQncB9zndgvuUVVN5TTDyDT+/HMf3btPZ+vWw9x9dwuefvoCSpQwB7eGkdsJyWiJSB2/oJKetYVUdVNGC2UYwfA4uI2MLEXLllX48MNLOf98mw9kGHmFUCdibMCZ6u7b9+JpaZkPHCNL+PTTv3j22aXMm9efkiULMXPmZeEWyTCMLCakMS1Vzaeq+d19PqAaMAm4LlOlMwxgx44jXHHFHPr1m0tCQpI5uDWMPEy63Dip6k4RGQr8BXyYoRIZhouq8s47a7jvvh85fjyRMWPac//9rSlQwDxaGEZe5Wx8DzYAimWUIIYRiHffXUOTJhWYPLkHDRqUC7c4hmGEmVAnYizk9BgWOMYqChiZGUIZeZekJGXixFguu6we1auX5NNPL6N06cI2ld0wDCD0ltZkv/9HgZWq+ncGy2PkYdat28vNN3/D4sX/sm9fPI891o6yZYuEWyzDMLIRqRotEckPXAjcqqonMl8kI6+RkHCKZ5/9jZEjl1CiREHeffdirr22cbjFMgwjG5Kq0VLVUyLSHUjKAnmMPMhTTy3hqad+oX//Brz88oVUrmwObg3DCEyo3YPjgSdF5AlVTchMgYy8wfHjCezefZyaNUsxdGhLWrWqQu/e9cItlmEY2ZwU5w6LyNXuz7uBB4HDIrJVRP7xbJkuoZHrWLhwGzEx79K372kHt2awDMMIhdRaWm8A04Brs0AWI5dz6NAJhg9fyGuvxVK7dmmefbaDzQo0DCNNpGa0BEBVF2SBLEYuZv36vXTvPoNt2w4zdGhLRo06n+LFzcGtYRhpIzWjlV9EOpPc52AyVPWHjBXJyE14HNzWrl2aNm2q8PHHvWjXrlq4xTIMI4eSmtEqDEwhuNFSwN8DvGGgqsyY4Ti4/f77/pQqVZgZM8zBrWEYZ0dqRuuoqppRMtLEv/8eYciQecyevYGWLSuzd+9xSpUqHG6xDMPIBZyN70HDSIaq8tZbq7n//vmcOHGK557ryNChLc3BrWEYGUZIEzEMI1SmTVtHTExFJk/uQb16ZcMtjmEYuYwUjZaqlswqQYycyalTSUyYEEvfvvWoUaMUM2b0plQpc3BrGEbmYP02RrpZs2YP558/jXvv/YF33lkDQJkyRcxgGYaRadiYlpFmTp48xdixS3nqqSWUKlWYDz64hKuvbhhusQzDyAOY0TLSzKhRjoPbAQMa8vLLF1Kxoq0FahhG1mBGywiJY8cS2L37GLVqlea++1rRpk1VLr20brjFMgwjj2FjWkaqLFiwlejod7wObsuWLWIGyzCMsGBGywjKwYMnuP327+jU6WOSkpRx4zrZJAvDMMKKdQ8aAVm/fi9du05nx46j3H9/K0aOPJ9ixQqGWyzDMPI4ZrSMZHgc3NapU4bzz4/g/vud8SvDMIzsgHUPGoBjrD76aD2tWr3PoUMnKFQoPx9/3MsMlmEY2QozWgbbtx/msstmc/XVn1OggLBvX3y4RTIMwwiIdQ/mYVSVyZNX8cAD80lISOKFFzpxzz0tyJ/f3mUMw8iemNHK43zyyZ+0bFmZN9/sQd26ZcItjmEYRoqY0cpjnDqVxMsv/06/fuf4OLgthIhNZTcMI/tjRisPsXr1bm688Rt++20nx48n8sgj51K6tC3OaBhGzsGMVg4mISGBbdu2ER+f8sQJVeXgwZMcPHiCUaPOoVy5ZhQvXpB169ZlkaSGYeR0ihQpQvXq1SlYMLzfa5rRysFs27aNkiVLEhkZmWL33vbthzl27CjnnFOEGjVKUrBg/iyU0jCMnI6qsnfvXrZt20bt2rXDKosZrRxMfHx8UIN16lQSiYlJFC5cgMqVi1OiRCHrCjQMI12ICOXLl2f37t3hFsWMVk4nkME6dOgEW7YcIn9+oVGj8hQokM8MlmEYZ0V2maxlRisXkZiYxLZth9mz5ziFC+enRo1S2aaiGYZhZAT2FWku4fjxRNas2cOePcepUqU4UVHlKVmyUKbnmz9/fmJiYmjSpAlXXnklx44dA5y3smuvvdYbLzExkYoVK3LppZcCMHXqVESEefPmeePMnj0bEWHGjBkAdOrUiWXLlgXNOy4ujqJFixITE0Pjxo25/vrrSUhI8B5ftGgRbdq0oWHDhjRs2JBJkyYlO//dd9+lSZMmNG3alObNmzNu3LiQyjx06FAiIiJISkryho0YMeKM8yMjI9mzZw8AO3fuZMCAAdStW5eWLVvSs2dP/vrrr5DyC8aJEye46qqrqFevHm3btiUuLi5gvJdeeokmTZoQFRXFiy++6A2/6qqriImJISYmhsjISGJiYgDYu3cvnTt3pkSJEtx1113J0urUqRMNGjTwnrdr1y4AtmzZQpcuXWjWrBmdOnVi27Zt3nMeeughoqKiaNSoEffccw+qyrFjx7jkkkto2LAhUVFRPPzww974L7zwAo0bN6ZZs2Z06dKFLVu2eI9ddNFFlClTxluPPAwePJjatWt75YqNjQVg//799O3bl2bNmtGmTRtWr17tPWf8+PFERUXRpEkTrr76au+EpmuuuYYGDRrQpEkTbrzxRm+d+uCDD2jWrBlNmzblvPPOY+XKld60brzxRipVqkSTJk2SyTV9+nSioqLIly9finXZSAOqapsqLVu21HTzAc6Wxaxdu1aTkpJUVfXUqSTduHG/HjlyMktlKF68uPf3wIED9fnnn/eGR0dH67Fjx1RV9csvv9To6Gi95JJLVFX17bff1qZNm+pNN93kPb9///4aHR2t06dPV1XVjh076m+//RY0782bN2tUVJSqqiYmJmrnzp31/fffV1XVHTt2aI0aNXT58uWqqrp7925t0aKFfv755155mjdvrtu3b1dV1fj4eJ00aVKq5T116pTWrFlT27Ztqz/88IM3/IknntDnnnsuWdxatWrp7t27NSkpSc8991ydOHGi91hsbKz+9NNPqeaXEhMmTNDbbrtNVVWnTZum/fv3PyPOqlWrNCoqSo8ePaoJCQnapUsX/fvvv8+I97///U+ffPJJVVU9cuSILly4UCdOnKhDhgxJFi/YNenXr59OnTpVVVW///57vfbaa1VV9eeff9bzzjtPExMTNTExUc8991z98ccf9ejRo179nThxQi+44AL98ssvVVX1hx9+0KNHj6qq6muvvZasXPPmzdO5c+d665GHQYMGeeuNLw888ICOGDFCVVXXrVunF154oaqqbtu2TSMjI73188orr9S3335bVVW/+OILTUpK0qSkJB0wYIC+9tpr3rLs27dPVZ3606ZNG28+CxYs0OXLl3vro4e1a9fq+vXrU63LOYW1a9eeEQYs0yx8Vlv3YA5FVTl6NIF16/bSoEE58sf+jzr7Y2FTBmZSNgZavhhy9Pbt2/PHH394//fs2ZMvvviCfv36MW3aNK6++moWLlyYLP7ChQtJSEjgxIkTbNiwwfu2n1by589PmzZt2L59OwATJkxg8ODBtGjRAoAKFSrw7LPPMmLECC655BJGjx7NuHHjqFatGgCFCxfmlltuSTWf+fPnExUVxVVXXcW0adPo3Llzquf8+OOPFCxYkNtvv90bFh0dnZ5iJmPOnDmMGDECgH79+nHXXXd5vfR7WLduHW3btqVYsWIAdOzYkZkzZ/LQQw9546gqn3zyCT/88AMAxYsX54ILLmDDhg0hy7J27VpeeOEFADp37kyfPn0Ap8UdHx/PyZMnUVUSEhKoXLkyxYoV8+quUKFCtGjRwts689Xpueeey/vvv+/936VLF+bPn58muTytuIYNGxIXF8d///0HOK3/48ePU7BgQY4dO+atCz179vSe36ZNG69c5513XjK5fFuTHTp0CNjSbdSoUciyGqFh3YM5kK1bD9Gr1yz27DmOiJCYmJT6SZlMYmIiX331FU2bNvWGDRgwgI8++oj4+Hj++OMP2rZtm+wcEaFr16588803zJkzh969e6c7//j4eH799VcuuugiANasWUPLli2TxWnVqhVr1qwBYPXq1WccDwWP8e3bty9ffPFFsu7IYKQlr/bt23u7uHw3325UD9u3b6dGjRoAFChQgNKlS7N3795kcZo0acLChQvZu3cvx44d48svv2Tr1q3J4ixcuJDKlStTv379kGS84YYbiImJ4amnnsJ50XaM8MyZMwGYNWsWhw8fZu/evbRr147OnTtTtWpVqlatSo8ePc54kB84cIDPPvuMLl26nJHXlClTuPjii0OS69FHH6VZs2bcd999nDhx4gy5li5dypYtW9i2bRsRERE88MAD1KxZk6pVq1K6dGm6d++eLL2EhATee+89b51Kr1xGxmItrRyEqvLGGyt56KGfOHUqicceq0vDhuWcN+s0tIgykuPHj3tbR+3bt+emm27yHmvWrBlxcXFMmzYt2durLwMGDODll1/m4MGDPP/88zzzzDNpyn/jxo3ExMSwefNmLrnkEpo1a5busqTGyZMn+fLLL3nhhRcoWbIkbdu25ZtvvuHSSy8NOuElrRNhfFuiGUGjRo0YNmwY3bt3p3jx4sTExJA/f/Lv9DyGOBQ++OADIiIiOHz4MFdccQXvvfce119/PePGjeOuu+5i6tSpdOjQgYiICPLnz8+GDRtYt26dt1XSrVs3Fi5cSPv27QHnZefqq6/mnnvuoU6dOsnyev/991m2bBkLFixIVa7Ro0dTpUoVTp48ya233srYsWN5/PHHefjhh7n33nuJiYnxjl3mz5+f/fv3M2fOHDZv3kyZMmW48soref/995ONw95555106NDBK6uHH3/8kSlTprBo0aKQdGZkLNbSymHMnPk3bdpUYdWqwdnCZ2DRokWJjY0lNjaWV155hUKFkk/+6N27Nw888EDQh2KbNm1YtWoVe/bs4Zxzzklz/nXr1iU2NpaNGzeyfPly5s6dC0Djxo1Zvnx5srjLly8nKioKgKioqDOOp8Y333zDgQMHaNq0KZGRkSxatIhp06YBUL58efbv358s/uHDhylTpkya8kpLSysiIsLbakpMTOTgwYOUL1/+jHg33XQTy5cv56effqJs2bLJ9JyYmMjMmTO56qqrQpIvIiICgJIlSzJw4ECWLl0KQLVq1Zg5cyYrVqzg6aefBqBMmTLMmjWLc889lxIlSlCiRAkuvvhilixZ4k3v1ltvpX79+gwdOjRZPvPmzePpp59m7ty5FC6c+ucaVatWRUQoXLgwN9xwg1euUqVK8fbbbxMbG8u7777L7t27qVOnDvPmzaN27dpUrFiRggULcvnll7N48WJvek8++SS7d+/2dnl6+OOPP7j55puZM2dOQF0bmY8ZrWxOYmIS48b9xj//HHJn1vXmu++upE6dMuEWLSRuvPFGnnjiiWTdhv6MGTMmzS0sfypUqMCYMWMYPXo0AEOGDGHq1KneWWR79+5l2LBh3rGc4cOH8+CDD7Jz507AaUVNnjw5xTymTZvG5MmTiYuLIy4ujs2bN/Pdd99x7NgxOnTowNy5czl8+DAAM2fOJDo6mvz583PhhRdy4sSJZLMX//jjj4CtqoULF3pfAny3rl27nhG3d+/evPPOOwDMmDGDCy+8MOBLjGeG3z///MPMmTMZOHCg99i8efNo2LAh1atXT7Hs4Bg4z2zIhIQEPv/8c+9suT179nhnU44ePZobb7wRgJo1a7JgwQISExNJSEhgwYIF3u7B//u//+PgwYPJZjQCrFixgttuu425c+dSqVKlVOUC2LFjB+D0RsyePdsr14EDBzh58iQAkydPpkOHDpQqVYqaNWvyyy+/cOzYMVSV77//3ivX5MmT+eabb5g2bRr58p1+RP7zzz9cfvnlvPfee+l6wTIyiKyc9ZGdt+w4ezA29j9t0eJdhef0mWd+OeN4oJk8WY3v7MHUwn/88cdkswf9Z6apJp8F1rFjR61UqZJGRERoRESE9uvXL1lc39mDqqpJSUnarFkz76y8BQsWaKtWrbRBgwZ6zjnneGeBeXjrrbc0KipKGzdurFFRUd6ZjxMnTkw2009V9ejRo1q2bFk9ePBgsvC+ffvqRx99pKqqr7/+ujZr1kyjo6O1W7duunHjRm+87du365VXXql16tTRxo0ba8+ePfWvv/4KqLtQOX78uPbr10/r1q2rrVu39ua3fft2vfjii73xLrjgAm3UqJE2a9ZM582blyyNQYMGnVFWVWfmY9myZbV48eIaERGha9as0SNHjmiLFi20adOm2rhxY73nnns0MTFRVVWnT5+u9erV0/r16+tNN92k8fHxqurM6rz11lu1YcOG2qhRI73vvvtUVXXr1q0KaMOGDTU6Olqjo6P1zTffVFXVLl26aKVKlbzhvXr1SlaWChUqaJEiRTQiIkK//vprVVXt3LmzNmnSRKOiovSaa67Rw4cPq6rq4sWLtX79+nrOOedo3759vbP/VFUff/xxbdCggUZFRem1117rlTl//vxap04db/6eWZU33XSTlilTxhvu+8wYMGCAVqlSRQsUKKARERE6efJkVVWdOXOmRkREaKFChbRSpUravXv3tF3kbEZ2mD0o6g6k5nVatWql6f6O4kP37XZgxujyxIlERo36hTFjllKuXBEmTOjCFVecc8Zb9Lp162x2kmEYWUagZ46ILFfVVlklg03EyIaMGvULo0b9wvXXN+aFFzpTvnzRcItkGIaRLTCjlU04evQku3Ydo3btMtx/fysuuCCCHj3C603ZMAwju2ETMbIB8+ZtoUmTqVx++VySkpQyZYqYwTIMwwiAGa0wsn9/PDfd9DXduk2nUKH8vPzyheTLZw5uDcMwgmHdg2Fi7do9dOkynd27j/Hww2144onzKFLELodhGEZK2FMyi0lKUvLlE+rVK8uFF9bk/vtb0aJF5XCLZRiGkSOw7sEsQlV59901xMS8w8GDJyhUKD8ffHBJjjdYvkuT9OrViwMHDmRIulOnTj1jWYz0EhkZSdOmTb3eJXw9H2QksbGxfPnllwGPzZ8/n9KlSxMTE0PDhg154IEHkh2fPXs2zZo1o1GjRjRt2pTZs2cnOz5u3DgaNmxITEwMrVu35t133w1Jpj59+nDuuecmCxs8eLB3+RcPJUqU8P7+66+/6NmzJ/Xr16dFixb079/f62Q2vezbt49u3bpRv359unXrdob3EA/Dhg2jSZMmNGnShI8//tgbHmy5EA+//fYbBQoU8JZry5YttGjRgpiYGKKionj99de9cYMtr/LPP//QuXNnmjdvTrNmzbzX8uTJk9xwww00bdqU6Ohor8Pew4cPJ/NaUqFChTM8e3z66aeIiHdZkqVLl3rjR0dHM2vWLG9c33raqtXpGeSxsbGce+653nCPt49gy678+eefyeQqVarUGR9wP//884iI92PxYHrMlmTlR2GeDRgILAQOAkeAZcAQIF8607sI+BbYBxwDVgOPAoVDTSMzPy6OizugPXpMV3hOzzvvA92y5WDQuGkhu31cfP311+uoUaMyJN1gHx+nB88SIWklISEhTfFTktn3w+pjx45pgwYNdNGiRarqLFNSt25d3bRpk6qqbtq0SevWrasrV65UVedj5+7du3s/bD548KB3GZCU2L9/v1avXl0bNmyY7EPnQMt4eK7j8ePHtV69ejp37txksq9atSokHQTjwQcf1NGjR6uq6ujRo/Whhx46I87nn3+uXbt21YSEBD1y5Ii2atXKW+Zgy4Wonl6W5uKLL/aW68SJE96PhQ8fPqy1atXyLkMTbJmQW265xZvumjVrtFatWqqq+uqrr+rgwYNVVfW///7TFi1a6KlTp844v0WLFrpgwQLv/0OHDmn79u21bdu23vw8S8Soqv77779asWJF7/9g9bRbt27eZVu++OIL7dixo6oGX3bFl8TERK1cubLGxcV5w/755x/t3r271qxZM1l+gfToT3b4uDjLuwdFZAJwJxAPfA8kAF2AV4EuItJPVUN2Wy4iDwFjgVPAfGA/0BEYBVwqIl1U9ViGFiJEkpKUiRNjefjhn1CFV165kDvvbJ4pky2Gfj2U2J2xGZpmTJUYXrzoxZDjt2vXzrs0ydKlS7n33nuJj4+naNGivP322zRo0ICpU6cyd+5cjh07xsaNG+nbty/PPvssAG+//TajR4+mTJkyREdHe33OxcXFceONN7Jnzx4qVqzI22+/Tc2aNRk8eDBFixZlxYoV7Nq1i7feeot3332XJUuW0LZtW6ZOnRpU1pTSLFKkCCtWrOD8889nyJAhDBkyhN27d1OsWDHefPNNGjZsyPTp03nyySfJnz8/pUuXZt68eTz++OMcP36cRYsWMXz48KD+/DwLV3qWURk3bhyPPPIItWs7M0Zr167N8OHDee6553jvvfd45plnmD9/PqVKlQIcf3qDBg1K9XrMnDmTXr16UblyZT766CMeeeSRVM/58MMPadeuHb169fKGderUKdXzUmPOnDneFsqgQYPo1KkTY8eOTRZn7dq1dOjQgQIFClCgQAGaNWvG119/Tf/+/YMuFwLwyiuvcMUVV/Dbb795w3x9YJ44cSLZgp3BEBEOHToEwMGDB71Llaxdu5YLL7wQgEqVKlGmTBmWLVtGmzZtvOf+9ddf7Nq1K5lz3ccee4xhw4bx3HPPecM8S8SAszJBKL5DU5Ir0LIrlSuf7r35/vvvqVu3LrVq1fKG3XfffTz77LNcdtllyfIJpMfsSJZ2D4rIFTgGayfQTFUvVdW+QH1gHdAXuDsN6bUCxuC0rs5X1a6qeiVQB/gJOBd4OmNLEToiMHfuRs4/P4I1awZz110tcu3swFOnTvH99997lxdp2LAhCxcuZMWKFYwcOTLZAzM2NpaPP/6YVatW8fHHH7N161Z27NjBE088wc8//8yiRYtYu3atN/7dd9/NoEGD+OOPP7jmmmu45557vMf279/PkiVLGD9+PL179+a+++5jzZo1rFq1yut3EJw1mmJiYrzLo6SU5rZt21i8eDEvvPACt956K6+88grLly9n3Lhx3HnnnQCMHDmSb775hpUrVzJ37lwKFSrEyJEjueqqq4iNjU3RAe3+/fv5+++/6dChA5DyMiqHDh3i8OHDZ3hADwWP9/arr77a69g3NUJdRsW/a8x38712Hv777z+qVq0KQJUqVQJ2N0ZHR/P1119z7Ngx9uzZw48//njGMir+y4Vs376dWbNmcccdd5yR3tatW2nWrBk1atRg2LBh3oc9BF5eZcSIEbz//vtUr16dnj178sorr3jlmjt3LomJiWzevJnly5efIddHH33EVVdd5TVCv//+O1u3buWSSy45Q65ff/2VqKgomjZtyuuvv06BAk7bQUTo3r07LVu2TOan8sUXX+TBBx+kRo0aPPDAA17/msGWXfGXy9dZ9Zw5c4iIiDhjPbeU9JjtyMpmHU43oALXBzjW0T22gxC7CYEZ7jmPBzhWB6f1dQIok1paGdU9ePJkoo4d+6vGxR1QVdVDh054VxfOaLJD92C+fPk0OjpaK1SooO3bt/f6ovvnn3+0T58+GhUVpU2aNNEGDRqoqtOFdvPNN3vPv+iii3ThwoU6a9Ysve6667zhL730krerrXz58nrypLMi88mTJ7V8+fKq6nRzeVYq3rhxo9arV897/nXXXaezZs1S1cDdLiml6el6O3z4sBYpUsTray46OlobNmyoqqq33Xabdu3aVSdNmqR79uzxli2l7sFSpUpps2bNtGjRojp8+HDvsebNm2tsbGyy+LGxsdq8eXM9ePCglilTJpj6g7Jz506tVauWt+41b97c28U3ePDgM7p/SpQooaqq9913n7744otpzi81Spcunex/sDKNGjVKo6OjtWvXrjpw4EAdP358suM333yz3nvvvd7//fr10yVLlqhq8NWLt2/frq1bt9adO3eqqrNqsarTfdetWzd95513VFX1+eef13Hjxqmq47OwUaNGeurUKU1ISNChQ4dqdHS09u7dWy+++GJv3fLQqFEjXbZsmao6q1t37NhRN2/erKrBuyPXrl2rrVu31uPHjyeT67///tNmzZp5uxrvvvtunTFjhqqqfvzxx9qlSxdVdbqJBw8erNHR0Xrttddqq1atdMWKFd70T5w4oeXLl/eW++jRo9qmTRs9cMB5NvneF6Ho0SOzP2Rx92CWtbREpDrQEjgJTPc/rqoLgO1AFZwWUmrpFQI8q7B9ECC9TcASoBAQeDGnDGbFiv9o2/YDhg37iWnT1gNQsmT4lw/JTDxLk2zZsgVVZcKECYDTNdK5c2dWr17NZ599Rnx8vPcc36Um8ufPT2JiYrrz96SVL1++ZOnmy5cv3ekWL14cgKSkJMqUKZPM2/q6desAeP311xk1ahRbt26lZcuWZyy+GIj27duzcuVK1qxZw5QpU7wtwZSWUSlVqhQlSpRg06a0LUn9ySefsH//fmrXrk1kZKR3XTM4cxmVffv2UaFCBSD0JVvS2tKqXLmy1xP7jh07gnpvf/TRR4mNjeW7775DVZN5Uw+0XMiyZcsYMGAAkZGRzJgxgzvvvPOMSSzVqlXzLoYJwZdXmTJlCv379wecru74+Hj27NlDgQIFGD9+PLGxscyZM4cDBw4kk2vlypUkJiZ6W6iHDx9m9erVdOrUicjISH755Rd69+6Nv2/TRo0aUaJECe8ECo9clSpVom/fvl653nnnHS6//HIArrzyylSXXfHw1Vdf0aJFC2934caNG9m8eTPR0dFERkaybds2WrRowc6dO0PSY3YhK7sHm7v7Nap6PEic3/zipkQDoBiwT1U3ZkB66Sb+ZAEe/eQiWrd+n3//PcKMGb15+OG2qZ+YiyhWrBgvv/wyzz//vHdtJ89NmNLYkoe2bduyYMEC9u7dS0JCAtOnn36vOe+88/joo48AZxFC/0X50kMoaZYqVYratWt7ZVFVVq5cCTgPgLZt2zJy5EgqVqzI1q1bKVmypHdpkpSoXbs2Dz/8sHdMx9Pl41muPS4ujmeeeYb7778fcJZRGTJkiHdc48iRI6nOHpw2bRpff/21dxmV5cuXe8vbqVMnPv74Y++SHVOnTvUucT9w4EAWL17MF1984U3rp59+8j5YPZQsWTLgEiqxsbE0btz4DHl8l1F55513zhhPAaeL2WP8//jjD/744w/vasLBlgvZvHmzt4z9+vXjtddeo0+fPmzbto3jx53HzP79+1m0aBENGjRIcXmVmjVr8v333wOOY9j4+HgqVqzIsWPHOHr0KADfffcdBQoUSFZG/0U0S5cuzZ49e7xynXvuucydO5dWrVqxefNm78vUli1bWL9+PZGRkRw9etRbd44ePcq3337rlatatWrehTB/+OEH7wrTwZZdCSZX06ZN2bVrl1eu6tWr8/vvv1OlSpWgesyOZOVEDI9foi0pxPnHL24o6f2TQpy0pJduRs3uwjNzujB4cGOef74T5crlTQe3nqnC06ZN46GHHmLQoEGMGjUqYL++P1WrVmXEiBG0a9eOMmXKeFdDBmeA+IYbbuC5557zTpo4W0JN84MPPuCOO+5g1KhRJCQkMGDAAKKjo3nwwQf5+++/UVW6dOlCdHQ0NWvWZMyYMcTExKQ4EQPg9ttvZ9y4ccTFxRETE8PYsWPp1asXCQkJFCxYkGeffdargzvuuIMjR47QunVrChYsSMGCBb0G7fHHH6dVq1besURwjN6WLVuSTXWvXbs2pUuX5tdff+XSSy9l+fLltGzZkvz581O3bl3vlPCiRYvy+eefM3ToUIYOHUrBggVp1qwZL7300lnp++GHH6Z///5MmTKFWrVq8cknnwBOS+n1119n8uTJJCQkeF8eSpUqxfvvv+8d77n99tupVasW7dq1A+Dyyy/n8ccfD5rfunXruP/++xERVJUHHniApk2bcvToUXr06EFCQgKnTp2ia9eu3HLLLYAzDfyWW25h/PjxiAhTp05FRNi1axc9evQgX758RERE8N577yXL65NPPgn6qYM/ixYtYsyYMRQsWJB8+fLx2muvUaFCBTZt2kTfvn0BZ92ygQMHesft3nzzTe69914SExMpUqSId7xr3bp1DBo0CBEhKiqKKVOmePM5evQo3333HW+88UZIcuUksmxpEhF5BGdSxAeqem2QOE8DjwCTVPW2VNIbiNMt+LOqXhAkzi3AJOBbVe0R4PitwK0ANWvWbLllS0r2NDgH3izKb5tq0G30X+k6P73Y0iSGYWQltjRJmFHVSThGjVatWqXbepe55TjdMkwqwzAMIxhZOaZ1xN0XTyGO57P81AcGMj49wzAMI5uTlUYrzt3XSiFODb+4oaRXM4PSy5FkVfeuYRh5m+zyrMlKo7XC3UeJSLCZCq394qbEeuA4UE5E6gaJ4/lkPZT0chxFihRh79692aYyGYaRO1FV9u7dS5EiRcItStaNaanqVhH5HWgBXAkkm7MrIh2B6jjeMpaEkN5JEfkKuBy4Bhjpl14doB3Od2FfnJlCzqd69eps27aN3bt3h1sUwzByOUWKFKF69erhFiPLJ2KMxvmweKyILFbVDQAiUgl4zY0zRn18D4rIXcBdwFJVvd4vvTE4rp+GicjXqrrUPacE8BZOS/I1VT2QiWUKGwULFvT6qzMMw8gLZKnvQVWdAUzE8XqxSkQ+E5GZwN9AY2A2juNcXyrgfEh8xtiVqv4GPIzzkfFiEflWRD4BNuK4hfoVx9u7YRiGkQvI8invqnqniCzCWYqkI5AfZ3zqLWCipsHDu5vesyLyB3A/zphYEWAT8DIwTlVPZKT8hmEYRvjIso+LszutWrVSf99ghmEYRspk9cfFZrRcRGQ3KbuYSo0KwJ5UYxkeTF9pw/SVNkxfaeNs9FVLVStmpDApYUYrgxCRZVn5tpHTMX2lDdNX2jB9pY2cpK8snYhhGIZhGGeDGS3DMAwjx2BGK+OYlHoUwwfTV9owfaUN01fayDH6sjEtwzAMI8dgLS3DMAwjx2BGyzAMw8gx5EmjJSIDRWShiBwUkSMiskxEhohIuvQhIhe5LqT2icgxEVktIo+KSOFUzmsrIrNEZJeIxIvI3yLyrIiUTl/JMo+M0JmI5BOR80RklIgsFpH9IpIgIv+JyJci0ieFc0eIiKawxWdIQTOIjKpjZ1vujK7rmUUG1a/IVHTlu3XwOzdH1C8RaSAi94rI+yKyXkSSXPn6nWW66dJ/ep99Z0OeW7lYRCYAdwLxwPdAAtAFx+dhFxHplxZXUiLyEDAWOAXMB/bjuKcaBVwqIl1U9ViA864G3sNxY/UzsB04F3gQ6Csi56vqrvSWMyPJQJ3VwSkrwD5gKY6+6gAXAxeLyFTgRg0+2LoSiA0QnhBSYbKAjK5jLmkudybJkeFkoJxHgHdSON4Yx9XbYWB5kDjZvX7dAdybkQmmV//pffadNaqaZzbgCkCBHUB9n/DKwFr32L1pSK8VkAQcBdr6hJcAFrjpjQ9wXnXgmHuxL/MJLwB85J43K9z6ymidAXVxboqLgPx+xzriPHQUuCHAuSPcYyPCrZMsrmPpKndGy5FT9JVKXl+66U3KwfXrZuBZoL97P8135e6XlfpP77MvQ3QQ7ouQxRd8mavM6wMc6+hz8fKFmN4M95zHAxyr4xqlE0AZv2Pj3PPeCnBeKeCge7xxbtNZKnn9n5ve9wGO5ZSHSkbXsfQarSy7btlJXynkE+Hej+r7kM1p9SuA3GdrtNKl//Q++zJiy1b92pmJiFQHWuIsCjnd/7iqLsDpoquC002XWnqFcLq0AD4IkN4mnMUsCwE9/Q73SeG8Q8BnfvHCQkbrLAQ8K0yHf6W5dBAGfWVrOVIji+UcjDOGv0ZVfz3LtHIF6dX/WT77zpo8Y7SA5u5+jaoeDxLnN7+4KdEAZx2vfaq6MdT0RKQUTrPe9/jZyJGZZLTOUqO+u9+RQpwWIjJWRCaJyBgR6eveRNmBzNRXWsqd1dctvWSlnIPd/ZRU4mXn+pXRpFf/6Xr2ZRR5aSKGZ4nflDy5/+MXN5T0/kkhTqD0It39AbdVdbZyZCYZrbOgiEgx4B7376cpRO3lbr5sE5Fr3TfDcJKZ+kpLubPsup0lWSKniHQE6uG0KN5LJXp2rl8ZTXr1n95nX4aQl1paJdz90RTiHHH3JTMxvYyWIzPJSllfw6ngawnsUmYjMByIAUoDFYELcQZ9qwNfikizs5ThbMkMfaWn3DmljmWVnDe6+7mqGmz5jZxQvzKaHPkMy0stLSObIiKPAYNwJqD01wCrTatqoDfkH4EfRWQGziyoZ4BLM1PWrCavljujcLvjPd8wvRUsnuk555CXWloey188hTieN4jDmZheRsuRmWS6rCLyP2Ckm9fFqromHcmMdPfdRKRgeuTIILL62gYrd06pY1kh5wCc8ZdtwDfpTCO71K+MJkc+w/KS0Ypz97VSiFPDL24o6dVMY3qe/uMy7lvg2cqRmXjyzyidJUNE7gaeB44Dl6rqkrSm4bLe3RfCWYE1XMS5+0zRVwCClTur5UgvnrwzU05P1+BUTf+H1NmlfmU0ce4+rfr3/E7rsy9DyEtGyzOdOkpEigaJ09ovbkqsx3nYlhORukHitPFPT1UP4vSf++aX6nlhIqN15kVEhgAv43yF3/ssB7nL+/w+EjRW5pNp+gpCsHJntRzpJVPlFJHGQFuc74neTrt4XrJL/cpo0qv/dD37Moo8Y7RUdSvwO87b0pX+x90ZRtWBnTjfGKSW3kngK/fvNQHSqwO0w5mx9IXf4TkpnFeK07OXZqUmR2aS0TrzOe92HBcxJ4A+qjrvLEXt7+7/VNWwdXdllr5SIGC5wyBHusgCOW9y9z+63w6ll2xRvzKa9Or/LJ99GSJ4ntlwBmQ9X3jX8wmvBKwhgMsS4C6cN4t3A6TXmtOuTNr4hJfg9Jfq4wOcV4PTbpx6+4QXAKaRvdw4ZbTObnF1Fo8zhhWKDDWBgUBhv3ABrnN1qcBtuUlfZ1Pu9MiR0/XlF6cg8J97/sDcUr8CyO55zgT1iAGMdvU1OqPqCel89mVImcOt9DBc5NdchR7H8Twxk9Nuk2Zxpk+8Ee6x+UHSe8g9ngh8C3zic7P8AhQLct7V7jlJwE84Pgfj3PP+BiqFW1cZrTOc6cRJ7rF1wNQg27gA5ylwyL0hPnTl2OSGK/BKuPWUSfpKd7nTKkdO15dfnL5unP1AkVTyzzH1C2iB81zxbIdc+f7yDfc7Z6obZ2pG1hPS+ew7ax2E+yKE6cIPxPE2fgjnTWE5MIQA/s1CvEEuAr5zb5DjOG8oj+L35hbgvLbAbGA3TlfZBhxnmKXDraPM0BnQyechkNIW53deeVcvPwJbcd5843GM/EfAheHWTybp66zLnRY5crq+/OJ85saZEELeOaZ+hXoP+Z0zlRSM1tnUE9L57DubTdyMDcMwDCPbk2cmYhiGYRg5HzNahmEYRo7BjJZhGIaRYzCjZRiGYeQYzGgZhmEYOQYzWoZhGEaOwYyWYRiGkWMwo2XkaURkvojcHG45UkJErhGRb1M43l5E/sxKmQwjXJjRMnINIhInIsdF5IjPVi0McswXkXg3/z0iMlNEqqY3PVX9QFW7+6SvIlLP5/hCVW1wtnL7IyIjRCTBLccBEVksIu3ScH4yOQ0jIzCjZeQ2eqlqCZ/t3zDJcZeqlgDOAcoA48Mkx9nysVuOCjhujqaHWR4jj2NGy8jViEhZEflcRHaLyH73d/UgceuJyAIROei2kD72OdZQRL4TkX0i8qeI9A+Uhj+qug/4FGjipnOeiPzm5vGbiJznk8dgEdkkIodFZLOIXOMTvsj9/ZMbfaXbArpKRDqJyDb3+DB3eXjfcr0kIi+7v0uLyBQR2SEi20VklIjkD6EcicAHQISIVHTTaiMiS9xW2A4ReVVECgWT0w2/VERifVpuzULRo2F4MKNl5Hby4SwAWAtnCYrjOGt5BeIpHG/VZXHWEXoFQESK4zgF/RBnyYYBwGvuIoMpIiIVgCuAFSJSDmd9oZdxnLS+AHwhIuXdPF7GWa6lJHAeEOufnqp2cH9Guy3Jj/2ifAT0FJGSbv75cdaD+tA9PhXHK3c9oDnQHUh1TM81RtcDe3Gco4KztM59OK2wdkAX4M5gcopIc+At4Da3/G8Ac0WkcGr5G4YHM1pGbmO2+xZ/QERmq+peVf1UVY+ps4Df00DHIOcm4Bi3aqoar6qL3PBLcTzPv62qiaq6Aqf1dMbCeT68LCIHgJU4axX9D7gE+FtV33PTmYazzpFn0c8koImIFFXVHaq6Jq2FV9UtOAv79XWDLgSOqeovIlIZ6AkMVdWjqroLp9tyQApJ9nfLcRxnLbR+bqsLVV2uqr+4ZYnDMULBdAtwK/CGqv6qqqdU9R2c1Q3OTWs5jbyLGS0jt9FHVcu4Wx8RKSYib4jIFhE5hLN2WZkgXWIP4Sz8t1RE1ojIjW54LaCtjzE8gLNia5UU5LjHlSFCVa9R1d1ANWCLX7wtQISqHgWuAm4HdojIFyLSMJ06+BBnvTZwlpzwtLJq4SyOuMOnHG/gtB6D8YmqlgEqA6uBlp4DInKO292609XtMzitrmDUAu7302MNHL0YRkiY0TJyO/cDDYC2qloK8HRbiX9EVd2pqreoajWcLqzX3NlvW4EFPsawjNvldUcaZfkX58HtS01gu5v/N6raDaiK0wJ7M43pe5gOdHLH7vpy2mhtxWnZVPApRylVjUotQVXdg9NSGuEzE3KiK2d9V7ePEECvPmwFnvbTYzG3xWkYIWFGy8jtlMTp2jrgjik9ESyiiFzpM0ljP87CeUnA58A5InKdiBR0t9Yi0iiNsnzppjNQRAq4kxMaA5+LSGURucwd2zoBHHHzDsR/QJ1gmbituvk4Y3mbVXWdG74DZ8zueREpJSL5RKSuiKTUpeeb7p/ANzgtUnB0ewg44rYK/Y24v5xvAreLSFtxKC4il3jG3wwjFMxoGbmdF4GiwB6cJcC/TiFua+BXETkCzAXuVdVN7lhYd5yxn3+BncBYIE0TCFR1L8742P04ExoeAi51WzH5cMa9/gX24YwNBWvJjQDecbvYgs1i/BDoyulWlofrgULAWhzDPAOnZRcqzwG3ikgl4AGc7sfDOAbJf1JIMjlVdRnOuNirbt4bgMFpyNswbOViwzAMI+dgLS3DMAwjx2BGyzAMw8gxmNEyDMMwcgxmtAzDMIwcgxktwzAMI8dgRsswDMPIMZjRMgzDMHIMZrQMwzCMHMP/A/UVmgxUfZwzAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot 1\n", + "plt.plot(roc_data_pmml['fpr'], roc_data_pmml['tpr'], color='orange', label='PMML ROC. AUC = {}'.format(str(auc_pmml)), drawstyle='steps') \n", + "# Plot 2\n", + "plt.plot(roc_data['fpr'], roc_data['tpr'], color='green', label='RandomForest ROC. AUC = {}'.format(str(auc)), drawstyle='steps') \n", + "# Plot the diagonal dashed line\n", + "plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--') \n", + "# Set labels and title\n", + "plt.xlabel('False Positive Rate',fontsize=12) \n", + "plt.ylabel('True Positive Rate',fontsize=12) \n", + "plt.title('Receiver Operating Characteristic (ROC) Curve',fontsize=16) \n", + "# Add legend\n", + "plt.legend(loc=\"lower right\",fontsize=10) \n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c721c745-be69-4eee-a8e2-9faa4ecff46e", + "metadata": {}, + "source": [ + "

    The closer the ROC curve is to the upper left corner of the graph, the higher the accuracy of the test because in the upper left corner, the sensitivity = 1 and the false positive rate = 0 (specificity = 1). The ideal ROC curve thus has an AUC = 1.0. As seen in the above graph the AUC for both the models is close to 1 so the accuracy of both models is very good.

    \n", + "\n", + "
    \n", + "

    8.2 Show Confusion Matrix

    \n", + "\n", + "

    Confusion Matrix is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.

