| \n", - " | policy_id | \n", - "incident_type_theft | \n", - "policy_state_ca | \n", - "policy_deductable | \n", - "num_witnesses | \n", - "policy_state_or | \n", - "incident_month | \n", - "customer_gender_female | \n", - "num_insurers_past_5_years | \n", - "customer_gender_male | \n", - "... | \n", - "policy_state_id | \n", - "incident_hour | \n", - "vehicle_claim | \n", - "fraud | \n", - "incident_type_collision | \n", - "policy_annual_premium | \n", - "policy_state_az | \n", - "policy_state_wa | \n", - "collision_type_rear | \n", - "collision_type_front | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", - "1675 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "0 | \n", - "0 | \n", - "2 | \n", - "0 | \n", - "1 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "20 | \n", - "12000.0 | \n", - "0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 1 | \n", - "9 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "0 | \n", - "0 | \n", - "9 | \n", - "0 | \n", - "1 | \n", - "1 | \n", - "... | \n", - "0 | \n", - "15 | \n", - "18500.0 | \n", - "0 | \n", - "1 | \n", - "3000 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 2 | \n", - "1687 | \n", - "0 | \n", - "1 | \n", - "750 | \n", - "0 | \n", - "0 | \n", - "7 | \n", - "1 | \n", - "1 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "16 | \n", - "17500.0 | \n", - "0 | \n", - "1 | \n", - "3000 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 3 | \n", - "1687 | \n", - "0 | \n", - "1 | \n", - "750 | \n", - "0 | \n", - "0 | \n", - "7 | \n", - "0 | \n", - "1 | \n", - "1 | \n", - "... | \n", - "0 | \n", - "16 | \n", - "17500.0 | \n", - "0 | \n", - "1 | \n", - "3000 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 4 | \n", - "1692 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "2 | \n", - "0 | \n", - "6 | \n", - "1 | \n", - "1 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "8 | \n", - "21500.0 | \n", - "0 | \n", - "1 | \n", - "2800 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "1 | \n", - "
5 rows × 47 columns
\n", - "| \n", - " | policy_id | \n", - "incident_type_theft | \n", - "policy_state_ca | \n", - "policy_deductable | \n", - "num_witnesses | \n", - "policy_state_or | \n", - "incident_month | \n", - "customer_gender_female | \n", - "num_insurers_past_5_years | \n", - "customer_gender_male | \n", - "... | \n", - "policy_state_id | \n", - "incident_hour | \n", - "vehicle_claim | \n", - "fraud | \n", - "incident_type_collision | \n", - "policy_annual_premium | \n", - "policy_state_az | \n", - "policy_state_wa | \n", - "collision_type_rear | \n", - "collision_type_front | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | \n", - "20000.00000 | \n", - "20000.000000 | \n", - "20000.0000 | \n", - "20000.00000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "... | \n", - "20000.00000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "20000.000000 | \n", - "
| mean | \n", - "2500.50000 | \n", - "0.048200 | \n", - "0.6204 | \n", - "751.13000 | \n", - "0.866100 | \n", - "0.070000 | \n", - "6.713200 | \n", - "0.372400 | \n", - "1.412200 | \n", - "0.576500 | \n", - "... | \n", - "0.02730 | \n", - "11.786800 | \n", - "17426.083700 | \n", - "0.030000 | \n", - "0.857200 | \n", - "2925.400000 | \n", - "0.113600 | \n", - "0.121000 | \n", - "0.220900 | \n", - "0.425400 | \n", - "
| std | \n", - "1443.41173 | \n", - "0.214194 | \n", - "0.4853 | \n", - "13.57322 | \n", - "1.097921 | \n", - "0.255153 | \n", - "3.654396 | \n", - "0.483456 | \n", - "0.897291 | \n", - "0.494125 | \n", - "... | \n", - "0.16296 | \n", - "5.337918 | \n", - "10043.773599 | \n", - "0.170591 | \n", - "0.349878 | \n", - "143.516096 | \n", - "0.317333 | \n", - "0.326135 | \n", - "0.414864 | \n", - "0.494416 | \n", - "
| min | \n", - "1.00000 | \n", - "0.000000 | \n", - "0.0000 | \n", - "750.00000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "0.000000 | \n", - "... | \n", - "0.00000 | \n", - "0.000000 | \n", - "1000.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "2150.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "
| 25% | \n", - "1250.75000 | \n", - "0.000000 | \n", - "0.0000 | \n", - "750.00000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "3.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "0.000000 | \n", - "... | \n", - "0.00000 | \n", - "8.000000 | \n", - "10474.250000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "2900.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "
| 50% | \n", - "2500.50000 | \n", - "0.000000 | \n", - "1.0000 | \n", - "750.00000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "7.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "... | \n", - "0.00000 | \n", - "12.000000 | \n", - "15000.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "3000.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "
| 75% | \n", - "3750.25000 | \n", - "0.000000 | \n", - "1.0000 | \n", - "750.00000 | \n", - "2.000000 | \n", - "0.000000 | \n", - "10.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "... | \n", - "0.00000 | \n", - "16.000000 | \n", - "22005.500000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "3000.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "0.000000 | \n", - "1.000000 | \n", - "
| max | \n", - "5000.00000 | \n", - "1.000000 | \n", - "1.0000 | \n", - "1100.00000 | \n", - "5.000000 | \n", - "1.000000 | \n", - "12.000000 | \n", - "1.000000 | \n", - "5.000000 | \n", - "1.000000 | \n", - "... | \n", - "1.00000 | \n", - "23.000000 | \n", - "51051.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "3000.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "1.000000 | \n", - "
8 rows × 47 columns
\n", - "| \n", - " | feature | \n", - "unique_values | \n", - "percent_missing | \n", - "percent_largest_category | \n", - "datatype | \n", - "
|---|---|---|---|---|---|
| 3 | \n", - "policy_deductable | \n", - "8 | \n", - "0.0 | \n", - "98.94 | \n", - "int64 | \n", - "
| 28 | \n", - "authorities_contacted_ambulance | \n", - "2 | \n", - "0.0 | \n", - "97.45 | \n", - "int64 | \n", - "
| 37 | \n", - "policy_state_id | \n", - "2 | \n", - "0.0 | \n", - "97.27 | \n", - "int64 | \n", - "
| 35 | \n", - "authorities_contacted_fire | \n", - "2 | \n", - "0.0 | \n", - "97.20 | \n", - "int64 | \n", - "
| 40 | \n", - "fraud | \n", - "2 | \n", - "0.0 | \n", - "97.00 | \n", - "int64 | \n", - "
| 36 | \n", - "driver_relationship_other | \n", - "2 | \n", - "0.0 | \n", - "96.06 | \n", - "int64 | \n", - "
| 16 | \n", - "driver_relationship_child | \n", - "2 | \n", - "0.0 | \n", - "95.49 | \n", - "int64 | \n", - "
| 27 | \n", - "policy_state_nv | \n", - "2 | \n", - "0.0 | \n", - "95.23 | \n", - "int64 | \n", - "
| 1 | \n", - "incident_type_theft | \n", - "2 | \n", - "0.0 | \n", - "95.18 | \n", - "int64 | \n", - "
| 23 | \n", - "num_claims_past_year | \n", - "8 | \n", - "0.0 | \n", - "93.28 | \n", - "int64 | \n", - "
| 5 | \n", - "policy_state_or | \n", - "2 | \n", - "0.0 | \n", - "93.00 | \n", - "int64 | \n", - "
| 17 | \n", - "driver_relationship_spouse | \n", - "2 | \n", - "0.0 | \n", - "91.09 | \n", - "int64 | \n", - "
| 33 | \n", - "incident_type_breakin | \n", - "2 | \n", - "0.0 | \n", - "90.54 | \n", - "int64 | \n", - "
| 43 | \n", - "policy_state_az | \n", - "2 | \n", - "0.0 | \n", - "88.64 | \n", - "int64 | \n", - "
| 44 | \n", - "policy_state_wa | \n", - "2 | \n", - "0.0 | \n", - "87.90 | \n", - "int64 | \n", - "
| 20 | \n", - "collision_type_na | \n", - "2 | \n", - "0.0 | \n", - "85.72 | \n", - "int64 | \n", - "
| 32 | \n", - "driver_relationship_na | \n", - "2 | \n", - "0.0 | \n", - "85.72 | \n", - "int64 | \n", - "
| 41 | \n", - "incident_type_collision | \n", - "2 | \n", - "0.0 | \n", - "85.72 | \n", - "int64 | \n", - "
| 13 | \n", - "collision_type_side | \n", - "2 | \n", - "0.0 | \n", - "78.91 | \n", - "int64 | \n", - "
| 45 | \n", - "collision_type_rear | \n", - "2 | \n", - "0.0 | \n", - "77.91 | \n", - "int64 | \n", - "
| 8 | \n", - "num_insurers_past_5_years | \n", - "5 | \n", - "0.0 | \n", - "77.68 | \n", - "int64 | \n", - "
| 34 | \n", - "authorities_contacted_none | \n", - "2 | \n", - "0.0 | \n", - "75.86 | \n", - "int64 | \n", - "
| 42 | \n", - "policy_annual_premium | \n", - "18 | \n", - "0.0 | \n", - "71.68 | \n", - "int64 | \n", - "
| 11 | \n", - "authorities_contacted_police | \n", - "2 | \n", - "0.0 | \n", - "70.51 | \n", - "int64 | \n", - "
| 22 | \n", - "driver_relationship_self | \n", - "2 | \n", - "0.0 | \n", - "68.36 | \n", - "int64 | \n", - "