    \n", + "\n", + "

    Confusion matrices represent counts from predicted and actual values. The output “TN” stands for True Negative which shows the number of negative examples classified accurately. Similarly, “TP” stands for True Positive which indicates the number of positive examples classified accurately. The term “FP” shows False Positive value, i.e., the number of actual negative examples classified as positive; and “FN” means a False Negative value which is the number of actual positive examples classified as negative.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "0cac3275-2854-464a-b240-03e7b836b96d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHYAAAHTCAYAAABC2J96AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAABu4ElEQVR4nO3dd7gcVfnA8e8b0oHQewu9CwjSOwoKooA0QSDoT0FBREVFEYmioGBBEVEQjCCIIIiI9JIgSG9KlRZ6J4GEFFLO748zm7vZ7O7de+/espfv53nm2bszZ2bOzs7dffedM+dESglJkiRJkiS1ngG9XQFJkiRJkiR1jokdSZIkSZKkFmViR5IkSZIkqUWZ2JEkSZIkSWpRJnYkSZIkSZJalIkdSZIkSZKkFmViR+qCiBgVEanKNCsi3oqIuyLipIhYrsb6oyvWO6WBfQ6IiBcq1htZpdyYijJfamDbC0XE1PL1apQbWywf3942uyoiNo6In0TE3RHxckS8FxFvR8SjEXF+ROwdEUO6ux5dERE7RsSVEfFqRMwsjt3EPlCv0T31PnaX7jzP+6L+8J5Jraad7/qJEXF/RJwWEWv1dl2bofz19nZduqLGe1ZrWri369sfRMSaEfH9iLg1Il6MiOkRMSkinoyIi4tza4Hermc9EfHBoq4vRsSMvnKO9If/y+783dMX9fR7ZmJH6h4DgEWADwHfBh6JiN0aWO+AiGjv/3JHoGqiqB0HNVBmH2BoJ7bddBGxZERcBtwDfBPYBFgaGASMANYCPgNcAjwdEfv1Vl3riYiPAzcAuwFLAvP1bo36vT5znpclQMd0974k9YoBwELAhsBXgAcj4vO9WiOpHd3xYzMi5o+I3wMPA98DtgKWBQYDCwCrkr97/wA8HxFfbta+mykiPgjcRq7rssDA3q1Rv9edv3s6pOxC4dju3ld3MbEjNc+uwILFtBCwHnAKMJuciLg4Ilats/475A+uHdvZz8Fl5RsxuajD5hGxWpO33S2Ket4B7FnM+jfwf8A6wOLAisC2wEnAK+Qv3y/2fE0b8h0ggEeBzYFFyedIt39Jvc+03HkuqSWVf9cvSr6Acyowk/wj9rcRsWnvVU9VXEDbe1Z1SilN7LXatbiIWAK4Bfgc+eLVQ8CRwAfIF7SWI8c/xwNPAQsDX++NujbgGPKFn1eBncgxp+dI9+iu3z3vWyZ2pOaZmlKaXEzvpJQeTil9C/hBsXw48LU66/+1eKzZ4iAi5gf2Kp5e0mC93gTGNrDtkcDWQAIubXDbTRcRw4DLgJXJP9SPSCltlVI6J6X0aErpzZTS8ymlf6WUjgNWA35SlO2LNigez0op3ZlSmlCcI+/2aq2AlNLolFKklEb2dl2aoKXO887qZ++Z1IrKv+snpJTuSSl9k9yyFHJs/dVerJ/mNbPsPas69XYFW1XR2uJPwAeLWScBG6SUzkgp/Tel9HpK6aUi/vkhsDY5qfNeL1W5PaWY7aKU0k1FzNknzpGU0pji+z96uy5N0l2/e/qMnn7PTOxI3e8nwLTi753qlDu/eNwrIobXKLMXMD/wDLmpaKNK2/5MnTIHkVuWjAOe68C2m+1bwPrF38enlH5Tr3BK6d2U0rHkq0N9Uem9nNiblXifaKXzXFL/8muglLDfujcrIvWgg4Gdi7/PTikdl1KqeaEtpTQjpfRzYI+eqFwnGLP1nO783fO+ZGJH6mYppWnkpqcAK9QpOg54lnwv8l41ypSy2ueTWxw06q/AFGCViKgVcJZ+DJ/Xge02VdFap5SgeYacFGtISumRGttcMCK+HRF3RsSEiJgWEc9FxAURsVWdumxf3klbcf/49yLioYh4N3IHzmMjYu9665bN/kNFx2/bV9tPnfrU7TQ3IlaKiF9ExH8jYnLkTqZfiogHIuKsiNizyjrtdsRbdFp3UERcExGvFdt9rXh+YETUvApR9rpGFc8Pidyh4oSImBIRD0bENyNicK1tdFBTz/Pi3Nk7Is6LiMeK93160YnfZRGxa431Rhfv/XbFrEMq3vsUEaMry5feh4hYJyJ+HxHPFPubWKts2fzlIuLN0v3hte5Zj4iPl9Xhu+0dA0mNSSnNoO27fslqZSJiaETsFhG/Kz6rJxWfqa9ExFURUbe/iajotysitomIy4v1pxefGadHxFLt1TciDo6I2yLinWK6NyK+EhEN9QPXrO+GYjuHRcQdkTuinhARN0fELhXrbBIRF0XE85G/x5+MiBMjxw3doji+F0aOGaYVdbszIo6NOh0AV3mfPhYRV0T+Tp4ZEZdXlI+I+FRE/C3aOhx+KyL+FRFfiohBdfa1eHEc7o0cl8yIPFDDQ5EHmPhMRAwsyo4svpv+ULZ+5XfT+A4epm8Uj5PJtzE1pE7MNjgijoyIcRHxRnEsXor8nVuzr8rSayum7SNiYHE+31v8n00q3rsvVJ6b5esCI4vZJ1Qcl1HV9lOnPnX7MerI+9boNsvK7V6cSy8Vx++N4pxs71waH2XxSUR8IiKui4jXi/P/8Yj4UUSMqLf/Dmjq757o5Odr6bgChxSztqvyfzGmsnzpfYiIFSLilxHxv8ix7ZyOtmu9ZxGxQOTPsBQ5vqya2Irckff0otzv671+AFJKTk5OnZyAUcUHTQK2r1PuwaLMlIr5o0vrF89/VDy/tso2lgVmFctXr9j3yCrlxxTLxhfPLyie/65K2c1L9SP3BzRXvaqUH1u+7SYez4+Wvabjm7C99YEXyrZZbToViCrrbl9WZnPgkTrb+G6ddWtN21cpO8/7WOVcmeeYkxMIk9vZ3+SObLNYvjD5i7fedm8ERtRYv1Tmc+QmtLW2cS0woJPvcXee539r4H08u85xrTeNrvY+AJ8EplaUndjgebBX2TrfqbJ8aeC1YvktwHzN/P91cuqvE41/1/+3KPNKjeW/aOCz4Z/AkBrrjy3KjCHf7jWrxjaeBZarsY2BwMV19n8j8IV2PhsXpjnfDf9XvN5q688GRpUd/xk1yt1U67OsrMyYDr7f0cB79SywTgPv08lV1r28rOwixbGqt6+7gSWr7Gcdcl8w7Z1TixflRzZQdnwHjtNaZeud04T/sxXI/fPUq9+FwOAq65a/tt2Af9XZxu/rrFtrGlWlbL3PglGlcl193xrZZrF8CPX/txP590itz4bxRZnR1D//HwAW6OR7PLr8NdDc3z3t/c8mqny+Vmy31jSmRvnNgbeqlF+4gfNgU9o+186qsnw48Fix/HFg/vaOry12pG5WZMdLnbm+1E7xUrPEnSJimYplB5Jb2d2RUnqiE1UpbXvfmHd48FJG/O8ppd7snKy8lcUtXdlQRCxGThgsR/6h/G3y+7AE8GHamnQeQ9sVp1ouKNY7EliF3Jneh8kBCMDoiFi7rPy/aOuUseRw5u6s8V+deV2ViqsP55Gbqj5Fbha9GrlTz2XJnUx/j/yl0JHtBnBRsT7A78n30C9ePJ5bzN8R+HM7m/sOuSPsn5CTbYuSR5H5W7F8Z3KA3wzNPM9fBX5JbjK+ETkxsgKwDXA2OeD4v5h3iPWTyO/xrcXzah13nlRlf4sU9X8K+BSwDLA8bVeR6kopXVbUC+D7UdaBa/F+/pF8Hr8NHJRSmtXIdiW1r/iuX6V4WrU1Avl/72xgX/JIj8uR/883BX5G/q7aFTixnd1tW5S/gvy9uXix7xPJPwJWJF+0qGY0ecQfgGvK1l8P+BWwA3BsrR13w3fDR4Dvk5MEi5FvWX+MnFz5VeSWO2eTkx/bFvtZg7bPuh3IFw+a6dvA0cXftxZ1WoL83Xoc+X1aEbguIhaps50Pk4/lP8jfG6VtnA5QtMj4J/lYTQK+S+5weFFyP4NHAhPI58olVVob/I7cOux18gASpWO4NLAFOba5r6z8s+Tvn8PL5lV+N61T5/VUambMNoR8LNYlf7eeQtuAGVuSz3WATwOntbO5X5G/s78DrEk+nlvQFnd9LiJ2LitfOi4L0naL9snMfVz+1LlXVlVH37dGnU7b//bl5OO2OPmY/pR8XD8AXBn1W0ofRD7/zyZ3Dr8YuW+k3xbLNyAf22Zo5u+ezn6+/on8Hl9QPL+Vef8vDquxz7+SL6weQo4PlwZ2p60LjppSSncBJxRPPx8Rla2Wfkk+f2cAB6ZG+ubsanbVyen9PNHAVTzyB3SpzNkVy0ZTkcklX5lJwNcryv6nmP+lKvseWWW/Yyi7+kIeqeDlYt6nysoNBt4o5u9aq14V2x5bvu0mHs8Lyl7TUl3c1mnFdmYDu1RZPpi2KzrTqLgaxtwtaSYBa1XZxnLk1h8J+HGNesx1tafK8vL9zPM+VjlXxlfMX79s/Q06eIyqbrNYtkfZdk+qsf4pZWU+Uee1J/KXUuXyAcD9xfI7Ovk+d9t53sC+Dy/Wf5bqrb5K/ydjGnwfSldlFurMe1YsL7/C8yTFVTVyx+2lfezf2f8rJ6f340Rj3/Xl/2Of6uR+Sq1WJ5NH4alcPrZsH/Nc4S3K/KpYPp2KFjPkHznvFcuvpkpLSfKFgDmf3VWWN/u7Yb8qy9cgf3cn8o+av9eoa+k7/PYa9Sjt40/k2z1qTfOVrbNUcexScbwHVdnurmXb/nk779NF1b4fKs6ZacAmNcp8oFiegL3L5o8o28cnO3s+d/H/4kdlddisi9s6umxbX6iyvJRQLJX5QMXykWXLZgLbVtnG/OQLrIncOXK1eowvlo+usbx8P1U/C+od4+5638iJrNJ2L6ix/pfKyhxV57Un4Lga27iiWP5yJ9/n0ZWvgSb97mlg3+19vo4plo9t9H0gx5XLd+Y9K5YPoO3z4k2K1lTM3QL72EZfoy12pG4Q+Z7xFSLiOPIXH+Tg5BcNrF7q+2NOL/ERsSH5B/x75C+2Dkv56vyFldsmByiLkVsnXNuZbTfRomV/T+zsRiL3ETCqeHp5Smme15VSeg84qng6hPod7p6eUnqsyjZeBK4vnn6os/XtovJ7sF9s4nZLLWheIX8RV3M8+dae8vLV3J5SuqByZsodLJbO940q7yfvjB4+z0t1X5H8Q6QZvpdSeruzK6eUppCvaL4HrAr8uvj8OLkocn5KqVOfIZIAGFb0j7BARCwSERtHxCm09Qn3i5RSp0bcSyldQ76KPz/5anstU2gbhavSH4rHwbSN8FNyIFDqY+NrqXontyeTk+O1NPO74baU0l8qZ6aU/kdbi4WBdepaWveD7Xx/HEi+QFNr2qas7EHkYwf5x++MKvW7irYWJIdG7X6JZhV1TzWWl2KQ01JK91QrkFL6D23faQeWLSrfZzO/+zuiKTFboXSe3JdSOqtyYXEMv0KOpcvLV3NxSmmeFkQpt3gojazUWzFbd71vpVZr79HW2mwuKQ9G8mDxtN7xex74cY1lpc+XpSOiXr+hHdEtv3sqdeDztSNOTSm90IU6zSa/7gnk/6fzi+NaapE4lpwob4iJHal5bi7rIGsWuTnnD8lB1HRyi41azbPLXUS+2rBBRJRGhzq4eLwqpfRWF+pYavK4a3GrUvm2/5z6z60Z6wMLFX/XHB4xpXQ/bZ1dblOrHPnKZi2lW5yWbrh2zfU4uXkpwB8jossJhqKpfalj6SuKJNg8UkrTyU3Mof4oMI0cv8HkW5GaoWnneeROqU+O3OniW5E7viz9n5c3i21GYqd0Fb1rG8nn9XHF00OA68jH92ngiK5uX3qfu4q2hMBbwD3klrnTgY+llL5Wb+WIWCIijovcMe7rkTtNTWWfK0sURet9ptyRUppYY1n5bbeV30ulz+nHUkqPVlu5SGT8o9qybvhuqJdkL303P5VSeqqdMoOZO8nQFaX6/q9IqtRSii0WJt/GVs0DKaWqt+BHxOrASsXTcWXJwnkmct9NkG8vASClNIHcWhTgjIjYqP7L6ruK29lKt4D9tVa5lNKrtN3y1ZIxWze+b6XzdmxK6fU65UrHd71SB79VXF8nTqr3+dJZTfvd06TP1474Z1c3kFJ6ntyvGeRbS+8lf55NAA6ukdSuysSO1H1mkj8Af0O+RebCdsoDUHwgX1M8Pbi4EvTp4vn51ddqTErpAXK/MIOA/SNiUXInc13edpOUf3gv3IXtrFT2d3vJtIerrFOpXt9IU4rHWkM1dquihca3i6e7Ao8XPeyfHXnEksp7lhsxgrbj3+jxWyRqj5TQyPGDJh3DZp3nEbEP+fUfS75HexHmvtpWbqEa8zvijdS8Pq5+BtxQ/L0EOdn8mZTSpCZtX9Lc5gd+ERE1f+xExDbkWyV/SFvfNrVamtT7TKn5mVp8J5RUfqaOLB7naYFaoWrSh579bihdsKjXemhq2d/1Rsf6Y0op6kxjy8qWYoFGX1/5OpWerrP+mmV/lycLq00/L8otwdy+Sr4gsClwX+RRjc6LiM9HxMrt1L8ZmhWzrUi+1Qr6ecxW6I73raPnbZCPezU9HbM15XdPEz9fO6Le/3jDUkp/Bc4pnpb+zw8rkj4NM7EjNc+utHWyNX9KaVBKaa2U0hEppQ51XEtbs8QDyPeELk3+Ar2yCfUsb/K4H/lK18Mppc501NZsz5T9vVYXtlPeafHkdsqWfuguWKdMIy08ag7t2t1SSr8kd058BzlYWJPczPY84IWI+EcHW/J05vhVrleu0RYyzTyGXTrPI2IVckAxnPzFfSSwMfl/cSHyay3/sdLl28iYO2DqkqLZennT/seBu5q1fel9bIdSQoD8GbA5uaNSyN9bFxYtW+YSEQsBl5GvxL4GfKtYd1naPlMWJN8GAfU/Uzr7mVoaoru9z/Vay3vju6Gnvz9KdW3G66v3md6ZH5ZzDQiQUvob+Qr/DeTjtBL5O+8s4OmIuKW8E/1u0MoxW6/ppvetmedtb8Zsnfrd0+TP14ZVJNK76u6yv9+kEy24TexIzTM1pTS5mLr6j/4Pcu/uy5I7QoR8z3DVZs8ddCG5U8LNyCNCQd9orQNtowhB24gbnVH+xbVAzVJzL++tlgy17r2vVPdLKKV0eUppC3LHj3uQR0B4hPw5/3HgjogY2eC+OnP8KtfrbV09zw8lB9FvA1uklM5IKd2XUno1pfROSmkytVvv9LqI2Jq5R3tbhzziiqQmSSlNSindSe7o8rJi9g7M3b9Xyd7kK8izycmhU1JKd6aUXi59phSfK7VatzRD6UdfRz7Xy/WH74b2lOra3a+v/Af4Ou20KIqyZOJcUkrjUkofIfch9zFya4XSD8RtgH91Y3LHmK229mK2Zr9vPXXedpeu/u7pC5+vnVbcmvmzslmLUYye1xEmdqQ+KKU0jbb7t0vDpzYl+ZJyh783lW17Nm1D/PW2W8hZaqjfIWF7xpf93d7QnetWWacnlQ+JWK8p+bKNbCyl9HpK6e8ppW+klNYlN2edTb6N6OgG6/QO+d5eaPz4vdXE24i6rAnneanT0ZtTSq/VKLN+jfm9qrhy9Sdy4uk/tHV2+N2I2LzXKib1U0ULucPJn50A3y+GPy9X+kz5T63+9opOM5t1i0A144vH9lpXrF1jfst/NzRgfPHY6OsrX6cjym/hWLUT688lpfR2SumalNLxKaVNySNuTiW3Vm3W0NSV+3yMttv29qlzy117nqMtYfJ+i9ma9b6NLx4bPX6JtqHde10Tfvf0hc/XTim+Ky6kbdS2U4tFoyJi745sy8SO1HedV/b3kymlf3fTtm/uSo/uzVS0dDqjeLoyuSllQyKi/MvsIXLmH+BTddbZAFiteHprrXLdrLz/gDWrFSgSXB/uzMZTHgHpoeJprWC9cp0E3FY83b3KD5RSvYYAuxdPb6tWppd15TwvNXmvl1w8sM4yaBu9o6db9pxJbto9jZzYO5J8K9ZA4IKIqNeEXVInFP1ElK64jmTeVjvN+EzpqtL33FoRUTW5U3ze715tWT/6bqindIzWiIhanSJDbiEAeTSoh+qUq+Uh2r7/9+vE+nWllMbRNmpn5Xf/nJG+unABraT0I3RBckvhhpTHbEWHwqW+X+rFbEvS1jKot2K2t8gjNUGNmK3w0c5svJ33rZ7S8dguIhavU6503j6UanfA3lu68runlWO2H5A7Rk/kTqOPBcYVy86KiOUb3ZCJHanvupX8ob42sF2Tt/2Xsm1/up2yPe0ntH3BnxgRX6xXOCLmj4gfA78uzSt68x9TPN0rIuZJihQBaam55zR66Xa0lNJz5GFjIY9gVM2xQNVhJSNiuWLUjKoiYhhtV47erFWuilInbssA36tRZjT51i9oG5qxL+nKeV7qO2DLovPluUTEttQfLhTajndDV+6aISIOou21fiOl9Eiaewj0VSj7X5HUVL+krUXLsRU/mkufKWtFxGpUKBIt3dKyoswFtP14+UVEVPsd8G3y534t/eG7oZ4/0fbD/ZdRZRj1iPgo+ZZngHM7MmpNSZEkK3WKfEB7V+YjYmhErFT2fPFoG/WxWvkB5AtkMO93f/nzrn4//RG4sfj78xHxwxrnValegyLia7T1S1VSOq82jojPUd1ptA1F//vOVbdrUh41rtRX32eqvdaIOBDYotr6XXzf6ikdvyG0nVeV2z4M2LB42hf/L7vyu6cZn6+9EbNtB3yzePrzlNKNae4h0BchD4HeUM7GxI7UR6XssWKq10N9Z7b9Xtm26w2L2J4hEbF5A1PDPecXP0L3Ig8HOQD4TUTcGhGHRsSaEbFoRCwfEdtExI+AJ8kteyo/z04kXw0L4PKI+GZErBIRi0XEjuRApHTl54QuHoeuOrd43CMizoiINSJikYjYOCLOIt97XWu414+QO0j+fUTsFRGrFeuuEBG7ka/8lK7e/LkDdfo7eZhsyLfw/C4iNiiO/4YRcTY54QR5OMqqw+P2pi6e5xcXj4sB10TEThGxZHF8jyWPYvK/drZxb/G4dUTsUxy7gcXU9O/fyKNplFq8XZVSKk923k9bHzsHR0TTrxBL73cppbeBXxRPV2fulhiXkm8JHQT8MyI+ERFLR8SKxQWMf5E72214aN9O1O9l4JTi6UeLemxZfDatExGnkZMyz9TYBPSD74Z6Uh5S+/vF0x2BGyJihyJ2WKX4/L+0WP4i+fu5s35Jft8HABdHxLnFvpYuvsdXLc6T08m3zexTtu56wPMRcWFEfDoi1ireg2UjYgdy4qR0u3Dld//95HMR8m2DK0XE4OK7qUOtFYofoQcADxazjgMejIgvRcR6RSJjmYjYNCKOI9+69TPaEjQlZ9I2rPtvI+Kkste0eUT8jbaLFmem+kPRd7dSzLYx8JeI+EDxfq0X+ULjH6kds3Xlfasp5dFAS8magyLi0ojYrNj2WkW9SvHBA8DvGt12T+ni755mfL6WYrZVIuKIIubrzphtEfJF5QHk92RO4inl0bAOK55uT1vyp76UkpOTUycnYBS56VwCtu/E+qNL63dx3yOrLB9TLBvf7HoBY8v23ci0YSfqsBQ5gGxk+88Ce1XZxvrAC+2s+1Mgqqy7fb3jW+VYVT3OZdsYVWcb85OvANWq4y9q7afiPKg3ndyJui9Mbg5ab7s3AQt14bU3dJzrrN+d5/nv6rzuF8lXlWq+RtpGdai2/uhG34dG3jNy0+F/F8teBZassm6QR+FI5CtBK3b0mDk5vR8nOvBdT+6cs/R//xBl3y/k1jC1PlMmki82jK/8jChbf2yxbEw7daj3uTSQnLiu95n+hXY+G3viu6H02T62Tpnty7Y1ss5+6h6vKusFuXVIvdf3LLnT42rrN/Q+lZ0vl7ezr9J0VI3XXm86H5ivyn4vrFF+fCf/RxYg9+c2q4E6vUEeyrlyGyuQ/2fqrXshMLjKuiPLytT8H6Xsf7nG8vHU+P8rKzOAfHGnVh0vAT5XbT9ded8aqPsQ6v9vJ3ICbrkuvPaGjnOd9UfXew3trDuqbN/V/t+7+vk6jJyQq7b+mGr16EidqywrvVdTgLVrrH9uUeY9YOP29meLHUl9UsqjD30S+BA5+XIveQjDmeSe/B8jN5n+FLBaSumyKtv4L/nH93Hk0QbeJn84Pk++ErJ1SumYVHx69paU0rvkZqc/JPeFMp38w+BG4JMppa/WWf1i8qhXvyAPd/58sf5UcouSMeRRnb7diXpNJI/wcjD5Cu3r5OP/evH8IGCnlK9S9zsppcPIt1vdTT6e75LPu1PJycpH66xOSukVcnPs88lXW5sxql0t36Ot6fdnU5UOn4vz/GByc+OF6UDzXkmNSbmj4NKtEOsCe5YtO7l4Po78PTaN/EPiTGCjlNItPVC/mSmlfck/OG4nj840mXzF+BhgZ9r5rOrv3w0pO5r8Q/Ai8gWi98gxxF3kH5DrphqdtHZwX++klPYAdqKtpce75FvmXicn7E8lxyu/Klv13+S+904mt0YYT/6eml78/Rfgoymlg1K+Pb3SoeRWnA+Q3/8uxUEpjzp0KPmc/yH53HqFfNzeLV7XJeRbzldMKc3TYiTlVgofBL5cvKa3yMfhZXLya/eU0gGpOSPEdlrKrZT2II88+R/ycX+b/J4cmlLah9pDhnf1fatXr+nF//YnyRdGXyEfv7fIg5McCXwo5cEl+p2ufr6mlKaSRyT7LflugGn1yndFRBxKWwu8Y+rEk0cVdRkEXBgR89fdbi//npEkSZIkSVIneaVOkiRJkiSpRZnYkSRJkiRJalEmdiRJkiRJklqUiR1JkiRJkqQWZWJHkiRJkiSpRQ3s7QpIHREDh6UYvGBvV0PqERustWJvV0HqMQ/cf+8bKaUlerseUk+IQcNSDF6ot6sh9YiN1lq+t6sg9Zj77uudeMbEjlpKDF6QIWvu29vVkHrE2Nt+2dtVkHrMwsMHPtvbdZB6SgxeiCHrHdTb1ZB6xG23ndrbVZB6zLBB0SvxjLdiSZIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS1qYG9XQFLzDR08kC/sty377LIxa628NMOHDSaAWbMTL7/+NqeddyO/+fPYhrZ1w7lfY6uNVgHgynH/ZZ+jfzdPmfN/8jk2XX8kSy62IIMHzkcEzE6JCe9M5dLr7uPok//SxFcndcwNY2/jvPP/wn8evI+XnnuS9ya/AcCXj/0xJ37vmLrrvjXxbb545De5dey1THn7dVKaxcAhC7DU8qtyzDHHcOhB+/TES5AkVXH+jw5i0/VWZMlFFyiLP8jxxw0PcvSpl1Vdb5ct1+InR3+ClZdblEHz5evc096byUNPvsLnv38Rjz/7Wk++DKnLrrvpNv5w3p958IH7eOnZJ5hexDpHH3cKJ4/+Ri/XTj3BFjtSP3T4/tvzk6/txSbrrsTQIYN47c1JPPfKBGbMmMUKSy/Cz765N9eefXS72zng45uy5YYrk1KqW26PnTZghaUXZtas2bz21iSee3kC7055j8UWGs5h+27DU9f+iAED/LhR7zjxhz/hij//hvGP3DEnqdOI2+68jzVXW51rLzuHaZMnsvRKa7HcqhswZNgCvPjE/Vzxj6u6sdaSpPbsscN6rLDUQkX8MZnnXpnIu1PfY7GFhnHY3lvw1JXHzxN/HHPwjvzt559lzZWWIKXEC6+9zatvTWbwoIF8aN0VuPfPX2fHTVfvpVckdc4JPziJyy84g2cevn1OUkfvL32ixU5EjAdWKp7unlK6ska5h4B1gR1SSmN7pnYQESOAV4BhwIMppQ17at+tJCLGAIcAh6aUxvRubd7fZs2ezfOvTOCn517PWZfcMteynxzzKb58wPZsu8lqHHHADpxx4c1Vt7HA8CGc8d1PM2t24tU3J7HckgvV3N9Xf3wxl9/wAG9MnDzX/F23W4+Lf/YFll1yIU7/7v4c8YMLu/7ipA5ad731GDRoEJtuthkf23lHDvrMgUx85am667z+xlvssdsuzJgygY/s+Vku+MMZDB48aM7yp555nmefe6G7q64WYzzTPxjPtI6v/vRyLr/pQd6YOGWu+btusw4X/+QQll1iBKcf+ymOOOkSAAYMGMAJh+1CRHDT3U+y25FtrZAXX3g49/75Gyy56AKc/b39WfXjJ/boa5G6Yv3112fQoMFssflm7PrRHdl//wPajXXUv/SJxE6FkyLiqpTS7N6uSJlPk4MggA0iYuOU0r29WSGpntP/dBOn/+mmqsu+9dNL2XnLdVhr5aX4/N5b10zs/OPMIxk6ZBA/Outq9v3oJnX39/u/3lp1/lXjHmLs3U+w0+ZrssOma3bsRUhN8pvTTurwOp8ZdTgzpkxg/c134ZILzppn+aorr8CqK6/QjOqp/zKekbrZ7y+7ver8q/71CGPvfYqdNl2dHT602pz5O266OgMHDiClxCePPnuudd6YOIUTzryGM4/bm6UWW6Bb6y0121mn/7i3q6Be1tfujZgCrA8c2NsVqfDZ4vHFiudSS/rP//KpvOjC81ddftAnNmez9UfyzItv8sMz/9mlfc2cNQuAGTNndWk7Uk+Z/O4U7r7lagB+fLJXbNUpxjNSL5s5K+dUy+OPyVOmN7TujBl9KR8rSe3ra4mdXxWP34+Iwb1ak0JErAtsCkwmN8sF+HREDO29Wklds9qKSwAwcdLUeZaNWGAovzpuf2anxO5f+nWX9rPlRquy42a5pc7lNz7QpW1JPeWyv1/D7JlTmW/Igmy12Qe55PKr2XWPA9h8653Zbc8DOec8OwNXu4xnpF605QYj2bFoqXP5zQ/NmX/Hf8Yz7b2ZRAR/P+3zc62z+MLD+f4XPwrANbc/1nOVlaQm6GuJnUuBu4CVgcM7smJEDIqIIyPizoh4JyKmRsSjEfHjiFisC3UqXc26JKV0I/AosAiwZ416jIyIFBHjI/tSRDwQEVMiYkJE/D0i1qvzOtaNiPMi4vmImB4Rb0TEVRHxsRrlxxT7G1Wse2lEvB4RkyPi1ojYoazsxyNiXES8XRyjKyKiau9wEfGpiDg3Ih6OiIkRMS0inoyIMyKi4fsPIuKcon7H1inz5aLMxY1uV5237mrLsOGaywNw8TX3zLP8n7/9MkMHD+SMP4/jqede79C2z/jeAfzn7yfwyJXf56Vxp3DDOUczcL4B3Hb/U5xw+hVNqb/U3f59+10ADFtgYXbcZU8+f8Du/Pu6i3nsvpu47dq/8PXDD2Tt9Tbm9Tfe6uWaqg8znjGeUQ864zv78J9LvsUjl32bl67/ATf87ks5/njgGU74zdwd3X/xR5cwa9ZsdvzQaky89WT+d8VxPPPP7zH+6tEsvvD8XHfH43z6W3/spVciSZ3T1xI7AN8uHo+LiIZucC2uNl0HnA6sB9wC/ANYGPgWcG9ErNLRikTEIOAzxdMxxeMfisdGmi+PAX4OvAb8E3gb+ARwW7X6RMQngHuBg4qylwKPALsAV0VEvXsCNiEHkWsANwKPA1sB10bENhHxZeDvQADXAm8BuwO31AgU/wLsC7wL3ABcDwwBvgTcFxFrNPD6Ib8nAIdFRK3z7UvF4xkNblOdNHjwQK45+2gGDAjemPjuPLdZHbrXVmy8zoq8+NrbfOunl3Z4+1tuuCqrr7gEKy+3GIuMGA7A9bc/xl5HndmU+ks94c033wRg8lsvct+//sGGW+3KP264g//87zm+MfoXzDdkQV5++kF22bXq72GpxHjGeEY9ZMsNRrL6iouz8nKLssiI3I3U9Xf+j72+fu48ZS+65j52/uKZTJoynSGDBrLCUguz9OILMt+A4K13pnLd7Y/3dPUlqcv6XGInpXQTOahZEvh6g6v9ANgeeAxYI6X08ZTSvsAq5GBiJeCCTlTn40U9ngL+Vcw7H5gJ7BgRK9ZZdyVgG2DdlNLOKaV9gDWBq4ARtAV8AETE0sW2hwBfTymtl1I6IKW0LbAT+X7970bELjX2dwRwfEpp/ZTS/imljYFTgEHA74EfAtunlLYtjs1axWtamrZApNwBwJIppU1TSnunlHYnX3n8IbA48Ms6r32OlNIDwK3ASGDXyuURsWNRl4dTSuMa2aY6786Lvs3iC8/PjJmz+OjnT5tr2cIjhvOLb+1DSrDHkb/p1PY32utEhm10JMts9032Ouq33P3Qs3xki7V45vqT+EDRSkjq62bPLvpWSLNZed0tGHv9FWyz5SasuPyyHPfNL3PG788H4OmHbuNf/5631ZsExjMYz6gHbbTfqQzb7Bsss9Px7PW1c7n7kef5yGZr8Mw/v8cH1lh2rrKjD/8Y1//uS0QE3zztClbb/YdscsDPOOvS21lkwaGcevTu/Prbe/fSK5GkzulziZ3Ct4EEfD0ilqhXMCKGAV8snh6VUip1CEhKaSq5CfRkYPOI2KqD9ShdxRqTUkrFNl8BriYfu0PbWf+olNKcceZSStOB7xdPd6oo+3lygHRbSunn5QuKoVBLV4qOqbGv2yvXA0rdo68BnJFSKgVzpJSmAb8onu5QsR4ppYtTSlMq5s1MKR0PvATsHBEL1qhLpVLdqwVcRxSPncskqGH//vO3WGvlpZg5azafOOI3PPzky3Mtv/LMIxkyeCBj/n47Dz3xYo2tNGbiO1O4+l8Psd3BP+XKcf9l+NDBXPrLDt2NIPWaBUe0fbR98Uvzfmzt/6mPM/+iOVH5l79e3lPVUmsyniljPKPuNnHyNK6+7VG2++zpXHnLIwwfOohLf9bWKG2rjVbhm6N2YPbsxMaf/imn//lfvPja2zz81Ct85ZTL+MqpfwPg0E9syvJLLdxLr0KSOq5PJnZSSvcBFwMLAse1U3xjYAHgpZTS9VW29Qa5GTPkq2ANKa44fRSYDVTeaFtqvjwqIqLGJmYC11SZX+qNbdmK+dsVj7Vu6i21Jd06IuarsnyefaWUJgBv1loOPFGjLgBExBoRcVRE/Kq4P31MRIwBBpLPndWqrVfFZeQROHYpb7IdEcuRm3JPIl/dqyoivhAR90TEPWnmvJ39qn3/+tM32GitFZg1ezb7fvUsxt41bzPjD6yxHCkl9txpQ14ad8pc0yrL5dbtO2+5Di+NO4X7Lzu+4X0f+/McJC235EIMHTywOS9I6kZrrtl2Z8YHN1y/aplFFl8KgJdfernqcgmMZ2psz3gm4p40c0qtYmqSY3+Z/12WW2LEnPjjW6N2IiJ46vk3ee7lCfOsc87f7mDGrNkMGBDss/OGPVldSeqSPpnYKXyXHEwcHhEr1Sm3XPH4TJ0yT1eUbcQh5C/8G1NKz1csuxJ4ndwcd8ca67+cUppZOTOl9E7x55CKRe29jvHkoGwoUO0e8hdqrDe5zvLSsrlGxIiIgRFxFjlo+yXwZfLVvEOKacmi6Iga+5xLcRzOJJ9v5c02vkA+xuellCbVWf+slNImKaVNYuCwRnapMmP/eAybrLsSs2YnDvzGOVz9r4dqlo0IFhkxfJ5pvvnyR8XgQfOxyIjhrLjMIg3vf/yLb5JSIiJYeYW6F6ylPuFjO7dd9H/++eqt196dlD/KF1iwoa5T9P5mPDO38RjPbBIDhzeyS3XB+JcntMUfxQWq5ZZcCIBJU2sPez5jRh4efenFGjotJKlP6LOJnZTSk+R7qYeQ7zlvd5UmV6HULHnNYjSGORNwM/kLHGp3Oji7k/vt7Otob38dqc9XyE2pXwb2B1YEhqaUIqUUwO1FuVpX96o5C5gOfDYihhQdOZbGmbTZcje5aczX2ewDI5k9O3HIt8fw95serFl2xIe+wrCNjqw6PVGMjnXluP8ybKMjWWyLrzVch8P325aIYPbsxBPPvtrl1yR1tw3XX5sFFstdjlxy6d/nWf7scy8y8bXnANhh+217tG5qPcYzHWY8o6Y4fJ8t2+KP53Mc8+qbOe+2+gqLV11nxWUWYfjQQQD8538v9UxFJakJ+mxip/ADcid7n4naQ2qWLqeuXGc7peayDXUcUty7vmbxdEXyaAyVU6nJwp4RsVAj221HqW61RrsYSX6/ppFHgOhO+xSPh6WU/pJSer64n76k0SbLc6SUXiePTLEYsB95eNVlgLEppUe6WmHN6/pzvsoWG6zM7NmJQ7/7Ry697t5u2c//7b01xx22K4Or3Gb1uU9tzclfzSMH3fvIc8yc2dnfB1LP+tJRua/bq/92HhddeuWc+RPfnsTHP7k3adZ0hi+yHAd/2pGx1BDjmTYjMZ5RE/zfXltw3P/tXD3+2HNzTv7yxwG499EX5sQfv73kNlJKLLTAUP72i88xYEDbT6HlllyIm846kohg+oyZ/OW6+3rmhUhSE/TpDi9SSi9HxC/JnQ+eVKPYveQmuMtFxE4ppRvLFxZDX+5ePB3b4K5LV63OTSl9rlahiLgT2JQ84kJXx3MeR+6A8GDg7CrLS1fcbq3WJLrJFi0eK5tsExEfATp7P83p5Nf3JXJABw4J2i2+96WPs/UHVwVgyrT3+O7hu/Hdw3ebp9xTz73Onl/u2gXGDddegc/ttRXf+cLHmDBpCu9MnsbQwYNYeMQwhg3JV71eeeMdPnGEb7V6xyWXX81Xv3zEnOfvTnwFgN+dfgp/OLvt/H/h+afn/P2dbxzBDTfcwH3/+geHH7wX3/r6SIYvsCCvvfgUs6ZPZr4hC3LhRX+Z60eBVIvxzFyMZ9QUG665HJ/bYzO+87kPM2HS1Bx/DBnIwguWxR9vTuITR501Z50rxj3EjXc9wYc3W4OPbrkWE245idcmTGbwwPlYfOH5GTAgmJ0SX/7xpV6MUkv5y2VX8eUjvjjn+eQJOdb5zWk/5pzf/XrO/NdefrbH66ae0QoR6SnABHIwM89VrGKkiN8WT38ZEcuUlkXEUHKAsgBwR0rptvZ2FhHzA/sWT2t2gFexvFbz5Y44m9zp3tYRcVRFnbYl3xcO8LMm7Ks9pQ4RvxgRc86RiFiVtmPdYSmle4A7gM3InSu+BFze+WqqliUXaxvgY4HhQ1h9xSWqTpt9YGSX93XhlXdxyz1PMnHSVEbMP5SRyy7K0osvyMD5BvD8KxP4yTnXsvJHvsPEd+woUr3jjTfeYvKbz82Z0qz3AHjv3bnnV7rp2r9x9HGnssjSq/LOWy/y8jP/ZcB8g9lo64/z77vvZ/ttNu/pl6LWZjxjPKMmuvCqe7jlvqeZOLkUfyzC0osV8cerE/nJH25i5V1/wMTJ0+Zab/ejzuaYX1zB869OZMCAYLklRrDEIvPz3sxZ3P/4i2z/uV9z/pX39NKrkjrnjTfeZNIbz82ZymOd8vnqv6IY9bJ3KxExHlgJ+FDxZVm5/BvkgKhkh2LIzNLyoeQhO7cH3gVuAqYC25Cbxz5XrPM07YiIQ8kjNjwHjEx1DlBELE7+Mh8ErJ9SeigiRpI7DHw2pTSyxnqloUajYv4nyc17hwD/BR4ij/CwDTkJ98NieM7ydcaQOwA8NKU0psq+xpOP7coppfEVy6rWNSK2IF9xGwT8D7iffNVrO/L96IOALZn3fahbl6LMp4ELi6ejU0rfr1aulgHDl0xD1ty3/YJSP/DKv3/Z21WQeszCwwfem1LapLfr0RXGM3PmG8+0Y8D8S6ch6x3UkVWkljXhtlN7uwpSjxk2KHolnmmFFjuQm7zWGiWBlNI0YGfgKOARYAfgk8A75ADqg40EQYXS1aoL6gVBxX7foG3YzZpNnBuVUvo7sAnwJ/K923sD6wPXAbtVBkHdJaV0O/Ah4J/AQuRjuTzwI2AXYEYXNn9D8TiD3AGhJEnvF8YzxjOSJDVdn2ixo/ePiPgKcBpwcUppv46ub4sdvZ/YYkfvJ/2hxY7eP7ocz9hiR+8jttjR+4ktdtTvRcQI4Jji6c97sy6SJEmdYTwjSepr+vSoWOofij4F1gO2JTeBviSldGfv1kqSJKlxxjOSpL7KxI56wm7kjgpfJ4+W8fXerY4kSVKHGc9IkvokEzvqdiml7Xu7DpIkSV1hPCNJ6qvsY0eSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWtTAWgsi4uCubDildF5X1pckSeoq4xlJktTf1UzsAGOA1IVtGwhJkqTeNgbjGUmS1I/VS+ycR9cCIUmSpN5mPCNJkvq1momdlNKoHqyHJElS0xnPSJKk/s7OkyVJkiRJklpUvVux6oqIwcBiwPSU0lvNq5IkSVLPMJ6RJEmtrsMtdiLi4Ii4G3gXeAH4admyPSPiwohYuYl1lCRJairjGUmS1F90KLETEWOAPwAbA1OBqCjyOLA/sHczKidJktRsxjOSJKk/aTixExGHAAcDDwKbAAtVlkkpPQI8D3ysWRWUJElqFuMZSZLU33Skj53PA5OA3VNKLwJEVF7gAuC/wDpdr5okSVLTGc9IkqR+pSO3Yq0P3FEKguqYCCzd6RpJkiR1H+MZSZLUr3QksTMImNxAuSWBGZ2rjiRJUrcynpEkSf1KRxI7zwHr1SsQEfMB6wJPdaVSkiRJ3cR4RpIk9SsdSexcC6wWEZ+pU+YwYBngn12qlSRJUvcwnpEkSf1KRzpPPhU4BDg3ItYB/lrMHxoRawP7AN8B3gROb2otJUmSmsN4RpIk9SsNt9hJKb0A7Em+L/1bwN1AAvYDHgJGA9OAvVNKrzW9ppIkSV1kPCNJkvqbjtyKRUrpZvLQnz8FHgamAu+R70E/HVgvpTSu2ZWUJElqFuMZSZLUn3TkViwAUkqvkK9wfav51ZEkSep+xjOSJKm/6FCLHUmSJEmSJPUdHW6xAxARywHbAssXs14EbinuW5ckSerzjGckSVJ/0KHETkQsQb73/FPM29onRcRlwJF2NihJkvoq4xlJktSfNJzYiYhFgX8BqwOzgX8D44vFI4HNgb2BDSJii5TSW02tqSRJUhcZz0iSpP6mIy12RgNrADcCh6eUnipfGBGrAGcCHwZOAL7SpDpKkiQ1y2iMZyRJUj/Skc6T9wBeB/aoDIIAUkpPA3sBbwB7NqV2kiRJzbUHxjOSJKkf6UhiZ0lgXErp3VoFimXjgCW6WjFJkqRuYDwjSZL6lY4kdl4EBjdQbjDwUueqI0mS1K2MZyRJUr/SkcTOJcCOEbF0rQLFsh2BS7taMUmSpG5gPCNJkvqVjiR2fgA8DNwcER+rXBgRHyV3RPgwubNBSZKkvsZ4RpIk9Ss1R8WKiJuqzJ4FrAlcGRETmXt40IWLv28HrgR2alIdJUmSOsV4RpIk9Xf1hjvfvs6yABYppkpbAqkLdZIkSWqW7essM56RJEktr15iZ4ceq4UkSVL3MJ6RJEn9Ws3ETkppXE9WRJIkqdmMZyRJUn/Xkc6TJUmSJEmS1IeY2JEkSZIkSWpR9frYqSoiPgTsDawBjCB3PFgppZQcRUKSJPVJxjOSJKm/6FBiJyJOA75MW/CTmDsQKj13FAlJktQnGc9IkqT+pOFbsSLi08BRwAvAF4DrikW7AEcA/yYHQT8BdmxuNSVJkrrOeEaSJPU3Helj5/PATGDHlNLvgZcBUkrXp5TOTCltDYwGvga82+yKSpIkNYHxjCRJ6lc6ktjZALgjpfRUnTInAs8Dx3WpVpIkSd3DeEaSJPUrHUnszE9utlwyHSAiFizNSCkl4G5gy6bUTpIkqbmMZyRJUr/SkcTOa8BiZc9fLx5Xqyi3ELBAVyolSZLUTYxnJElSv9KRxM6TwMplz+8mdy54eGlGRKwJ7ADUa94sSZLUW4xnJElSv9KRxM71wKoRsXbx/FrgReD/IuKuiLgUuAMYDJzf3GpKkiQ1hfGMJEnqVwZ2oOwF5ETQcICU0vSI2Bf4G7BJMQFcCfyimZWUJElqEuMZSZLUrzSc2EkpPQf8qGLe7RGxMrAtsCjwWErp/uZWUZIkqTmMZyRJUn/TkRY7VaWUppKbMQMQEUsBQ4rASZIkqc8znpEkSa2qI33sNOpy4Olu2K4kSVJPuRzjGUmS1AK6I7EDeXQJSZKkVmY8I0mS+rzuSuxIkiRJkiSpm5nYkSRJkiRJalEmdiRJkiRJklqUiR1JkiRJkqQWZWJHkiRJkiSpRQ2stSAitu3kNkd0cj1JkqSmMp6RJEn9Xc3EDjAWSJ3YZnRyPaldG629Irfd+everobUI7555aO9XQWpPxiL8Yz6mI3WWp7bbju1t6sh9YhFPnRkb1dB6vfqJXaew4BGkiS1NuMZSZLUr9VM7KSURvZgPSRJkprOeEaSJPV3dp4sSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUojqc2ImI1SLi1Ii4NSIej4hTypZtFhFfiIiFm1pLSZKkJjKekSRJ/cXAjhSOiM8BZwCDi1kJWLysyHDgTGAG8IdmVFCSJKmZjGckSVJ/0nCLnYjYCvgdMA34BrAZEBXFxgFvA59oVgUlSZKaxXhGkiT1Nx1psfNN8hWtj6WUbgeImDsOSinNjoj7gbWbVkNJkqTmMZ6RJEn9Skf62NkCuKsUBNXxCrBM56skSZLUbYxnJElSv9KRxM5CwAsNlFuADvbdI0mS1EOMZyRJUr/SkcTOa8DKDZRbE3ixc9WRJEnqVsYzkiSpX+lIYuc24IMRsUmtAhHxEWANYGwX6yVJktQdjGckSVK/0pHEzi/Io0ZcFhE7R8Rc60bEtsC5wEzg9OZVUZIkqWmMZyRJUr/ScGInpXQneSSJ5YGrgTfJo0rsERGvAjcDywHfTCn9txvqKkmS1CXGM5Ikqb/pSIsdUko/A3YD7iF3PhjAwsASwEPAHiml05pbRUmSpOYxnpEkSf1Jh0d7SCldDVwdEYuROx+cD3g+pfRSsysnSZLUHYxnJElSf9HpYTxTSm+Smy9LkiS1JOMZSZLU6jp0K5YkSZIkSZL6joZb7ETE9zqw3ZRSOrET9ZEkSeo2xjOSJKm/6citWKPJo0ZElWWp7O8onhsISZKkvmY0xjOSJKkf6Uhi5/s15g8AVgK2B1YEzgWe71q1JEmSuoXxjCRJ6lcaTuyklGoFQgBExFDgt8BHgQ92sV6SJElNZzwjSZL6m6Z1npxSmgYcTh4u9IfN2q4kSVJPMZ6RJEmtpqmjYhXB0D3Ars3criRJUk8xnpEkSa2kO4Y7Hwgs3g3blSRJ6inGM5IkqSU0NbETEWsA2wAvNnO7kiRJPcV4RpIktZKGO0+OiIPrLF4AWAs4CBgGXNTFekmSJDWd8YwkSepvOjLc+Rgg1VkexeOV1B5KVJIkqTeNwXhGkiT1Ix1J7JxH7UDoPXJz5RtTSrd1uVaSJEndw3hGkiT1Kw0ndlJKo7qxHpIkSd3OeEaSJPU3DXeeHBFHRcT/dWdlJEmSupPxjCRJ6m86MirWz4FPdldFJEmSeoDxjCRJ6lc6kth5HZjUXRWRJEnqAcYzkiSpX+lIYudW4EPdVRFJkqQeYDwjSZL6lY4kdn4ALB8R34+IaLe0JElS32M8I0mS+pWODHe+EXA+8F1g74j4O/AsMLVa4ZTSeV2vniRJUlMZz0iSpH6lZmInIs4Fbk0pnVvMGgMkIIC1gbXa2baBkCRJ6lXGM5Ikqb+r12JnVPFYCoTOIwdCkiRJrWJU8Wg8I0mS+qWGb8VKKY3qxnpIkiR1O+MZSZLU33Sk82RJkiRJkiT1ISZ2JEmSJEmSWpSJHUmSJEmSpBbVXh87e0fE9p3YbkoprdqJ9SRJkprNeEaSJPVb7SV2FiimjnK0CUmS1FcYz0iSpH6rvcTONcBPeqIikiRJ3cR4RpIk9VvtJXZeSSmN65GaSJIkdQ/jGUmS1G/ZebIkSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS2qZufJKSWTPpIkqaUZz0iSpP7OYEeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFmdiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkeSJEmSJKlFDeztCkjqe+65/yGOOOoYHvvvPbw3ZSIAg4cvxGprb8RpP/sx22y5Se9WUKowdMZUVhwKIxcdzporLMaqyy/GgAEDOPmye3h5wPzzrjB7FovOmsbqiwxm/ZUWZ+SyizJ08EDenPgu/3n6Nf79/DtMGDi84f1vPPw9Dtl5AwDOvPI+Hp05rFkvTZLUCdfddBt/OO/PPPjAfbz07BNMn/wGAEcfdwonj/5GL9dO6rjzf/I5Nl1/JEsutiCDB85HBMxOiQnvTOXS6+7j6JP/UnW9XbZel1O/sTcrL7sY880XzJ6dePmNdzjprKv5w2W39fCrUHcxsSNpLpdcfjWHfHpP0szpzDdkQZZZeT0AXnvxaR6550Z22WFLTj/7Aj538D69XFOpzUaLDuLTO63fcPnFZk/jhH1ygvKVN9/h3sdeZNqMWYxcaiF22Wx1dtkMzr3mAR6YNqTdbS04YwoH7rghs2fPZsAAG8JKUl9wwg9O4oHbrurtakhNs8dOGzDfgGDKtBm89s4Upr83k0VGDGexhYZz2L7bsPv2H2D1jx3P7Nmz56xz3GG7ctxhHyMimPbeTF5+YxKLjBjO8kstzBnf3Z/NPrAyh4/+Uy++KjWLEWgDImJARDwXESkiXo+IQb1dp74mIkYXx2d0b9dFXXPEl75ImjmdtT64A6+9/hpPP/4ATz/+AK+9/hprbLgdafYMvvG1o3q7mtJcXp70Hudf/x9OvuwevnHJ/dzx0LN1y88Grr3zCY6/5F5O+teL/O3597j6lVmc+eBb/Piye5g5cxaf/eiGLDLj3brbidmzOWTTFXh9wmRuvPepJr4iqfmMZ9pnPNN/rL/++nxo+z046tiTuWbsnSy89Kq9XSWpS77644tZccdvs/iWX2Plj3yHtXb7Hkttcwx7f/V3zJo1m2WXXIjTv7v/nPJrr7oM3ymSOv8c9xCLbHY0a3zseJbY6uucfPY1ABz8ic3YZet1e+slqYlM7DTmI8AKxd+LA5/oxbpI3Wbi25OY9Hr+QfzHc89k+LChc5YNHzaU88f8DoCpb7/CG29N7I0qSlWNZzh3vzuIlwfMz/RBQ9stP2Hg/Pzz5Zm8PWje261eGjA/V/z7cQA2XKr+7VgbLzCLNVZaknPGPcGU6TM7V3mp5xjP6H3jrNN/zC3X/42fnHgs2221aW9XR+qy3//1Vt6YOHme+VeNe4ixdz8BwA6brjln/slf3ZMBEUx4Zwp7H/3budb5wW+u5L9PvERE8LNv2gq/PzCx05jPFo8vVjyX+pXBgwfR0MfCgEEsuvCIbq+P1FtemDgNgMVH1O4rZ8SMKRyw47pc+e/HeG1glX58pL7HeEaS+qGZs2YBMGPmrDnz1l1tWQDue+T5quv8c9x/AVh5+cUYPNgeWlqdiZ12RMSiwCeBBOwPzAJ2iYhle7ViUjcYPmwoS6yQM/2HfPaLTJk6bc6yKVOncfChhwGw4eYfti8R9WtLzJ/vUHlr8rTqBWbP4pDNVmTCpKnc9PL0HqyZ1DnGM5LUP2250arsuFmO3y+/8YE584cUyZrX35pUdb3nX5kAwIAIdtpsre6tpLqdv8zadyAwBBibUroVuA6YDzikWuHivuxU/L1fRNweEZMjYlJE3BgRW9faUUSsFBG/iYinI2J6REyIiJsj4oAa5efcBx4Ry0fEmIh4OSKmRMR9EbF3WdmtIuKqiHizWH5zRHyoxnY/HBFnRMSDRfnpEfFsRPwxItZu9MBFxPFF/X5bp8zuRZm7Gt2uutcFfzqPwfMvymP33cySSyzJqmttxKprbcSSSyzJ4w/exkZb78aN11zW29WUus3AmdP52KarAfDfV6r3sbPZiNmsvuISnHPzY8ycb3BPVk/qLOMZ4xlJ/cAZ3zuA//z9BB658vu8NO4UbjjnaAbON4Db7n+KE06/Yk65Se/mi1OrrLB41e1suObybX+vvULVMmodJnbaV2qmPKZ4/EPxeGi9lSLiB8CFwHvAP4EXgB2BGyNiiyrlNwceAL5YzPobcDewFXBBRJwXEVFjdyOBe4FtgHHAfcBGwMURsX9E7AncTL6f/nrgWWB74OaIWKPK9n4LfA6YCdwCXFW8joOBe+oFcxXOKtY7MCJq3bdzRPF4RoPbVDfbZstNuOfee1lixXWYNX0SLz31AC899QCzpk9i/oWXZscddpir7x2pX0mz+dTqC7PwgsO47cHxVW+xWmjGu+y/w3pcf/cTvFRtKHWpbzKeMZ6R1A9sueGqrL7iEqy83GIsMiL3BXj97Y+x11FnzlVuXNHvzgfXWZHFF15gnu3st+smc/5ebCHjmVZnYqeOiNgI2BCYBPy1mH0F8BawekRsU2f1I4BNU0rbpZT2A9YFzgYGAz+o2M9Q4GJgYeA0YPWU0v4ppZ2BDwKvAQcBX6ixr0OAPwNrFOttDXwJCOBU4BzgwJTSpiml/Yu6/AWYH/hWle0dAyydUto4pbRnSmlPYA3gcGA4cFadoGyOlNKrxetagBxEzSUiVgN2Bt4s6qM+4JzzLmHDD6zH22++wrE/+CX/eewZ/vPYM3zr+6fx3rR3+dmJx7Drngf1djWlbrH9YsFWG4zkhVcncukTE+dZHrNmMWqLkUx6dxrXPDul5ysodYLxjPGMpP5jo71OZNhGR7LMdt9kr6N+y90PPctHtliLZ64/iQ+UtcI59ueXMv29mQycbwAP/WM0B39yC5ZcdAF23W49Hr/qRBZaYBgpJQBmFY9qXSZ26itd3bo4pTQFIKU0HbigYnk1J6SU7i09SSnNBo4vnm4Tcw8xug95lIrxwDdTSrPK1nsIOKF4ekyNfc2zHvnq0pvA8sA1KaVLKuryk+LpDpUbSyldnlKaWDEvpZR+B/wbWBtYp0ZdKp1ePH6xyrIvkoO1c1NKNTqyUE967oWXOOrwUcyeOZ0rr7qWE759FKuvOpLVVx3J6O98hb9feTUMGMjNV17ITePu6O3qSk21xYIz2WvbdXjlzXf41S3PMHPgkHnKbLZwYtXlF+ecGx9lxkBvwVLLMJ5pm2c8I6lfmPjOFK7+10Nsd/BPuXLcfxk+dDCX/vLwOcvfmTyNTx75G6ZOn8FCCwzld6MP5Nkbf8ylpx3OCksvzN9v/g+zi4TOK6+/01svQ01iYqeGiBgClO4F/0PF4tLzfSJi3nZt2ZWVM4orPhPI97gvVrZou+LxwpTSjCrbGkPu7HC1iFiuyvKbU0rvVexrFjlAArimyjpPFI9VO00s7nE/LCJ+ERHnFPe7jwGWLopUa/I8j5TSXcBdwDoRsX3Z9ocBo4DZwJnV1i0r+4WIuCci7nn9jdcb2a066eenn8PsGVNYdOmV2WbLTeZZvsM2m7HIUiOB2Vx48d96vH5Sd9lsgRl8eqf1eX3CZH5x05NMqzFk+tbrLs+sWbPZavXFOWC14XNNm6+dr5J97IMrccBqw9l+Ua9+qfcZzxjPSOr/jv15jsuXW3IhhpaNcDXu7v+x9Lbf4JRzr+Ou/47nkadf4YbbH+OTR57J4aP/xICi0eJ1tz3UK/VW8ziuWW17AIsCT6SUbitfkFK6PyIeBDYA9iM3Da70XI3tvgMsApT/aigFN89UWyGlNC0iXirKLUfbMKUlL9TY1+Ray1NKk4vWx/Ncko6I7wPfof750ZGxrn8F/IncnHpsMW9/8vH9Z0qp6usuq+tZ5Ct2bLzxJv5S6kbPPPM0AEOH1YrvYdjwBZgAvPnmmz1UK6l7fWj+GRz44Q/w5sR3+dkNjzN10PC65eebbwCbr7dSzeUjl12MkcsuxsNPvczYtyY2ubZSh+2B8YzxjKR+bfyLb5JSIiJYeYUlePSpl+cse++9mXN1qlxy1EE7EhFMnTaDh598eZ7lai0mdmorNUteKCJurbJ8ybJy8wRCRfPgjursl3x7+2q4LhHxKeB75PvwvwbcBLycUppaLL8Q+DS5yXGjLgF+BuwREcuklF4mB0UAv+nAdtTNVlg+tzh47cWnmDJ12jydJE+ZOo3XXszJnzVWX63H6yc12ybDZ3DQRz7AhHem8NPrH2NKO0mdn97xCvBK1WU7LQ6f3HptzrzyPh6dOawbait1ivGM8Yykfu7w/bYlIpg9O/HEs682tM7XR30EgEtvuL87q6Ye4q1YVUTECsCHi6dLkkdyqJyWKZZvGRFrdnGXpStWq9Soz1DamhhXXt1qtn2Kx++klH6fUnq6FAQVOvxrvmhW/TtgEPD5iNgU2AR4murNqtVLjjjsUBgwkJnT3mH7j+zBO5Mmz1n2zqTJbLPT7syc9g4xcChHHj6q9yoqNcFGw97j4J0/wMR3pnDqtY/ybjtJHanVGM8AxjOS+oH/23trjjtsVwYPnrddxuc+tTUnf3VPAO595DlmzmzLge+zy8YMHzp3n4CLjhjOnX/5NksuuiBvT5rKYSf8qXsrrx5hi53qRpGTXjellHaqVSgi/gLsS77KVW00hkaNIw/H+emIOCGlNLNi+SHkK0pPppS6OxBatHh8vnJBRKxNHna0M34LfJs8EkbpfvYzO3klUN1k7TVX4XNHHMs5p/+I/955LcsuswyLL7MyAG+89Ayz3psMMR/f+O5JrLDc0u1sTeo5C8yYyt7rLznn+WorLA7AvpuO5O3JbX2ZjnlsEgBLzXqXQ3fJ/Ug9+8oENlumelLnlben8fCM6v3tSC1gFMYzxjPvU3+57Cq+fERbX9eTJ+TWlr857cec87tfz5n/2svP9njdpI7acO0V+NxeW/GdL3yMCZOm8M7kaQwdPIiFRwxj2JDch/0rb7zDJ444Y671fvmd/Rhz0igmTprK25OnMnzoYJZYZAEGDAjeeXcam3/6x8ye7cdXf2Bip0Ix7OWo4un57RQ/nxwIHRQR36kYxaEjLgF+BKwMnBwR3yoFCBGxDvD9otxPO7n9jngM+Aj5StTVpU4MI2JJ4I908pxJKb0cEZeS70U/EJgGnNucKquZfv3zE9lm6y34wYk/4rmnHuHVZx8BYNCwEay27nb86IffZ7edt2tnK1LPGhSJD661/DzzV11+8bmej3nsUQCGztc2b4M1lmODNar14wp3PPQsDz/psOZqPcYzxjPvd2+88SaT3pi3i6j33n2L9959qxdqJHXehVfexeorLsV6qy/LiPmHsuiIfEFq5qzZPP/KBC78512M/vU/5lnvipv/w27brc/CCw5jkRHDSAnenjyVf4z9D0eceOFcrXvU2kzszGt7chPiqcCl7ZS9Bnid3Ix5V2De/6YGFJ0J7gtcTR4CdM+IuJt8tWkHcpPf8yk63OtmpwEHA7sBT0bEncAw8kgXzwOXkzti7IxfkQMhgItSSn6r9lH77bUr++21a29XQ2rYhIHDOeryRxsu/yzzd6h8I258A268/FHyR6bU67bHeMZ45n3siC8cxBFfOKi3qyE1xb/vf4pdPn9ah9c7fLS3Wb1f2MfOvEqdDF6eUppUr2DRxPiiivU6JaV0B7AhuYnvfMBewGbA7cBngENSSt0+gkJK6Wly8+SLyM2ldwfWJgdhWwBvd2Hzd5FH0QA4o15BSZLUJcYzxjOSpPeJ6IHvVgmAiPgk+QrZXSmlzTqzjY033iTdduc9Ta2X1Fd988rmtiiR+rLT91zn3pTSJr1dD6k9xjNSxyzyoSN7uwpSj5n2wBm9Es/YYkc9IiIGAscXT3/em3WRJEnqDOMZSVJfZB876lYRcSiwLbApsA5wJ3Bxr1ZKkiSpA4xnJEl9mS121N22I4/KsQw5ANqzJ+6tlyRJaiLjGUlSn2WLHXWrlNIo2oZblSRJajnGM5KkvswWO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS3KxI4kSZIkSVKLMrEjSZIkSZLUokzsSJIkSZIktSgTO5IkSZIkSS0qUkq9XQepYRHxOvBsb9fjfWhx4I3eroTUQzzfe8dKKaUlersSUk8wnuk1fr7r/cTzvXf0SjxjYkdSuyLinpTSJr1dD6kneL5LUv/k57veTzzf31+8FUuSJEmSJKlFmdiRJEmSJElqUSZ2JDXirN6ugNSDPN8lqX/y813vJ57v7yP2sSNJkiRJktSibLEjSZIkSZLUokzsSO2IiPERkYrp43XKPVSU2b7nagcRMSIiphT7fqAn991KImJMcYxG9XZd3m8iYkBEPFcc/9cjYlBv16mviYjRxfEZ3dt1kdQ/Gc/0D8YzvcuYpn3GNL3DxI7UMSdFRF/7v/k0MKz4e4OI2Lg3KyNV8RFgheLvxYFP9GJdJEnGM1JnGdOoT+prH+hSXzYFWB84sLcrUuGzxeOLFc+lvsJzVJL6DuMZqfM8T9UnmdiRGver4vH7ETG4V2tSiIh1gU2BycAhxexPR8TQ3quV1CYiFgU+CSRgf2AWsEtELNurFZOk9y/jGakTjGnUl5nYkRp3KXAXsDJweEdWjIhBEXFkRNwZEe9ExNSIeDQifhwRi3WhTqWrBJeklG4EHgUWAfasUY+RxT2v4yP7UkQ8UNzTPiEi/h4R69V5HetGxHkR8XxETI+INyLiqoj4WI3yc+4DL9a9tLgfeXJE3BoRO5SV/XhEjIuIt4tjdEVErF5ju5+KiHMj4uGImBgR0yLiyYg4IyJWqLZOje2cU9Tv2DplvlyUubjR7WouBwJDgLEppVuB64D5aAvc51Lq/6H4e7+IuL04XyZFxI0RsXWtHUXEShHxm4h4ujg/J0TEzRFxQI3yc+4Bj4jli/P15eL/4b6I2Lus7FbFuf5msfzmiPhQje1+uDgXHyzKT4+IZyPijxGxdqMHLiKOL+r32zpldi/K3NXodiW97xnPGM+oc4xpjGn6rpSSk5NTnQkYT87MbwLsWPz9KrBARbmHimXbV8wfCtxcLHsXuBK4GHi5mDceWKUT9RpU1CMB2xbzvlE8v77GOiPL9vlHYBr5S+mSstf5drX6kO8hnlaUeQi4ELiFfLUiASdWWWdMsezXxWv/L3ARcG8x/z1gG+DLxXZuKY5NqS4vA4tV2e5M8lW9u4C/Av8Ani/WeR1Yo05dRpXN27CY9wwwoMYxe7Qos11vn4utOAH3F8fv4OL5PsXz/9Uon4rpB8U5MQ74S9n7MB3Yosp6mwMTijJPF+fZdcU5loDzgKhYZ3SxbEzxv/RUsd6txfzZ5CtyexbbuatYXqrL5Brn2pPF/8q9wN+K6QnaPgO2rrJOqS6jy+YtVbzeScCIGsfrmmK9Q3r7vXZycurbE8YzpXWNZ/rA+diKE8Y0xjR9eOr1Cjg59fWp7Et5k+L5tcXzEyrK1QqETinmPwosVzZ/WPElnoDbO1GvPYt1nyx9uANLAzOKL48Vq6wzsuxL5mlg1bJlQ4B/FsvOrlhvaXKAlICvVSzbvvhgT8AuFcvGlO2vcr2fFPMfL7a9TdmyoeSgKAHHV3kd+wLDK+YNBE4s1rm6yjqluoyqmP+vYv7Hq6xTCnwf6u3zsBUnYKPi+L1Ter+K8+zNYv42VdYpnS9vAhuXzR8AnEWVQL84X54rlv0CmK9s2Xq0/WA4rGK90WX7O61ivS8W858H3gL2qajLRcXyc6q8hj2AhSvmBXBYsc4j1A7IRlfMP7+Yf2SV/axGDtTeAIb29vvt5OTUtyeMZ0rbNZ5x6sz/jzFN2zxjmj449XoFnJz6+sS8gdAHiw+ed4AlysrNEwiRg51JxfyPVNn24mXLt+pgvf5RrPfdivlXUCVQK5aNLPvQr/bFv2mx7OmK+ccX82+tUZcf1/hyGlPM/3eVdRYpq8tJVZaXAr2bOnhcXiQHggvWqMuoivn7FvOvqrKtS4tlX+rt87AVJ+D04vj9vmL+r4r5f6iyTumcqPalv1SxbBowqGz+QbRdqRxUZb3Di+VPVMwfXbbe4Ipl8xXBRQIurLLNUoD3dOWydo7JbcV669aoy+iK+aX/yYerbOtnxbJTevu9dnJy6vsTxjNgPGM808kJY5pqx8SYpg9N9rEjdVBK6T5y89oFgePaKb4xsADwUkrp+irbeoMc0EC+UtSQiFga+Cg5IPtjxeI/FI+jIiJqbGImubljpceKx8pO4LYrHiv3VXJu8bh1RMxXZfk8+0opTSBfwai6nNzMs1pdAIiINSLiqIj4VXF/+piIGEO+0jWAnPlvxGXk4GmXiFilbPvLkZtrTyJfYVAHRMQQoHQf+B8qFpee7xMRC9TYxJWVM1JKr5KbJg8ByvtyKJ2fF6aUZlTZ1hhysLBa8b5Wujml9F7FvmaRfwRB587P5SPisIj4RdH3Qen8XLooska19SqllO4iN5deJyK2L9v+MGAU+TPgzEa2JUnljGeqMp7RPIxpjGlagYkdqXO+Sw4mDo+IleqUK33gPlOnzNMVZRtxCPkL/8aU0vMVy64k35c9ktz0tpqXU0ozK2emlN4p/hxSsai91zGe/GE8lLm/nEpeqLHe5DrLS8vmGhEjIgZGxFnkoO2X5PvZDyUfk0OAJYuiI2rscy7FcTiT/HlY3onkF8jH+LyU0qRGtqW57AEsSr6idFv5gpTS/cCDwPzAfjXWf67G/NI5Wn5e1D0/U0rTgJcqypbr8PmZUiotq/xfISK+X9Tlt8DR5E5BS+dnKdhu6PwslEaw+VLZvP3Jx/fqlFK9zxdJqsd4Zm7jMZ7RvPbAmMaYpo8zsSN1QkrpSeD35A/AHzSySpOrcGjxuGYxGsOcidyx4cBi+Werr87sTu63s6+jvf11pD5fAT5P7ohwf2BF8r24kVIK4PaiXK2re9WcRe7Q7bMRMSQiBhX7APhNB7ajNqVzb6HKc7Q4T5esKDeXlFJnztFePz8j4lPA94Cp5HNoVfK9+KXz88+loh2o3yXke+r3iIhlinmlgMjzU1KnGc90mPHM+5MxjTFNnzew/SKSavgBcDDwmYg4tUaZF4vHletsp5TtfrFOmTkiYitgzeLpisVUy54RsVBK6e1Gtl3Hi8Ba5LreWGX5SHKieBq5U7butE/xeFhKaZ6mrTTeZHmOlNLrEfEX8vu5H/l1LEMezvKRTtf0fSryEK0fLp4uSVvAU82WEbFmSunxLuyy9L+zSrWFETGUtubFDf2fdUHp/PxOSun3VZZ35vx8LyJ+Rw6uPh8R15BHtXma6k2qJakjjGfajMR4RmWMaQBjmpZgix2pk1JKL5Obzg4ATqpR7F5y08flImKnyoURsRiwe/F0bIO7Ll0NOLeUMa82ke9hHUbbPcFdMa54PLjG8tIVt1urNYluskWLx8om20TER4AlOrnd04vHL9F25eCMTm7r/W4U+f/ipnbO0YuL8rWuxDaqdH5+OiKqXbA4hHw16cmUUncHQfXOz7XJHRR2xm/JI8R8ATiqmHdmJ68CStIcxjNzMZ5RpVEY0xjTtAATO1LXnELu+Gx3qlzFSilNJX94AfyyrMlhKeN+Jrkzwjsq79mtJiLmJ496AO13gFda3tUvGICzyZ3ubR0RR5UviIhtyfeFQ+7RvruVOkT8YkTM+QyLiFVpO9YdllK6B7gD2Izccd1LwOWdr+b7U9HB5ajiaaPn6EE1Oqls1CXkoGNl4OSK82Id4PvF0592YR+NKp2fn4+IwWX1WJLcWWenWsoWP7wuJd9PfyD5Kuy5dVeSpMYZzxjPqIIxjTFNKzGxI3VBSmkicHLxdHiNYseTr16tCzwREVcUzWSfJjdxfI78odaIfcmB03O0ZfRruYicDd8kItZrcPtVpZReIQ+/OJ0c0P0nIi6MiLHke+DnB36YUuqJJpQnk1/XYcCjEXFRRFwHPEL+Ivx3F7b9q7K/z+qBq3X90fbk5sNTyV/a9VxD7hhzGWDXzu6w6EhwX2AicAzwv4j4c0RcCzxAHlL0fHLfA93tNOBtYDfgyYi4JCKuBJ4i/+9e3oVtl5+fF6WUuvs2AUnvE8YzxjOqanuMaYxpWoSJHanrTqd2D/SlD+idyU0NHwF2AD5J7gn/FOCDKaWna61foXS16oKUUt1O1YqhR0uByeca3H697f2dfA/sn8gjRewNrA9cB+yWUjq+q/tosB63Ax8C/gksRD6WywM/AnYhB0mddUPxOIOe+cLsj0rn6OXtjb5RBJoXVazXKSmlO4ANyVc55wP2Il+tvB34DHBIe/8zzVD8L29Efl1Bvvq9Nvl82oIcIHXWXbSNoGGzeknNZjxjPKO5GdMY07SM6IFzQpJaQkR8hXx14uKUUq0hK6VeERGfJF8duyultFkvV0eS1EcZz6ivM6ZpPlvsSBIQESPITV4Bft6bdZEqFR0olq4ie35KkqoynlFfZ0zTPRzuXNL7WkR8A1gP2JbcBPqSlNKdvVsrKYuIQ8nn5qbAOsCdtI28IUkSYDyjvs+YpnvZYkfS+91u5GFP5yePltHl+/elJtqOPCLHMuTgZ8+euK9ektRyjGfU1xnTdCP72JEkSZIkSWpRttiRJEmSJElqUSZ2JEmSJEmSWpSJHUmSJEmSpBZlYkdSU0XE+IhIFdO0iHgmIs6LiA17u44lpfpVmV96DSN7oVpdFhGji/qP7sA6o4p1xnZfzSAixhb72b4791Psa2Sxr/HdvS9JUv9iPNP7jGfm7Mt4Ru0ysSOpu1wL/LGYrgOGAgcBd0fE/r1ZsZ7SmYBEkiT1KcYzxjNSnzewtysgqd/6cUppbOlJRAwjD795IPC7iLgupfRWb1WuHTsBg4AXe7sikiSpVxnPSOrzbLEjqUeklKYCXwTeBUYAu/RujWpLKT2VUnospTSjt+siSZL6DuMZSX2RiR1JPSalNAn4X/F0JZj7vuGIGBgRx0TEgxHxbkRMLF8/IjaLiIsi4oWIeC8iXo+IKyJi61r7jIj1I+JvEfFWsc37IuL/6tWz3j3pke0bEVdHxGtFPV6MiBsj4stl5RJwQvH0hIp79EdXbHP+iPhmRNwdEe9ExNSIeLho+rxAjToOKo7VI8U9/69ExPkRsVK919ZMEfGpiDi3qOvEoh5PRsQZEbFCA+vvEBE3RMSEiJgcEbdGxCfqlI+I2D8irouINyJiekQ8FxFnt2r/AZKk1mM8YzxTsb7xjHqdt2JJ6mkjisfpFfMDuBT4KHAL8Aiw4pyFEV8HTi2e3gfcDiwP7AbsFhGHp5TOnmuDEdsBVwPDgMeB+4FlyE2n1+loxSNiMHAJ8AlgFnAH8BywFLAesCNwelH8j8CGwAbAg8ADZZua83dELE++f38d4PXidU0DPkQOpPaMiO1TShPK1hkAXAZ8vCh7EzCJ3OT6Y8A/O/raOukvxf4fAW4AhpBf85eAfSNiq5TS/2qsuydwJPAw+T1aCdgK+HtEfD2l9PPywhExCLgI2AuYCtwDvEo+7v8HfCoidk4p3dPUVyhJUnXGM8YzYDyjviKl5OTk5NS0CRgPJGD7Kss2JAcQCdihmDeyeJ6AZ4HVqqz3sWL5i8BmFcu2At4G3gPWKJs/DHihWO8kIMqWbUduQp3yx2DN1zCyYv5pxfzHgbUqls0HfKJi3uii/OgaxyqAfxdlTgeGVdT//GLZmIr1vlzMf6H8eJE7dPxr2fGsut8adRlVrDO2A+vsCwyvmDcQOLHY1tVV1hlbVr9jKpbtDswAZgIfqFj242KdccDyFcuOLJY9CQwsm186t8b39v+Fk5OTk1NrTcYzc80znpl3HeMZpz41eSuWpG4XEYsUTVIvI98C+gD5C63St1NKT1aZP7p4/L+U0p3lC1JKt5G/eAcBh5Ut2htYDngKOD6llMrWGQf8toOvYUnyPfWzgb1SSo9V1GNWSumKjmyTfDVvC/KVsq+kfN9+aXtTgcOB14ADI2KRsvWOLh6/W368UkrTyFeXptIDUkoXp5SmVMybmVI6HngJ2DkiFqyx+j0ppZ9WrPsP4EJyUFneDHxR4ChgMrBPSumFivV+Tb6qtyo5aJYkqemMZ2oynpl7XeMZ9TgTO5K6y82le7CBt4C/AyuTmx3vkVKaXWWdv1XOiIjFgU2Bd8jDjFZTCqq2KJu3XfF4UUppVpV1zm//JcxlR2AwcHtK6eEOrlvLrsXjpdWOR0rpXXIT3YHkpsylps6rkAOyC6us8xq1j1PTRcQaEXFURPyquD99TESMKeo8AFitxqoX1Jhfel+2L5u3A/mK37ji9VVT7RyQJKmrjGfaZzwzL+MZ9Sj72JHUXa4FXin+nk6+4vEv4Obyq01lXiu/wlNm5eJxBDAzIurtc4myv5cvHp+pUXZ8vQ1VUerE77G6pTpmleLx1Ig4tW7JttdWel0vpZTeq1F2fFcr1p6IGAj8hnw/eL03ZUSN+e29L8uXzSsdp92KwLqeJdpZLklSRxjPtM94Zl7ji0fjGfUIEzuSusuPU0pjO1C+VnPb+YrHt4HL29nGGx3YX0e19wXcGaXXNo72g5dnu2H/XfEV4PPkAPdr5HvrX0spTQeIiH+TrzbVjVwbVDpOj5ObeddzZzvLJUnqCOOZ9hnPNMZ4Rt3GxI6kvu754nFGSmlUB9Z7sXgcWWN5rfm1PFc8rtnB9eopvbZLUkpnNLhO6XUtGxGDa1zlGtnlmrVvn+LxsJTSlVWW12qyXDKynfkvls0rHaf/dvAckCSprzCemZvxjNRE9rEjqU9LKb0I/BdYPCK278CqpXuU94+I+aosP7CDVbmJPMLBlhGxdoPrlIKUWkn0q4vHfWosn0dK6Xlys98BwP6VyyNiCeAjjW6vCxYtHp+vXBARH6H9JsS1jn9p/tiyeTeQj/2HI2LhxqsoSVLfYDwzN+MZ4xk1l4kdSa3g+OLxTxGxc+XCiJgvInaMiM3LZv8VeJl8pWV0lN3MHhFbk0eEaFjRyd1vyZ+bl0bEGlXqsHvFaqWrNLUCp8uBe4HtIuK3xWgJc4mIpSPi8xWzf1U8/jAiVikrOwQ4AxjewEvqqtK9+V+MiDnfJRGxKo2N0PGhiPhq+YyI2BX4DHkI2V+X5qeUXiW/roWBKyJircqNRcT8EXFARCzV0RciSVIPMZ6Zm/FMBeMZdZa3Yknq81JKf4+IrwOnANdGxP/I9ydPBpYGNiJ/SX6R4p7llNKUiPgMedjI7wJ7R8T9wDLAtsAvga/SMd8gD0G5K/BwRNwOvAAsCaxfPJbfg30tMAXYKyJuIQ9VOgu4IqV0RUppdkTsAVxFHtr0gIh4kHzVaCiwBrAOeYjQs8u2ezqwM3kozIcj4qbiWGxdrHcecHAHX1vJByOi3n3f/0wpnQicTB7e9DBgh+LYLkoeveN2ckeTW9bZzq+An0bEKOBhYEVgq2LZN1NKD1SU/yawLLAv8FBEPAA8Te4rYCSwATCEHHS+2sDrlCSpRxnPGM9gPKNuYosdSS0hpfRzYGPgHHLncx8BdiePNnALueO7iyvWuQnYHLiCHDDtASwCHJFS+lon6jC92OdBxT7XA/YG1gL+AxxRUf4V4OPkZrgfAA4BPgd8sKzMC+ThT48E7gfWLba5BTAN+BmwV8V2ZwGfBI4ld1L4YfIQmrcAm1B7hIZGLAhsVmdatajD7eQhS/8JLFTUZ3ngR8Au5KbG9fytKPcmsBs5mP03sGdKaZ4RNVJKM1JK+wGfAK4kB0V7kF/7/MCfgT3JwaYkSX2S8cxc2zWeMZ5Rk0T1UfokSZIkSZLU19liR5IkSZIkqUWZ2JEkSZIkSWpRJnYkSZIkSZJalIkdSZIkSZKkFmViR5IkSZIkqUWZ2JEkSZIkSWpRJnYkSZIkSZJalIkdSZIkSZKkFmViR5IkSZIkqUWZ2JEkSZIkSWpR/w+w2N+I1AsLugAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate confusion matrix for PMML\n", + "DF_result=predict_RF.to_pandas().reset_index()\n", + "pmml_result=pmml_predict_result.to_pandas()\n", + "cm_pmml = confusion_matrix(pmml_result['anomaly'], pmml_result['prediction']) \n", + "# Calculate confusion matrix for DecisionForest\n", + "cm_df = confusion_matrix(DF_result['anomaly_int'], DF_result['randomforestclassifier_predict_1']) \n", + "# Create figure and axes objects\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8)) \n", + "# Plot PMML confusion matrix\n", + "disp_pmml = ConfusionMatrixDisplay(confusion_matrix=cm_pmml, display_labels=['No Anomaly', 'Anomaly']) \n", + "disp_pmml.plot(ax=ax1, cmap='Blues', colorbar=False) \n", + "ax1.set_title('PMML Confusion Matrix') \n", + "ax1.set_xlabel('Predicted Label') \n", + "ax1.set_ylabel('True Label') \n", + "ax1.set_xticks([0, 1]) \n", + "ax1.set_yticks([0, 1]) \n", + "ax1.set_xticklabels(['No Anomaly', 'Anomaly']) \n", + "ax1.set_yticklabels(['No Anomaly', 'Anomaly'])\n", + "\n", + "# Add text to the plot to show the actual values of the confusion matrix\n", + "for i in range(cm_pmml.shape[0]): \n", + " for j in range(cm_pmml.shape[1]): \n", + " ax1.text(j, i, f'{cm_pmml[i, j]}', ha='center', va='center', color='white' if cm_pmml[i, j] > cm_pmml.max() / 2 else 'black') \n", + "\n", + "# Plot DecisionForest confusion matrix\n", + "disp_df = ConfusionMatrixDisplay(confusion_matrix=cm_df, display_labels=['No Anomaly', 'Anomaly']) \n", + "disp_df.plot(ax=ax2, cmap='Blues', colorbar=False) \n", + "ax2.set_title('RandomForest Confusion Matrix') \n", + "ax2.set_xlabel('Predicted Label') \n", + "ax2.set_ylabel('True Label') \n", + "ax2.set_xticks([0, 1]) \n", + "ax2.set_yticks([0, 1]) \n", + "ax2.set_xticklabels(['No Anomaly', 'Anomaly']) \n", + "ax2.set_yticklabels(['No Anomaly', 'Anomaly'])\n", + "\n", + "# Add text to the plot to show the actual values of the confusion matrix\n", + "for i in range(cm_df.shape[0]): \n", + " for j in range(cm_df.shape[1]): \n", + " ax2.text(j, i, f'{cm_df[i, j]}', ha='center', va='center', color='white' if cm_df[i, j] > cm_df.max() / 2 else 'black') \n", + "\n", + "# Adjust layout and spacing\n", + "plt.tight_layout() \n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6f7bd547-6020-42c0-b2a7-d1938a9bdb30", + "metadata": {}, + "source": [ + "