| 29 | \n", - "num_injuries | \n", - "5 | \n", - "0.0 | \n", - "67.46 | \n", - "int64 | \n", - "
| 7 | \n", - "customer_gender_female | \n", - "2 | \n", - "0.0 | \n", - "62.76 | \n", - "int64 | \n", - "
| 2 | \n", - "policy_state_ca | \n", - "2 | \n", - "0.0 | \n", - "62.04 | \n", - "int64 | \n", - "
| 9 | \n", - "customer_gender_male | \n", - "2 | \n", - "0.0 | \n", - "57.65 | \n", - "int64 | \n", - "
| 46 | \n", - "collision_type_front | \n", - "2 | \n", - "0.0 | \n", - "57.46 | \n", - "int64 | \n", - "
| 31 | \n", - "police_report_available | \n", - "2 | \n", - "0.0 | \n", - "57.22 | \n", - "int64 | \n", - "
| 4 | \n", - "num_witnesses | \n", - "6 | \n", - "0.0 | \n", - "51.58 | \n", - "int64 | \n", - "
| 26 | \n", - "num_vehicles_involved | \n", - "7 | \n", - "0.0 | \n", - "46.32 | \n", - "int64 | \n", - "
| 15 | \n", - "customer_education | \n", - "5 | \n", - "0.0 | \n", - "44.29 | \n", - "int64 | \n", - "
| 21 | \n", - "incident_severity | \n", - "3 | \n", - "0.0 | \n", - "41.71 | \n", - "int64 | \n", - "
| 30 | \n", - "policy_liability | \n", - "4 | \n", - "0.0 | \n", - "33.95 | \n", - "int64 | \n", - "
| 18 | \n", - "injury_claim | \n", - "890 | \n", - "0.0 | \n", - "33.75 | \n", - "float64 | \n", - "
| 19 | \n", - "incident_dow | \n", - "7 | \n", - "0.0 | \n", - "16.87 | \n", - "int64 | \n", - "
| 25 | \n", - "auto_year | \n", - "20 | \n", - "0.0 | \n", - "13.86 | \n", - "int64 | \n", - "
| 6 | \n", - "incident_month | \n", - "12 | \n", - "0.0 | \n", - "10.67 | \n", - "int64 | \n", - "
| 38 | \n", - "incident_hour | \n", - "24 | \n", - "0.0 | \n", - "6.87 | \n", - "int64 | \n", - "
| 12 | \n", - "incident_day | \n", - "31 | \n", - "0.0 | \n", - "3.79 | \n", - "int64 | \n", - "
| 14 | \n", - "customer_age | \n", - "58 | \n", - "0.0 | \n", - "3.09 | \n", - "int64 | \n", - "
| 39 | \n", - "vehicle_claim | \n", - "4621 | \n", - "0.0 | \n", - "1.44 | \n", - "float64 | \n", - "
| 10 | \n", - "total_claim_amount | \n", - "4978 | \n", - "0.0 | \n", - "1.29 | \n", - "float64 | \n", - "
| 24 | \n", - "months_as_customer | \n", - "387 | \n", - "0.0 | \n", - "0.77 | \n", - "int64 | \n", - "
| 0 | \n", - "policy_id | \n", - "5000 | \n", - "0.0 | \n", - "0.02 | \n", - "int64 | \n", - "
| \n", - " | fraud | \n", - "vehicle_claim | \n", - "driver_relationship_self | \n", - "num_witnesses | \n", - "policy_deductable | \n", - "incident_day | \n", - "policy_state_nv | \n", - "policy_state_az | \n", - "auto_year | \n", - "policy_state_or | \n", - "... | \n", - "authorities_contacted_police | \n", - "total_claim_amount | \n", - "incident_hour | \n", - "policy_state_ca | \n", - "injury_claim | \n", - "authorities_contacted_ambulance | \n", - "policy_annual_premium | \n", - "customer_gender_male | \n", - "driver_relationship_other | \n", - "num_claims_past_year | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 398 | \n", - "0 | \n", - "21500.0 | \n", - "1 | \n", - "5 | \n", - "750 | \n", - "24 | \n", - "0 | \n", - "1 | \n", - "2012 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "23000.0 | \n", - "20 | \n", - "0 | \n", - "1500.0 | \n", - "0 | \n", - "2450 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 3833 | \n", - "1 | \n", - "16000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "5 | \n", - "0 | \n", - "0 | \n", - "2017 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "16000.0 | \n", - "8 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "2600 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 4836 | \n", - "0 | \n", - "4000.0 | \n", - "1 | \n", - "2 | \n", - "750 | \n", - "19 | \n", - "0 | \n", - "0 | \n", - "2009 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "4000.0 | \n", - "5 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "2450 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 4572 | \n", - "0 | \n", - "19500.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "4 | \n", - "0 | \n", - "1 | \n", - "2018 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "19500.0 | \n", - "13 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 636 | \n", - "0 | \n", - "9500.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "22 | \n", - "0 | \n", - "0 | \n", - "2012 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "9500.0 | \n", - "20 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "2750 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