    The confusion matrix for this binary class classification problem has the below 4 quadrants:

    \n", + "\n", + "
  • True Positive (TP) refers to a sample belonging to the positive class being classified correctly.
  • \n", + "
  • True Negative (TN) refers to a sample belonging to the negative class being classified correctly.
  • \n", + "
  • False Positive (FP) refers to a sample belonging to the negative class but being classified wrongly as belonging to the positive class.
  • \n", + "
  • False Negative (FN) refers to a sample belonging to the positive class but being classified wrongly as belonging to the negative class.
  • \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "43be6263-22d8-43d2-94e2-1f58d730f567", + "metadata": {}, + "source": [ + "

    Conclusion

    \n", + "

    We have seen an end-to-end exploration process for labelling anomalous time series using ClearScape Analytics on Teradata Vantage. Thanks to the in-database capabilities offered by Teradata Vantage with ClearScape Analytics, we were able to run this exploration with the smallest notebook instance. The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "

    In this particular use case, we have observed that with large volume of machine sensor data millions of ML models were created to derive analytic features that ultimately deployed tens of thousands of models for real-time scoring. This extent of scale is only possible by combining the power of Vantage with native ClearScape Analytic functions.

    " + ] + }, + { + "cell_type": "markdown", + "id": "4cb4409a-847a-4501-95bb-8268958315ec", + "metadata": {}, + "source": [ + "
    \n", + "

    9. Model Explainability

    \n", + "

    Trusted AI

    \n", + "\n", + "

    Trusted AI is important for the in-database functions and data pipelines used in predictive AI/ML, providing significant benefits when applied. One way to enhance the benefits: Teradata VantageCloud, the only platform to offer the massively parallel processing (MPP) architecture that enables best-in-class vertical and horizontal scaling of models.

    \n", + "\n", + "

    LIME stands for Local Interpretable Model-agnostic Explanations. LIME focuses on training local surrogate models to explain individual predictions. Local surrogate models are interpretable models that are used to explain individual predictions of black box machine learning models. Surrogate models are trained to approximate the predictions of the underlying black box model. Instead of training a global surrogate model, LIME focuses on training local surrogate models.

    \n", + "\n", + "

    In practice, LIME only optimizes the loss part. The user has to determine the complexity, e.g. by selecting the maximum number of features that the linear regression model may use.

    \n", + "\n", + "

    So, the recipe for training local surrogate models is as follows:

    \n", + "\n", + "
  • Select your instance of interest for which you want to have an explanation of its black box prediction.
  • \n", + "
  • Perturb your dataset and get the black box predictions for these new points.
  • \n", + "
  • Weight the new samples according to their proximity to the instance of interest.
  • \n", + "
  • Train a weighted, interpretable model on the dataset with the variations.
  • \n", + "
  • Explain the prediction by interpreting the local model.
  • \n", + "\n", + "

    Here we will use the model which is created using the teradataml opensouce ml functions to create the explainer and explain the modle parameters. LIME has an attribute lime_tabular that can interpret how the features correlate to the target outcome. We can also specify the mode to classification, training_label to the target outcome (Anomaly), and the features that we have selected on the training process.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "908bc562-13e9-4af4-893f-bf0097d22cc9", + "metadata": {}, + "outputs": [], + "source": [ + "import lime.lime_tabular\n", + "explainer = lime.lime_tabular.LimeTabularExplainer(X_train.get_values(), feature_names=X_train.columns, \n", + " class_names=['Anomaly','NoAnomaly'], verbose=True, mode='classification')" + ] + }, + { + "cell_type": "markdown", + "id": "dcfdd23a-a708-4954-9499-16da43b8c2ae", + "metadata": {}, + "source": [ + "

    We will choose 1 instance of the data and use it to explain the predictions.

    \n", + "

    Note:Please replace the WELDING_ID with the ID we need to get explaination

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "56dc3b86-06ba-4599-838b-37e2c5b193fa", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13cf6ec9c9da4a76af1198f2f374eb6f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    WELDING_IDsum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diffanomaly_int
    3186754.86978245218118.8968714267842362.48279195869617241.6570188926244569.878426705688414882.9945188622680.08507576069901807-1.42337112306267-35.309703780996130
    4991432.8122418440288.86290355992934363.8854353719825254.6874992809025670.823638156064755015.98772166119-0.407115172919324-0.9634199725189564-35.265341369459120
    66103051.29313790884135.40482535648476380.15990390532056287.0509558159020662.962737284257513964.3062863264304-0.6235690534090123-0.5482607552102269-40.703648564590711
    6997411.15857106655168.72998702644077362.43335495393376271.34027457121655.080923684897663033.9081539815206-0.19776981850595154-1.3735577645369346-33.541965004148611
    13494420.899597615894.11009786670994375.05861641361037263.0108623889019680.601478628631096496.598357121674-0.4659654036466217-1.005563091732258-33.0383809672692340
    15982057.3797522587190.58182588355331336.17284608259644228.572088446403176.269572808218345817.0477363481195-0.30761862548752666-1.254185147630323-30.428410194935340
    16184858.5233496950178.97502599970588398.92248591342815236.3747168515181498.295322133555549661.970353339455-0.047871194645529774-1.3935480197759396-42.871267181087490
    18177288.8501368628286.43693248109098347.45875485406475215.289276147250282.095484982158576739.668654455822-0.00877229297708187-1.3780222101024648-32.233925131194380
    18384737.5484590543869.41522063694657414.25927750342277236.0377394402629111.302014883651712388.1385171606220.04790406345700506-1.5726990344048148-41.1714954969646240
    19170922.0380749592285.22354420250932324.8828641407507197.5544236071287473.602267487526465417.2937793053940.0890401373922395-1.390612017613927-28.396842346793620
    19789400.06752725711101.29585436346969361.75865663789249.0252577360922173.948677595399775468.40691810838-0.24937134877639008-1.150863210615582-37.8314976805794460
    21377113.9208639003595.5138494285472310.05832297655536214.802007977438362.36366694420543889.2269547277774-0.18709413696807978-1.201959178021247-31.099755380094480
    22080431.8067954102999.8457585154082318.63240984263155224.0440300707807462.147565041356873862.319840569682-0.3778431806772692-1.0024887103133715-34.435338121402250
    24675325.5810988189287.41145030453134328.385988902767209.82056016384172.693500841315065284.345064566274-0.16540605044478487-1.3743463677707606-34.407945466649890
    28882600.6500639613105.11201031767013321.9040522651045230.085376222733460.6754745811199143681.5132156441286-0.2672838739091899-1.1058119595257525-39.327263993346180
    21283454.39580858205100.12825272685797361.5405819021655232.463498074044775.202711931799735655.4478818972530.024830506918099376-1.293111687332468-32.12402975534860
    8294048.76279519273114.03951750210967366.35161875486074261.9742696244922568.100843494377364637.72488464568-0.4827546065748303-0.8556540622845826-49.745322557524760
    3393185.74584100883124.65019295111625351.7031928317579259.570322676904859.3547381126017653522.9849364155407-0.3229589598739873-1.046640890827172-40.224341015516271
    26103807.76297225684152.857497527659383.578384675018289.1581141288491557.6083228236750243318.7188585567565-0.21002500953619418-1.3168188493421034-42.3252110300654751
    2380968.3856646060691.32685504056975362.0288544976556225.538678731493276.160922442548545800.486107299894-0.06229470076093798-1.2994883640937822-38.240981405083060
    " + ], + "text/plain": [ + " WELDING_ID sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff anomaly_int\n", + "0 31 86754.869782 118.896871 362.482792 241.657019 69.878427 4882.994519 0.085076 -1.423371 -35.309704 0\n", + "1 49 91432.812242 88.862904 363.885435 254.687499 70.823638 5015.987722 -0.407115 -0.963420 -35.265341 0\n", + "2 66 103051.293138 135.404825 380.159904 287.050956 62.962737 3964.306286 -0.623569 -0.548261 -40.703649 1\n", + "3 69 97411.158571 168.729987 362.433355 271.340275 55.080924 3033.908154 -0.197770 -1.373558 -33.541965 1\n", + "4 134 94420.899598 94.110098 375.058616 263.010862 80.601479 6496.598357 -0.465965 -1.005563 -33.038381 0\n", + "5 159 82057.379752 90.581826 336.172846 228.572088 76.269573 5817.047736 -0.307619 -1.254185 -30.428410 0\n", + "6 161 84858.523350 78.975026 398.922486 236.374717 98.295322 9661.970353 -0.047871 -1.393548 -42.871267 0\n", + "7 181 77288.850137 86.436932 347.458755 215.289276 82.095485 6739.668654 -0.008772 -1.378022 -32.233925 0\n", + "8 183 84737.548459 69.415221 414.259278 236.037739 111.302015 12388.138517 0.047904 -1.572699 -41.171495 0\n", + "9 191 70922.038075 85.223544 324.882864 197.554424 73.602267 5417.293779 0.089040 -1.390612 -28.396842 0\n", + "10 197 89400.067527 101.295854 361.758657 249.025258 73.948678 5468.406918 -0.249371 -1.150863 -37.831498 0\n", + "11 213 77113.920864 95.513849 310.058323 214.802008 62.363667 3889.226955 -0.187094 -1.201959 -31.099755 0\n", + "12 220 80431.806795 99.845759 318.632410 224.044030 62.147565 3862.319841 -0.377843 -1.002489 -34.435338 0\n", + "13 246 75325.581099 87.411450 328.385989 209.820560 72.693501 5284.345065 -0.165406 -1.374346 -34.407945 0\n", + "14 288 82600.650064 105.112010 321.904052 230.085376 60.675475 3681.513216 -0.267284 -1.105812 -39.327264 0\n", + "15 212 83454.395809 100.128253 361.540582 232.463498 75.202712 5655.447882 0.024831 -1.293112 -32.124030 0\n", + "16 82 94048.762795 114.039518 366.351619 261.974270 68.100843 4637.724885 -0.482755 -0.855654 -49.745323 0\n", + "17 33 93185.745841 124.650193 351.703193 259.570323 59.354738 3522.984936 -0.322959 -1.046641 -40.224341 1\n", + "18 26 103807.762972 152.857498 383.578385 289.158114 57.608323 3318.718859 -0.210025 -1.316819 -42.325211 1\n", + "19 23 80968.385665 91.326855 362.028854 225.538679 76.160922 5800.486107 -0.062295 -1.299488 -38.240981 0" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test_df = data_val\n", + "X_test_df.head(20)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e30288-56ee-46a5-9c14-63a079aba522", + "metadata": {}, + "source": [ + "

    Please replace the IDs in the below cell with any 2 WELDING_IDs from the above output dataframe.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "6ab9cc59-a9a7-4445-be5d-09665230b782", + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "ID1: 31\n", + "ID2: 23\n" + ] + } + ], + "source": [ + "ID1=input('ID1:')\n", + "ID2=input('ID2:')" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "ba156ce1-34a1-4a24-a04d-882d0cd1a082", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4d95d72933ad4cdf9900b837a844f5ed", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    sum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diff
    86754.86978245218118.8968714267842362.48279195869617241.6570188926244569.878426705688414882.9945188622680.08507576069901807-1.42337112306267-35.30970378099613
    " + ], + "text/plain": [ + " sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff\n", + "0 86754.869782 118.896871 362.482792 241.657019 69.878427 4882.994519 0.085076 -1.423371 -35.309704" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = X_test_df[X_test_df.WELDING_ID==ID1]\n", + "df = df.drop(columns=[\"WELDING_ID\",\"anomaly_int\"])\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "97a9253d-2459-4185-bf31-7613c6049976", + "metadata": {}, + "source": [ + "

    Next, we call the explainer using the selected instance and the model object created using the RandomForestClassifier.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "1e463fab-ef93-42e7-888a-93d560fec61c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Intercept 0.3255261119033892\n", + "Prediction_local [0.16654005]\n", + "Right: 0.049446324561220036\n" + ] + } + ], + "source": [ + "exp = explainer.explain_instance(df.get_values().flatten(), RF_classifier.modelObj.predict_proba, num_features=9)" + ] + }, + { + "cell_type": "markdown", + "id": "36c413e2-fbea-4c14-9a6d-c57439d02db7", + "metadata": {}, + "source": [ + "

    We display the results using the show_in_notebook function of the explainer

    " + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "eace0bf3-be59-47ab-a99f-007c2c2829b6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + "
    \n", + " \n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython import display\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=ResourceWarning)\n", + "exp.show_in_notebook(show_table=True)" + ] + }, + { + "cell_type": "markdown", + "id": "1fce7fdd-7877-442b-ad05-6bcf911d7fd8", + "metadata": {}, + "source": [ + "

    This gives a result as shown in the image above. There are three parts to the explanation :

    \n", + "\n", + "
  • left most section displays prediction probabilities
  • \n", + "
  • the middle section returns the features. For the binary classification task, it would be in 2 colors orange/blue. Attributes in orange support class 0 and those in blue support class 1.
  • \n", + "
  • Float point numbers on the horizontal bars represent the relative importance of these features. The color-coding is consistent across sections. It contains the actual values of the variables.
  • \n", + "\n", + "

    We will repeat the same steps for 1 more instance

    " + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "id": "c7900aca-d181-41a0-a114-5a812273d657", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3dddb984c51840a68d35ff77a82aa51a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\t\n", + "\t\n", + "
    sum_RESISTANCEmin_RESISTANCEmax_RESISTANCEmean_RESISTANCEstd_RESISTANCEvar_RESISTANCEskew_RESISTANCEkurtosis_RESISTANCEmin_resistance_diff
    80968.3856646060691.32685504056975362.0288544976556225.538678731493276.160922442548545800.486107299894-0.06229470076093798-1.2994883640937822-38.24098140508306
    " + ], + "text/plain": [ + " sum_RESISTANCE min_RESISTANCE max_RESISTANCE mean_RESISTANCE std_RESISTANCE var_RESISTANCE skew_RESISTANCE kurtosis_RESISTANCE min_resistance_diff\n", + "0 80968.385665 91.326855 362.028854 225.538679 76.160922 5800.486107 -0.062295 -1.299488 -38.240981" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = X_test_df[X_test_df.WELDING_ID==ID2]\n", + "df = df.drop(columns=[\"WELDING_ID\",\"anomaly_int\"])\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "4b55d286-5420-4e04-96bb-5d23cb55581d", + "metadata": {}, + "source": [ + "

    Next, we call the explainer using the selected instance and the model object created using the RandomForestClassifier.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "1ee238a5-3122-44c8-8bc3-286df4f8216f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Intercept 0.3665620653425659\n", + "Prediction_local [0.04139662]\n", + "Right: 0.049446324561220036\n" + ] + } + ], + "source": [ + "exp = explainer.explain_instance(df.get_values().flatten(), RF_classifier.modelObj.predict_proba, num_features=9)" + ] + }, + { + "cell_type": "markdown", + "id": "521cc53a-4afb-498a-84ae-4fe45de60c53", + "metadata": {}, + "source": [ + "

    We display the results using the show_in_notebook function of the explainer

    " + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "e7844ab3-87ab-44d6-a1c9-eb43818d5ad7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + "
    \n", + " \n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython import display\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=ResourceWarning)\n", + "exp.show_in_notebook(show_table=True)" + ] + }, + { + "cell_type": "markdown", + "id": "66c2c88e-1aac-46e4-8fff-789f603ff7e7", + "metadata": {}, + "source": [ + "

    Similar to the previous example, the above image shows three graphs that each show essential information about the anomaly.

    \n", + "\n", + "

    The left graph shows the prediction probabilities and the middle and right most show the features and their contribution towards the prediction.

    \n", + "

    Thus, with the explainer functions we try to get explainations using the different feature values on why the weldings have anomaly or do not have anomaly.

    " + ] + }, + { + "cell_type": "markdown", + "id": "29e90d19-1b71-44e8-b6d5-aa53e3b673c1", + "metadata": {}, + "source": [ + "
    \n", + "

    10. Cleanup

    \n", + "

    Work Tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "48a959e6-319f-4592-93af-482d391224b4", + "metadata": {}, + "outputs": [], + "source": [ + "tables = ['ADS_train_data', 'ADS_test_data','DF_train', 'DF_Predict', 'DF_Predict_test','additional_metrics_test']\n", + "\n", + "# Loop through the list of tables and execute the drop table command for each table\n", + "for table in tables:\n", + " try:\n", + " db_drop_table(table_name=table)\n", + " except:\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "c233387e-cff1-4e6e-81a7-2e3b3221b957", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User environment 'osml_env' removed.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "remove_env(\"osml_env\")" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "bbf8f9bc-9f3a-47e9-b2d4-81fd00291bc8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No user environment(s) found.\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "c5cea44c-e3e0-4634-bfa9-efa65c42ac44", + "metadata": {}, + "source": [ + "

    If you have updated the teradataml package, reinstall the package by uncommenting and running the below code cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "id": "93311aa2-79b1-44bd-926d-5c5bc23a1999", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# !pip install teradataml==17.20.0.6 --force-reinstall\n", + "!pip install scikit-learn==1.0.2 --force-reinstall\n", + "!pip install numpy==1.24.2 --force-reinstall" + ] + }, + { + "cell_type": "markdown", + "id": "d51fd98f-b9b2-48b9-b639-16cc51f9116f", + "metadata": {}, + "source": [ + "
    \n", + "

    11. Exploring the Versatility of this Analytical Approach in Alternative Use Case Settings

    \n", + "

    How this analytic approach can be levaraged in other use case settings

    \n", + "\n", + "

    The analytical approach of leveraging clustering followed by classification for anomaly detection in short time series data is highly adaptable and can be broadly applied across various industries, especially in settings where operations or processes are characterized by short, continuous time series with a defined start and end and where ground truth labels are not initially available.

    \n", + "

    This method begins with unsupervised learning to explore and understand the data, identifying patterns, similarities, and potential outliers through techniques like Dynamic Time Warping (DTW). Such exploration is crucial in settings where anomalies are not predefined or where the data’s inherent complexity requires initial unsupervised insight to develop an understanding of what constitutes normal behavior versus an anomaly. Following the clustering phase, supervised classification models are trained on the newly identified labels to predict anomalies. This generic approach is particularly effective for short time series data, where each sequence represents a process or event whose normal operational parameters need to be defined through exploratory analysis before precise anomaly detection can occur.

    \n", + "

    Potential Use Cases Across Industries:

    \n", + "
  • Telco & Utilities - Power Grid Load Monitoring: Analyzing short time series of electricity load during peak usage times to identify anomalies that could indicate equipment failure, energy theft, or inefficiencies in power distribution. Each series could represent the load profile for a brief, high-demand period.
  • \n", + "
  • Healthcare - ECG or EEG Analysis: Short segments of electrocardiogram (ECG) or electroencephalogram (EEG) readings can be analyzed to detect anomalies indicating cardiac arrhythmias or neurological issues, respectively. Each segment represents a complete heartbeat or a brief brain activity pattern.
  • \n", + "
  • Manufacturing - CNC Machine Operations: Monitoring the torque and force profiles of a CNC (Computer Numerical Control) machine during a single machining operation. Anomalies could indicate tool wear, material inconsistency, or operational errors.
  • \n", + "
  • Travel & Transport - Aircraft Engine Test Runs: Analyzing the time series data of engine parameters (e.g., temperature, pressure, vibration) during short test runs to identify deviations from normal operational profiles, suggesting maintenance or safety issues.
  • \n", + "
  • Hospitality & Entertainment - Theme Park Ride Operations: Analyzing sensor data from individual rides, where each ride cycle produces a time series of mechanical or operational parameters. Anomalies in these series could indicate safety concerns or maintenance needs.
  • \n", + "

    Conclusion

    \n", + "

    In each of these scenarios, the focus is on analyzing the shape or behavior of a curve within a short time frame, similar to observing a spot welding curve. These curves are shaped by the specific activity taking place, whether it’s a machine at work, a health test running, financial trades happening, or people interacting with a service. The method begins by sorting these curves into groups based on their patterns, without needing to know ahead of time which ones are out of the ordinary. Then, it moves on to use a more detailed approach to pinpoint which curves don’t fit the expected pattern, labeling them as either normal or not normal. This way of doing things is great for quickly finding and addressing issues, and it also helps in getting a better grasp of how these processes work. This can lead to making things run more smoothly and keeping equipment in good shape before problems even start.

    " + ] + }, + { + "cell_type": "markdown", + "id": "91bd8857-19e0-4200-b3ae-b2efdbca73d3", + "metadata": {}, + "source": [ + "
    \n", + "Resources\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    \n", + "Filters: \n", + "
  • Industry: Manufacturing
  • \n", + "
  • Functionality: Machine Learning
  • \n", + "
  • Use Case: Anomaly Detection
  • \n", + "Related Resources:\n", + "
  • Hyper-scale time series forecasting done right
  • \n", + "
  • Stay Ahead of Continuous and Rapid Change with a Dynamic Supply Chain
  • \n", + "
  • Achieve industry 4.0 using advanced manufacturing analytics at scale
  • \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "1da48da7-d4de-4693-9365-5d5f63810673", + "metadata": { + "tags": [] + }, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2023, 2024. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/UseCases/Anomaly_Detection/images/AnomalyWelding.png b/VantageCloud_Lake/UseCases/Anomaly_Detection/images/AnomalyWelding.png new file mode 100644 index 00000000..45fec58c Binary files /dev/null and b/VantageCloud_Lake/UseCases/Anomaly_Detection/images/AnomalyWelding.png differ diff --git a/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_EFS.ipynb b/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_EFS.ipynb new file mode 100644 index 00000000..bef893af --- /dev/null +++ b/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_EFS.ipynb @@ -0,0 +1,934 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7f2f3523-c5f5-42c1-8e78-eb8a818fd487", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Telco Churn using Enterprise Feature Store in Vantage\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "eff89c2c-c21b-40c0-b60f-24dedde6270b", + "metadata": {}, + "source": [ + "

    Introduction

    \n", + "\n", + "

    \n", + "Customer churn is a concern for all companies, but the complexity makes it difficult to track. Customers may leave due to various reasons such dissatisfaction with service quality, pricing, customer service, or finding better alternatives from competitors. Although some churn may be expected, companies aim to retain their customers to avoid using additional resources to find new customers. Thus, with the help of Teradata Vantage, companies can attain their goal of identifying the factors contributing to the churn, so they can take appropriate measures to retain customers. Vantage’s capabilities allow companies to analyze large amounts of customer data, such as usage patterns, billing information, demographics, and interactions, to find patterns that may indicate customers who are at risk of churning. Plus, Teradata’s machine learning and predictive analytics can be used to build models to predict customers which are likely to churn in the future. This information will give companies the chance to intervene, including sending targeted marketing campaigns, personalized offers, improved customer service, or addressing customer concern.

    \n", + "\n", + "

    Successful AI/ML implementations face three main challenges:

    \n", + "
  • The Data Problem: Quality data and feature engineering consume 80% of the implementation time. Even when different use cases share the same source data and features, organizations often handle data preparation separately.
  • \n", + "
  • The Scale Problem: Real-world use cases often require multiple models. In production, these models require fresh features engineered in the same way as during training. Ensuring the auditability of these features behind model decisions is crucial.
  • \n", + "
  • The Deployment Problem: Transitioning prototypes to production, especially operationalizing data prep pipelines, is often problematic.
  • \n", + "\n", + "

    Addressing these challenges requires strategic planning, skilled talent, and integration with existing systems. Oraganizations with a history in Data Management recognize the benefits of reusable Data Products, making Enterprise Feature Stores a valuable investment.

    \n", + "\n", + "

    A Feature Store is a curated repository of pre-calculated features, simplifying the journey from data to actionable insights. An Enterprise Feature Store extends across domains/teams, incorporating a Governance Framework for predictable feature delivery.

    \n", + " \n", + "

    While most features are reusable, some need model-specific calculations before integration into a unified dataset.

    \n", + " \n", + "

    The key difference between Feature Store (FS) and Enterprise Feature Store (EFS) is the scope across multiple domains/teams along with the Governance Framework (that gives an assurance that features are delivered under predictable SLAs and it also defines the operating model how the EFS is used across different teams/domains and how features lifecycle is managed). Although most Features are considered as re-usable, there is still some minor part of Features that must be calculated as model-specific (e.g., scaled variables, principal components, etc.) and then combined with the rest of the pre-calculated Features into a single data set (ADS). The figure below describes this co-existence of model-specific ADS(es) and model-independent EFS.

    \n", + "\n", + "\n", + "\n", + "\n", + "

    Business Values

    \n", + "\n", + "
  • Rapid model creation and deployment through enterprise feature reuse.
  • \n", + "
  • Flexible creation and usage of new features without extensive engineering support.
  • \n", + "
  • Consistent definitions ensure accuracy and quick deployment.
  • \n", + "
  • Collaboration and sharing of features among teams.
  • \n", + "
  • Maintained feature lifecycle for compliance and auditability.
  • \n", + "

    \n", + "\n", + "

    Why Vantage?

    \n", + "

    There are several reasons why EFS naturally fits to Teradata Vantage:

    \n", + "
  • Utilizes Teradata Vantage with its powerful Analytical Library and SQL Engine.
  • \n", + "
  • Primary Index enables efficient single-row access for online feature use.
  • \n", + "
  • Single platform for both online and offline feature stores.
  • \n", + "
  • Macros reduce parsing overhead from API access.
  • \n", + "
  • R and Python code execution within SQL Engine.
  • \n", + "
  • Bi-temporal querying capability.
  • \n", + "
  • Scalable MPP power for feature computation.
  • \n", + "
  • Industry-specific Logical Data Model as a feature source.
  • \n", + "
  • Connectivity to Object Storage via NOS for feature data sourcing.
  • \n", + "
  • Query Grid facilitates access to multiple data sources.
  • \n", + "
  • Close-to-real-time feature delivery using Query Services and Teradata Intelligent Memory.
  • \n", + "
  • Workload management prioritizes tasks effectively.
  • \n", + "

    The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "\n", + "\n", + "

    Methodology

    \n", + "

    In this demo we have used a methodology which involves analyzing a time series of data, where each data point represents the outstanding amount at the end of each month. To detect anomalies, we use the following steps:

    \n", + "\n", + "
  • Model the Distribution: We assume that the historical data of monthly balances follow a normal distribution. This distribution is characterized by two parameters: the mean (μ) and the standard deviation (σ). These are the features of the Entity
  • \n", + "\n", + "
  • Compute the Z-Score: For the most recent monthly balance (the latest data point in the time series), we compute its Z-score. The Z-score is a statistical measure that describes a value's relationship to the mean of a group of values. It is calculated using the formula:
  • \n", + "\n", + "

    Z = (X - μ) / σ

    \n", + "\n", + "

    where X is the value in question, μ is the mean, and σ is the standard deviation.

    \n", + "\n", + "
  • Threshold for Anomaly Detection: We set a threshold for the Z-score. If the absolute value of the Z-score for the latest monthly balance exceeds this threshold, it is flagged as an anomaly.
  • \n", + "\n", + "

    It's important to note that the computation of the Z-score and the anomaly flag is dependent on the values of the mean and standard deviation. These dependent features are not computed at the same time as the static features but are derived later, once the latest outstanding amount (the new data point) becomes available.

    \n", + "\n", + "

    Feature Engineering

    \n", + "

    Feature engineering is a crucial step in the entity-feature paradigm, as it involves creating and transforming features to better represent the underlying problem for predictive modeling. In our case, the feature engineering process is twofold, each with its specific inputs and outputs. Below are the processes that are a part of this feature engineering

    \n", + "\n", + "
  • Process 1: Computing Mean and Standard Deviation
  • \n", + "
  • Process 2: Computing Z-Score and Anomaly Flag
  • \n", + "
  • Roll Out: Feature Engineering rollout\n", + "
      \n", + "
    • Addressing Circular Dependency
    • \n", + "
    • Roll out after adjusting circular dependency
    \n", + "
  • Validation: Feature Store Validation
  • \n", + "

    " + ] + }, + { + "cell_type": "markdown", + "id": "fe80ce62-d761-4ffe-b171-93b036739e92", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5d409c76-27ef-4940-98c0-c541aa9cb1a0", + "metadata": {}, + "outputs": [], + "source": [ + "# '%%capture' suppresses the display of installation steps of the following packages\n", + "%%capture\n", + "!pip install dotenv\n", + "!pip install --upgrade teradataml" + ] + }, + { + "cell_type": "markdown", + "id": "0f0df2d7-7b1c-413c-bd59-5f87035f9a90", + "metadata": {}, + "source": [ + "
    \n", + "

    Note: Please execute the above pip install to get the latest version of the required library. Be sure to restart the kernel after executing those lines to bring the installed libraries into memory. The simplest way to restart the Kernel is by typing zero zero: 0 0

    \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48fb9b4e-8690-4de6-ab49-211f6413cfd1", + "metadata": {}, + "outputs": [], + "source": [ + "# Standard libraries\n", + "import json\n", + "import warnings\n", + "import getpass\n", + "from dotenv import load_dotenv, dotenv_values\n", + "\n", + "# Suppress warnings\n", + "warnings.filterwarnings('ignore')\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=RuntimeWarning)\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", + "\n", + "# Teradata libraries\n", + "from teradataml import *\n", + "display.max_rows = 5\n", + "\n", + "# Data manipulation and visualization libraries\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "1bcca830-84d7-452b-9a4a-21853933afd4", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cbf3a421-cfeb-4c21-978f-d2f9bea77bf9", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_Telco_Customer_Churn_using_EFS.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "a4794150-a65b-4c3f-8d24-d42f34b6167b", + "metadata": {}, + "source": [ + "

    Setup a Feature Store

    " + ] + }, + { + "cell_type": "markdown", + "id": "0776e2ee-bdb8-4927-9d14-5cff5583b6ee", + "metadata": {}, + "source": [ + "

    We can now set-up the feature store using the FeatureStore.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e72cc2f-2e36-47cd-a2da-19da50f892d2", + "metadata": {}, + "outputs": [], + "source": [ + "username=env_vars.get(\"username\")\n", + "fs = FeatureStore(repo=username)\n", + "fs.setup()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d7f40c3-8efe-4042-9ede-a767681f0fcf", + "metadata": {}, + "outputs": [], + "source": [ + "# List whether FeatureStore is setup or not.\n", + "fs.list_repos()" + ] + }, + { + "cell_type": "markdown", + "id": "e80e18e4-d009-4d88-8340-72636ca8f0dd", + "metadata": {}, + "source": [ + "
    \n", + "

    3.Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_Telco\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_Telco_DB database and we have created views in DEMO_Telco database which are used in the cells below

    " + ] + }, + { + "cell_type": "markdown", + "id": "d8540286-8309-47c6-9aff-fe153700ee9d", + "metadata": {}, + "source": [ + "
    \n", + "

    4. Feature Engineering

    " + ] + }, + { + "cell_type": "markdown", + "id": "c4992424-3837-4a9f-b532-2e8d188d8c02", + "metadata": {}, + "source": [ + "

    The code creates a DataFrame named df using the DataFrame function. The in_schema function specifies the schema, which in this case is \"DEMO_Telco\", and the table name \"Customer_Churn\". Let us now start with feature engineering.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "271b6d33-7792-442d-8c46-7e4d659e5920", + "metadata": {}, + "outputs": [], + "source": [ + "df = DataFrame(in_schema(\"DEMO_Telco\", \"Customer_Churn\"))\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "4c1d8130-0f2a-409f-be7e-6b9c32649208", + "metadata": {}, + "source": [ + "

    This code performs the following operations:

    \n", + "
      \n", + "
    1. Assigning New Values: The df.assign() function is used to create new columns or modify existing ones in the DataFrame df.
    2. \n", + "
    3. Replacing Values:\n", + "
        \n", + "
      • MultipleLines: Replaces \"No phone service\" with \"No\".
      • \n", + "
      • OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies: Replaces \"No internet service\" with \"No\" for each of these columns.
      • \n", + "
      \n", + "
    4. \n", + "
    5. Converting Churn Values:\n", + "
        \n", + "
      • Churn: Uses the case function to convert \"Yes\" to 1 and \"No\" to 0. If the value is neither \"Yes\" nor \"No\", it defaults to 0.
      • \n", + "
      \n", + "
    6. \n", + "
    7. Displaying the DataFrame: The final df statement displays the modified DataFrame.
    8. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4cb4956-2260-4c65-a6fa-b91ec4048cc2", + "metadata": {}, + "outputs": [], + "source": [ + "df = df.assign(\n", + " MultipleLines = df.MultipleLines.replace(\"No phone service\",\"No\"),\n", + " OnlineSecurity = df.OnlineSecurity.replace(\"No internet service\",\"No\"),\n", + " OnlineBackup = df.OnlineBackup.replace(\"No internet service\",\"No\"),\n", + " DeviceProtection = df.DeviceProtection.replace(\"No internet service\",\"No\"),\n", + " TechSupport = df.TechSupport.replace(\"No internet service\",\"No\"),\n", + " StreamingTV = df.StreamingTV.replace(\"No internet service\",\"No\"),\n", + " StreamingMovies = df.StreamingMovies.replace(\"No internet service\",\"No\"),\n", + " Churn = case({ \"Yes\" : 1, \"No\" : 0}, value=df.Churn,else_=0)\n", + ")\n", + "\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4b383aab-7165-4858-9e21-df0a9297b146", + "metadata": {}, + "outputs": [], + "source": [ + "print(df.show_query())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "83827624-1f49-4b05-898f-13aa03b346c3", + "metadata": {}, + "outputs": [], + "source": [ + "df = ConvertTo(\n", + " data=df,\n", + " target_columns=['CustomerID', 'Gender', 'Partner', 'Dependents', 'PhoneService',\n", + " 'MultipleLines', 'InternetService','OnlineSecurity', 'OnlineBackup',\n", + " 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies',\n", + " 'Contract', 'PaperlessBilling', 'PaymentMethod'],\n", + " target_datatype=[\"VARCHAR(charlen=10,charset=UNICODE,casespecific=NO)\"]\n", + ").result" + ] + }, + { + "cell_type": "markdown", + "id": "c8f2207c-e7e9-4ffa-ac7a-37a78b129eb5", + "metadata": {}, + "source": [ + "

    Let's store the transformed data to table.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df39f7d9-37b5-445f-bb29-4f4883c0d021", + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(\n", + " df=df,\n", + " table_name='transformed_data',\n", + " if_exists='replace'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "3cf33828-2e9e-42e5-883b-469cb47dd515", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Save feature and feature processing to Feature Store

    " + ] + }, + { + "cell_type": "markdown", + "id": "2ec83605-4d29-47d5-93c3-7c05791d1782", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "98794d87-4d1e-4e58-ac39-1337beeace57", + "metadata": {}, + "source": [ + "

    Now we will proceed to save the features as well as the feature processing logic in feature store.

    \n", + "

    This will allow us to re-use the features and processing later-on, avoiding to re-write the processing logic.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "19557186-c5be-4be6-a452-1ff6869865e3", + "metadata": {}, + "outputs": [], + "source": [ + "df = DataFrame('transformed_data')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edbe4e7e-0b44-4624-9657-da2f5b7aff02", + "metadata": {}, + "outputs": [], + "source": [ + "# Create FeatureGroup for this DataFrame.\n", + "fg = FeatureGroup.from_DataFrame(name='telcom', df=df, entity_columns='CustomerID')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0565b334-f84e-4843-92b2-7e784494ac07", + "metadata": {}, + "outputs": [], + "source": [ + "# Let's look at Features\n", + "fg.features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9cb9c82f-8e99-4cca-bd7a-5d77c7764bd9", + "metadata": {}, + "outputs": [], + "source": [ + "# Let's look at Entity.\n", + "fg.entity.columns" + ] + }, + { + "cell_type": "markdown", + "id": "191c113e-08af-4eca-bf7c-fcab24be71ec", + "metadata": {}, + "source": [ + "

    Here we will saving the features and processing with additional metadata such as project names as churn

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c5c15a2-ddca-4af5-919b-bc7cfd5fd11e", + "metadata": {}, + "outputs": [], + "source": [ + "# upload the features in the physical feature store\n", + "fs.apply(fg)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37931c07-6843-4835-9b33-edd8b8fbc131", + "metadata": {}, + "outputs": [], + "source": [ + "fs.list_features()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e3a60da1-b8ea-4461-a953-2da276a11d8f", + "metadata": {}, + "outputs": [], + "source": [ + "fs.list_feature_groups()" + ] + }, + { + "cell_type": "markdown", + "id": "beda7104-0cc0-48f9-b98f-ad573be558ea", + "metadata": {}, + "source": [ + "
    \n", + "

    6. Re-using features for machine learning

    " + ] + }, + { + "cell_type": "markdown", + "id": "57de3efb-2956-4a2a-9fc9-9c9ddd7bc155", + "metadata": {}, + "source": [ + "

    Now that our features have been stores in feature store, let us re-use them to train a machine learning model

    \n", + "

    We now need to just specify the feature name, we do not need to specify the processing logic

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dce440d3-7c72-4400-82b0-2ff09e8fc914", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df = fs.get_dataset('telcom')\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "fcaca5d6-2e5a-400f-a653-cbf70c1564c8", + "metadata": {}, + "source": [ + "

    We have our training dataset which is created, with all the feature engineering

    \n", + "

    We can see from that the column Multiple lines has only two values yes and no. The same features can also be re-used accross multiple use-cases and models without any data preperation

    " + ] + }, + { + "cell_type": "markdown", + "id": "46f6bf8f-b9e1-441a-b089-c1ceebdbc059", + "metadata": {}, + "source": [ + "

    We split the dataset in to training and testing dataset with 80:20 split ratio.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8a5f3a51-60a2-4b80-8f82-a77d8adcc322", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Performing sampling to get 80% for trainning and 20% for testing\n", + "tdf_sample = df.sample(frac = [0.8, 0.2])\n", + "\n", + "# Fetching train and test data\n", + "tdf_train= tdf_sample[tdf_sample['sampleid'] == 1].drop('sampleid', axis=1)\n", + "tdf_test = tdf_sample[tdf_sample['sampleid'] == 2].drop('sampleid', axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "c86ae3c5-c44c-4c1d-bf08-c8e8d3d83d58", + "metadata": {}, + "source": [ + "
    \n", + "7. AutoML Training" + ] + }, + { + "cell_type": "markdown", + "id": "337e3e67-6a98-4f1f-8479-45a637ca0bb5", + "metadata": {}, + "source": [ + "

    AutoML (Automated Machine Learning) is an approach that automates the process of building, training, and validating machine learning models. It involves various algorithms to automate various aspects of the machine learning workflow, such as data preparation, feature engineering, model selection, hyperparameter tuning, and model deployment. It aims to simplify the process of building machine learning models, by automating some of the more time-consuming and labor-intensive tasks involved in the process.

    \n", + "\n", + "

    We create a AutoClassifier instance which is a special purpose AutoML feature to run classification specific tasks. We use the exclude parameter to specify model algorithms to be excluded from model training phase. Here we exclude the 'knn' model. The max_runtime_secs specifies the time limit in seconds for model training.\n", + "

    \n", + "verbose: specifies the detailed execution steps based on verbose level as follows:\n", + "

    \n", + "\n", + "
      \n", + "
    • 0: prints the progress bar and leaderboard
    • \n", + "
    • 1: prints the execution steps of AutoML.
    • \n", + "
    • 2: prints the intermediate data between the execution of each step of AutoML.
    • \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "ddce4f43-4035-44af-ba24-4944f7705a9c", + "metadata": {}, + "source": [ + "
    \n", + "4. AutoML Training" + ] + }, + { + "cell_type": "markdown", + "id": "e3b86886-ba91-4e36-9d0f-b0415dd59ccd", + "metadata": {}, + "source": [ + "

    AutoML (Automated Machine Learning) is an approach that automates the process of building, training, and validating machine learning models. It involves various algorithms to automate various aspects of the machine learning workflow, such as data preparation, feature engineering, model selection, hyperparameter tuning, and model deployment. It aims to simplify the process of building machine learning models, by automating some of the more time-consuming and labor-intensive tasks involved in the process.

    \n", + "\n", + "

    We create a AutoClassifier instance which is a special purpose AutoML feature to run classification specific tasks. We use the exclude parameter to specify model algorithms to be excluded from model training phase. Here we exclude the 'knn' model. The max_runtime_secs specifies the time limit in seconds for model training.\n", + "

    \n", + "verbose: specifies the detailed execution steps based on verbose level as follows:\n", + "

    \n", + "\n", + "
      \n", + "
    • 0: prints the progress bar and leaderboard
    • \n", + "
    • 1: prints the execution steps of AutoML.
    • \n", + "
    • 2: prints the intermediate data between the execution of each step of AutoML.
    • \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb8137fc-7250-427f-92c7-6070a8ffddea", + "metadata": {}, + "outputs": [], + "source": [ + "# Creating AutoClassifier Instance\n", + "# Selecting 'Auto' mode for AutoML training\n", + "# Excluding knn,glm and svm model from default model list for training\n", + "# Used early stopping timer criteria with value 600 sec\n", + "\n", + "aml = AutoClassifier(\n", + " exclude = ['knn','svm','glm'],\n", + " verbose = 2,\n", + " max_runtime_secs = 600\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "46e64a2e-648d-4321-8bd6-5bdd8051cbb6", + "metadata": {}, + "source": [ + "

    Note: Since the AutoML functionality does a lot of steps like Feature exploration and Data Preparation along with Model Training and Evaluating to select the Best model the below step may take anywhere between 12-15 minutes

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "378743d2-daae-4a91-af06-fbd566072902", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fitting train data \n", + "aml.fit(data = tdf_train, target_column = 'Churn')" + ] + }, + { + "cell_type": "markdown", + "id": "3ea7b521-d7c1-4994-b380-b0308c85743d", + "metadata": {}, + "source": [ + "
    \n", + "8. Model Leaderboard Generation" + ] + }, + { + "cell_type": "markdown", + "id": "4223d717-dd65-449f-8c2b-c415e1471ac3", + "metadata": {}, + "source": [ + "

    Here, we generate model leaderboard and leader for a given dataset. Leaderboard is a ranked table with a list of models with all their evaluation metrics.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22d69751-fe5e-46dd-9c24-3322a5bd1487", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching leaderboard\n", + "\n", + "aml.leaderboard()" + ] + }, + { + "cell_type": "markdown", + "id": "7a330d76-3671-42f0-a2e3-e0b7f2138048", + "metadata": {}, + "source": [ + "
    \n", + "9. Best Performing Model" + ] + }, + { + "cell_type": "markdown", + "id": "59cbeea7-d5d8-4333-b25a-8a02aa4b4cff", + "metadata": {}, + "source": [ + "

    The following function displays the best performing model.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2054141f-3c2e-47be-b9db-aef8b4c3424d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching best performing model\n", + "aml.leader()" + ] + }, + { + "cell_type": "markdown", + "id": "55a1096f-7c8b-4e2f-b028-aa7f89c22f15", + "metadata": {}, + "source": [ + "
    \n", + "10. Prediction" + ] + }, + { + "cell_type": "markdown", + "id": "41a2ffe3-91f5-4da0-ac6c-6276323e4eb3", + "metadata": {}, + "source": [ + "

    The predict function generates predictions using either the default test data or any specified dataset, based on the model's rank in the leaderboard, and displays the performance metrics of the chosen model. If the test data contains a target column, both predictions and performance metrics are displayed; otherwise, only the predictions are shown.\n", + "

    \n", + "You can also use the rank parameter in the predict function. The rank parameter specifies the model's rank in the leaderboard to be used for prediction. By default, the rank is set to 1, meaning the best-performing model is used.

    " + ] + }, + { + "cell_type": "markdown", + "id": "0c2ea7e4-e02b-47d9-a4eb-18493f90d104", + "metadata": {}, + "source": [ + "
    \n", + "10.1 Generating prediction on external test data" + ] + }, + { + "cell_type": "markdown", + "id": "bff63293-7104-4308-ab81-a6527e9e1a4f", + "metadata": {}, + "source": [ + "

    Here, we specify the tdf_test dataset for prediction. When using external data instead of the default test data, the predict function applies all the data transformation steps performed during the training phase on the external data before passing the data to the model for prediction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68dd9ecd-0b1c-4428-8911-61e4f5719d81", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching prediction and metrics on test data\n", + "prediction = aml.predict(tdf_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f563395c-b381-4fe4-ab20-7b1a7a4882bf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Printing prediction\n", + "prediction" + ] + }, + { + "cell_type": "markdown", + "id": "d841fcd4-df97-4d31-bd25-28cce37c1a47", + "metadata": {}, + "source": [ + "
    \n", + "11. Conclusion" + ] + }, + { + "cell_type": "markdown", + "id": "d74e6e4a-ae3a-4249-a6ca-8d644f592db9", + "metadata": {}, + "source": [ + "

    We used feature store to store features as well as its processing. We re-used it in model training. The features and processing can be re-used accross multiple machine leanring models and use-case , helping to improve data science productivity

    \n", + "\n", + "

    Teradata's AutoML functionality plays a crucial role in this context by automating the complex process of building and deploying machine learning models. AutoML ensures the most optimal preparation and training of models, delivering high-quality machine learning models in minutes. Through hyperparameter tuning (HPT), Teradata's AutoML can automatically select the best parameters for machine learning algorithms using grid search and random search techniques, significantly enhancing model performance.\n", + "

    \n", + "By leveraging Teradata's AutoML, companies can save time and reduce costs associated with manual model building and tuning. The technology not only improves the accuracy of predictive models but also democratizes the power of machine learning, allowing customers to utilize advanced analytics without requiring extensive coding or data science expertise. This capability enables companies to swiftly and effectively analyze customer churn data, develop predictive models, and implement proactive strategies to retain customers and enhance their satisfaction.\n", + "

    \n", + "In conclusion, Teradata's AutoML functionality is a vital tool for banks aiming to reduce customer churn. By automating and optimizing the machine learning process, Teradata empowers various industries to make data-driven decisions that improve customer retention and drive long-term profitability.