5 rows × 46 columns
\n", - "| \n", - " | fraud | \n", - "vehicle_claim | \n", - "driver_relationship_self | \n", - "num_witnesses | \n", - "policy_deductable | \n", - "incident_day | \n", - "policy_state_nv | \n", - "policy_state_az | \n", - "auto_year | \n", - "policy_state_or | \n", - "... | \n", - "authorities_contacted_police | \n", - "total_claim_amount | \n", - "incident_hour | \n", - "policy_state_ca | \n", - "injury_claim | \n", - "authorities_contacted_ambulance | \n", - "policy_annual_premium | \n", - "customer_gender_male | \n", - "driver_relationship_other | \n", - "num_claims_past_year | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", - "0 | \n", - "8500.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "27 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "8500.0 | \n", - "15 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 7 | \n", - "0 | \n", - "16000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "2 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "1 | \n", - "... | \n", - "1 | \n", - "41000.0 | \n", - "8 | \n", - "0 | \n", - "25000.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 21 | \n", - "0 | \n", - "7000.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "19 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "7000.0 | \n", - "9 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 24 | \n", - "0 | \n", - "17500.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "2020 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "17500.0 | \n", - "4 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 25 | \n", - "0 | \n", - "17000.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "17 | \n", - "1 | \n", - "0 | \n", - "2018 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "17000.0 | \n", - "18 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
5 rows × 46 columns
\n", - "| \n", - " | fraud | \n", - "vehicle_claim | \n", - "driver_relationship_self | \n", - "num_witnesses | \n", - "policy_deductable | \n", - "incident_day | \n", - "policy_state_nv | \n", - "policy_state_az | \n", - "auto_year | \n", - "policy_state_or | \n", - "... | \n", - "authorities_contacted_police | \n", - "total_claim_amount | \n", - "incident_hour | \n", - "policy_state_ca | \n", - "injury_claim | \n", - "authorities_contacted_ambulance | \n", - "policy_annual_premium | \n", - "customer_gender_male | \n", - "driver_relationship_other | \n", - "num_claims_past_year | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", - "0 | \n", - "21500.0 | \n", - "1 | \n", - "5 | \n", - "750 | \n", - "24 | \n", - "0 | \n", - "1 | \n", - "2012 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "23000.0 | \n", - "20 | \n", - "0 | \n", - "1500.0 | \n", - "0 | \n", - "2450 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 1 | \n", - "1 | \n", - "16000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "5 | \n", - "0 | \n", - "0 | \n", - "2017 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "16000.0 | \n", - "8 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "2600 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 2 | \n", - "0 | \n", - "4000.0 | \n", - "1 | \n", - "2 | \n", - "750 | \n", - "19 | \n", - "0 | \n", - "0 | \n", - "2009 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "4000.0 | \n", - "5 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "2450 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 3 | \n", - "0 | \n", - "19500.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "4 | \n", - "0 | \n", - "1 | \n", - "2018 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "19500.0 | \n", - "13 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 4 | \n", - "0 | \n", - "9500.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "22 | \n", - "0 | \n", - "0 | \n", - "2012 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "9500.0 | \n", - "20 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "2750 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| ... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "
| 3995 | \n", - "0 | \n", - "9500.0 | \n", - "0 | \n", - "3 | \n", - "750 | \n", - "22 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "9500.0 | \n", - "9 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "0 | \n", - "1 | \n", - "0 | \n", - "
| 3996 | \n", - "0 | \n", - "8500.0 | \n", - "1 | \n", - "3 | \n", - "750 | \n", - "12 | \n", - "1 | \n", - "0 | \n", - "2015 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "8500.0 | \n", - "22 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 3997 | \n", - "0 | \n", - "12000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "15 | \n", - "0 | \n", - "0 | \n", - "2016 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "12000.0 | \n", - "8 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 3998 | \n", - "0 | \n", - "33000.0 | \n", - "1 | \n", - "3 | \n", - "750 | \n", - "4 | \n", - "0 | \n", - "0 | \n", - "2015 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "36000.0 | \n", - "20 | \n", - "1 | \n", - "3000.0 | \n", - "0 | \n", - "3000 | \n", - "0 | \n", - "0 | \n", - "0 | \n", - "
| 3999 | \n", - "0 | \n", - "14000.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "3 | \n", - "0 | \n", - "0 | \n", - "2008 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "14000.0 | \n", - "14 | \n", - "1 | \n", - "0.0 | \n", - "1 | \n", - "2600 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
4000 rows × 46 columns
\n", - "| \n", - " | fraud | \n", - "vehicle_claim | \n", - "driver_relationship_self | \n", - "num_witnesses | \n", - "policy_deductable | \n", - "incident_day | \n", - "policy_state_nv | \n", - "policy_state_az | \n", - "auto_year | \n", - "policy_state_or | \n", - "... | \n", - "authorities_contacted_police | \n", - "total_claim_amount | \n", - "incident_hour | \n", - "policy_state_ca | \n", - "injury_claim | \n", - "authorities_contacted_ambulance | \n", - "policy_annual_premium | \n", - "customer_gender_male | \n", - "driver_relationship_other | \n", - "num_claims_past_year | \n", - "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", - "0 | \n", - "8500.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "27 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "8500.0 | \n", - "15 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 1 | \n", - "0 | \n", - "16000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "2 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "1 | \n", - "... | \n", - "1 | \n", - "41000.0 | \n", - "8 | \n", - "0 | \n", - "25000.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 2 | \n", - "0 | \n", - "7000.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "19 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "7000.0 | \n", - "9 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 3 | \n", - "0 | \n", - "17500.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "2020 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "17500.0 | \n", - "4 | \n", - "1 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 4 | \n", - "0 | \n", - "17000.0 | \n", - "0 | \n", - "0 | \n", - "750 | \n", - "17 | \n", - "1 | \n", - "0 | \n", - "2018 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "17000.0 | \n", - "18 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| ... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "... | \n", - "
| 995 | \n", - "0 | \n", - "11000.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "4 | \n", - "0 | \n", - "0 | \n", - "2014 | \n", - "1 | \n", - "... | \n", - "1 | \n", - "11000.0 | \n", - "16 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "2850 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 996 | \n", - "0 | \n", - "14000.0 | \n", - "1 | \n", - "0 | \n", - "750 | \n", - "17 | \n", - "0 | \n", - "1 | \n", - "2019 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "14000.0 | \n", - "22 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 997 | \n", - "0 | \n", - "40000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "7 | \n", - "0 | \n", - "0 | \n", - "2019 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "55000.0 | \n", - "18 | \n", - "1 | \n", - "15000.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "0 | \n", - "