    " + ] + }, + { + "cell_type": "markdown", + "id": "3fafdffb-2cde-4d99-8682-9ae64c74497d", + "metadata": {}, + "source": [ + "
    \n", + "12. Cleanup

    \n", + "

    Work Tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ff3fb9b-4d13-4628-988d-f82463d96537", + "metadata": {}, + "outputs": [], + "source": [ + "tables = ['transformed_data']\n", + "\n", + "# Loop through the list of tables and execute the drop table command for each table\n", + "for table in tables:\n", + " try:\n", + " db_drop_table(table_name=table)\n", + " except:\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21fac6bb-3e3a-488c-848b-41473d6156e7", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "72bfa61c-3daa-4d47-b0d7-0a69ef13dc1a", + "metadata": {}, + "source": [ + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "0ff7e25c-dc4e-45d7-a67f-8c70e2c517f4", + "metadata": {}, + "source": [ + "Required Materials\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    " + ] + }, + { + "cell_type": "markdown", + "id": "fc4938d2-5ce6-412e-a665-5d62a3b1a1b5", + "metadata": {}, + "source": [ + "

    Filters:

    \n", + "
      \n", + "
    • Industry: Telco
    • \n", + "
    • Functionality: Feature Store and AutoML
    • \n", + "
    • Use Case: Customer Retention
    • \n", + "
    \n", + "

    Related Resources:

    \n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "b4fd5272-ceb7-4d47-bd5c-c3aea31e471a", + "metadata": {}, + "source": [ + "

    Reference Links:

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "0d6b60cb-d919-4daf-bc2a-35d7bf17eec7", + "metadata": {}, + "source": [ + "Dataset:\n", + "\n", + "- `CustomerID`: unique id of customer\n", + "- `Gender`: Whether the customer is a male or a female\n", + "- `SeniorCitizen`:Whether the customer is a senior citizen or not (1, 0)\n", + "- `Partner`:Whether the customer has a partner or not (Yes, No)\n", + "- `Dependents`:Whether the customer has dependents or not (Yes, No)\n", + "- `Tenure`:Number of months the customer has stayed with the company\n", + "- `PhoneService`:Whether the customer has a phone service or not (Yes, No)\n", + "- `MultipleLines`:Whether the customer has multiple lines or not (Yes, No, No phone service)\n", + "- `InternetService`:Customer’s internet service provider (DSL, Fiber optic, No)\n", + "- `OnlineSecurity`:Whether the customer has online security or not (Yes, No, No internet service)\n", + "- `OnlineBackup`:Whether the customer has online backup or not (Yes, No, No internet service)\n", + "- `DeviceProtection`:Whether the customer has device protection or not (Yes, No, No internet service)\n", + "- `TechSupport`:Whether the customer has tech support or not (Yes, No, No internet service)\n", + "- `StreamingTV`:Whether the customer has streaming TV or not (Yes, No, No internet service)\n", + "- `StreamingMovies`:Whether the customer has streaming movies or not (Yes, No, No internet service)\n", + "- `Contract`:The contract term of the customer (Month-to-month, One year, Two year)\n", + "- `PaperlessBilling`:Whether the customer has paperless billing or not (Yes, No)\n", + "- `PaymentMethod`:The customer’s payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic))\n", + "- `MonthlyCharges`:The amount charged to the customer monthly\n", + "- `TotalCharges`:The total amount charged to the customer\n", + "- `Churn`:Whether the customer churned or not (Yes or No)" + ] + }, + { + "cell_type": "markdown", + "id": "d7e28609-20ff-47e0-a640-48db6a7fa523", + "metadata": {}, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2025. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_tdfs4ds_Feature_Store.ipynb b/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_tdfs4ds_Feature_Store.ipynb new file mode 100644 index 00000000..cd8b5e3c --- /dev/null +++ b/VantageCloud_Lake/UseCases/EFS_Demo/VCL_Telco_Churn_using_tdfs4ds_Feature_Store.ipynb @@ -0,0 +1,1027 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7f2f3523-c5f5-42c1-8e78-eb8a818fd487", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Telco Churn using Feature Store in Vantage\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "eff89c2c-c21b-40c0-b60f-24dedde6270b", + "metadata": {}, + "source": [ + "

    Introduction

    \n", + "\n", + "

    \n", + "Customer churn is a concern for all companies, but the complexity makes it difficult to track. Customers may leave due to various reasons such dissatisfaction with service quality, pricing, customer service, or finding better alternatives from competitors. Although some churn may be expected, companies aim to retain their customers to avoid using additional resources to find new customers. Thus, with the help of Teradata Vantage, companies can attain their goal of identifying the factors contributing to the churn, so they can take appropriate measures to retain customers. Vantage’s capabilities allow companies to analyze large amounts of customer data, such as usage patterns, billing information, demographics, and interactions, to find patterns that may indicate customers who are at risk of churning. Plus, Teradata’s machine learning and predictive analytics can be used to build models to predict customers which are likely to churn in the future. This information will give companies the chance to intervene, including sending targeted marketing campaigns, personalized offers, improved customer service, or addressing customer concern.

    \n", + "\n", + "

    Successful AI/ML implementations face three main challenges:

    \n", + "
  • The Data Problem: Quality data and feature engineering consume 80% of the implementation time. Even when different use cases share the same source data and features, organizations often handle data preparation separately.
  • \n", + "
  • The Scale Problem: Real-world use cases often require multiple models. In production, these models require fresh features engineered in the same way as during training. Ensuring the auditability of these features behind model decisions is crucial.
  • \n", + "
  • The Deployment Problem: Transitioning prototypes to production, especially operationalizing data prep pipelines, is often problematic.
  • \n", + "\n", + "

    Addressing these challenges requires strategic planning, skilled talent, and integration with existing systems. Oraganizations with a history in Data Management recognize the benefits of reusable Data Products, making Enterprise Feature Stores a valuable investment.

    \n", + "\n", + "

    A Feature Store is a curated repository of pre-calculated features, simplifying the journey from data to actionable insights. An Enterprise Feature Store extends across domains/teams, incorporating a Governance Framework for predictable feature delivery.

    \n", + " \n", + "

    While most features are reusable, some need model-specific calculations before integration into a unified dataset.

    \n", + " \n", + "

    The key difference between Feature Store (FS) and Enterprise Feature Store (EFS) is the scope across multiple domains/teams along with the Governance Framework (that gives an assurance that features are delivered under predictable SLAs and it also defines the operating model how the EFS is used across different teams/domains and how features lifecycle is managed). Although most Features are considered as re-usable, there is still some minor part of Features that must be calculated as model-specific (e.g., scaled variables, principal components, etc.) and then combined with the rest of the pre-calculated Features into a single data set (ADS). The figure below describes this co-existence of model-specific ADS(es) and model-independent EFS.

    \n", + "\n", + "\n", + "\n", + "\n", + "

    Business Values

    \n", + "\n", + "
  • Rapid model creation and deployment through enterprise feature reuse.
  • \n", + "
  • Flexible creation and usage of new features without extensive engineering support.
  • \n", + "
  • Consistent definitions ensure accuracy and quick deployment.
  • \n", + "
  • Collaboration and sharing of features among teams.
  • \n", + "
  • Maintained feature lifecycle for compliance and auditability.
  • \n", + "

    \n", + "\n", + "

    Why Vantage?

    \n", + "

    There are several reasons why EFS naturally fits to Teradata Vantage:

    \n", + "
  • Utilizes Teradata Vantage with its powerful Analytical Library and SQL Engine.
  • \n", + "
  • Primary Index enables efficient single-row access for online feature use.
  • \n", + "
  • Single platform for both online and offline feature stores.
  • \n", + "
  • Macros reduce parsing overhead from API access.
  • \n", + "
  • R and Python code execution within SQL Engine.
  • \n", + "
  • Bi-temporal querying capability.
  • \n", + "
  • Scalable MPP power for feature computation.
  • \n", + "
  • Industry-specific Logical Data Model as a feature source.
  • \n", + "
  • Connectivity to Object Storage via NOS for feature data sourcing.
  • \n", + "
  • Query Grid facilitates access to multiple data sources.
  • \n", + "
  • Close-to-real-time feature delivery using Query Services and Teradata Intelligent Memory.
  • \n", + "
  • Workload management prioritizes tasks effectively.
  • \n", + "

    The unique massively-parallel architecture of Teradata Vantage allows users to prepare data, train, evaluate, and deploy models at unprecedented scale.

    \n", + "\n", + "\n", + "

    Methodology

    \n", + "

    In this demo we have used a methodology which involves analyzing a time series of data, where each data point represents the outstanding amount at the end of each month. To detect anomalies, we use the following steps:

    \n", + "\n", + "
  • Model the Distribution: We assume that the historical data of monthly balances follow a normal distribution. This distribution is characterized by two parameters: the mean (μ) and the standard deviation (σ). These are the features of the Entity
  • \n", + "\n", + "
  • Compute the Z-Score: For the most recent monthly balance (the latest data point in the time series), we compute its Z-score. The Z-score is a statistical measure that describes a value's relationship to the mean of a group of values. It is calculated using the formula:
  • \n", + "\n", + "

    Z = (X - μ) / σ

    \n", + "\n", + "

    where X is the value in question, μ is the mean, and σ is the standard deviation.

    \n", + "\n", + "
  • Threshold for Anomaly Detection: We set a threshold for the Z-score. If the absolute value of the Z-score for the latest monthly balance exceeds this threshold, it is flagged as an anomaly.
  • \n", + "\n", + "

    It's important to note that the computation of the Z-score and the anomaly flag is dependent on the values of the mean and standard deviation. These dependent features are not computed at the same time as the static features but are derived later, once the latest outstanding amount (the new data point) becomes available.

    \n", + "\n", + "

    Feature Engineering

    \n", + "

    Feature engineering is a crucial step in the entity-feature paradigm, as it involves creating and transforming features to better represent the underlying problem for predictive modeling. In our case, the feature engineering process is twofold, each with its specific inputs and outputs. Below are the processes that are a part of this feature engineering

    \n", + "\n", + "
  • Process 1: Computing Mean and Standard Deviation
  • \n", + "
  • Process 2: Computing Z-Score and Anomaly Flag
  • \n", + "
  • Roll Out: Feature Engineering rollout\n", + "
      \n", + "
    • Addressing Circular Dependency
    • \n", + "
    • Roll out after adjusting circular dependency
    \n", + "
  • Validation: Feature Store Validation
  • \n", + "

    " + ] + }, + { + "cell_type": "markdown", + "id": "1ab6f86e-5e58-435a-a8f2-a4eb3176aa3d", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5d409c76-27ef-4940-98c0-c541aa9cb1a0", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv\n", + "# # '%%capture' suppresses the display of installation steps of the following packages\n", + "!pip install tdfs4ds --upgrade" + ] + }, + { + "cell_type": "markdown", + "id": "0f0df2d7-7b1c-413c-bd59-5f87035f9a90", + "metadata": {}, + "source": [ + "
    \n", + "

    Note: Please execute the above pip install to get the latest version of the required library. Be sure to restart the kernel after executing those lines to bring the installed libraries into memory. The simplest way to restart the Kernel is by typing zero zero: 0 0

    \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48fb9b4e-8690-4de6-ab49-211f6413cfd1", + "metadata": {}, + "outputs": [], + "source": [ + "#import libraries\n", + "import matplotlib.pyplot as plt \n", + "import getpass\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=RuntimeWarning)\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", + "\n", + "from teradataml import *\n", + "import pandas as pd\n", + "import json\n", + "from sqlalchemy import func\n", + "from dotenv import load_dotenv, dotenv_values\n", + "import tdfs4ds\n", + "from tdfs4ds.utils.lineage import crystallize_view\n", + "from tdfs4ds.feature_store.feature_query_retrieval import get_feature_versions\n", + "\n", + "display.max_rows=5" + ] + }, + { + "cell_type": "markdown", + "id": "1bcca830-84d7-452b-9a4a-21853933afd4", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5aae25d0-f786-45d2-8e2a-32c342d353ad", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_Telco_Churn_using_tdfs4ds_Feature_Store.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "a4794150-a65b-4c3f-8d24-d42f34b6167b", + "metadata": {}, + "source": [ + "

    Setup a Feature Store

    " + ] + }, + { + "cell_type": "markdown", + "id": "0776e2ee-bdb8-4927-9d14-5cff5583b6ee", + "metadata": {}, + "source": [ + "

    We can now set-up the feature store using the tdfs4dslibrary.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e72cc2f-2e36-47cd-a2da-19da50f892d2", + "metadata": {}, + "outputs": [], + "source": [ + "username=env_vars.get(\"username\")\n", + "tdfs4ds.setup(database=username)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d7f40c3-8efe-4042-9ede-a767681f0fcf", + "metadata": {}, + "outputs": [], + "source": [ + "tdfs4ds.connect(database=username)" + ] + }, + { + "cell_type": "markdown", + "id": "e80e18e4-d009-4d88-8340-72636ca8f0dd", + "metadata": {}, + "source": [ + "
    \n", + "

    3.Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_Telco\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_Telco_DB database and we have created views in DEMO_Telco database which are used in the cells below

    " + ] + }, + { + "cell_type": "markdown", + "id": "d8540286-8309-47c6-9aff-fe153700ee9d", + "metadata": {}, + "source": [ + "
    \n", + "

    4. Feature Engineering

    " + ] + }, + { + "cell_type": "markdown", + "id": "c4992424-3837-4a9f-b532-2e8d188d8c02", + "metadata": {}, + "source": [ + "

    Let us now start with feature engineering. We will replace multiple values which indicate absence of a service by No

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "271b6d33-7792-442d-8c46-7e4d659e5920", + "metadata": {}, + "outputs": [], + "source": [ + "df = DataFrame(in_schema(\"DEMO_Telco\", \"Customer_Churn\"))\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4cb4956-2260-4c65-a6fa-b91ec4048cc2", + "metadata": {}, + "outputs": [], + "source": [ + "df = df.assign(\n", + " oreplace_MultipleLines = func.oreplace(\n", + " df.MultipleLines.expression,\"No phone service\",\"No\"\n", + " ),\n", + " oreplace_OnlineSecurity = func.oreplace(\n", + " df.OnlineSecurity.expression, \"No internet service\",\"No\"\n", + " ),\n", + " oreplace_OnlineBackup = func.oreplace(\n", + " df.OnlineBackup.expression, \"No internet service\",\"No\"\n", + " ),\n", + " oreplace_DeviceProtection = func.oreplace(\n", + " df.DeviceProtection.expression, \"No internet service\",\"No\"\n", + " ), \n", + " oreplace_TechSupport = func.oreplace(\n", + " df.TechSupport.expression, \"No internet service\",\"No\"\n", + " ),\n", + " oreplace_StreamingTV = func.oreplace(\n", + " df.StreamingTV.expression, \"No internet service\",\"No\"\n", + " ),\n", + " oreplace_StreamingMovies = func.oreplace(\n", + " df.StreamingMovies.expression, \"No internet service\",\"No\"\n", + " )\n", + ")\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "b702973d-8a23-4070-94cc-b031013a11e1", + "metadata": {}, + "source": [ + "

    We will also convert Churn column value from Yes / No to 1 or 0

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e491f404-c614-4c13-a2f0-31daa7305750", + "metadata": {}, + "outputs": [], + "source": [ + "df = df.assign(\n", + " drop_columns = True,\n", + " CustomerID = df.CustomerID,\n", + " Gender = df.Gender,\n", + " SeniorCitizen = df.SeniorCitizen,\n", + " Partner = df.Partner,\n", + " Dependents = df.Dependents,\n", + " Tenure = df.Tenure,\n", + " PhoneService = df.PhoneService,\n", + " MultipleLines = df.oreplace_MultipleLines,\n", + " InternetService = df.InternetService,\n", + " OnlineSecurity = df.oreplace_OnlineSecurity,\n", + " OnlineBackup = df.oreplace_OnlineBackup,\n", + " DeviceProtection = df.oreplace_DeviceProtection,\n", + " TechSupport = df.oreplace_TechSupport,\n", + " StreamingTV = df.oreplace_StreamingTV,\n", + " StreamingMovies = df.oreplace_StreamingMovies,\n", + " Contract = df.Contract,\n", + " PaperlessBilling = df.PaperlessBilling,\n", + " PaymentMethod = df.PaymentMethod,\n", + " MonthlyCharges = df.MonthlyCharges,\n", + " TotalCharges = df.TotalCharges,\n", + " Churn = case({ \"Yes\" : 1, \"No\" : 0},value=df.Churn,else_=0)\n", + ") \n", + "\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "3cf33828-2e9e-42e5-883b-469cb47dd515", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Save feature and feature processing to Feature Store

    " + ] + }, + { + "cell_type": "markdown", + "id": "2ec83605-4d29-47d5-93c3-7c05791d1782", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "98794d87-4d1e-4e58-ac39-1337beeace57", + "metadata": {}, + "source": [ + "

    Now we will proceed to save the features as well as the feature processing logic in feature store.

    \n", + "

    This will allow us to re-use the features and processing later-on, avoiding to re-write the processing logic.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edbe4e7e-0b44-4624-9657-da2f5b7aff02", + "metadata": {}, + "outputs": [], + "source": [ + "tdfs4ds.DATA_DOMAIN='efs_telco'\n", + "tdfs4ds.VARCHAR_SIZE=50" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7ed9af79-d838-4ac3-8d67-3bb80f380bb9", + "metadata": {}, + "outputs": [], + "source": [ + "df = crystallize_view(df, view_name = 'PROC_FEATURE_ENGINEERING', schema_name = username,output_view=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68668b95-3b30-4f34-99e0-a19e37a52aec", + "metadata": {}, + "outputs": [], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f61ac745-3c56-43c0-8e24-b32ed6c24246", + "metadata": {}, + "outputs": [], + "source": [ + "# define the set of columns defining the entity id\n", + "entity_id = ['CustomerID']\n", + "# list the columns dealing with the features\n", + "features = df.columns[1::]\n", + "features" + ] + }, + { + "cell_type": "markdown", + "id": "cc8da6b1-fa36-44f8-ab70-bc0aa0329897", + "metadata": {}, + "source": [ + "

    We will create a Data Domain for the feature store

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9665f2d9-4968-4ac6-b880-fc3f6fa46b12", + "metadata": {}, + "outputs": [], + "source": [ + "tdfs4ds.DATA_DOMAIN" + ] + }, + { + "cell_type": "markdown", + "id": "191c113e-08af-4eca-bf7c-fcab24be71ec", + "metadata": {}, + "source": [ + "

    Here we will saving the features and processing with additional metadata such as project names as churn

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c5c15a2-ddca-4af5-919b-bc7cfd5fd11e", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# upload the features in the physical feature store\n", + "tdfs4ds.upload_features(\n", + " df,\n", + " entity_id = entity_id,\n", + " feature_names = features,\n", + " metadata = {'project': 'churn'}\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "81390658-0330-423d-87b4-001311a51289", + "metadata": {}, + "source": [ + "

    We can now use the feature catalog command to visualize all features which have been saved in the feature store

    \n", + "

    All features are time dependent, as seen by the column validity start and end

    \n", + "

    This means you can change the processing logic, but still keep the history of the features

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37931c07-6843-4835-9b33-edd8b8fbc131", + "metadata": {}, + "outputs": [], + "source": [ + "tdfs4ds.feature_catalog()" + ] + }, + { + "cell_type": "markdown", + "id": "beda7104-0cc0-48f9-b98f-ad573be558ea", + "metadata": {}, + "source": [ + "
    \n", + "

    6. Re-using features for machine learning

    " + ] + }, + { + "cell_type": "markdown", + "id": "57de3efb-2956-4a2a-9fc9-9c9ddd7bc155", + "metadata": {}, + "source": [ + "

    Now that our features have been stores in feature store, let us re-use them to train a machine learning model

    \n", + "

    We now need to just specify the feature name, we do not need to specify the processing logic

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dce440d3-7c72-4400-82b0-2ff09e8fc914", + "metadata": {}, + "outputs": [], + "source": [ + "tdfs4ds.connect(database=username)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "537bc561-8519-41d3-88f9-37ebfa215836", + "metadata": {}, + "outputs": [], + "source": [ + "entity_id = ['CustomerID']\n", + "features = ['Gender',\n", + " 'SeniorCitizen',\n", + " 'Partner',\n", + " 'Dependents',\n", + " 'Tenure',\n", + " 'PhoneService',\n", + " 'MultipleLines',\n", + " 'InternetService',\n", + " 'OnlineSecurity',\n", + " 'OnlineBackup',\n", + " 'DeviceProtection',\n", + " 'TechSupport',\n", + " 'StreamingTV',\n", + " 'StreamingMovies',\n", + " 'Contract',\n", + " 'PaperlessBilling',\n", + " 'PaymentMethod',\n", + " 'MonthlyCharges',\n", + " 'TotalCharges',\n", + " 'Churn']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8a64b16-9913-4b10-a3f7-1f1be67fef8d", + "metadata": {}, + "outputs": [], + "source": [ + "selected_features = get_feature_versions(entity_name=entity_id,features=features)\n", + "selected_features" + ] + }, + { + "cell_type": "markdown", + "id": "f5dd9918-f5d1-4cf3-9f4e-cbf1241ff47f", + "metadata": {}, + "source": [ + "

    We can now build our training dataset by specifying the build_dataset command

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b8d3d05c-2d1d-4307-bce3-b879a8624f38", + "metadata": {}, + "outputs": [], + "source": [ + "df = tdfs4ds.build_dataset(\n", + " entity_id = entity_id,\n", + " selected_features = selected_features,\n", + " view_name = 'mydataset',\n", + " schema_name = username,\n", + " comment = 'dataset for churn prediction'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "fcaca5d6-2e5a-400f-a653-cbf70c1564c8", + "metadata": {}, + "source": [ + "

    We have our training dataset which is created, with all the feature engineering

    \n", + "

    We can see from that the column Multiple lines has only two values yes and no. The same features can also be re-used accross multiple use-cases and models without any data preperation

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cb1ff7df-5216-4c26-95ff-641e16d9ba9c", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "df = DataFrame(in_schema(username , 'mydataset'))\n", + "copy_to_sql(df, table_name='fs_dataset', if_exists ='replace')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "73057d11-c8b9-4ce5-9cc3-1f7375d0f3f7", + "metadata": {}, + "outputs": [], + "source": [ + "df = DataFrame('fs_dataset')\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "46f6bf8f-b9e1-441a-b089-c1ceebdbc059", + "metadata": {}, + "source": [ + "

    We split the dataset in to training and testing dataset with 80:20 split ratio.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8a5f3a51-60a2-4b80-8f82-a77d8adcc322", + "metadata": {}, + "outputs": [], + "source": [ + "# Performing sampling to get 80% for trainning and 20% for testing\n", + "tdf_sample = df.sample(frac = [0.8, 0.2])\n", + "\n", + "# Fetching train and test data\n", + "tdf_train= tdf_sample[tdf_sample['sampleid'] == 1].drop('sampleid', axis=1)\n", + "tdf_test = tdf_sample[tdf_sample['sampleid'] == 2].drop('sampleid', axis=1)" + ] + }, + { + "cell_type": "markdown", + "id": "c86ae3c5-c44c-4c1d-bf08-c8e8d3d83d58", + "metadata": {}, + "source": [ + "
    \n", + "7. AutoML Training" + ] + }, + { + "cell_type": "markdown", + "id": "337e3e67-6a98-4f1f-8479-45a637ca0bb5", + "metadata": {}, + "source": [ + "

    AutoML (Automated Machine Learning) is an approach that automates the process of building, training, and validating machine learning models. It involves various algorithms to automate various aspects of the machine learning workflow, such as data preparation, feature engineering, model selection, hyperparameter tuning, and model deployment. It aims to simplify the process of building machine learning models, by automating some of the more time-consuming and labor-intensive tasks involved in the process.

    \n", + "\n", + "

    We create a AutoClassifier instance which is a special purpose AutoML feature to run classification specific tasks. We use the exclude parameter to specify model algorithms to be excluded from model training phase. Here we exclude the 'knn' model. The max_runtime_secs specifies the time limit in seconds for model training.\n", + "

    \n", + "verbose: specifies the detailed execution steps based on verbose level as follows:\n", + "

    \n", + "\n", + "
      \n", + "
    • 0: prints the progress bar and leaderboard
    • \n", + "
    • 1: prints the execution steps of AutoML.
    • \n", + "
    • 2: prints the intermediate data between the execution of each step of AutoML.
    • \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb8137fc-7250-427f-92c7-6070a8ffddea", + "metadata": {}, + "outputs": [], + "source": [ + "# Creating AutoClassifier Instance\n", + "# Selecting 'Auto' mode for AutoML training\n", + "# Excluding knn,glm and svm model from default model list for training\n", + "# Used early stopping timer criteria with value 600 sec\n", + "\n", + "aml = AutoClassifier(\n", + " exclude = ['knn','svm','glm'],\n", + " verbose = 2,\n", + " max_runtime_secs = 600\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "46e64a2e-648d-4321-8bd6-5bdd8051cbb6", + "metadata": {}, + "source": [ + "

    Note: Since the AutoML functionality does a lot of steps like Feature exploration and Data Preparation along with Model Training and Evaluating to select the Best model the below step may take anywhere between 12-15 minutes

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "378743d2-daae-4a91-af06-fbd566072902", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fitting train data \n", + "aml.fit(data = tdf_train,target_column = 'Churn')" + ] + }, + { + "cell_type": "markdown", + "id": "3ea7b521-d7c1-4994-b380-b0308c85743d", + "metadata": {}, + "source": [ + "
    \n", + "8. Model Leaderboard Generation" + ] + }, + { + "cell_type": "markdown", + "id": "4223d717-dd65-449f-8c2b-c415e1471ac3", + "metadata": {}, + "source": [ + "

    Here, we generate model leaderboard and leader for a given dataset. Leaderboard is a ranked table with a list of models with all their evaluation metrics.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22d69751-fe5e-46dd-9c24-3322a5bd1487", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching leaderboard\n", + "\n", + "aml.leaderboard()" + ] + }, + { + "cell_type": "markdown", + "id": "7a330d76-3671-42f0-a2e3-e0b7f2138048", + "metadata": {}, + "source": [ + "
    \n", + "9. Best Performing Model" + ] + }, + { + "cell_type": "markdown", + "id": "59cbeea7-d5d8-4333-b25a-8a02aa4b4cff", + "metadata": {}, + "source": [ + "

    The following function displays the best performing model.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2054141f-3c2e-47be-b9db-aef8b4c3424d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching best performing model\n", + "aml.leader()" + ] + }, + { + "cell_type": "markdown", + "id": "55a1096f-7c8b-4e2f-b028-aa7f89c22f15", + "metadata": {}, + "source": [ + "
    \n", + "10. Prediction" + ] + }, + { + "cell_type": "markdown", + "id": "41a2ffe3-91f5-4da0-ac6c-6276323e4eb3", + "metadata": {}, + "source": [ + "

    The predict function generates predictions using either the default test data or any specified dataset, based on the model's rank in the leaderboard, and displays the performance metrics of the chosen model. If the test data contains a target column, both predictions and performance metrics are displayed; otherwise, only the predictions are shown.\n", + "

    \n", + "You can also use the rank parameter in the predict function. The rank parameter specifies the model's rank in the leaderboard to be used for prediction. By default, the rank is set to 1, meaning the best-performing model is used.

    " + ] + }, + { + "cell_type": "markdown", + "id": "0c2ea7e4-e02b-47d9-a4eb-18493f90d104", + "metadata": {}, + "source": [ + "
    \n", + "10.1 Generating prediction on external test data" + ] + }, + { + "cell_type": "markdown", + "id": "bff63293-7104-4308-ab81-a6527e9e1a4f", + "metadata": {}, + "source": [ + "

    Here, we specify the tdf_test dataset for prediction. When using external data instead of the default test data, the predict function applies all the data transformation steps performed during the training phase on the external data before passing the data to the model for prediction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68dd9ecd-0b1c-4428-8911-61e4f5719d81", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Fetching prediction and metrics on test data\n", + "prediction = aml.predict(tdf_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f563395c-b381-4fe4-ab20-7b1a7a4882bf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Printing prediction\n", + "prediction" + ] + }, + { + "cell_type": "markdown", + "id": "d841fcd4-df97-4d31-bd25-28cce37c1a47", + "metadata": {}, + "source": [ + "
    \n", + "11. Conclusion" + ] + }, + { + "cell_type": "markdown", + "id": "d74e6e4a-ae3a-4249-a6ca-8d644f592db9", + "metadata": {}, + "source": [ + "

    We used feature store to store features as well as its processing. We re-used it in model training. The features and processing can be re-used accross multiple machine leanring models and use-case , helping to improve data science productivity

    \n", + "\n", + "

    Teradata's AutoML functionality plays a crucial role in this context by automating the complex process of building and deploying machine learning models. AutoML ensures the most optimal preparation and training of models, delivering high-quality machine learning models in minutes. Through hyperparameter tuning (HPT), Teradata's AutoML can automatically select the best parameters for machine learning algorithms using grid search and random search techniques, significantly enhancing model performance.\n", + "

    \n", + "By leveraging Teradata's AutoML, companies can save time and reduce costs associated with manual model building and tuning. The technology not only improves the accuracy of predictive models but also democratizes the power of machine learning, allowing customers to utilize advanced analytics without requiring extensive coding or data science expertise. This capability enables companies to swiftly and effectively analyze customer churn data, develop predictive models, and implement proactive strategies to retain customers and enhance their satisfaction.\n", + "

    \n", + "In conclusion, Teradata's AutoML functionality is a vital tool for banks aiming to reduce customer churn. By automating and optimizing the machine learning process, Teradata empowers various industries to make data-driven decisions that improve customer retention and drive long-term profitability.

    " + ] + }, + { + "cell_type": "markdown", + "id": "3fafdffb-2cde-4d99-8682-9ae64c74497d", + "metadata": {}, + "source": [ + "
    \n", + "12. Cleanup

    \n", + "

    Work Tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a07f45cf-ff45-4b95-810c-061fb4d1e528", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "list_of_tables = db_list_tables()\n", + "[execute_sql(f\"DROP VIEW {username}.{t}\") for t in list_of_tables.TableName if t.startswith('FS_V')]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e0c61f8-ce5a-4d77-a8dc-ed1628b499d0", + "metadata": {}, + "outputs": [], + "source": [ + "list_of_tables = db_list_tables()\n", + "[execute_sql(f\"DROP TABLE {username}.{t}\") for t in list_of_tables.TableName if t.startswith('FS_T')]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c9de55f-8b22-40f6-8044-8b63cf5617e6", + "metadata": {}, + "outputs": [], + "source": [ + "list_of_tables = db_list_tables()\n", + "[execute_sql(f\"DROP TABLE {username}.{t}\") for t in list_of_tables.TableName if t.startswith('FS_')]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bc241d13-6921-4582-8a9c-d1f5da3ec360", + "metadata": {}, + "outputs": [], + "source": [ + "[execute_sql(f\"DROP TABLE {username}.{t}\") for t in list_of_tables.TableName if t in ['temp','tdfs__fgjnojnsmdoignmosnig']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21fac6bb-3e3a-488c-848b-41473d6156e7", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "72bfa61c-3daa-4d47-b0d7-0a69ef13dc1a", + "metadata": {}, + "source": [ + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "0ff7e25c-dc4e-45d7-a67f-8c70e2c517f4", + "metadata": {}, + "source": [ + "Required Materials\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    " + ] + }, + { + "cell_type": "markdown", + "id": "fc4938d2-5ce6-412e-a665-5d62a3b1a1b5", + "metadata": {}, + "source": [ + "

    Filters:

    \n", + "
      \n", + "
    • Industry: Telco
    • \n", + "
    • Functionality: Feature Store and AutoML
    • \n", + "
    • Use Case: Customer Retention
    • \n", + "
    \n", + "

    Related Resources:

    \n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "b4fd5272-ceb7-4d47-bd5c-c3aea31e471a", + "metadata": {}, + "source": [ + "

    Reference Links:

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "0d6b60cb-d919-4daf-bc2a-35d7bf17eec7", + "metadata": {}, + "source": [ + "Dataset:\n", + "\n", + "- `CustomerID`: unique id of customer\n", + "- `Gender`: Whether the customer is a male or a female\n", + "- `SeniorCitizen`:Whether the customer is a senior citizen or not (1, 0)\n", + "- `Partner`:Whether the customer has a partner or not (Yes, No)\n", + "- `Dependents`:Whether the customer has dependents or not (Yes, No)\n", + "- `Tenure`:Number of months the customer has stayed with the company\n", + "- `PhoneService`:Whether the customer has a phone service or not (Yes, No)\n", + "- `MultipleLines`:Whether the customer has multiple lines or not (Yes, No, No phone service)\n", + "- `InternetService`:Customer’s internet service provider (DSL, Fiber optic, No)\n", + "- `OnlineSecurity`:Whether the customer has online security or not (Yes, No, No internet service)\n", + "- `OnlineBackup`:Whether the customer has online backup or not (Yes, No, No internet service)\n", + "- `DeviceProtection`:Whether the customer has device protection or not (Yes, No, No internet service)\n", + "- `TechSupport`:Whether the customer has tech support or not (Yes, No, No internet service)\n", + "- `StreamingTV`:Whether the customer has streaming TV or not (Yes, No, No internet service)\n", + "- `StreamingMovies`:Whether the customer has streaming movies or not (Yes, No, No internet service)\n", + "- `Contract`:The contract term of the customer (Month-to-month, One year, Two year)\n", + "- `PaperlessBilling`:Whether the customer has paperless billing or not (Yes, No)\n", + "- `PaymentMethod`:The customer’s payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic))\n", + "- `MonthlyCharges`:The amount charged to the customer monthly\n", + "- `TotalCharges`:The total amount charged to the customer\n", + "- `Churn`:Whether the customer churned or not (Yes or No)" + ] + }, + { + "cell_type": "markdown", + "id": "d7e28609-20ff-47e0-a640-48db6a7fa523", + "metadata": {}, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2025. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS.png b/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS.png new file mode 100644 index 00000000..bdb2f059 Binary files /dev/null and b/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS.png differ diff --git a/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS_process.png b/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS_process.png new file mode 100644 index 00000000..8d0d921d Binary files /dev/null and b/VantageCloud_Lake/UseCases/EFS_Demo/images/EFS_process.png differ diff --git a/VantageCloud_Lake/UseCases/Financial_Fraud_Detection/VCL_Financial_Fraud_Detection_Python.ipynb b/VantageCloud_Lake/UseCases/Financial_Fraud_Detection/VCL_Financial_Fraud_Detection_Python.ipynb new file mode 100644 index 00000000..efc4ed50 --- /dev/null +++ b/VantageCloud_Lake/UseCases/Financial_Fraud_Detection/VCL_Financial_Fraud_Detection_Python.ipynb @@ -0,0 +1,990 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Financial Fraud Detection with Python and TeradataML\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Introduction

    \n", + "

    \n", + " In recent years we have seen a massive increase in Fraud attempts, making fraud detection imperative for Banking and Financial Institutions. Despite countless efforts and human supervision, hundreds of millions of dollars are lost due to fraud. Fraud can happen using various methods, i.e., stolen credit cards, misleading accounting, phishing emails, etc. Due to small cases in significant populations, fraud detection has become more and more challenging. \n", + "
    \n", + "
    \n", + " With ClearScape Analytics, data scientists can use their preferred language, tools and platform to develop models to identify this fraud. Even in large scale operations, users have the guarantee that Vantage can scale to their needs and reduce fraud.

    \n", + " \n", + "

    Business Values

    \n", + "
      \n", + "
    • Identification of financial fraud in multiple accounts
    • \n", + "
    • Pattern recognition of fraudulent versus normal transactions
    • \n", + "
    • Reduction of money lost due to recovering fraudulent charges
    • \n", + "
    • Improved customer satisfaction and reduction of customer churn
    • \n", + "
    \n", + "\n", + "

    Why Vantage?

    \n", + "

    To maximize the business value of advanced analytic techniques including Machine Learning and Artificial Intelligence, it is estimated that organizations must scale their model development and deployment pipelines to 100s or 1000s of times greater amounts of data, models, or both.\n", + "
    \n", + "
    \n", + " ClearScape Analytics provides powerful, flexible end-to-end data connectivity, feature engineering, model training, evaluation, and operational functions that can be deployed at scale as enterprise data assets; treating the products of ML and AI as first-class analytic processes in the enterprise.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "1. Configuring the Environment\n", + "

    Here, we import the required libraries, set environment variables and environment paths (if required).

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Standard Libraries\n", + "import os\n", + "import json\n", + "import getpass\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# Teradata Libraries\n", + "from teradataml import *\n", + "\n", + "from dotenv import load_dotenv, dotenv_values\n", + "# Configuration\n", + "spacing_large = \" \"*95\n", + "spacing_small = \" \"*12\n", + "display.max_rows = 5\n", + "configure.val_install_location = 'td_val'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "2. Connect to Vantage\n", + "

    We will be prompted to provide the password. We will enter the password, press the Enter key, and then use the down arrow to go to the next cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql(\"SET query_band='DEMO=VCL_Financial_Fraud_Detection_Python.ipynb;' UPDATE FOR SESSION;\")\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We begin running steps with Shift + Enter keys.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    3.Load the data and Data Exploration

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_GLM_Fraud\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    Note: The tables are available in DEMO_GLM_Fraud_DB databases and we have created views in DEMO_GLM_Fraud databases which are used in the cells below

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "

    We loaded the data from https://www.kaggle.com/code/georgepothur/4-financial-fraud-detection-xgboost/data into Vantage in a table named \"transaction_data\". We checked the data size and printed sample rows: 63k rows and 12 columns.

    \n", + "

    *Please scroll down to the end of the notebook for detailed column descriptions of the dataset.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "txn_data = DataFrame(in_schema('DEMO_GLM_Fraud', 'transaction_data'))\n", + "\n", + "print(txn_data.shape)\n", + "txn_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    In this simulated scenario, deceptive agents engage in transactions with the objective of taking control of customers' accounts, transferring funds to another account, and ultimately cashing out for profit.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.1 How many fraudulent transactions do we have in our dataset?

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 92 fraud transactions i.e. 0.14% of fraud transactions in the dataset.\n", + "print(\"No of fraud transactions: %d\\nPercentage of fraud transactions: %.2f%%\"%(\n", + " txn_data.loc[txn_data.isFraud == 1].shape[0],\n", + " txn_data.loc[txn_data.isFraud == 1].shape[0]/txn_data.shape[0]*100)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.2 How many transactions do we have group by transaction type?

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Filter data for fraud transactions and group by 'type'\n", + "transactions_by_type = txn_data.groupby('type').count().get(['type','count_txn_id'])\n", + "\n", + "\n", + "# Sort by 'count_step' column in descending order\n", + "transactions_by_type = transactions_by_type.sort('count_txn_id', ascending = False)\n", + "\n", + "transactions_by_type = transactions_by_type.assign(\n", + " type_int = case([\n", + " (transactions_by_type.type == 'CASH_IN', 0),\n", + " (transactions_by_type.type == 'CASH_OUT', 1),\n", + " (transactions_by_type.type == 'DEBIT', 2),\n", + " (transactions_by_type.type == 'PAYMENT ', 3),\n", + " (transactions_by_type.type == 'TRANSFER', 4),\n", + " ])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "transactions_by_type.plot(\n", + " x = transactions_by_type.type_int,\n", + " y = transactions_by_type.count_txn_id,\n", + " kind = 'bar',\n", + " legend = ['Count by Type'],\n", + " ylabel = 'Count of Transactions',\n", + " xlabel = spacing_small.join(sorted(list(transactions_by_type[['type']].get_values().flatten()))),\n", + " title = \"Number of Transactions per Transaction Type\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.3 How many fraudulent transactions do we have group by transaction type?

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Filter data for fraud transactions and group by 'type'\n", + "fraud_transactions_by_type = txn_data.loc[txn_data.isFraud == 1].groupby('type').count().get(['type','count_txn_id'])\n", + "\n", + "# Sort by 'count_step' column in descending order\n", + "fraud_transactions_by_type = fraud_transactions_by_type.sort('count_txn_id', ascending = False)\n", + "\n", + "fraud_transactions_by_type = fraud_transactions_by_type.assign(\n", + " total_fraud = txn_data.loc[txn_data.isFraud == 1].shape[0],\n", + " type_int = case([(fraud_transactions_by_type.type == 'TRANSFER', 0)], else_ = 1)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "fraud_transactions_by_type.plot(\n", + " x = fraud_transactions_by_type.type_int,\n", + " y = [fraud_transactions_by_type.total_fraud, fraud_transactions_by_type.count_txn_id],\n", + " kind = 'bar',\n", + " figsize = (800, 500),\n", + " legend = ['Total Fraud', 'Count by Type'],\n", + " ylabel = 'Count of Fraud Transactions',\n", + " xlabel = 'TRANSFER' + spacing_large + 'CASH_OUT',\n", + " title = \"Number of Fraud Transactions by Transaction Type\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    From the above result, we can see that out of the 92 fraud transactions, 47 are from transaction type \"TRANSFER\" and 45 are from \"CASH_OUT\".

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.4 What percentage of fraudulent transactions do we have where transaction amount is equal to old balance in the origin account?

    \n", + "\n", + "

    This might be the case where the fraudster emptied the account of the victim.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"No of cleanout fraud transactions: %d\\nPercentage of cleanout fraud transactions: %.2f%%\"%(\n", + " txn_data.loc[txn_data['amount'] == txn_data.oldbalanceOrig].loc[txn_data['isFraud'] == 1].shape[0],\n", + " txn_data.loc[txn_data['amount'] == txn_data.oldbalanceOrig].loc[txn_data['isFraud'] == 1].shape[0] / txn_data.loc[txn_data.isFraud == 1].shape[0]*100)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    From the above result, we can see that out of 92 Fraud transactions, the amount involved in 90 fraud transactions was equal to the total balance in the account.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    Below are some insights about the dataset:

    \n", + "
      \n", + "
    1. We have 92 fraud transactions, which account for 0.14% of the dataset.
    2. \n", + "
    3. Out of these 92 fraud transactions, 47 are of type TRANSFER, and 45 are of type CASH_OUT.
    4. \n", + "
    5. Approximately 97.83% of our fraud transactions have a transaction amount equal to oldbalanceOrig, indicating account cleanout.
    6. \n", + "
    7. About 71.74% of our fraud transactions have the recipient's old balance as zero.
    8. \n", + "
    9. The isFlaggedFraud indicator is correct only two times among our 92 fraud transactions.
    10. \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.5 Univariate statistics

    \n", + "\n", + "

    The describe funtion computes the count, mean, std, min, percentiles, and max for numeric columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "txn_data.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.6 Checking for Null Values

    \n", + "

    The ColumnSummary() function can be used to take a quick look at the columns, their datatypes, and summary of NULLs/non-NULLs for a given table.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "colsum = ColumnSummary(\n", + " data = txn_data,\n", + " target_columns = [':']\n", + ")\n", + "colsum.result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.7 Checking for Outliers

    \n", + "

    The OutlierFilterFit() function calculates the lower percentile, upper percentile, count of rows and median for all the \"target_columns\" provided by the user. These metrics for each column help the function OutlierTransform() detect outliers in data.

    \n", + "\n", + "

    Here we are using teradataml syntax for the function. The same can be achived using the following SQL as well.

    \n", + "\n", + "SELECT * FROM TD_OutlierFilterFit(\n", + " ON \"DEMO_GLM_Fraud\".\"transaction_data\" AS InputTable\n", + " OUT TABLE OutputTable(\"DEMO_USER\".\"Outlier_output\")\n", + " USING\n", + " TargetColumns('amount','newbalanceOrig','oldbalanceDest','newbalanceDest','oldbalanceOrig')\n", + ") as dt;\n", + "\n", + "

    *Please note that both the versions run in-database and there is no data transfer involved.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fit_object = OutlierFilterFit(\n", + " data = txn_data,\n", + " target_columns = ['amount','newbalanceOrig', 'oldbalanceDest','newbalanceDest','oldbalanceOrig']\n", + ")\n", + "\n", + "res = fit_object.transform(data = txn_data).result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"Rows before removing outliers: {txn_data.shape[0]}\\n\\\n", + "Rows after removing outliers: {res.shape[0]}\\n\\\n", + "Total outliers: {txn_data.shape[0] - res.shape[0]}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "outliers = td_minus([txn_data, res])\n", + "outliers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "4. Data Preparation\n", + "\n", + "

    We'll perform the following steps:

    \n", + "
      \n", + "
    • We will one-hot encode the categorical \"type\" column.
    • \n", + "
    • We will perform feature scaling using ScaleFit and ScaleTransform on numerical columns.
    • \n", + "
    • We will split the data into training and testing datasets (80:20 split).
    • \n", + "
    \n", + "\n", + "

    We perform feature scaling during data pre-processing to handle highly varying magnitudes, values, or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values higher and consider smaller values as lower ones, regardless of the unit of the values.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    4.1 Drop redundant columns

    \n", + "

    We don't need nameDest, nameOrigin, and isFlaggedFraud for model training as they do not impact the outcome. We have txn_id to uniquely identify each transaction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "txn_data = txn_data.drop(['nameDest', 'nameOrig', 'isFlaggedFraud'], axis = 1)\n", + "txn_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    4.2 One-hot encoding

    \n", + "

    \n", + "Here, we are one-hot encoding the \"type\" column. We find one-hot encoding necessary in many cases to represent categorical variables as binary values, enable numerical processing, ensure feature independence, handle non-numeric data, and improve the performance and interpretability of our machine learning models.\n", + "

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "txn_type_encoder = OneHotEncoder(\n", + " values = [\"CASH_IN\", \"CASH_OUT\", \"DEBIT\", \"PAYMENT\", \"TRANSFER\"],\n", + " columns = \"type\"\n", + ")\n", + "\n", + "retain = Retain(\n", + " columns = ['step', 'amount','newbalanceOrig','oldbalanceDest','newbalanceDest','oldbalanceOrig', 'isFraud']\n", + ")\n", + "\n", + "obj = valib.Transform(\n", + " data = txn_data,\n", + " one_hot_encode = txn_type_encoder,\n", + " retain = retain,\n", + " index_columns = 'txn_id'\n", + ")\n", + "txn_trans = obj.result\n", + "txn_trans" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above output shows that we have transformed the data into a transfromed dataset.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "copy_to_sql(txn_trans, table_name = 'clean_data', if_exists = 'replace')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "5. Create training and testing datasets in Vantage\n", + "

    We'll create two datasets for training and testing in the ratio of 80:20.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "TrainTestSplit_out = TrainTestSplit(\n", + " data = txn_trans,\n", + " id_column = \"txn_id\",\n", + " train_size = 0.80,\n", + " test_size = 0.20,\n", + " seed = 25\n", + ")\n", + "\n", + "df_train = TrainTestSplit_out.result[TrainTestSplit_out.result['TD_IsTrainRow'] == 1].drop(['TD_IsTrainRow'], axis = 1)\n", + "df_test = TrainTestSplit_out.result[TrainTestSplit_out.result['TD_IsTrainRow'] == 0].drop(['TD_IsTrainRow'], axis = 1)\n", + "\n", + "print(\"Training Set = \" + str(df_train.shape[0]) + \". Testing Set = \" + str(df_test.shape[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "copy_to_sql(df_train, table_name = 'clean_data_train', if_exists = 'replace')\n", + "copy_to_sql(df_test, table_name = 'clean_data_test', if_exists = 'replace')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df_train" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above output shows that we have transformed the data into a scaled dataset. Scaling our data makes it easy for our model to learn and understand the problem.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "6. In-Database XGBoost model training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The XGBoost() function, also known as eXtreme Gradient Boosting, is an implementation of the gradient boosted decision tree algorithm designed for speed and performance. It has recently been dominating applied machine learning.

    \n", + "

    In gradient boosting, each iteration fits a model to the residuals (errors) of the previous iteration to correct the errors made by existing models. The predicted residual is multiplied by this learning rate and then added to the previous prediction. Models are added sequentially until no further improvements can be made. It is called gradient boosting because it uses a gradient descent algorithm to minimize the loss when adding new models.

    \n", + "\n", + "

    Here we are using teradataml syntax for the function. The same can be achived using the following SQL as well.

    \n", + "\n", + "SELECT * FROM TD_XGBoost(\n", + "\tON \"DEMO_USER\".\"clean_data_train\" AS \"input\"\n", + "\tPARTITION BY ANY\n", + "\tUSING InputColumns('amount','newbalanceOrig','oldbalanceDest','newbalanceDest','oldbalanceOrig','CASH_IN_type','CASH_OUT_type','DEBIT_type','PAYMENT_type','TRANSFER_type')\n", + "\tResponseColumn('isFraud')\n", + "\tMaxDepth(7)\n", + "\tSeed(42)\n", + "\tModelType('Classification')\n", + "\tRegularizationLambda(120.0)\n", + "\tShrinkageFactor(0.1)\n", + ") as sqlmr\n", + "\n", + "

    *Please note that both the versions run in-database and there is no data transfer involved.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "cols = df_train.columns\n", + "cols.remove('txn_id')\n", + "cols.remove('step')\n", + "cols.remove('isFraud')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "XGBoost_out = XGBoost(\n", + " data=df_train,\n", + " input_columns=cols,\n", + " response_column = 'isFraud',\n", + " lambda1 = 120.0,\n", + " model_type='Classification',\n", + " seed=42,\n", + " shrinkage_factor=0.1,\n", + " max_depth=7\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "XGBoost_out.output_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The function output is a trained XGBoost model, and we can input it to the XGBoostPredict() function for prediction.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "7. In-Database XGBoost model scoring" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The XGBoostPredict() function runs the predictive algorithm based on the model generated by XGBoost(). The XGBoost() function, also known as eXtreme Gradient Boosting, performs classification or regression analysis on datasets.

    \n", + "

    \n", + "When using the function, we should provide only numeric features. We need to convert the categorical features to numeric values before prediction.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "XGBoostPredict_out = XGBoostPredict(\n", + " newdata=df_test,\n", + " object=XGBoost_out.result,\n", + " model_type='Classification',\n", + " id_column='txn_id',\n", + " object_order_column=['task_index', 'tree_num',\n", + " 'iter', 'tree_order'],\n", + " accumulate='isFraud',\n", + " output_prob=True,\n", + " output_responses=['0', '1']\n", + ").result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "XGBoostPredict_out" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The output above shows our prob_1, i.e., the transaction is fraud, and prob_0, i.e., the transaction is not a fraud. We use these probabilities in our prediction column to assign a class label.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "combined_df = df_test.join(XGBoostPredict_out, on='txn_id', lsuffix='test', rsuffix='pred')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "combined_df[combined_df['Prediction']==1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "out = XGBoostPredict_out.assign(Prediction = XGBoostPredict_out.Prediction.cast(type_ = BYTEINT))\n", + "out = out.assign(Prediction = out.Prediction.cast(type_ = VARCHAR(2)))\n", + "out = out.assign(isFraud = out.isFraud.cast(type_ = VARCHAR(2)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ClassificationEvaluator_obj = ClassificationEvaluator(\n", + " data = out,\n", + " observation_column = 'isFraud',\n", + " prediction_column = 'Prediction',\n", + " labels = ['0', '1']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ClassificationEvaluator_obj.output_data.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "8. Visualize the results (ROC curve and AUC)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We create the ROC curve, which is a graph between TPR (True Positive Rate) and FPR (False Positive Rate). We use the area under the ROC curve as a metric to evaluate how well our model can distinguish between positive and negative classes. A higher AUC indicates better performance in distinguishing between the positive and negative categories. We generally consider an AUC above 0.75 as decent.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from teradataml import ROC\n", + "\n", + "roc_out = ROC(\n", + " probability_column = '\"Prob_1\"',\n", + " observation_column = \"isFraud\",\n", + " positive_class = \"1\",\n", + " data = XGBoostPredict_out,\n", + " num_thresholds=300\n", + ")\n", + "\n", + "roc_out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Assigning new index column\n", + "roc_out.result = roc_out.result.assign(row = 1)\n", + "# Changing the index label.\n", + "roc_out.result._index_label = [\"row\"]\n", + "auc = roc_out.result.get_values()[0][0]\n", + "\n", + "figure = Figure(width=500, height=400, heading=\"Receiver Operating Characteristic (ROC) Curve\")\n", + "\n", + "plot = roc_out.output_data.plot(\n", + " x=roc_out.output_data.fpr,\n", + " y=[roc_out.output_data.tpr, roc_out.output_data.fpr],\n", + " xlabel='False Positive Rate',\n", + " ylabel='True Positive Rate',\n", + " color='carolina blue',\n", + " figure=figure,\n", + " legend=[f'XGBoost AUC = {round(auc, 4)}', 'AUC Baseline'],\n", + " legend_style='lower right',\n", + " grid_linestyle='--',\n", + " grid_linewidth=0.5,\n", + " linestyle = ['-', '--']\n", + ")\n", + "\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Looking at the above ROC Curve, we can confidently say that our model has performed well on testing data. The AUC value is above 0.75 and resonates with our understanding that the model is performing well.

    \n", + "\n", + "

    Conclusion

    \n", + "\n", + "

    In this demonstration, we have illustrated a simplified - but complete - overview of how we can implement a typical machine learning workflow completely inside the database using Vantage. This allows us to leverage Vantage's operational scale, power, and stability.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "9. Cleanup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Work Tables

    \n", + "

    We need to clean up our work tables to prevent errors next time.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tables = ['clean_data', 'clean_data_train', 'clean_data_test']\n", + "\n", + "# Loop through the list of tables and execute the drop table command for each table\n", + "for table in tables:\n", + " try:\n", + " db_drop_table(table_name = table)\n", + " except:\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "Required Materials\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    \n", + "\n", + "

    Filters:

    \n", + "
      \n", + "
    • Industry: Finance
    • \n", + "
    • Functionality: Machine Learning
    • \n", + "
    • Use Case: Fraud Detection
    • \n", + "
    \n", + "\n", + "

    Related Resources:

    \n", + "\n", + "\n", + "\n", + "Dataset:\n", + "\n", + "- `txn_id`: transaction id\n", + "- `step`: maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (31 days simulation).\n", + "- `type`: CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER\n", + "- `amount`: amount of the transaction in local currency\n", + "- `nameOrig`: customer who started the transaction\n", + "- `oldbalanceOrig`: customer's balance before the transaction\n", + "- `newbalanceOrig`: customer's balance after the transaction\n", + "- `nameDest`: customer who is the recipient of the transaction\n", + "- `oldbalanceDest`: recipient's balance before the transaction\n", + "- `newbalanceDest`: recipient's balance after the transaction\n", + "- `isFraud`: identifies a fraudulent transaction (1) and non fraudulent (0)\n", + "- `isFlaggedFraud`: flags illegal attempts to transfer more than 200,000 in a single transaction\n", + "\n", + "

    Links:

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2025. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_ARIMA/VCL_Store_Sales_Forecasting_ARIMA_Python.ipynb b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_ARIMA/VCL_Store_Sales_Forecasting_ARIMA_Python.ipynb new file mode 100644 index 00000000..a410cf42 --- /dev/null +++ b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_ARIMA/VCL_Store_Sales_Forecasting_ARIMA_Python.ipynb @@ -0,0 +1,917 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Store Sales Forecasting with In-Database Time Series\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    \n", + "

    Introduction

    \n", + "\n", + "\n", + "

    Retail stores rely on sales and an accurate amount of inventory to support these sales. However, demand can be everchanging leading to stores being overstocked or out of stock. In these situations, retail stores need to quickly adjust to increase revenues and avoid additional unnecessary costs. The best way to keep ROI up is with retail demand forecasting in Teradata Vantage and ClearScape Analytics. Teradata’s capabilities allow users to combine and analyze sales and inventory data across all stores, while taking into consideration seasonal events, such as holidays or the weather. Bringing together all the components that influence customers to buy products allows retail stores to accurately predict sales and demand to ensure for precise inventory.

    \n", + "\n", + "\n", + "

    Good Eats Grocery is a renowned retail corporation that operates a chain of hypermarkets. Here, Good Eats Grocery has provided a data combining of 45 stores including store information and monthly sales. The data is provided on weekly basis. Good Eats Grocery tries to find the impact of holidays on the sales of store. For which it has included four holidays’ weeks into the dataset which are Christmas, Thanksgiving, Super Bowl, Labor Day.
    \n", + "
    \n", + "Our Main Objective is to predict sales of store in a week. As in dataset size and time related data are given as feature, so analyze if sales are impacted by time-based factors and space- based factor. Most importantly how inclusion of holidays in a week soars the sales in store?\n", + "
    \n", + " \n", + "

    Business Value

    \n", + "
  • Predict sales over a specified period of time.
  • \n", + "
  • Identify seasonal trends in sales and demand to improve inventory management.
  • \n", + "
  • Plan for historic increase and decrease in sales unrelated to the calendar year.
  • \n", + "
  • Increase customer satisfaction.
  • \n", + "

    \n", + "

    Why Vantage?

    \n", + "

    Unbounded Array Framework (UAF) is the Teradata framework for building end-to-end time series forecasting pipelines. It also provides functions for digital signal processing and 4D spatial analytics. The series can reside in any Teradata supported or Teradata accessible table or in an analytic result table (ART). The UAF architecture provides a range of unique benefits including:

    \n", + "\n", + "
  • Rapid data exploration, preparation, and testing functions that can analyze massive amounts of data across an unlimited number of forecasts in parallel; drastically reducing the development and testing times.
  • \n", + "
  • The creation of a nearly unlimited number of forecasts in parallel, unlocking value in hyper-segmented (per-store-per-SKU inventory demand, per-household energy consumption) predictions, based on individualized models.
  • \n", + "
  • The ability to deploy the preparation and forecasting functions into automated pipelines that can run in near-real-time, eliminating the gaps between preparation, development, and deployment. \n", + "
  • \n", + "

    UAF provides data scientists with the tools for all phases of forecasting:

    \n", + "
  • Data preparation functions
  • \n", + "
  • Data exploration functions
  • \n", + "
  • Model coefficient estimation functions
  • \n", + "
  • Model validation functions
  • \n", + "
  • Model scoring functions
  • \n", + "

    Plus, with Teradata Vantage, users can perform these functions at scale and analyze and forecast hundreds/thousands series at once. Time Series analysis requires significant effort in analyzing, preparing, and testing forecast models. Traditional approaches require users to perform these laborious tasks multiple times for each prediction, so scaling forecasting efforts beyond a small number of different forecasts becomes prohibitive.

    \n", + " \n", + "\n", + "

    Data

    \n", + "

    The dataset contains historical sales data for 45 Good Eats Grocery stores located in different regions. Each store contains a number of departments, and you are tasked with predicting the department-wide sales for each store.

    \n", + "\n", + "

    In addition, Good Eats Grocery runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of which are the Super Bowl, Labor Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modelling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data.

    \n", + "\n", + "

    The basic idea of analyzing the Good Eats Grocery Forecasting dataset is to get a fair idea about the factors affecting the Sales of the Good Eats Grocery Store.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "from teradataml import * \n", + "from teradataml.context.context import *\n", + "from teradataml.dataframe.dataframe import DataFrame\n", + "\n", + "from dotenv import load_dotenv, dotenv_values\n", + "from teradataml.dataframe.copy_to import copy_to_sql\n", + "import getpass\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "display.max_rows=5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_Store_Sales_Forecasting_ARIMA_Python.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    3.Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_SalesForecasting\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_SalesForecasting_DB database and we have created views in DEMO_SalesForecasting database which are used in the cells below

    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    3.1 Prepare data to do some basic Analysis of the Sales data.

    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Let us start by creating a \"Virtual DataFrame\" that points directly to the dataset in Vantage. We begin our analysis by obtaining the necessary data types for columns and extract values such as Sales_week, Sales_year, etc., from the Sales_date column. These extracted values will be used in our subsequent analysis.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df=DataFrame(in_schema('DEMO_SalesForecasting','Weekly_Sales'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml.dataframe.sql_functions import case\n", + "from teradatasqlalchemy import TIMESTAMP, VARCHAR, INTEGER\n", + "from sqlalchemy import func\n", + "df = df.assign(IsHoliday = case([(df.IsHoliday == 0, 'False')], else_ = 'True'))\n", + "df = df.assign(Sales_Week = func.td_week_of_year(df.Sales_Date.expression))\n", + "df = df.assign(Sales_Date = df.Sales_Date.cast(type_=TIMESTAMP))\n", + "df = df.assign(Sales_Year = df.Sales_Date.cast(type_=VARCHAR(10)))\n", + "df = StrApply(data=df,\n", + " target_columns='Sales_Year',\n", + " string_operation='SUBSTRING',\n", + " string_length = 4,\n", + " accumulate = ['Store', 'Dept', 'Sales_Date', 'Weekly_Sales', 'IsHoliday','Sales_Week'],\n", + " in_place=True).result\n", + "df = df.assign(Sales_Year = df.Sales_Year.cast(type_=INTEGER))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "testdf=df\n", + "testdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "

    Let's do some basic analysis of the dataset

    \n", + "

    We group the weekly sales by Sales Date and calculate the Average Sales based on Sales date. Alongside aggregating the data, we leverage the InDB plot() function for teradataml dataframes to visualize the data. This allows us to avoid transferring data to the client side even for visualizations.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df=testdf.select(['Sales_Date','Weekly_Sales']).groupby('Sales_Date')\n", + "df_plot=df.avg()\n", + "df_plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=800, heading=\"Average Weekly Sales\")\n", + "plot = df_plot.plot(x=df_plot.Sales_Date, y=df_plot.avg_Weekly_Sales,\n", + " xtick_format='YYYY-MM',\n", + " xlabel='Week', ylabel='Sales', color=\"blue\",figure=figure)\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the Average Sales per week. We can see that there are peaks mainly during the Year end period.

    \n", + "

    Next we try to get the average sales for each Store, for that we group the Weekly Sales by each Store.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weekly_sales = testdf.select(['Store','Weekly_Sales']).groupby('Store')\n", + "ws_plot=weekly_sales.avg()\n", + "ws_plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=800, heading=\"Average Sales per Store\")\n", + "plot = ws_plot.plot(x=ws_plot.Store, y=ws_plot.avg_Weekly_Sales,\n", + " kind='bar',\n", + " xlabel='Store', ylabel='Sales', figure=figure)\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the Average Weekly Sales for each store. We can see that Store 4 shows highest weekly sales while Store 5 shows the lowest weekly sales.

    \n", + "

    Next we try to get the Weekly Sales for each year separately. For this we group the data for all 3 years by Sales Date for each year

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "week_df = testdf.select(['Sales_Week','Sales_Year','Weekly_Sales'])\n", + "week_df = week_df.assign(Weekly_Sales_2010 = case([(week_df.Sales_Year == 2010, week_df.Weekly_Sales)], else_ = 0))\n", + "week_df = week_df.assign(Weekly_Sales_2011 = case([(week_df.Sales_Year == 2011, week_df.Weekly_Sales)], else_ = 0))\n", + "week_df = week_df.assign(Weekly_Sales_2012 = case([(week_df.Sales_Year == 2012, week_df.Weekly_Sales)], else_ = 0))\n", + "week_df = week_df.select(['Sales_Week','Weekly_Sales_2010','Weekly_Sales_2011','Weekly_Sales_2012'])\n", + "week_df = week_df.groupby('Sales_Week')\n", + "week_df = week_df.avg()\n", + "week_df = week_df[((week_df.avg_Weekly_Sales_2010 != 0.0 ) & (week_df.avg_Weekly_Sales_2011 != 0.0) &\n", + " (week_df.avg_Weekly_Sales_2012 != 0.0))]\n", + "week_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=600, heading=\"Average Weekly Sales per Year\")\n", + "week_df.plot(x=week_df.Sales_Week, y=[week_df.avg_Weekly_Sales_2010, week_df.avg_Weekly_Sales_2011, week_df.avg_Weekly_Sales_2012], \n", + " style=['dark orange', 'green','blue'], xlabel='Week', ylabel='Sales', grid_color='black',\n", + " grid_linewidth=0.5, grid_linestyle=\"-\", legend=['2010','2011','2012'],figure=figure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the Average Weekly Sales for different years. We can see that there are peaks mainly during 10-15th week and 20-30th week.

    \n", + "

    We try to get the comparison of Sales during Holidays and Other Working Days. We do a grouping of data for Sales based on whether the Sale is on Holiday or Working Day

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "week_holiday_df = testdf.select(['Sales_Date','Sales_Week','IsHoliday','Weekly_Sales'])\n", + "week_holiday_df = week_holiday_df.assign(Weekly_Sales_True = case([(week_holiday_df.IsHoliday == 'True', week_holiday_df.Weekly_Sales)], else_ = 0))\n", + "week_holiday_df = week_holiday_df.assign(Weekly_Sales_False = case([(week_holiday_df.IsHoliday == 'False', week_holiday_df.Weekly_Sales)], else_ = 0))\n", + "week_holiday_df = week_holiday_df.select(['Sales_Date','Sales_Week','Weekly_Sales_True','Weekly_Sales_False'])\n", + "week_holiday_df = week_holiday_df.groupby(['Sales_Date','Sales_Week'])\n", + "week_holiday_df = week_holiday_df.sum()\n", + "week_holiday_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=600, heading=\"Total Sales per Week\")\n", + "week_holiday_df.plot(x=week_holiday_df.Sales_Week, y=[week_holiday_df.sum_Weekly_Sales_True, week_holiday_df.sum_Weekly_Sales_False], \n", + " style=['blue','brown'], xlabel='Week', ylabel='Sales', grid_color='black',\n", + " grid_linewidth=0.5, grid_linestyle=\"-\", legend=['Holidays','Week Days'],kind='bar', figure=figure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the Weekly Sales per Week. The Orange colored bars show weekly sales during working days while the Blue colored bars show weekly sales during holidays.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    4. Preparing Dataset by joining the datasets.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    \n", + "

  • Weekly_Sales is our variable of interest.
  • \n", + "
  • Type, Size, Temperature, isHoliday, Fuel_Price, MarkDown1, MarkDown2, MarkDown3, MarkDown4, MarkDown4 are exogenous variables.
  • \n", + "

    \n", + "\n", + "

    We prepare the dataset by creating a view by joining data from Weekly Sales, Stores and features. The view is created using SQL to reduce the number of steps to join and data preocessing which gets used in further steps.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "query2='''REPLACE VIEW Weekly_Sales_Details AS\n", + "SELECT\n", + " w.Sales_date AS times,\n", + " CAST('2012-02-03' AS DATE) AS cutoff_date,\n", + " w.Dept,\n", + " w.Store,\n", + " CAST(w.Sales_Date AS TIMESTAMP) AS Sales_Date,\n", + " ZEROIFNULL(Weekly_Sales) AS Weekly_Sales,\n", + " ZEROIFNULL(Store_Size) AS Store_Size,\n", + " Store_Type AS Store_Type,\n", + " w.IsHoliday,\n", + " ZEROIFNULL(Temperature) AS Temperature,\n", + " ZEROIFNULL(MarkDown1) AS MarkDown1,\n", + " ZEROIFNULL(MarkDown2) AS MarkDown2,\n", + " ZEROIFNULL(MarkDown3) AS MarkDown3,\n", + " ZEROIFNULL(MarkDown4) AS MarkDown4,\n", + " ZEROIFNULL(MarkDown5) AS MarkDown5,\n", + " ZEROIFNULL(CPI) AS CPI,\n", + " ZEROIFNULL(Unemployment) AS Unemployment,\n", + " ZEROIFNULL(Fuel_Price) AS Fuel_Price,\n", + " CAST(TRIM(w.Dept) || TRIM(w.Store) AS INT) AS idcols\n", + "FROM\n", + " Demo_SalesForecasting.Weekly_Sales w\n", + "LEFT JOIN\n", + " Demo_SalesForecasting.Stores s ON w.Store = s.Store\n", + "LEFT JOIN\n", + " Demo_SalesForecasting.Features f ON w.Store = f.store AND w.Sales_Date = f.Sales_Date\n", + "WHERE\n", + " w.Store IN (20, 4);\n", + "'''\n", + "\n", + "execute_sql(query2)\n", + "modeldf=DataFrame.from_query('select * from Weekly_Sales_Details;')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfacheck = modeldf.groupby([\"idcols\"])\n", + "dfacheck=dfacheck.count().select([\"idcols\",\"count_Sales_Date\"])\n", + "\n", + "dfa4=modeldf.join(dfacheck, on = 'idcols', how = \"left\", lsuffix = 't1', rsuffix = 't2').drop(['idcols_t2'],axis=1)\n", + "dfa4=dfa4.assign(idcols = dfa4['idcols_t1'])\n", + "dfa4=dfa4.drop(['idcols_t1'],axis=1)\n", + "\n", + "# filter out incomplete time series \n", + "\n", + "modeldf1 = dfa4[dfa4.count_Sales_Date == 143]\n", + "modeldf1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "modeldf1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Checking for Stationarity of Time Series using the Dickey Fuller Test

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    To be able to model a time series, it needs to be stationary. ARIMA models deal with non-stationary time series by differencing (The \"d' parameter in ARIMA determines the number of differences needed to make a series stationary)

    \n", + "

    Here we will check for stationarity of all time series using the Dickey-Fuller Test. For more info on the test, see here. \n", + "

    The null hypothesis for the test is that the data is non-stationary. We want to REJECT the null hypothesis for this test. So, we want a p-value of less than 0.05 (or smaller) and a negative coefficient value for the lag term in our regression model.

    \n", + "

    The Dickey fuller function needs series data, so we use the TDSeries function to create a series and apply DickeyFuller to check the stationarity of the data.

    \n", + "

    We use the OutlierFilterFit and the OutlierFilterTransform functions to remove the outliers in the series and then use the Rescaled Data to check the stationarity of the data using the DickeyFuller function.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_df=modeldf1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_df.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The OutlierFilterFit() function calculates the lower_percentile, upper_percentile, count of rows and median for all the \"target_columns\" provided by the user. These metrics for each column helps the function OutlierTransform() detect outliers in the input table. It also stores parameters from arguments into a FIT table used during transformation. The lower_percentile specifies lower range of percentile to be used to detect if value is outlier or not and the upper_percentile specifies upper range of percentile to be used to detect if value is outlier or not.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import OutlierFilterFit\n", + "OutlierFilterFit_out = OutlierFilterFit(data = sales_df,\n", + " target_columns = \"Weekly_Sales\",\n", + " )\n", + "out_df=OutlierFilterFit_out.output_data\n", + "out_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    \n", + "

    The OutlierFilterfit creates a fit table with different values which need to be applied on the data to get the transformed data.

    \n", + "

    \n", + "

    OutlierFilterTransform() function filters the outliers from the input teradataml DataFrame.

    \n", + "

    OutlierFilterTransform() uses the result DataFrame from OutlierFilterFit() function to get statistics like median, count of rows, lower percentile and upper percentile for every column specified in target columns argument and filters the outliers in the input data.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import OutlierFilterFit, OutlierFilterTransform\n", + "obj = OutlierFilterTransform(data=sales_df,\n", + " object=OutlierFilterFit_out.result)\n", + "out_transform_df = obj.result\n", + "out_transform_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    \n", + "

    The OutlierFilterTransform transforms the data and creates the output data after applying the Fit Table details on the data.

    \n", + "

    \n", + "

    The Resample() function transforms an irregular time series into a regular time series. It can also be used to alter the sampling interval for a time series. The Resample functions requires a series as inuput for which we use the TDSeries function.

    \n", + "\n", + "

    TDSeries object from a teradataml DataFrame representing a SERIES in time series which is used as input to Unbounded Array Framework, time series functions. A series is a one-dimensional array. They are the basic input of UAF functions. A series is identified by its series ID, i.e., \"id\" argument, and indexed by \"row_index\" argument. Series is passed to and returned from UAF functions as wavelets. Wavelets are collections of rows, grouped by one or more fields, and ordered on the \"row_index\" argument.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Resample\n", + "data_series_df = TDSeries(data=obj.result,\n", + " id=\"idcols\",\n", + " row_index=(\"Sales_Date\"),\n", + " row_index_style= \"TIMECODE\",\n", + " payload_field=\"Weekly_Sales\",\n", + " payload_content=\"REAL\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "uaf_out1 = Resample(data=data_series_df,\n", + " interpolate='LINEAR',\n", + " timecode_start_value=\"TIMESTAMP '2010-02-05 00:00:00'\",\n", + " timecode_duration=\"WEEKS(1)\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df=uaf_out1.result\n", + "df1=df.select(['idcols','ROW_I', 'Weekly_Sales']).assign(Sales_Date=df.ROW_I)\n", + "df1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    \n", + "

    The DickeyFuller() function tests for the presence of one or more unit roots in a series to determine if the series is non-stationary. When a series contains unit roots, it is non-stationary. When a series contains no unit roots, whether the series is stationary is based on other factors.

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import DickeyFuller\n", + "data_series_df_1 = TDSeries(data=df1,\n", + " id=\"Sales_Date\",\n", + " row_index=(\"idcols\"),\n", + " row_index_style= \"SEQUENCE\",\n", + " payload_field=\"Weekly_Sales\",\n", + " payload_content=\"REAL\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_out = DickeyFuller( data=data_series_df_1,\n", + " algorithm='NONE')\n", + "\n", + "# Print the result DataFrame.\n", + "print(df_out.result)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    \n", + "

    In the above output the p-value corresponding to the calculated test statistic is less than 0.05. It means that the series is stationary. The output column NULL_HYP which means NULL HYPOTHESIS can have 2 values \n", + "

  • ACCEPT means the null hypothesis is accepted. No Unit roots are present, and therefore the process is stationary.
  • \n", + "
  • REJECT means the null hypothesis is rejected. Unit roots are present, and the process may or may not be stationary, depending on other factors.
  • \n", + "

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    6. ARIMA Modelling

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    ARIMA stands for Autoregressive Integrated Moving Average. It is a statistical method used for time series forecasting and analysis. ARIMA is a form of regression analysis that gauges the strength of one dependent variable relative to other changing variables. ARIMA models are popular in various fields, including finance, economics, and environmental science, for predicting future points in a time series based on its historical values.

    \n", + "

    The ArimaEstimate() function estimates the coefficients corresponding to an ARIMA (AutoRegressive Integrated Moving Average) model, and to fit a series with an existing ARIMA model. The function can also provide the \"goodness of fit\" and the residuals of the fitting operation. The function generates model layer used as input for the ArimaValidate() and ArimaForecast() functions. This function is for univariate series.

    \n", + "\n", + "

    The following procedure is an example of how to use ArimaEstimate() function:

    \n", + "
  • Run the ArimaEstimate() function to get the coefficients for the ARIMA model.\n", + "
  • [Optional] Run ArimaValidate() function to validate the 'goodness of fit' of the ARIMA model, when \"fit_percentage\" argument value is not 100 in ArimaEstimate() function.\n", + "
  • Run the ArimaForecast() function with input from step 1 or step 2 to forecast the future periods beyond the last observed period.
  • \n", + "

    \n", + "\n", + "

    Here the input series to the ArimaEstimate is the output series of the Resample function. The series is created by using the output of Resample function and passed to ArimaEstimate.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ArimaEstimate\n", + "# Execute ArimaEstimate function.\n", + "arima_est_out = ArimaEstimate(data1=data_series_df_1,\n", + " nonseasonal_model_order=[2,1,1],\n", + " constant=False,\n", + " algorithm=\"MLE\",\n", + " coeff_stats=True,\n", + " fit_metrics=True,\n", + " residuals=True,\n", + " fit_percentage=80)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "est_result=arima_est_out.fitresiduals\n", + "est_result = est_result.groupby('Sales_Date').avg()\n", + "est_result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We plot the Actual Value of Weekly Sales vs the Calculated Value of the ArimaEstimate function.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=700, heading=\"Comparison of Actual vs Predicted Sales\")\n", + "est_result.plot(x=est_result.Sales_Date, y=[est_result.avg_ACTUAL_VALUE, est_result.avg_CALC_VALUE], \n", + " style=['dark orange', 'green'], xlabel='Sales Date', ylabel='Sales', grid_color='black',xtick_format='YYYY-MM',\n", + " grid_linewidth=0.5, grid_linestyle=\"-\", legend=['Actual Value','Predicted Value'],figure=figure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The ArimaValidate() function performs an in-sample forecast for both seasonal and non-seasonal auto-regressive (AR), moving-average (MA), ARIMA models and Box-Jenkins seasonal ARIMA model formula followed by an analysis of the produced residuals. The aim is to provide a collection of metrics useful to select the model and expose the produced residuals such that multiple model validation and statistical tests can be conducted.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ArimaValidate\n", + "data_art_df = TDAnalyticResult(data=arima_est_out.result)\n", + "\n", + "\n", + "arima_val_out = ArimaValidate(data=data_art_df, fit_metrics=True, residuals=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "val_result=arima_val_out.fitresiduals\n", + "val_result = val_result.groupby('Sales_Date').avg()\n", + "val_result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We plot the Actual Value of Weekly Sales vs the Calculated Value of the ArimaValidate function.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=700, heading=\"Comparison of Actua vs Predicted\")\n", + "val_result.plot(x=val_result.Sales_Date, y=[val_result.avg_ACTUAL_VALUE, val_result.avg_CALC_VALUE], \n", + " style=['dark orange', 'green'], xlabel='Sales Date', ylabel='Sales', grid_color='black',\n", + " grid_linewidth=0.5, grid_linestyle=\"-\", legend=['Actual Value','Predicted Value'],figure=figure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The ArimaForecast() function is used to forecast a user-defined number of periods based on models fitted from the ArimaEstimate() function.

    \n", + "

    Here we are considering 7 periods (forecast_periods=7)

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ArimaForecast\n", + "arima_estimate_op = ArimaEstimate(data1=data_series_df_1,\n", + " nonseasonal_model_order=[2,1,1],\n", + " constant=False,\n", + " algorithm=\"MLE\",\n", + " coeff_stats=True,\n", + " fit_metrics=True,\n", + " residuals=True,\n", + " fit_percentage=100)\n", + "\n", + "# Create teradataml TDAnalyticResult object over the result attribute of 'arima_estimate_op'\n", + "data_art_df = TDAnalyticResult(data=arima_estimate_op.result)\n", + " \n", + "arima_forcast_out = ArimaForecast(data=data_art_df, forecast_periods=7)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "forecast_result=arima_forcast_out.result\n", + "forecast_result = forecast_result.groupby('ROW_I').avg()\n", + "forecast_result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We plot the Forecasted Value of Weekly Sales for the defined number of periods.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import Figure\n", + "figure = Figure(width=1000, height=700, heading=\"Forecast Sales\")\n", + "forecast_result.plot(x=forecast_result.ROW_I, y=forecast_result.avg_FORECAST_VALUE, \n", + " xlabel='Forecast Period', ylabel='Forecast Sales', grid_color='black',\n", + " grid_linewidth=0.5, grid_linestyle=\"-\", figure=figure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    7. Conclusion:

    \n", + "

    We have trained and validated the ARIMA model on the Weekly Sales dataset, and the results closely match the actual data. The goodness of fit metrics calculated in the estimate and validate phase also resonate with our understanding that the model is well-trained to forecast. This can be observed in the Estimate and the Validate function graphs. So, we can say that the model is well trained to forecast the Weekly Sales.

    \n", + "\n", + "

    Thus with Teradata Vantage we can do rapid data exploration, preparation, and testing functions that can analyze massive amounts of data across an unlimited number of forecasts in parallel, drastically reducing the development and testing times. We can create unlimited number of forecasts in parallel, unlocking value in hyper-segmented (per-store-per-SKU inventory demand, per-household energy consumption) predictions, based on individualized models.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    8. Cleanup

    \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " db_drop_view('Weekly_Sales_Details')\n", + "except:\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Required Materials\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    \n", + "\n", + "

    Dataset

    \n", + "

    This is the historical data that covers sales from 2010-02-05 to 2012-11-01. Within this file you will find the following fields:

    \n", + "\n", + "
  • Store - the store number
  • \n", + "
  • Date - the week of sales
  • \n", + "
  • Weekly_Sales - sales for the given store
  • \n", + "
  • Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week
  • \n", + "
  • Temperature - Temperature on the day of sale
  • \n", + "
  • Fuel_Price - Cost of fuel in the region
  • \n", + "
  • CPI – Prevailing consumer price index
  • \n", + "
  • Unemployment - Prevailing unemployment rate
  • \n", + "
  • Holiday Events: Super Bowl, Labour Day, Thanksgiving, Christmas
  • \n", + "

    \n", + "\n", + "

    Filters:

    \n", + "
  • Industry: Retail
  • \n", + "
  • Functionality: ARIMA Estimate and Forecast
  • \n", + "
  • Use Case: Sales Forecasting
  • \n", + "

    \n", + "

    Related Resources:

    \n", + "
  • In the fight to improve customer experience, NPS is a metric, not the goal
  • \n", + "
  • Hyper-scale time series forecasting done right
  • \n", + "
  • Crystal Ball, Black Box or Advanced Forecasting and Demand Planning in Retail and CPG
  • " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2023, 2024, 2025. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/VCL_Store_Sales_Forecasting_Prophet_OAF.ipynb b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/VCL_Store_Sales_Forecasting_Prophet_OAF.ipynb new file mode 100644 index 00000000..32ee0d49 --- /dev/null +++ b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/VCL_Store_Sales_Forecasting_Prophet_OAF.ipynb @@ -0,0 +1,1226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Store Sales Forecasting with Prophet using Script Table Operator\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    \n", + "

    Introduction

    \n", + "\n", + "

    Rossmann operates over 3,000 drug stores in 7 European countries. Currently, Rossmann store managers are tasked with predicting their daily sales for up to six weeks in advance. Store sales are influenced by many factors, including promotions, competition, school and state holidays, seasonality, and locality. With thousands of individual managers predicting sales based on their unique circumstances, the accuracy of results can be quite varied.

    \n", + "
    \n", + "

    Our Main Objective is to predict sales of store in a week. We are using the python Prophet model and using the Open Analytics Framework(OAF) of VantageCloud Lake for forecasting the Store Sales.

    \n", + " \n", + "

    The Open Analytics Framework builds on the existing Vantage facilities for data scientists and analysts to do the following:

    \n", + "
  • Score multiple models concurrently in parallel with minimal effort.
  • \n", + "
  • Train single or multiple micro models based on data stored in Vantage.
  • \n", + "
  • Enable scripting and the use of open source resources to experiment and iterate with analytics, machine learning (ML), and artificial intelligence (AI) use cases.
  • \n", + "

    APPLY table operator is the VantageCloud Lake successor to the Vantage Enterprise SCRIPT and ExecR table operators. The APPLY table operator bears more similarities to the SCRIPT operating mode, in that APPLY takes an external language script as input to run, rather than ingesting external language statements in a contract function as ExecR does. The APPLY table operator is nevertheless designed to expand its features in the future in a way that encompasses additional key features from both the SCRIPT and ExecR table operators. The fastpath APPLY table operator runs a user-installed script or any Linux command inside the remote user environment using Open Analytics Framework. Installed script runs in parallel with data from Analytics Database.

    \n", + "\n", + "

    An overview of the steps for using the Open Analytics Framework follow.

    \n", + "
  • Connect to your target VantageCloud Lake system.
  • \n", + "
  • Assume you use the Vantage Python client library, teradataml, as the software tool to connect.
  • \n", + "
  • Upon connecting, create a user environment with the desired configuration of interpreter and libraries using Open Analytics Framework APIs.
  • \n", + "
  • Upload the language script, model, and any other relevant files to your target user environment.
  • \n", + "
  • Run the script by invoking the APPLY table operator inside the Analytics Database in your system.
  • \n", + "
  • Run the corresponding APPLY table operator query in the primary cluster to retrieve data, then send the data to a compute cluster to run with your language script in your user environment.
  • \n", + "

    \n", + "
    \n", + "\n", + "\n", + "

    Hence as a data science consultant, we are showcasing the complete approach about how we can make prediction of sales for different stores in advance. We are demonstrating how we can train our models and use them for scoring using the ClearScape Analytics platform. The data we are using is a sample dataset and the results and predictions may not be entirely accurate.\n", + "

    \n", + "

    Data

    \n", + "

    The dataset contains historical sales data for 1,115 Rossmann stores. The task is to forecast the \"Sales\" column for the test set. Note that some stores in the dataset were temporarily closed for refurbishment.

    \n", + "\n", + "

    Most of the fields are self-explanatory. The following are descriptions for those that aren't.

    \n", + "\n", + "
  • Store - a unique Id for each store
  • \n", + "
  • Sales - the turnover for any given day (this is what you are predicting)
  • \n", + "
  • Customers - the number of customers on a given day
  • \n", + "
  • Open - an indicator for whether the store was open: 0 = closed, 1 = open
  • \n", + "
  • StateHoliday - indicates a state holiday. Normally all stores, with few exceptions, are closed on state holidays. Note that all schools are closed on public holidays and weekends. a = public holiday, b = Easter holiday, c = Christmas, 0 = None
  • \n", + "
  • SchoolHoliday - indicates if the (Store, Date) was affected by the closure of public schools
  • \n", + "
  • StoreType - differentiates between 4 different store models: a, b, c, d
  • \n", + "
  • Assortment - describes an assortment level: a = basic, b = extra, c = extended
  • \n", + "
  • CompetitionDistance - distance in meters to the nearest competitor store
  • \n", + "
  • CompetitionOpenSince[Month/Year] - gives the approximate year and month of the time the nearest competitor was opened
  • \n", + "
  • Promo - indicates whether a store is running a promo on that day
  • \n", + "
  • Promo2 - Promo2 is a continuing and consecutive promotion for some stores: 0 = store is not participating, 1 = store is participating
  • \n", + "
  • Promo2Since[Year/Week] - describes the year and calendar week when the store started participating in Promo2
  • \n", + "
  • PromoInterval - describes the consecutive intervals Promo2 is started, naming the months the promotion is started anew. E.g., \"Feb,May,Aug,Nov\" means each round starts in February, May, August, November of any given year for that store.
  • \n", + "

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv\n", + "!pip install scikit-learn==1.1.3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    Note: After installing the above libraries, Please restart the kernel. The simplest way is by typing zero zero: 0 0

    \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    In the section, we import the required libraries and set environment variables and environment paths (if required).

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", + "import getpass\n", + "import pandas as pd\n", + "\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from time import time\n", + "import os\n", + "# from prophet import Prophet\n", + "import warnings\n", + "import itertools\n", + "from dotenv import load_dotenv, dotenv_values\n", + "import pickle\n", + "import base64\n", + "import time\n", + "from teradataml import *\n", + "from IPython.display import display as ipydisplay\n", + "from IPython.display import clear_output\n", + "from time import sleep\n", + "\n", + "display.max_rows=5\n", + "display.suppress_vantage_runtime_warnings = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_Store_Sales_Forecasting_Prophet_OAF.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    3.Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_AnomalyDetection\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_AnomalyDetection_DB database and we have created views in DEMO_AnomalyDetection database which are used in the cells below

    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    3.1 Prepare data to do some basic Analysis of the Sales data.

    \n", + "\n", + "

    We create dataframe for the Stores and the Sales Data using tables from Vantage. To gain insights into the data's characteristics, we display a sample of 5 rows each.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "store=DataFrame(in_schema('DEMO_ProphetSTO','Store'))\n", + "store " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The Store dataset contains description of the Stores like, StoreType, distance from the Competition Store and also various Promotion codes and Details.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales=DataFrame(in_schema('DEMO_ProphetSTO','Sales_Data'))\n", + "sales " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The Store Sales dataset contains the Store, DayofWeek, Date of Sales , Sales done, Customer involved, SalesOpen is a flag mentioning if the Store is Open or Closed and Promotion Code applied for the Sales.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    4. Data Analysis and Transformation

    \n", + "

    In this first section we go through the Sales and store data, handle missing values and create new features for further analysis.

    \n", + "

    We check the missing values for the CompetitionDistance column and replace it with the median values.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import SimpleImputeFit, SimpleImputeTransform\n", + "fit_obj = SimpleImputeFit(data=store,\n", + " stats_columns=\"CompetitionDistance\",\n", + " stats=\"median\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "obj = SimpleImputeTransform(data=store,\n", + " object=fit_obj.output)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "store=obj.result\n", + "store" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We join the Store and Sales dataset to get the required columns for our analysis.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store = sales.merge(right = store, how = \"inner\", on = \"store=store\",lsuffix='l', rsuffix='r')\n", + "sales_store=sales_store.assign(Store=sales_store.Store_l)\n", + "sales_store=sales_store.drop(['Store_l', 'Store_r'], axis=1)\n", + "sales_store" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The final dataset used for analysis contains 18 columns and 91,256 rows.

    \n", + "

    Based on the data available we do some transformations on the data and create various features. From the SalesDate we, generate columns like , Year, Month, DayOfWeek , WeekofYear etc. Using the columns related to Competition like CompetionOpenSinceYear and CompetitionOpenSinceMonth we calculate if the Competition Store is Open or not(CompetitionOpen). Similarly, we do the processing for Promotions and create a flag(PromoOpen)

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store = sales_store.assign(CompetitionOpenSinceYear = \n", + " case([(sales_store.CompetitionOpenSinceYear.isnull() == True, '0')], else_ = sales_store.CompetitionOpenSinceYear),\n", + " CompetitionOpenSinceMonth = \n", + " case([(sales_store.CompetitionOpenSinceMonth.isnull() == True, '0')], else_ = sales_store.CompetitionOpenSinceMonth),\n", + " Promo2SinceYear = \n", + " case([(sales_store.Promo2SinceYear.isnull() == True, '0')], else_ = sales_store.Promo2SinceYear),\n", + " Promo2SinceWeek = \n", + " case([(sales_store.Promo2SinceWeek.isnull() == True, '0')], else_ = sales_store.Promo2SinceWeek)\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store = sales_store.assign(Year = sales_store.SalesDate.year(),\n", + " Month = sales_store.SalesDate.month(),\n", + " Day = sales_store.SalesDate.day_of_month(),\n", + " DayOfWeek = sales_store.SalesDate.day_of_week(),\n", + " WeekOfYear = sales_store.SalesDate.week_of_year())\n", + "\n", + "sales_store = sales_store.assign(CompetitionOpen = 12 * (sales_store.Year - sales_store.CompetitionOpenSinceYear)+\n", + " (sales_store.Month - sales_store.CompetitionOpenSinceMonth),\n", + " PromoOpen = 12 * (sales_store.Year - sales_store.Promo2SinceYear)+\n", + " (sales_store.WeekOfYear - sales_store.Promo2SinceWeek) / 4.0)\n", + "\n", + "\n", + "sales_store = sales_store.assign(CompetitionOpen = case([(sales_store.CompetitionOpen > 0, sales_store.CompetitionOpen)], else_ = 0),\n", + " PromoOpen = case([(sales_store.PromoOpen > 0, sales_store.PromoOpen)], else_ = 0))\n", + " \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store = sales_store.assign(StoreType = case([(sales_store.StoreType == '0', 0),(sales_store.StoreType == 'a', 1),\n", + " (sales_store.StoreType == 'b', 2),(sales_store.StoreType == 'c', 3),\n", + " (sales_store.StoreType == 'd', 4)]),\n", + " Assortment = case([(sales_store.Assortment == '0', 0),(sales_store.Assortment == 'a', 1),\n", + " (sales_store.Assortment == 'b', 2),(sales_store.Assortment == 'c', 3),\n", + " (sales_store.Assortment == 'd', 4)]),\n", + " StateHoliday = case([(sales_store.StateHoliday == '0', 0),(sales_store.StateHoliday == 'a', 1),\n", + " (sales_store.StateHoliday == 'b', 2),(sales_store.StateHoliday == 'c', 3),\n", + " (sales_store.StateHoliday == 'd', 4)])\n", + " \n", + " ) \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store = sales_store.assign(monthStr = case([(sales_store.Month == 1, 'Jan'),(sales_store.Month == 2, 'Feb'),\n", + " (sales_store.Month == 3, 'Mar'),(sales_store.Month == 4, 'Apr'),\n", + " (sales_store.Month == 5, 'May'),(sales_store.Month == 6, 'Jun'),\n", + " (sales_store.Month == 7, 'Jul'),(sales_store.Month == 8, 'Aug'),\n", + " (sales_store.Month == 9, 'Sep'),(sales_store.Month == 10, 'Oct'),\n", + " (sales_store.Month == 11,' Nov'),(sales_store.Month == 12, 'Dec')]),\n", + " IsPromoMonth = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_store" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_sales = sales_store.select(['Month','Sales']).groupby('Month').mean()\n", + "plot = plot_sales.plot(x=plot_sales.Month, y=plot_sales.mean_Sales,\n", + " kind='bar', xlabel='Month', ylabel='Sales', color=\"orange\")\n", + " \n", + "# Display the plot.\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the total sales across months for all stores. We can see that the sales are highest in December which is the Holiday Season.

    \n", + "

    Now we will see the same metrics across different Store types and also based on whether there was any Promotion available(Promo=1) or not (Promo=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Catplot month Vs Sales\n", + "features_df = sales_store.to_pandas(all_rows=True)\n", + "sns.catplot(data = features_df, x = 'Month', y = \"Sales\", \n", + " col = 'StoreType', # per store type in cols\n", + " palette = 'plasma',\n", + " # hue = 'StoreType',\n", + " row = 'Promo' # per promo in the store in rows\n", + " # color ='Year'\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph shows the Sales per Month for each of the 4 StoreTypes(a,b,c,d) for all the 1,115 Stores. The Top row shows the sales for Promo=0 and the bottom row is for Promo=1. Each dot represents the sum of sales for a particular store in a month depending on the Store Type and Promo Code. We can see that there are peaks mainly during the Year end period.

    \n", + "

    All store types follow the same trend but at different scales depending on the presence of the promotion `Promo` and `StoreType` except for the StoreType = b.\n", + "

    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "

    Next we try to get four stores from store types to represent their group:

    \n", + "
  • Store number 2 for `StoreType` A
  • \n", + "
  • Store number 85 for `StoreType` B
  • \n", + "
  • Store number 1 for `StoreType` C
  • \n", + "
  • Store number 15 for `StoreType` D
  • \n", + "\n", + "

    It also makes sense to down sample the data from days to weeks using the `resample` method to see the present trends more clearly.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_df = sales_store.select(['Store','SalesDate','Sales'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_a = train_df[train_df.Store == 2].select(['SalesDate','Sales']).groupby('SalesDate').mean()\n", + "sales_b = train_df[train_df.Store == 85].select(['SalesDate','Sales']).groupby('SalesDate').sum()\n", + "# .sort_index(ascending = True) # solve the reverse order\n", + "sales_c = train_df[train_df.Store == 1].select(['SalesDate','Sales']).groupby('SalesDate').sum()\n", + "sales_d = train_df[train_df.Store == 15].select(['SalesDate','Sales']).groupby('SalesDate').sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = subplots(nrows=4, ncols=1)\n", + " \n", + "plot = sales_a.plot(x=sales_a.SalesDate, y=sales_a.mean_Sales,\n", + " ax=axes[0], figure=fig, kind=\"line\",xlabel='Sales Date', ylabel='Sales',\n", + " title=\"Sales for Store 2\", color=\"blue\",figsize=(1200, 1600))\n", + " \n", + "plot = sales_b.plot(x=sales_b.SalesDate, y=sales_b.sum_Sales,\n", + " ax=axes[1],figure=fig, kind=\"line\",xlabel='Sales Date', ylabel='Sales',\n", + " title=\"Sales for Store 85\", color=\"blue\")\n", + " \n", + "plot = sales_c.plot(x=sales_c.SalesDate, y=sales_c.sum_Sales,\n", + " ax=axes[2],figure=fig, kind=\"line\",xlabel='Sales Date', ylabel='Sales',\n", + " title=\"Sales for Store 1\", color=\"blue\")\n", + "\n", + "plot = sales_d.plot(x=sales_d.SalesDate, y=sales_d.sum_Sales,\n", + " ax=axes[3],figure=fig, kind=\"line\",xlabel='Sales Date', ylabel='Sales',\n", + " title=\"Sales for Store 15\", color=\"blue\")\n", + " \n", + "# Display the plot.\n", + "plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Retail sales for all store types tend to peak for the Christmas season and then decline after the holidays.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Next we check the Yearly trend for these Store Types thing to check the presence of a trend in series. Time series decomposition is the process of separating time series data into its core components. These components include a potential trend (overall rise or fall in the mean), seasonality (a recurring cycle), and the remaining random residual. Python’s statsmodels library has a method for time series decomposition called seasonal_decompose(). The model type parameter can either be additive or multiplicative, here we consider additive as If the seasonality’s amplitude is independent of the level then you should use the additive model. The \"period\" parameter is the number of observations in a seasonal cycle. For example, if you have daily observations, the period is 1.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Sorting with 'date'\n", + "pd_sales_store = features_df\n", + "train_df = pd_sales_store.set_index('SalesDate')\n", + "# Sales datacheck\n", + "train_df['Sales'] = train_df['Sales'] * 1.0\n", + "# storewise sales data\n", + "sales_a = train_df[train_df.Store == 2]['Sales']\n", + "sales_b = train_df[train_df.Store == 85]['Sales']\n", + "# .sort_index(ascending = True) # solve the reverse order\n", + "sales_c = train_df[train_df.Store == 1]['Sales']\n", + "sales_d = train_df[train_df.Store == 15]['Sales']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Seasonal decompose\n", + "from statsmodels.tsa.seasonal import seasonal_decompose\n", + "\n", + "f, (ax1, ax2, ax3, ax4) = plt.subplots(4, figsize = (15, 15))\n", + "\n", + "# monthly\n", + "decomposition_a = seasonal_decompose(sales_a, model = 'additive', extrapolate_trend='freq', period=1)\n", + "decomposition_a.trend.plot(ax = ax1)\n", + "\n", + "decomposition_b = seasonal_decompose(sales_b, model = 'additive', extrapolate_trend='freq', period=1)\n", + "decomposition_b.trend.plot( ax = ax2)\n", + "\n", + "decomposition_c = seasonal_decompose(sales_c, model = 'additive', extrapolate_trend='freq', period=1)\n", + "decomposition_c.trend.plot( ax = ax3)\n", + "\n", + "decomposition_d = seasonal_decompose(sales_d, model = 'additive', extrapolate_trend='freq', period=1)\n", + "decomposition_d.trend.plot( ax = ax4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Overall sales follow similar Trend for all StoreTypes as seen above. There are spikes around the year end which indicate higher sales over the year end holiday season.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Creating the model and forecasting using Prophet in python (stoSalesForecastnew.py).

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

    \n", + "

    Prophet follows the sklearn model API. We create an instance of the Prophet class and then call its fit and predict methods.

    \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    All the below steps which include the Prophet model are executed in the python in the file stoSalesForecastnew.py file. We then use this py file in the Script command and get the forecasted values.

    \n", + "

    The input to Prophet is always a dataframe with two columns: ds and y. The ds (datestamp) column should be of a format expected by Pandas, ideally YYYY-MM-DD for a date or YYYY-MM-DD HH:MM:SS for a timestamp. The y column must be numeric and represents the measurement we wish to forecast.

    \n", + "\n", + "

    The below code shows the creation of the Sales DataFrame and the holidays Dataframe which are used in the model creation and model fit.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Create Sales data dataframe using data from Vantage

    \n", + "\n", + "```python \n", + "# create Sales data \n", + "sales = pd_sales_store.rename(columns = {'SalesDate': 'ds','Sales': 'y'})\n", + "``` " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Create holidays dataframe

    \n", + "\n", + "```python\n", + "#create holidays dataframe\n", + " \n", + "\n", + "school_dates = df[df.SchoolHoliday == 1].loc[:, 'Date'].values\n", + "\n", + "school = pd.DataFrame({'holiday': 'school_holiday',\n", + " 'ds': pd.to_datetime(school_dates)})\n", + "\n", + "holidays = school \n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    We fit the model by instantiating a new Prophet object. Any settings to the forecasting procedure are passed into the constructor. Then you call its fit method and pass in the historical dataframe(sales).

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Instantiate and fit model using Prophet

    \n", + "\n", + "```python\n", + "\n", + "# Prophet implementation \n", + "my_model = Prophet(interval_width = 0.95, \n", + " holidays = holidays.head(50000))\n", + "my_model.fit(sales) \n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Predictions are then made on a dataframe with a column ds containing the dates for which a prediction is to be made. You can get a suitable dataframe that extends into the future a specified number of days using the helper method Prophet.make_future_dataframe. By default, it will also include the dates from the history, so we will see the model fit as well.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Create future dates for forecasting

    \n", + "\n", + "```python\n", + "dt = min(sales['ds'].values)\n", + "date1 = datetime.datetime.strptime(dt, \"%y/%m/%d\").date()\n", + "\n", + "\n", + "\n", + "# # Subtract one month\n", + "start_date = date1 - relativedelta(months=1)\n", + "\n", + "# Get man date and then get future dates for 1 month\n", + "dt1 = max(sales['ds'].values)\n", + "date2 = datetime.datetime.strptime(dt1, \"%y/%m/%d\").date()\n", + "# date2 = datetime.datetime.strptime(datetime_str, \"%Y/%m/%dT%H:%M:%S.%f\").date()\n", + "end_date = date2 + relativedelta(months=1)\n", + "# end_date= str(end_value)\n", + "\n", + "\n", + "# # date_range = pd.date_range(start_date, periods=num_days)\n", + "date_range = pd.date_range(str(start_date), str(end_date))\n", + "\n", + "future_dates = pd.DataFrame({'ds': date_range}) \n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The predict method will assign each row in future a predicted value which it names yhat. If you pass in historical dates, it will provide an in-sample fit. The forecast object here is a new dataframe that includes the \"yhat\" column, which is the forecast values for sales, as well as columns for components and uncertainty intervals.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Create dataframe with forecast values

    \n", + "\n", + "```python\n", + "# forecast\n", + "forecast = my_model.predict(future_dates.head(10000)) \n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The forecasted values will be sent back to Vantage using the Returns clause of the Script function as seen in the section below.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "


    \n", + "\n", + "

    6. Using APPLY Command to get the forecasted values back to Vantage.

    \n", + "
    \n", + "\n", + "

    6.1 Create virtual environment for executing the script

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Function to set the Authentication token to connect to User Environment Service in VantageCloud Lake.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We've already loaded all the values into our environment variables and into a dictionary, env_vars.\n", + "# username=env_vars.get(\"username\") isn't required when using base_url, pat and pem.\n", + "\n", + "if set_auth_token(base_url=env_vars.get(\"ues_uri\"),\n", + " pat_token=env_vars.get(\"access_token\"), \n", + " pem_file=env_vars.get(\"pem_file\"),\n", + " valid_from=int(time.time())\n", + " ):\n", + " print(\"UES Authentication successful\")\n", + "else:\n", + " print(\"UES Authentication failed. Check credentials.\")\n", + " sys.exit(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Set the session to use the Analytic compute group and cluster to execute the OpenSourceML function.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "gpu_compute_group = env_vars.get(\"gpu_compute_group\")\n", + "execute_sql(f\"SET SESSION COMPUTE GROUP {gpu_compute_group};\")\n", + "print(f\"Compute group set to {gpu_compute_group}\") " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Check the user environments and create an environment for the usecase.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "list_user_envs()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " env = create_env(\n", + " env_name=\"oaf_demo_env\",\n", + " base_env=\"python_3.9\",\n", + " desc=\"OAF Demo env for SalesForecasting Prophet\"\n", + " )\n", + "except:\n", + " remove_env(\"oaf_demo_env\")\n", + " env = create_env(\n", + " env_name=\"oaf_demo_env\",\n", + " base_env=\"python_3.9\",\n", + " desc=\"OAF Demo env for SalesForecasting Prophet\"\n", + " )\n", + " \n", + "env " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Confirm that the versions in the local environment are same to the virtual environment.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip list | grep scikit-learn\n", + "!pip list | grep scipy\n", + "!pip list | grep numpy\n", + "!pip list | grep pandas\n", + "!pip list | grep prophet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "claim_id = env.install_lib([\"pandas==2.1.3\",\n", + " \"scipy==1.11.2\",\n", + " \"scikit-learn==1.1.3\",\n", + " \"numpy==1.24.2\",\n", + " \"sklearn-pandas==2.2.0\", \n", + " \"prophet==1.1.4\"], asynchronous=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Check the status of installation using status() API.\n", + "# Create a loop here for demo purposes\n", + "\n", + "ipydisplay(env.status(claim_id))\n", + "stage = env.status(claim_id)['Stage'].iloc[-1]\n", + "while stage == 'Started':\n", + " stage = env.status(claim_id)['Stage'].iloc[-1]\n", + " clear_output()\n", + " ipydisplay(env.status(claim_id))\n", + " sleep(5)\n", + " \n", + "# Verify the Python libraries have been installed correctly.\n", + "ipydisplay(env.libs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Set the user environment to the created virtual environment for the execution of the python script.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "configure.openml_user_env = env" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    6.2 Install the file and any additional artifacts

    \n", + "\n", + "

    Use the install_file() method to install this python file to the container. As a reminder, this container is persistent, so these steps need only be done infrequently.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "env.install_file(\"stoSalesForecastnew.py\", replace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "

    6.3 APPLY using Python

    \n", + "

    The process is as follows

    \n", + "\n", + "
  • Construct a dictionary that will define the return columns and data types
  • \n", + "
  • Construct a teradataml DataFrame representing the data to be processed - note this is a \"virtual\" object representing data and logic in-database
  • \n", + "
  • Execute the module function. This constructs the function call in the database, but does not execute anything. Note the Apply function takes several arguments - the input data, environment name, and the command to run
  • \n", + "
  • In order to execute the function, an \"execute_script()\" method must be called. This method returns the server-side DataFrame representing the complete operation. This DataFrame can be used in further processing, stored as a table, etc.
  • \n", + "

    \n", + "\n", + " \n", + "

    First we will create a dataset which can be passed to the Apply function.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "qry='''CREATE SET TABLE Store_Sales_ID \n", + " (\n", + " SlsID INTEGER,\n", + " Store INTEGER,\n", + " DayOfWeek INTEGER,\n", + " SalesDate DATE FORMAT 'yyyy/mm/dd',\n", + " Sales INTEGER,\n", + " Customers INTEGER,\n", + " SalesOpen INTEGER,\n", + " Promo INTEGER,\n", + " StateHoliday CHAR(1) CHARACTER SET LATIN NOT CASESPECIFIC,\n", + " SchoolHoliday INTEGER)\n", + " PRIMARY INDEX ( SlsID ); '''\n", + "qry1='''insert into Store_Sales_ID select 1, Store ,\n", + " DayOfWeek ,\n", + " SalesDate ,\n", + " Sales ,\n", + " Customers ,\n", + " SalesOpen ,\n", + " Promo ,\n", + " StateHoliday,\n", + " SchoolHoliday from DEMO_prophetSTO.Sales_Data where Store <= 5;'''\n", + "try:\n", + " execute_sql(qry)\n", + " execute_sql(qry1) \n", + "except:\n", + " db_drop_table('Store_Sales_ID')\n", + " execute_sql(qry)\n", + " execute_sql(qry1) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "final_table_df2 = DataFrame('Store_Sales_ID')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Install the user script file on Vantage. In case of rerun if the file already exists we first remove it and then install again.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# return types\n", + "types_dict = OrderedDict({})\n", + "types_dict[\"ds\"] = VARCHAR(100)\n", + "types_dict[\"yhat\"] = VARCHAR(100)\n", + "types_dict[\"yhat_lower\"] = VARCHAR(100)\n", + "types_dict[\"yhat_upper\"] = VARCHAR(100)\n", + "types_dict[\"trend\"] = VARCHAR(100)\n", + "types_dict[\"trend_lower\"] = VARCHAR(100)\n", + "types_dict[\"trend_upper\"] = VARCHAR(100)\n", + "\n", + "# \"ds\":TIMESTAMP(0), \"yhat\": FLOAT(), \"yhat_lower\": FLOAT(), \"yhat_upper\": FLOAT() , \n", + "# \"trend\": FLOAT(), \"weekly\": FLOAT(), \"yearly\": FLOAT()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "env.install_file(\"stoSalesForecastnew.py\", replace=True)\n", + "apply_obj = Apply(\n", + " data=final_table_df2,\n", + " apply_command=\"python stoSalesForecastnew.py\",\n", + " # returns={\"ds\": VARCHAR(100)},\n", + " returns=types_dict,\n", + " env_name=env,\n", + " delimiter=\"\\t\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    Execute the script in SQL using APPLY command with the following SQL code:

    \n", + "

    Since the entire process of model training , fitting and scoring takes place in the .py file when used in the script command the below query make take some time approximately 50-60 seconds.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_forecast_df = apply_obj.execute_script()\n", + "sales_forecast_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sales_forecast_df.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The output contains 5005 rows(1 for each date) and 7 columns.\n", + "

    The forecasting output contains information for:\n", + "

    \n", + "
  • The forecasted value (yhat)
  • \n", + "
  • Range for the forecasted values (yhat_lower and yhat_upper)
  • \n", + "
  • The overall trend for a given date (also incorporates seasonality)
  • \n", + "
  • Additive terms to adjust the trend to get the forecasted value
  • " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    To plot the forecast Values we select only the required columns and convert the teradataml dataframe to pandas dataframe.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_output = sales_forecast_df.to_pandas(all_rows=True).reset_index()\n", + "plot_output[\"ds\"] = pd.to_datetime(plot_output['ds']).dt.date\n", + "plot_output[\"yhat\"] = pd.to_numeric(plot_output['yhat'])\n", + "plot_output[\"yhat_lower\"] = pd.to_numeric(plot_output['yhat_lower'])\n", + "plot_output[\"yhat_upper\"] = pd.to_numeric(plot_output['yhat_upper'])\n", + "plot_output[\"trend\"] = pd.to_numeric(plot_output['trend'])\n", + "plot_output[\"trend_lower\"] = pd.to_numeric(plot_output['trend_lower'])\n", + "plot_output[\"trend_upper\"] = pd.to_numeric(plot_output['trend_upper'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_output_forecast = plot_output[['ds','yhat','yhat_lower','yhat_upper']].sort_values('ds', ascending=True)\n", + "# .tail(300)\n", + "plot_output_forecast = plot_output_forecast.reset_index()\n", + "plot_output_forecast.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    To plot the forecast Values and the confidence level we set the lower and upper bounds of the confidence interval to yhat_lower and yhat_upper.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "\n", + "# Create the data for the line graph, including the x-values and the corresponding upper and lower bounds\n", + "x_values = plot_output_forecast['ds'].values\n", + "y_values = plot_output_forecast['yhat'].values\n", + "lower_bounds = plot_output_forecast['yhat_lower'].values\n", + "upper_bounds = plot_output_forecast['yhat_upper'].values\n", + "\n", + " \n", + "plt.figure(figsize=(12, 8))\n", + "# Plot the line graph\n", + "plt.plot(x_values, y_values, color='black', label='Forecast Values')\n", + "plt.fill_between(x_values, lower_bounds, upper_bounds, color='lightblue', alpha=0.3, label='Confidence Interval')\n", + "\n", + " \n", + "\n", + "# Customize the plot\n", + "\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Forecast Values')\n", + "plt.title('Forecast Sales Values with Confidence Interval')\n", + "plt.legend()\n", + "\n", + " \n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    The above graph contains the Forecast values(black line) and the light blue area is the range of the lower(yhat_lower) and upper(yhat_upper) limits of the forecasted values.

    \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    7. Conclusion:

    \n", + "

    We have trained and validated the Prophet model using the python script and used the APPLY Operator using OAF and data from Vantage. We get the forecasted data in Vantage using the python script.

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "

    8. Cleanup

    \n", + "

    Work Tables

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "db_drop_table(table_name='Store_Sales_ID')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "remove_env(\"oaf_demo_env\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    If you have updated the teradataml package, reinstall the package by uncommenting and running the below code cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# !pip install teradataml==17.20.0.6 --force-reinstall\n", + "!pip install scikit-learn==1.0.2 --force-reinstall\n", + "!pip install numpy==1.24.2 --force-reinstall" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "
    ClearScape Analytics™
    \n", + "
    \n", + "
    \n", + " Copyright © Teradata Corporation - 2023, 2024, 2025. All Rights Reserved\n", + "
    \n", + "
    \n", + "
    " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_Steps.png b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_Steps.png new file mode 100644 index 00000000..632c32c9 Binary files /dev/null and b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_Steps.png differ diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_flow.png b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_flow.png new file mode 100644 index 00000000..4dac803c Binary files /dev/null and b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/OAF_flow.png differ diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/STO.png b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/STO.png new file mode 100644 index 00000000..8916da63 Binary files /dev/null and b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/images/STO.png differ diff --git a/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/stoSalesForecastnew.py b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/stoSalesForecastnew.py new file mode 100644 index 00000000..aee10640 --- /dev/null +++ b/VantageCloud_Lake/UseCases/Store_Sales_Forecasting_Prophet_OAF/stoSalesForecastnew.py @@ -0,0 +1,150 @@ +# ####################################################################################################################### +# The code in the file gets input from Vantage table and creates prophet model and forecats sales using the forecast +# function of the Prophet model. These forecasted values are passed back to Vantage when this script is called using the +# Vantage Script command. +# ####################################################################################################################### +# Import the necessary libraries +import sys +import numpy as np +import pandas as pd +import subprocess + +# Prophet Library +from prophet import Prophet +import pickle +import base64 +import sys, os + +from contextlib import contextmanager +import logging +import datetime +# from datetime import date +from dateutil.relativedelta import relativedelta + +logging.basicConfig(format='%(process)d-%(levelname)s-%(message)s') + +# create a class which will be used to supress the output of the model.fit function +class suppress_stdout_stderr(object): + """ + Filter out Prophet logs from stdout and stderr + + from https://stackoverflow.com/questions/11130156/suppress-stdout-stderr-print-from-python-functions + Update: https://github.com/facebook/prophet/issues/223 randlet, 2017-09-31 + """ + def __init__(self): + self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] + self.save_fds = [os.dup(1), os.dup(2)] + + def __enter__(self): + os.dup2(self.null_fds[0], 1) + os.dup2(self.null_fds[1], 2) + + def __exit__(self, *_): + os.dup2(self.save_fds[0], 1) + os.dup2(self.save_fds[1], 2) + for fd in self.null_fds + self.save_fds: + os.close(fd) + + +### +### Read input +### + + +delimiter = '\t' +inputData = [] + +for line in sys.stdin.read().splitlines(): + line = line.split(delimiter) + inputData.append(line) + +### +### If no data received, gracefully exit rather than producing an error later. +### + +if not inputData: + sys.exit() + +### +### Set up input DataFrame according to input schema +### + +# Know your data: You must know in advance the number of incoming columns from the database! + +columns = ['SlsID','Store','DayOfWeek', 'SalesDate', 'Sales', 'Customers', 'SalesOpen','Promo', 'StateHoliday', + 'SchoolHoliday'] + +df = pd.DataFrame(inputData, columns=columns).copy() + +del inputData + +# create sales dataframe using the SalesDate as 'ds' and Sales as 'y' which is needed as input to the Prophet model +sales = df.rename(columns = {'SalesDate': 'ds', + 'Sales': 'y'}) + +sales=sales[['ds','y']] + +# Get dates for school holidays + +school_dates_df=df[['SalesDate','SchoolHoliday']] +school_dates_df['SchoolHoliday'] = pd.to_numeric(school_dates_df['SchoolHoliday']) +school_dates = school_dates_df.loc[school_dates_df.SchoolHoliday == 1, 'SalesDate'].values + + +school = pd.DataFrame({'holiday': 'school_holiday', + 'ds': pd.to_datetime(school_dates)}) + + +holidays = school + + +# # Prophet implementation +# Train model +my_model = Prophet(interval_width = 0.70, changepoint_prior_scale=0.05,seasonality_prior_scale=0.03,holidays_prior_scale=0.03, + holidays = holidays.head(1000)) + + +# Fit model using the Sales data +with suppress_stdout_stderr(): + my_model.fit(sales) + + + +# dataframe that extends into future and history +# future_dates = my_model.make_future_dataframe(periods=365) + +# Get min date and then go back 1 month +dt = min(sales['ds'].values) +# date1 = datetime.datetime.strptime(dt, "%y/%m/%d").date() +date1 = datetime.datetime.strptime(dt, "%Y-%m-%d").date() + +# Subtract one month +start_date = date1 - relativedelta(months=1) + +# Get max date and then get future dates for 1 month +dt1 = max(sales['ds'].values) +# date2 = datetime.datetime.strptime(dt1, "%y/%m/%d").date() +date2 = datetime.datetime.strptime(dt1, "%Y-%m-%d").date() + +# Add one month +end_date = date2 + relativedelta(months=1) +# end_date= str(end_value) + +# Create date range using start date and end date +date_range = pd.date_range(str(start_date), str(end_date)) + +# Create data frame for the dates to be passed to predict function +future_dates = pd.DataFrame({'ds': date_range}) + +# forecast +forecast_df = my_model.predict(future_dates) +# df_5 = forecast_df.head(5) +# for index, row in sales.iterrows(): +# print(row['ds']) +# Export results to Advanced SQL Engine through standard output in expected format. +# for index, row in future_dates.iterrows(): +# print(row['ds']) +# for ind, column in enumerate(forecast_df.columns): +# print(column) +for index, row in forecast_df.iterrows(): + print(row['ds'], delimiter, row['yhat'], delimiter,row['yhat_lower'], delimiter, row['yhat_upper'], delimiter, row['trend'], delimiter, row['trend_lower'], delimiter, row['trend_upper']) diff --git a/VantageCloud_Lake/UseCases/Telco_Customer_Churn/VCL_Telco_Customer_Churn_Python.ipynb b/VantageCloud_Lake/UseCases/Telco_Customer_Churn/VCL_Telco_Customer_Churn_Python.ipynb new file mode 100644 index 00000000..eb4db4d3 --- /dev/null +++ b/VantageCloud_Lake/UseCases/Telco_Customer_Churn/VCL_Telco_Customer_Churn_Python.ipynb @@ -0,0 +1,1576 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "78ad8a32", + "metadata": {}, + "source": [ + "
    \n", + "

    \n", + " Telco Customer Churn\n", + "
    \n", + " \"Teradata\"\n", + "

    \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "454c6ae9", + "metadata": {}, + "source": [ + "

    Introduction

    \n", + "\n", + "

    \n", + "Customer churn is a concern for all companies, but the complexity makes it difficult to track. Customers may leave due to various reasons such dissatisfaction with service quality, pricing, customer service, or finding better alternatives from competitors. Although some churn may be expected, companies aim to retain their customers to avoid using additional resources to find new customers. Thus, with the help of Teradata Vantage, companies can attain their goal of identifying the factors contributing to the churn, so they can take appropriate measures to retain customers. Vantage’s capabilities allow companies to analyze large amounts of customer data, such as usage patterns, billing information, demographics, and interactions, to find patterns that may indicate customers who are at risk of churning. Plus, Teradata’s machine learning and predictive analytics can be used to build models to predict customers which are likely to churn in the future. This information will give companies the chance to intervene, including sending targeted marketing campaigns, personalized offers, improved customer service, or addressing customer concern.

    \n", + "

    Business Values

    \n", + "
      \n", + "
    • Determine characteristics of the company that are less favorable to consumers.
    • \n", + "
    • Identify customers at risk of leaving.
    • \n", + "
    • Identify customer behavior before churning to allow for time to intervene to save customers.
    • \n", + "
    • Determine when to begin targeted marketing or offer promotions.
    • \n", + "
    • Increase customer retention and reduce churn rate.
    • \n", + "
    \n", + "

    Why Vantage?

    \n", + "

    \n", + "Traditional ML and AI development and deployment pipelines require users to manually combine various tools and techniques across the lifecycle. This leads to lengthy, fragile, manual, error-prone processes that are, in many cases, impossible to migrate out of the lab and into production in order to realize business value.
    ClearScape Analytics helps to solve this “development to deployment gap” by providing highly scalable, performant, and easy-to-use analytic capabilities that address all aspects of the development lifecycle. The same tools and techniques that data scientists use in development can be seamlessly deployed into production using the same code, platform, and operational pipeline.

    \n", + "\n", + "

    \n", + "Managing telco churn is complex and requires continuous monitoring, analysis, and proactive customer engagement strategies. By using data and advanced analytics, telecom companies can better understand customer behavior and preferences, and take proactive measures to retain customers and maintain profitability.

    \n", + "\n", + "

    \n", + "Let's demonstrate this use case with sample data using InDb analytics in Vantage which can pre-process and analyze huge amounts of data and at scale. \n", + "

    " + ] + }, + { + "cell_type": "markdown", + "id": "22173c1b-a4eb-4cd7-b0ae-ba68bc39aba2", + "metadata": {}, + "source": [ + "
    \n", + "

    1. Configure the environment

    \n", + "

    \n", + "Before we start working with our data, we need to set up our environment. This involves importing the necessary packages and establishing a connection to Vantage.\n", + "
    \n", + "Here's how we can do this:

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8873e644-f907-45b7-bf14-6472fe4637d2", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install dotenv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5199b325-11f8-4dbd-a13f-fadf334c58c6", + "metadata": {}, + "outputs": [], + "source": [ + "#import libraries\n", + "import matplotlib.pyplot as plt \n", + "import getpass\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "warnings.simplefilter(action='ignore', category=DeprecationWarning)\n", + "warnings.simplefilter(action='ignore', category=RuntimeWarning)\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", + "\n", + "from teradataml import *\n", + "\n", + "import plotly.express as px\n", + "from plotly.subplots import make_subplots\n", + "import plotly.graph_objects as go\n", + "from dotenv import load_dotenv, dotenv_values\n", + "\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import roc_auc_score\n", + "from sklearn.metrics import roc_curve\n", + "display.max_rows=5" + ] + }, + { + "cell_type": "markdown", + "id": "113ada1d-a5ff-4d5e-9145-f0f03b26b3f2", + "metadata": {}, + "source": [ + "
    \n", + "

    2. Connect to VantageCloud Lake

    \n", + "

    Connect to VantageCloud using create_context from the teradataml Python library. If this environment has been prepared for connecting to a VantageCloud Lake OAF Container, all the details required will be loaded and you will see an acknowledgement after executing this cell.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eb0165cd-c7eb-40cc-8eac-84ad0ec3ba52", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Checking if this environment is ready to connect to VantageCloud Lake...\")\n", + "\n", + "if os.path.exists(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\"):\n", + " print(\"Your environment parameter file exist. Please proceed with this use case.\")\n", + " # Load all the variables from the .env file into a dictionary\n", + " env_vars = dotenv_values(\"/home/jovyan/JupyterLabRoot/VantageCloud_Lake/.config/.env\")\n", + " # Create the Context\n", + " eng = create_context(host=env_vars.get(\"host\"), username=env_vars.get(\"username\"), password=env_vars.get(\"my_variable\"))\n", + " execute_sql('''SET query_band='DEMO=VCL_Telco_Customer_Churn_Python.ipynb;' UPDATE FOR SESSION; ''')\n", + " print(\"Connected to VantageCloud Lake with:\", eng)\n", + "else:\n", + " print(\"Your environment has not been prepared for connecting to VantageCloud Lake.\")\n", + " print(\"Please contact the support team.\")" + ] + }, + { + "cell_type": "markdown", + "id": "6d8f8388-e318-4bf4-84c1-7dfcf2d1dd40", + "metadata": {}, + "source": [ + "
    \n", + "

    3. Load the data

    \n", + "\n", + "

    We have provided data for this demo in the lake environment. The data is available in the database \"DEMO_Telco\". Your user should have read access to the database. In case of any issues please write a mail to the support group (\"SC230208@teradata.com\").

    \n", + " \n", + "

    **Note: The tables are available in DEMO_Telco_DB database and we have created views in DEMO_Telco database which are used in the cells below

    " + ] + }, + { + "cell_type": "markdown", + "id": "bdd6dd8c", + "metadata": {}, + "source": [ + "
    \n", + "

    4. Data Exploration

    " + ] + }, + { + "cell_type": "markdown", + "id": "13288769-f1b3-40a5-8cad-95e5f4ae92fd", + "metadata": {}, + "source": [ + "

    Customer Churn

    \n", + "

    Let us start by creating a \"Virtual DataFrame\" that points directly to the dataset in Vantage. We then begin our analysis by checking the shape of the DataFrame and examining the data types of all its columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d40df274-d9cb-439b-93bb-343d317f052c", + "metadata": {}, + "outputs": [], + "source": [ + "tdf = DataFrame(in_schema(\"DEMO_Telco\", \"Customer_Churn\"))\n", + "tdf" + ] + }, + { + "cell_type": "markdown", + "id": "1d620292-c936-4546-89eb-59fd50c35221", + "metadata": {}, + "source": [ + "

    We can check the demographics of data by shape and info method.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "279ee6be-9288-41ae-b21a-f2389add4623", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Shape of the data: \", tdf.shape)\n", + "tdf.info()" + ] + }, + { + "cell_type": "markdown", + "id": "4d9927f9-f0f6-4f45-966d-7b7b2ca36f84", + "metadata": {}, + "source": [ + "

    As we can see from above result our dataset has 7043 rows with 21 columns.

    " + ] + }, + { + "cell_type": "markdown", + "id": "b03454cf-d47a-4edc-aea4-5b517b7da9d6", + "metadata": {}, + "source": [ + "

    Summary of Columns
    \n", + "

    We can use the ColumnSummary function for quickly examining the columns, their datatypes, and summary of NULLs/non-NULLs for a given table.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21eece2c-533a-40e3-bcad-4ed4bb2b6cf3", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import ColumnSummary\n", + "obj = ColumnSummary(data=tdf,\n", + " target_columns=[':']\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7eeb1e86-c00a-48d5-8e3b-363118c847ce", + "metadata": {}, + "outputs": [], + "source": [ + "obj.result.head(21)" + ] + }, + { + "cell_type": "markdown", + "id": "a91e3850-12c5-4b74-b17d-852092e81925", + "metadata": {}, + "source": [ + "
    \n", + "

    4.1 Exploratory Data Analysis

    " + ] + }, + { + "cell_type": "markdown", + "id": "befaaeb8-fab9-43f6-8a0a-efdb0e486377", + "metadata": {}, + "source": [ + "

    \n", + "Exploratory Data Analysis (EDA) is a process where we visually and statistically examine, analyze, and summarize data to comprehend its characteristics, patterns, and relationships. This approach is crucial for gaining insights and a deeper understanding of the dataset at hand.
    First let us analyse the Gender and Churn distributions in our data.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e342ab59-0673-4b4d-b017-b14b278a5277", + "metadata": {}, + "outputs": [], + "source": [ + "d1=tdf.select(['Gender','CustomerID']).groupby('Gender').count()\n", + "d1 = d1.assign(drop_columns=True,\n", + " Gender=d1.Gender,\n", + " Count=d1.count_CustomerID)\n", + "d1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "75cadab6-8ad8-46bb-914c-24985f0a64a6", + "metadata": {}, + "outputs": [], + "source": [ + "d2=tdf.select(['Churn','CustomerID']).groupby('Churn').count()\n", + "d2 = d2.assign(drop_columns=True,\n", + " Churn=d2.Churn,\n", + " Count=d2.count_CustomerID)\n", + "d2" + ] + }, + { + "cell_type": "markdown", + "id": "25a968ef-4b70-4b6b-a31d-f185be1f2609", + "metadata": {}, + "source": [ + "

    \n", + "We can see that the aggregated data is available to us in teradataml dataframe. Let's visualize this data to better understand the Churn and gender distributions. Clearscape Analytics can easily integrate with 3rd party visualization tools like Tableau, PowerBI or many python modules available like plotly, seaborn etc. We can do all the calculations and pre-processing on Vantage and pass only the necessary information to visulazation tools, this will not only make the calculation faster but also reduce the overall time due to less data movement between tools.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d38b54fe-bbb5-45dd-b685-c82be89211f3", + "metadata": {}, + "outputs": [], + "source": [ + "d1=d1.to_pandas().reset_index()\n", + "d2=d2.to_pandas().reset_index()\n", + "#Gender and Churn percentage distribution\n", + "# Create subplots: use 'domain' type for Pie subplot\n", + "fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])\n", + "fig.add_trace(go.Pie(labels=d1['Gender'], values=d1['Count'], name=\"Gender\"),\n", + " 1, 1)\n", + "fig.add_trace(go.Pie(labels=d2['Churn'], values=d2['Count'], name=\"Churn\"),\n", + " 1, 2)\n", + "\n", + "# Use `hole` to create a donut-like pie chart\n", + "fig.update_traces(hole=.4, hoverinfo=\"label+percent+name\", textfont_size=16)\n", + "\n", + "fig.update_layout(\n", + " title_text=\"Gender and Churn Distributions\",\n", + " # Add annotations in the center of the donut pies.\n", + " annotations=[dict(text='Gender', x=0.16, y=0.5, font_size=20, showarrow=False),\n", + " dict(text='Churn', x=0.84, y=0.5, font_size=20, showarrow=False)])\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6d394641-ba1c-44de-9db3-be2286aa3d13", + "metadata": {}, + "source": [ + "

    From the above plot we can see that 26.6 % of customers switched to another firm.
    And of total customers 49.5 % are female and 50.5 % are male.

    " + ] + }, + { + "cell_type": "markdown", + "id": "58fc0a42-d5d8-404c-bafd-49f40457bd2a", + "metadata": {}, + "source": [ + "

    Now, let us see the chrun with respect to gender.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56d127df-8eea-4d51-9f68-7179a3969884", + "metadata": {}, + "outputs": [], + "source": [ + "d3=tdf.select(['Churn','Gender','CustomerID']).groupby(['Churn','Gender']).count()\n", + "d3 = d3.assign(drop_columns=True,\n", + " Churn=d3.Churn,\n", + " Gender=d3.Gender, \n", + " Count=d3.count_CustomerID)\n", + "d3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8075c4b0-f668-4924-bf32-ef8c3a375c92", + "metadata": {}, + "outputs": [], + "source": [ + "d3=d3.to_pandas().reset_index()\n", + "fig2=px.sunburst(d3,path=['Churn','Gender'],values='Count')\n", + "fig2.update_layout(\n", + " title_text=\"Churn Distribution w.r.t Gender\")\n", + "fig2.show()" + ] + }, + { + "cell_type": "markdown", + "id": "eedfa546-3b86-4aa8-a4b9-1c47f922c5db", + "metadata": {}, + "source": [ + "

    We can see that there is negligible difference in customer count who changed the service provider. Both genders behaved in similar fashion when it comes to migrating to another service provider.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "43b27db1-3a04-440b-a382-da72669babb3", + "metadata": {}, + "outputs": [], + "source": [ + "d4=tdf.select(['Churn','Contract','CustomerID']).groupby(['Churn','Contract']).count()\n", + "d4 = d4.assign(drop_columns=True,\n", + " Churn=d4.Churn,\n", + " Contract=d4.Contract, \n", + " Count=d4.count_CustomerID)\n", + "d4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d0d4bd6b-f9fa-4930-ba88-379b1308c795", + "metadata": {}, + "outputs": [], + "source": [ + "d4=d4.to_pandas().reset_index()\n", + "fig4 = px.bar(d4,x=\"Churn\",y=\"Count\", color=\"Contract\", barmode=\"group\", title=\"Customer contract distribution\")\n", + "fig4.update_layout(width=700, height=500, bargap=0.1)\n", + "fig4.show()" + ] + }, + { + "cell_type": "markdown", + "id": "cb97cf05-b143-43e9-bf3a-b7ed267c1ad7", + "metadata": {}, + "source": [ + "

    We can see that about 75% of customer with Month-to-Month Contract opted to move out as compared to 13% of customers with One Year Contract and 3% with Two Year Contract.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57466f9f-ab11-4e32-ae9f-7c0fce65ed4d", + "metadata": {}, + "outputs": [], + "source": [ + "d5=tdf.select(['PaymentMethod','CustomerID']).groupby('PaymentMethod').count()\n", + "d5 = d5.assign(drop_columns=True,\n", + " PaymentMethod=d5.PaymentMethod,\n", + " Count=d5.count_CustomerID)\n", + "d5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21d214d3-db22-4602-9fa2-9c694282d056", + "metadata": {}, + "outputs": [], + "source": [ + "d5=d5.to_pandas().reset_index()\n", + "fig5 = go.Figure(data=[go.Pie(labels=d5['PaymentMethod'], values=d5['Count'], hole=.3)])\n", + "fig5.update_layout(title_text=\"Payment Method Distribution\")\n", + "fig5.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ea725ada-aa8c-4dec-9648-1cdc26a17cd9", + "metadata": {}, + "outputs": [], + "source": [ + "d6=tdf.select(['Churn','PaymentMethod','CustomerID']).groupby(['Churn','PaymentMethod']).count()\n", + "d6 = d6.assign(drop_columns=True,\n", + " Churn=d6.Churn,\n", + " PaymentMethod=d6.PaymentMethod, \n", + " Count=d6.count_CustomerID)\n", + "d6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a576fade-bb95-4c62-ab6f-94c06d0b5ddf", + "metadata": {}, + "outputs": [], + "source": [ + "d6=d6.to_pandas().reset_index()\n", + "fig6 = px.bar(d6,x=\"Churn\",y=\"Count\", color=\"PaymentMethod\", barmode=\"stack\", title=\"Customer Payment Method distribution w.r.t. Churn\")\n", + "fig6.update_layout(width=700, height=500, bargap=0.1)\n", + "fig6.show()" + ] + }, + { + "cell_type": "markdown", + "id": "8fd84375-3d85-47cd-9076-6a6b8ea3e496", + "metadata": {}, + "source": [ + "

    Major customers who moved out were having Electronic Check as Payment Method.\n", + "
    Customers who opted for Credit-Card automatic transfer or Bank Automatic Transfer and Mailed Check as Payment Method were less likely to move out.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eb375b22-f520-4bc9-a154-3ff05514d85a", + "metadata": {}, + "outputs": [], + "source": [ + "d7=tdf.select(['Churn','InternetService','Gender','CustomerID']).groupby(['Churn','InternetService','Gender']).count()\n", + "d7 = d7.assign(drop_columns=True,\n", + " Churn=d7.Churn,\n", + " InternetService=d7.InternetService, \n", + " Gender=d7.Gender,\n", + " Count=d7.count_CustomerID)\n", + "d7" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c909c210-8342-44a1-be13-b648198251a9", + "metadata": {}, + "outputs": [], + "source": [ + "d7.sort([\"InternetService\"]).head(21)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4945610-0f80-4bc2-8bfd-cc1e0901a999", + "metadata": {}, + "outputs": [], + "source": [ + "d7=d7.to_pandas().reset_index()\n", + "fig7 = go.Figure()\n", + "\n", + "for t in d7['Churn'].unique():\n", + " dfp = d7[d7['Churn']==t]\n", + " fig7.add_traces(go.Bar(x=[dfp['InternetService'], dfp['Gender']],\n", + " y=dfp['Count'],\n", + " width=0.75,\n", + " customdata=d7['Churn'],\n", + " name='Churn :' +str(dfp['Churn'].values[0]) \n", + " )\n", + " )\n", + "\n", + "fig7.update_layout(barmode='stack',\n", + " title_text=\"Churn Distribution w.r.t. Internet Service and Gender\")\n", + "fig7.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1bc9f214-7877-43ad-853a-c780e6e22dba", + "metadata": {}, + "source": [ + "

    We can see that a lot of customers choose the Fiber optic service as compared to DSL but it's also evident that the customers who use Fiber optic have high churn rate, this might suggest a dissatisfaction with this type of internet service.\n", + "
    Customers having DSL service have less churn rate compared to Fiber optic service.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c63e5181-b134-4335-9c25-fd2e02b0a5f5", + "metadata": {}, + "outputs": [], + "source": [ + "d8=tdf.select(['Churn','Dependents','CustomerID']).groupby(['Churn','Dependents']).count()\n", + "d8 = d8.assign(drop_columns=True,\n", + " Churn=d8.Churn,\n", + " Dependents=d8.Dependents,\n", + " Count=d8.count_CustomerID)\n", + "d8" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8de41aa2-1e2c-43aa-ac1b-cb38daa44861", + "metadata": {}, + "outputs": [], + "source": [ + "d8=d8.to_pandas().reset_index()\n", + "color_map = {\"Yes\": \"#FF97FF\", \"No\": \"#AB63FA\"}\n", + "fig8 = px.bar(d8, x=\"Churn\",y=\"Count\", color=\"Dependents\", barmode=\"group\", title=\"Dependents distribution\", color_discrete_map=color_map)\n", + "fig8.update_layout(width=700, height=500, bargap=0.1)\n", + "fig8.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4af82750-0c91-41e9-9ec6-06f3e82eefc1", + "metadata": {}, + "source": [ + "

    Customers without dependents are more likely to churn.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d4ca94e9-b31f-4fb5-824b-d21f58ef3055", + "metadata": {}, + "outputs": [], + "source": [ + "d9=tdf.select(['Churn','Partner','CustomerID']).groupby(['Churn','Partner']).count()\n", + "d9 = d9.assign(drop_columns=True,\n", + " Churn=d9.Churn,\n", + " Partner=d9.Partner,\n", + " Count=d9.count_CustomerID)\n", + "d9" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e587308-8648-406b-9aca-f8906d8abe60", + "metadata": {}, + "outputs": [], + "source": [ + "d9=d9.to_pandas().reset_index()\n", + "color_map = {\"Yes\": '#FFA15A', \"No\": '#00CC96'}\n", + "fig9 = px.bar(d9, x=\"Churn\",y=\"Count\", color=\"Partner\", barmode=\"group\", title=\"Chrun distribution w.r.t. Partners\", color_discrete_map=color_map)\n", + "fig9.update_layout(width=700, height=500, bargap=0.1)\n", + "fig9.show()" + ] + }, + { + "cell_type": "markdown", + "id": "649567b1-3232-49bf-840a-8518b38c29b4", + "metadata": {}, + "source": [ + "

    Customers that don't have partners are more likely to churn.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5efe37b2-f14b-4499-abde-0f155cb8e3f0", + "metadata": {}, + "outputs": [], + "source": [ + "d10=tdf.select(['Churn','PaperlessBilling','CustomerID']).groupby(['Churn','PaperlessBilling']).count()\n", + "d10 = d10.assign(drop_columns=True,\n", + " Churn=d10.Churn,\n", + " PaperlessBilling=d10.PaperlessBilling,\n", + " Count=d10.count_CustomerID)\n", + "d10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f24940fb-b15f-4460-803a-8c82ffbef623", + "metadata": {}, + "outputs": [], + "source": [ + "d10=d10.to_pandas().reset_index()\n", + "color_map = {\"Yes\": '#FFA15A', \"No\": '#00CC96'}\n", + "fig10 = px.bar(d10, x=\"Churn\",y=\"Count\", color=\"PaperlessBilling\", title=\"Chrun distribution w.r.t. Paperless Billing\", color_discrete_map=color_map)\n", + "fig10.update_layout(width=700, height=500, bargap=0.1)\n", + "fig10.show()" + ] + }, + { + "cell_type": "markdown", + "id": "fd6697e7-1dcc-44b1-9428-290856a1cb0c", + "metadata": {}, + "source": [ + "

    Customers with Paperless Billing are most likely to churn.

    " + ] + }, + { + "cell_type": "markdown", + "id": "fa5ea57f-b8ba-44eb-9d9b-cf07d37b77b5", + "metadata": {}, + "source": [ + "
    \n", + "

    5. Data Preprocessing

    " + ] + }, + { + "cell_type": "markdown", + "id": "b58490d2-1f7a-4941-a62a-e99a4b7f7543", + "metadata": {}, + "source": [ + "

    Before the data can be used for model creation; we will need to do some data cleansing and transformation on it. We can do this InDb with Teradata Vantage's inbuilt functions.
    We will use the CategoricalSummary function to showcase the distinct values and their corresponding counts for each specified column in the input DataFrame. This function provides a concise summary of categorical data, aiding in a quick understanding of the distribution of values within the specified columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ddf75f76-eb84-4f9d-856b-4051f0df6d70", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import CategoricalSummary\n", + "CatSum = CategoricalSummary(data=tdf,target_columns=[\"MultipleLines\",\"InternetService\",\"OnlineSecurity\",\"OnlineBackup\",\"DeviceProtection\",\"TechSupport\",\"StreamingTV\",\"StreamingMovies\"])\n", + "CatSum.result.sort(\"ColumnName\")" + ] + }, + { + "cell_type": "markdown", + "id": "84680551-fbca-45e4-83e9-c5f90fa3078b", + "metadata": {}, + "source": [ + "

    \n", + "As we can see from the sample data above and the categorical summary values, the columns

    \n", + "
    • OnlineSecurity
    • \n", + "
    • OnlineBackup
    • \n", + "
    • DeviceProtection
    • \n", + "
    • TechSupport
    • \n", + "
    • StreamingTV
    • \n", + "
    • StreamingMovies
    • \n", + "

    are related to InternetService, wherever InternetService value is \"No\" the column have value of \"No internet service\". For our model let us replace \"No internet service\" to No in our column. We will do similar operation for replacing \"No phone service\" to \"No\".
    We will use sqlalchemy's oreplace function to replace the respective strings to desired value.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f0f4876-7f8d-4177-8afc-f7c474b6ac4a", + "metadata": {}, + "outputs": [], + "source": [ + "from sqlalchemy import func\n", + "\n", + "\n", + "tdf = tdf.assign(oreplace_MultipleLines=func.oreplace(tdf.MultipleLines.expression, \"No phone service\",\"No\"),\n", + " oreplace_OnlineSecurity=func.oreplace(tdf.OnlineSecurity.expression, \"No internet service\",\"No\"),\n", + " oreplace_OnlineBackup=func.oreplace(tdf.OnlineBackup.expression, \"No internet service\",\"No\"),\n", + " oreplace_DeviceProtection=func.oreplace(tdf.DeviceProtection.expression, \"No internet service\",\"No\"), oreplace_TechSupport=func.oreplace(tdf.TechSupport.expression, \"No internet service\",\"No\"),\n", + " oreplace_StreamingTV=func.oreplace(tdf.StreamingTV.expression, \"No internet service\",\"No\"),\n", + " oreplace_StreamingMovies=func.oreplace(tdf.StreamingMovies.expression, \"No internet service\",\"No\"))\n", + "tdf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a5439705-8a1a-4060-b344-2f3245b18e57", + "metadata": {}, + "outputs": [], + "source": [ + "# now lets drop the extra columns, rename the columns in dataframe\n", + "from teradataml.dataframe.sql_functions import case\n", + "\n", + "tdf2 = tdf.assign(drop_columns=True\n", + " ,CustomerID=tdf.CustomerID \n", + " ,Gender=tdf.Gender \n", + " ,SeniorCitizen=tdf.SeniorCitizen\n", + " ,Partner=tdf.Partner\n", + " ,Dependents=tdf.Dependents\n", + " ,Tenure=tdf.Tenure\n", + " ,PhoneService=tdf.PhoneService \n", + " ,MultipleLines=tdf.oreplace_MultipleLines \n", + " ,InternetService=tdf.InternetService \n", + " ,OnlineSecurity=tdf.oreplace_OnlineSecurity \n", + " ,OnlineBackup=tdf.oreplace_OnlineBackup \n", + " ,DeviceProtection=tdf.oreplace_DeviceProtection \n", + " ,TechSupport=tdf.oreplace_TechSupport \n", + " ,StreamingTV=tdf.oreplace_StreamingTV \n", + " ,StreamingMovies=tdf.oreplace_StreamingMovies \n", + " ,Contract=tdf.Contract \n", + " ,PaperlessBilling=tdf.PaperlessBilling \n", + " ,PaymentMethod=tdf.PaymentMethod \n", + " ,MonthlyCharges=tdf.MonthlyCharges \n", + " ,TotalCharges=tdf.TotalCharges \n", + " ,Churn = case({ \"Yes\" : 1, \"No\" : 0},value=tdf.Churn,else_=0) ) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c5bddfa5-6a90-477b-8c38-aa2985736fe6", + "metadata": {}, + "outputs": [], + "source": [ + "tdf2" + ] + }, + { + "cell_type": "markdown", + "id": "d256d17f-1c10-4bc2-978c-4b9a2a184437", + "metadata": {}, + "source": [ + "

    Onehotencoding & Ordinal encoding

    \n", + "

    From our categorical attributes we can see that there are limited distinct values in each of these columns. We will use Teradata's OneHotEncodingFit and Transform and OrdinalEncodingFit and Transform functions to convert the categorical attributes to numerical.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bc112884-d0bf-462d-9024-003bb4c2640a", + "metadata": {}, + "outputs": [], + "source": [ + "onehotfit_df = OneHotEncodingFit(data=tdf2,\n", + " is_input_dense=True,\n", + " approach=\"auto\",\n", + " target_column=[\"Gender\",\"Partner\",\"Dependents\",\"PhoneService\",\"MultipleLines\",\"OnlineSecurity\"\n", + " ,\"OnlineBackup\",\"DeviceProtection\",\"TechSupport\",\"StreamingTV\",\"StreamingMovies\",\n", + " \"PaperlessBilling\"],\n", + " category_counts=[2,2,2,2,2,2,2,2,2,2,2,2])" + ] + }, + { + "cell_type": "markdown", + "id": "2c136b69-41c1-42f1-bf47-89d1dae800a3", + "metadata": {}, + "source": [ + "

    \n", + "The other categorical columns

    \n", + "
      \n", + "
    • InternetService
    • \n", + "
    • Contract
    • \n", + "
    • PaperlessBilling
    • \n", + "
    • PaymentMethod
    • \n", + "

    have more values where we can apply ordinalencoding on it

    \n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e6b2946-b138-4ad6-aaa7-dff619fcf1e7", + "metadata": {}, + "outputs": [], + "source": [ + "ordinalfit_df = OrdinalEncodingFit(target_column=['InternetService','Contract','PaperlessBilling','PaymentMethod'],\n", + " default_value=-1,\n", + " data=tdf2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffe66188-9511-485c-84e5-2638f758f4c6", + "metadata": {}, + "outputs": [], + "source": [ + "ordinalfit_df.result" + ] + }, + { + "cell_type": "markdown", + "id": "7a437c68-b650-4300-a3e8-cd39a5e21054", + "metadata": {}, + "source": [ + "

    Scale the numerical values

    For the numercial attributes we will use ScaleFit and ScaleTransform function to scale the specified input table columns i.e perform the specific scale methods like standard deviation, mean etc to the input columns.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "059dd73a-3751-46a8-85bf-7a11a7eacb7c", + "metadata": {}, + "outputs": [], + "source": [ + "scalefit_df = ScaleFit(data=tdf2,\n", + " target_columns=['MonthlyCharges','TotalCharges'],\n", + " scale_method=\"MIDRANGE\",\n", + " miss_value=\"KEEP\",\n", + " global_scale=False)" + ] + }, + { + "cell_type": "markdown", + "id": "faec04de-8197-4c10-bcc5-3bc3f605e81e", + "metadata": {}, + "source": [ + "

    Putting it altogether

    We will use ColumnTransformer function to apply all the transformations from the fit tables created below in one go.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d108b118-0970-4c84-9371-df4ef125ce69", + "metadata": {}, + "outputs": [], + "source": [ + "ColumnTransformer_out = ColumnTransformer(fillrowid_column_name=\"output_value\",\n", + " input_data=tdf2,\n", + " onehotencoding_fit_data=onehotfit_df.result,\n", + " ordinalencoding_fit_data=ordinalfit_df.result,\n", + " scale_fit_data=scalefit_df.output)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4da18dae-fec0-4bba-b87c-ab7045fd21e1", + "metadata": {}, + "outputs": [], + "source": [ + "Transformed_data= ColumnTransformer_out.result.assign(drop_columns=True,\n", + " Churn=tdf2.Churn,\n", + " CustomerID=ColumnTransformer_out.result.CustomerID,\n", + " SeniorCitizen=ColumnTransformer_out.result.SeniorCitizen,\n", + " Tenure=ColumnTransformer_out.result.Tenure,\n", + " InternetService=ColumnTransformer_out.result.InternetService,\n", + " Contract=ColumnTransformer_out.result.Contract,\n", + " PaperlessBilling=ColumnTransformer_out.result.PaperlessBilling,\n", + " PaymentMethod=ColumnTransformer_out.result.PaymentMethod,\n", + " MonthlyCharges=ColumnTransformer_out.result.MonthlyCharges,\n", + " TotalCharges=ColumnTransformer_out.result.TotalCharges,\n", + " Gender_0=ColumnTransformer_out.result.Gender_0,\n", + " Gender_1=ColumnTransformer_out.result.Gender_1,\n", + " Partner_0=ColumnTransformer_out.result.Partner_0,\n", + " Partner_1=ColumnTransformer_out.result.Partner_1,\n", + " Dependents_0=ColumnTransformer_out.result.Dependents_0,\n", + " Dependents_1=ColumnTransformer_out.result.Dependents_1,\n", + " PhoneService_0=ColumnTransformer_out.result.PhoneService_0,\n", + " PhoneService_1=ColumnTransformer_out.result.PhoneService_1,\n", + " MultipleLines_0=ColumnTransformer_out.result.MultipleLines_0,\n", + " MultipleLines_1=ColumnTransformer_out.result.MultipleLines_1,\n", + " OnlineSecurity_0=ColumnTransformer_out.result.OnlineSecurity_0,\n", + " OnlineSecurity_1=ColumnTransformer_out.result.OnlineSecurity_1,\n", + " OnlineBackup_0=ColumnTransformer_out.result.OnlineBackup_0,\n", + " OnlineBackup_1=ColumnTransformer_out.result.OnlineBackup_1,\n", + " DeviceProtection_0=ColumnTransformer_out.result.DeviceProtection_0,\n", + " DeviceProtection_1=ColumnTransformer_out.result.DeviceProtection_1,\n", + " TechSupport_0=ColumnTransformer_out.result.TechSupport_0,\n", + " TechSupport_1=ColumnTransformer_out.result.TechSupport_1,\n", + " StreamingTV_0=ColumnTransformer_out.result.StreamingTV_0,\n", + " StreamingTV_1=ColumnTransformer_out.result.StreamingTV_1,\n", + " StreamingMovies_0=ColumnTransformer_out.result.StreamingMovies_0,\n", + " StreamingMovies_1=ColumnTransformer_out.result.StreamingMovies_1,\n", + " PaperlessBilling_0=ColumnTransformer_out.result.PaperlessBilling_0,\n", + " PaperlessBilling_1=ColumnTransformer_out.result.PaperlessBilling_1)\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e4c30b0-4989-4540-bf60-3e4631afeacd", + "metadata": {}, + "outputs": [], + "source": [ + "Transformed_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f38c7f0f-6da8-4ef9-acaf-0774d29c92e8", + "metadata": {}, + "outputs": [], + "source": [ + "Transformed_data.shape" + ] + }, + { + "cell_type": "markdown", + "id": "0edef2c8-e568-4626-9377-e189d66e3350", + "metadata": {}, + "source": [ + "

    We can see from above how our data is transformed from the original values.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "05c50e66-97a9-4fc9-8bd1-20654dc318fc", + "metadata": {}, + "outputs": [], + "source": [ + "# Copying the intermediate table to database\n", + "Transformed_data.to_sql(\"Transformed_data\",primary_index = \"CustomerID\", if_exists = \"replace\")" + ] + }, + { + "cell_type": "markdown", + "id": "37551d5e-2366-42cf-83f9-1a48ee438c6c", + "metadata": {}, + "source": [ + "

    Create train and test data

    Now we have transformed our data and it is fit to be used in machine learning models, let us split the whole dataset into train and test sets for model training and scoring. We will use TrainTestSplit function for this task.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b22bf0d0-255e-4ea9-8bdc-ffac9ea02f34", + "metadata": {}, + "outputs": [], + "source": [ + "TrainTestSplit_out = TrainTestSplit(\n", + " data = DataFrame('Transformed_data'),\n", + " id_column = \"CustomerID\",\n", + " train_size = 0.75,\n", + " test_size = 0.25,\n", + " seed = 21\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "19d382b8-7f46-43f8-aee9-5598d6f24ebf", + "metadata": {}, + "outputs": [], + "source": [ + "# Split into 2 virtual dataframes\n", + "df_train = TrainTestSplit_out.result[TrainTestSplit_out.result['TD_IsTrainRow'] == 1].drop(['TD_IsTrainRow'], axis = 1)\n", + "df_test = TrainTestSplit_out.result[TrainTestSplit_out.result['TD_IsTrainRow'] == 0].drop(['TD_IsTrainRow'], axis = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "88e87734-1eb6-47a6-87d4-3b2d0585088a", + "metadata": {}, + "source": [ + "

    We have done our preprocessing of data and we created our training and test datasets, let's now create some predictive models." + ] + }, + { + "cell_type": "markdown", + "id": "3624ff0f-2e80-450e-a76e-85398a8c73da", + "metadata": {}, + "source": [ + "


    \n", + "\n", + "

    6. InDb Model Training and Scoring

    " + ] + }, + { + "cell_type": "markdown", + "id": "2893fa15-2812-473d-b91c-5949ba436461", + "metadata": {}, + "source": [ + "
    \n", + "

    6.1 Logistic Regression

    " + ] + }, + { + "cell_type": "markdown", + "id": "f4561645-5edd-4e2b-9983-59e77ab4745a", + "metadata": {}, + "source": [ + "

    For our model we will use logistic regression.
    \n", + " Logistic regression is a statistical algorithm used for binary classification problems. It is a type of supervised learning algorithm that predicts the probability of an input belonging to a certain class (e.g., positive or negative) based on its features.
    Logistic regression works by modeling the relationship between the input features and the probability of belonging to a certain class using a logistic function. The logistic function takes the input feature values and maps them onto a probability scale between 0 and 1, which represents the probability of belonging to the positive class.
    \n", + " The GLM function is a generalized linear model (GLM) that performs regression and classification analysis on data sets.\n", + "
    Please refer GLM for function elements and output." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cc6639e3-2427-42d2-b302-08e18196b2b1", + "metadata": {}, + "outputs": [], + "source": [ + "df_train" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e92723cc-1aec-4fee-97fe-96b3e86e7802", + "metadata": {}, + "outputs": [], + "source": [ + "from teradataml import GLM, TDGLMPredict\n", + "\n", + "glm_model = GLM(data = df_train,\n", + " #input_columns = train_col,\n", + " input_columns = ['1:8','10:33'], \n", + " response_column = 'Churn',\n", + " family = 'Binomial')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e3b4239-40a5-4b2c-9589-7d974c574641", + "metadata": {}, + "outputs": [], + "source": [ + "glm_model.result" + ] + }, + { + "cell_type": "markdown", + "id": "a24bb51b-7115-486e-957a-848bad5bc4d9", + "metadata": {}, + "source": [ + "

    We have created our model, let's do the predictions on the test dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cd7ac897-3b98-47f6-a9c8-33a75f6dac4f", + "metadata": {}, + "outputs": [], + "source": [ + "glm_prediction = TDGLMPredict(newdata = df_test, #test_dataset,\n", + " id_column = 'CustomerID',\n", + " object = glm_model.result,\n", + " accumulate = 'Churn',\n", + " family = 'Binomial',\n", + " output_prob=True,\n", + " output_responses = ['0', '1'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c5280b57-9e01-42c4-9b89-5734dc0968bf", + "metadata": {}, + "outputs": [], + "source": [ + "glm_prediction.result\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "498799ce-2607-4cba-94e6-26a40abd7d0e", + "metadata": {}, + "outputs": [], + "source": [ + "out_glm = glm_prediction.result.assign(prediction = glm_prediction.result.prediction.cast(type_ = BYTEINT))\n", + "out_glm = out_glm.assign(prediction = out_glm.prediction.cast(type_ = VARCHAR(2)))\n", + "out_glm = out_glm.assign(Churn = out_glm.Churn.cast(type_ = VARCHAR(2)))\n", + "out_glm" + ] + }, + { + "cell_type": "markdown", + "id": "121887bb-4fb2-429f-99d7-120c6dd47e51", + "metadata": {}, + "source": [ + "

    The output above shows prob_1, i.e. customer will Churn and prob_0, i.e. customer will not Churn. The prediction column uses these probabilities to give a class label, i.e. prediction column.

    " + ] + }, + { + "cell_type": "markdown", + "id": "7fa0a4c0-c4f8-499b-9e60-8bc87684a5c8", + "metadata": { + "tags": [] + }, + "source": [ + "
    \n", + "

    6.2 Evaluation of Logistic Regression Model

    \n", + "

    We will use the ClassificationEvaluator function to evaluate the trained glm model on test data. This will let us know how well our model has performed on unseen data.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "683015ad-d54b-4a33-a71f-345a348ee912", + "metadata": {}, + "outputs": [], + "source": [ + "ClassificationEvaluator_glm = ClassificationEvaluator(\n", + " data = out_glm,\n", + " observation_column = 'Churn',\n", + " prediction_column = 'prediction',\n", + " labels = ['0', '1']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "679b7a22-e08e-414a-aec3-e8ae6b1e0701", + "metadata": {}, + "outputs": [], + "source": [ + "ClassificationEvaluator_glm.output_data.head(10)" + ] + }, + { + "cell_type": "markdown", + "id": "d281b3fa-0793-4e86-986b-26bda09833ec", + "metadata": {}, + "source": [ + "

    The above output shows recall, and F1-score values of confusion matrix.

    \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    ColumnDescription
    PrecisionThe positive predictive value. Refers to the fraction of relevant instances among\n", + "the total retrieved instances.\n", + " Precision answers the following question: what proportion of predicted Positives is truly Positive? \n", + " Precision = (TP)/(TP+FP)
    RecallRefers to the fraction of relevant instances retrieved over the total amount of\n", + "relevant instances. Recall answers a different question: what proportion of actual Positives is correctly classified?\n", + "Recall = (TP)/(TP+FN)
    F1F1 score, defined as the harmonic mean of the precision and recall and is a number between 0 and 1. F1 score maintains a balance between the precision and recall for your classifier. \n", + " F1 = 2*(precision*recall/precision+recall)
    SupportThe number of times a label displays in the Observation Column.
    \n", + "

    **TP:- True Positive , FP :- False Positive, TN :- True Negative , FN :- False Negative

    " + ] + }, + { + "cell_type": "markdown", + "id": "6aaf3776-22c7-4697-a7f8-e5e334067b18", + "metadata": { + "tags": [] + }, + "source": [ + "

    We can also calculate mean absolute error and AUC(Area Under the Curve) for Receiver Operating Characteristic Curve.
    Mean Absolute Error is the summation of the difference between actual and predicted values averaged over the number of observations.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "750ff62e-db60-44cd-b968-38be7a6fcc0d", + "metadata": {}, + "outputs": [], + "source": [ + "glm_pred = glm_prediction.result.to_pandas()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b108741e-a4a9-4c29-a521-e9cc8146cf53", + "metadata": {}, + "outputs": [], + "source": [ + "print(mean_absolute_error(glm_pred['Churn'], glm_pred['prob_1']))" + ] + }, + { + "cell_type": "markdown", + "id": "35733201-e225-4ba5-b712-105992bf177e", + "metadata": {}, + "source": [ + "

    The ROC curve is a graph between TPR(True Positive Rate) and FPR(False Positive Rate). The area under the ROC curve is a metric of how well the model can distinguish between positive and negative classes. The higher the AUC, the better the model's performance in distinguishing between the positive and negative classes.

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5962c501-8e8e-4594-ab63-d6e0df2e07a8", + "metadata": {}, + "outputs": [], + "source": [ + "AUC = roc_auc_score(glm_pred['Churn'], glm_pred['prob_1'])\n", + "AUC" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "483506fb-d59d-4df0-a2fe-9d1e86ffdf72", + "metadata": {}, + "outputs": [], + "source": [ + "fpr, tpr, thresholds = roc_curve(glm_pred['Churn'], glm_pred['prob_1'])\n", + "plt.plot(fpr, tpr, color='orange', label='ROC. AUC = {}'.format(str(AUC)))\n", + "plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('Receiver Operating Characteristic (ROC) Curve')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ae6647ac-3dd6-406a-8d73-fb793b54d28f", + "metadata": {}, + "source": [ + "
    \n", + "

    6.3 XGB

    \n", + "

    \n", + " XGBoost (eXtreme Gradient Boosting) is based on the gradient boosting framework, which is an ensemble learning method that combines multiple weak or base models (typically decision trees) to create a more accurate and robust predictive model. XGBoost improves upon traditional gradient boosting by using a number of optimization techniques, including parallelization, regularization, and efficient handling of missing values, to achieve faster training times and better model performance.
    \n", + " Teradata's XGBoost function is an implementation of the gradient boosted decision tree designed for speed and performance. In gradient boosting, each iteration fits a model to the residuals (errors) of the previous iteration to correct the errors made by existing models. The predicted residual is multiplied by this learning rate and then added to the previous prediction. Models are added sequentially until no further improvements can be made. It is called gradient boosting because it uses a gradient descent algorithm to minimize the loss when adding new models.\n", + "
    Please refer XGBoost for function elements and output." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aff1ebc7-ecb6-44e7-8c8d-b1da9505f9bb", + "metadata": {}, + "outputs": [], + "source": [ + "XGBoost_model = XGBoost(\n", + " data = df_train,\n", + " input_columns = ['1:8','10:33'],\n", + " response_column = 'Churn',\n", + " model_type = 'CLASSIFICATION',\n", + " \n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "062f024d-5e3d-4a59-93d3-763812d70053", + "metadata": {}, + "outputs": [], + "source": [ + "XGBoostPredict_out = XGBoostPredict(\n", + " newdata = df_test,\n", + " object = XGBoost_model.result,\n", + " id_column = 'CustomerID',\n", + " accumulate = 'Churn',\n", + " model_type = 'CLASSIFICATION',\n", + " object_order_column = ['task_index', 'tree_num', 'iter', 'class_num', 'tree_order'],\n", + " output_responses = ['0', '1'],\n", + " output_prob = True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0c70378d-9b30-41e9-bfc3-ae901884f9c4", + "metadata": {}, + "outputs": [], + "source": [ + "out_xgb = XGBoostPredict_out.result.assign(Prediction = XGBoostPredict_out.result.Prediction.cast(type_ = BYTEINT))\n", + "out_xgb = out_xgb.assign(Prediction = out_xgb.Prediction.cast(type_ = VARCHAR(2)))\n", + "out_xgb = out_xgb.assign(Churn = out_xgb.Churn.cast(type_ = VARCHAR(2)))\n", + "out_xgb" + ] + }, + { + "cell_type": "markdown", + "id": "48a42d5b-5fba-4036-b094-19858e2c560f", + "metadata": {}, + "source": [ + "

    We have created our model, let's do the predictions on the test dataset." + ] + }, + { + "cell_type": "markdown", + "id": "0bd173a4-10ef-4528-a6e2-b67d5f4df07e", + "metadata": {}, + "source": [ + "


    \n", + "

    6.4 Evaluation of XGB Model

    " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23fd8827-dc00-4604-9c9e-4ef7352cf834", + "metadata": {}, + "outputs": [], + "source": [ + "ClassificationEvaluator_xgb = ClassificationEvaluator(\n", + " data = out_xgb,\n", + " observation_column = 'Churn',\n", + " prediction_column = 'Prediction',\n", + " labels = ['0', '1']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2aefe83b-aedc-4173-9396-68572258fcd4", + "metadata": {}, + "outputs": [], + "source": [ + "ClassificationEvaluator_xgb.output_data.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e7466ae-b42c-4005-a094-729bb1230b33", + "metadata": {}, + "outputs": [], + "source": [ + "xgb_pred = XGBoostPredict_out.result.to_pandas().reset_index().sort_values(\"CustomerID\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26c69f90-824e-4f84-a5d1-46e771a0ee00", + "metadata": {}, + "outputs": [], + "source": [ + "print(mean_absolute_error(xgb_pred['Churn'], xgb_pred['Prob_1']))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c71ab9ce-e83c-4f1b-82fb-550119a98704", + "metadata": {}, + "outputs": [], + "source": [ + "AUC = roc_auc_score(xgb_pred['Churn'], xgb_pred['Prob_1'])\n", + "AUC" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78aa9c8e-e5e0-4a89-af63-27e1e638023f", + "metadata": {}, + "outputs": [], + "source": [ + "fpr, tpr, thresholds = roc_curve(xgb_pred['Churn'], xgb_pred['Prob_1'])\n", + "plt.plot(fpr, tpr, color='orange', label='ROC. AUC = {}'.format(str(AUC)))\n", + "plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('Receiver Operating Characteristic (ROC) Curve')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e91ddacb-4ca3-405c-93c8-c587788191c4", + "metadata": {}, + "source": [ + "

    Conclusion

    " + ] + }, + { + "cell_type": "markdown", + "id": "516e0588-5e98-4373-8f30-8e8f40898835", + "metadata": {}, + "source": [ + "

    In this demo we have seen how we can do analysis and pre-processing of the data in Vantage using InDb functions. We have also used created two commonly used predictive models for classification and predicted the customers that are likely to churn. " + ] + }, + { + "cell_type": "markdown", + "id": "35ebb886-8da9-479a-8995-c6dd7ccebffd", + "metadata": {}, + "source": [ + "


    \n", + "

    7. Cleanup

    " + ] + }, + { + "cell_type": "markdown", + "id": "f0b01f3e-03fa-4a14-b388-02eeb210b8c1", + "metadata": {}, + "source": [ + "

    Work Tables

    \n", + "

    \n", + "We need to clean up our work tables to prevent errors next time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "914cfbcf-f229-496c-be13-b63c62729291", + "metadata": {}, + "outputs": [], + "source": [ + "tables = ['Transformed_data']\n", + "\n", + "# Loop through the list of tables and execute the drop table command for each table\n", + "for table in tables:\n", + " try:\n", + " db_drop_table(table_name = table)\n", + " except:\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ad94d1e-d82d-4611-b5c7-4180397f6c94", + "metadata": {}, + "outputs": [], + "source": [ + "remove_context()" + ] + }, + { + "cell_type": "markdown", + "id": "10724002-0091-4ef1-b091-71c0a2fdda5a", + "metadata": {}, + "source": [ + "


    " + ] + }, + { + "cell_type": "markdown", + "id": "3eee6695-147e-4b5b-a0e0-ae6a1d9629db", + "metadata": {}, + "source": [ + "Required Materials\n", + "

    Let’s look at the elements we have available for reference for this notebook:

    " + ] + }, + { + "cell_type": "markdown", + "id": "90d6c2a3-92e9-4121-a46a-2beaba63cac2", + "metadata": {}, + "source": [ + "

    Filters:

    \n", + "
      \n", + "
    • Industry: Telco
    • \n", + "
    • Functionality: Machine Learning
    • \n", + "
    • Use Case: Customer Retention
    • \n", + "
    \n", + "

    Related Resources:

    \n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "9094fe39-0a98-43d6-a62b-7c2d36acf654", + "metadata": {}, + "source": [ + "

    Reference Links:

    \n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "a8f9f644", + "metadata": {}, + "source": [ + "Dataset:\n", + "\n", + "- `CustomerID`: unique id of customer\n", + "- `Gender`: Whether the customer is a male or a female\n", + "- `SeniorCitizen`:Whether the customer is a senior citizen or not (1, 0)\n", + "- `Partner`:Whether the customer has a partner or not (Yes, No)\n", + "- `Dependents`:Whether the customer has dependents or not (Yes, No)\n", + "- `Tenure`:Number of months the customer has stayed with the company\n", + "- `PhoneService`:Whether the customer has a phone service or not (Yes, No)\n", + "- `MultipleLines`:Whether the customer has multiple lines or not (Yes, No, No phone service)\n", + "- `InternetService`:Customer’s internet service provider (DSL, Fiber optic, No)\n", + "- `OnlineSecurity`:Whether the customer has online security or not (Yes, No, No internet service)\n", + "- `OnlineBackup`:Whether the customer has online backup or not (Yes, No, No internet service)\n", + "- `DeviceProtection`:Whether the customer has device protection or not (Yes, No, No internet service)\n", + "- `TechSupport`:Whether the customer has tech support or not (Yes, No, No internet service)\n", + "- `StreamingTV`:Whether the customer has streaming TV or not (Yes, No, No internet service)\n", + "- `StreamingMovies`:Whether the customer has streaming movies or not (Yes, No, No internet service)\n", + "- `Contract`:The contract term of the customer (Month-to-month, One year, Two year)\n", + "- `PaperlessBilling`:Whether the customer has paperless billing or not (Yes, No)\n", + "- `PaymentMethod`:The customer’s payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic))\n", + "- `MonthlyCharges`:The amount charged to the customer monthly\n", + "- `TotalCharges`:The total amount charged to the customer\n", + "- `Churn`:Whether the customer churned or not (Yes or No)" + ] + }, + { + "cell_type": "markdown", + "id": "c30802a4-8141-47f6-971d-0bb79be6f5bf", + "metadata": {}, + "source": [ + "" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "toc-autonumbering": true + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VantageCloud_Lake/UseCases/Telco_Customer_Churn/__pycache__/oaf_utils.cpython-39.pyc b/VantageCloud_Lake/UseCases/Telco_Customer_Churn/__pycache__/oaf_utils.cpython-39.pyc new file mode 100644 index 00000000..f1d97cbf Binary files /dev/null and b/VantageCloud_Lake/UseCases/Telco_Customer_Churn/__pycache__/oaf_utils.cpython-39.pyc differ