| 998 | \n", - "0 | \n", - "40000.0 | \n", - "1 | \n", - "1 | \n", - "750 | \n", - "3 | \n", - "0 | \n", - "0 | \n", - "2018 | \n", - "0 | \n", - "... | \n", - "0 | \n", - "40000.0 | \n", - "18 | \n", - "0 | \n", - "0.0 | \n", - "1 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "1 | \n", - "
| 999 | \n", - "1 | \n", - "35000.0 | \n", - "1 | \n", - "2 | \n", - "750 | \n", - "21 | \n", - "1 | \n", - "0 | \n", - "2016 | \n", - "0 | \n", - "... | \n", - "1 | \n", - "35000.0 | \n", - "16 | \n", - "0 | \n", - "0.0 | \n", - "0 | \n", - "3000 | \n", - "1 | \n", - "0 | \n", - "1 | \n", - "
1000 rows × 46 columns
\n", - "\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "## Analyze the second model for bias and explainability\n", - "\n", - "[overview](#aup-overview)\n", + "## Analyze Model for Bias and Explainability\n", "----\n", + "\n", "Amazon SageMaker Clarify provides tools to help explain how machine learning (ML) models make predictions. These tools can help ML modelers and developers and other internal stakeholders understand model characteristics as a whole prior to deployment and to debug predictions provided by the model after it's deployed. Transparency about how ML models arrive at their predictions is also critical to consumers and regulators who need to trust the model predictions if they are going to accept the decisions based on them. SageMaker Clarify uses a model-agnostic feature attribution approach, which you can used to understand why a model made a prediction after training and to provide per-instance explanation during inference. The implementation includes a scalable and efficient implementation of SHAP ([see paper](https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf)), based on the concept of a Shapley value from the field of cooperative game theory that assigns each feature an importance value for a particular prediction. " ] }, @@ -1449,10 +612,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "\n", - "## View results of Clarify job\n", - "[overview](#aup-overview)\n", + "## View Results of Clarify Job\n", "----\n", "\n", "Running Clarify on your dataset or model can take ~15 minutes. If you don't have time to run the job, you can view the pre-generated results included with this demo. Otherwise, you can run the job by un-commenting the code in the cell above." @@ -1495,11 +655,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "\n", - "## Configure and run explainability job\n", - "[overview](#aup-overview)\n", + "## Configure and Run Explainability Job\n", "----\n", + "\n", "To run the full Clarify job, you must un-comment the code in the cell below. Running the job will take ~15 minutes. If you wish to save time, you can view the results in the next cell after which loads a pre-generated output if no explainability job was run." ] }, @@ -1530,7 +688,7 @@ "\n", "# un-comment the code below to run the whole job\n", "\n", - "# if 'clarify_expl_job_name' not in locals():\n", + "# if \"clarify_expl_job_name\" not in locals():\n", "\n", "# clarify_processor.run_explainability(\n", "# data_config=explainability_data_config,\n", @@ -1554,30 +712,9 @@ }, { "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading pre-generated analysis file...\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAEGCAYAAACjAHa5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de7xVVb338c9XVEBRSDFfpOlOo7yhKKipaGgcu+ARL5RPWcrxMdPMSx1P0bGnY/lYmD6KdtGUo5SRd0WFUkxEFC+wUWCDd2F3Ukk0FS8oKfyeP+bYMlmuvfba7L32YsL3/Xqt155rzjHG/I25NvzWGHPuORURmJmZWTFsUO8AzMzMrHpO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIBvWOwBbt/Xt2zcaGhrqHYaZWaHMnj37lYjYqtw2J26rqYaGBhobG+sdhplZoUj6a2vbPFVuZmZWIE7cZmZmBeLEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeIbsFhNNb2wlIbRk+sdhplZl2oeM7xmbXvEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeLEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeLEbWZmViCFTdyS/rPeMdSapGmSBq8FcTRL6lvvOMzMrMCJG+jSxC1prX8EqqRu9Y7BzMxqq26JW9JxkuZJmivpGknjJY3MbX8r/ewnabqkOZLmSzpQ0higZ1o3IZX7Xto+X9KZaV2DpCcljUvrJ0gaJmmGpGck7ZPKbSrpKkmzJD0maURaP0rSjZLuAKa00o8NJP1G0gJJkyT9qaUfkgZJuk/SbEl3SeqX1k+TdL6kmZKelnRgWt9T0nXpuFwP9Mzt51BJD0l6NMXUK61vlvRjSQ8AX24lxmmSLk7H8QlJe0u6JR2D/5srNzHFukDSSa209fUU9xxJv/WXBTOzrlWXxC1pV+Bs4JCI2AM4o0LxrwF3RcRAYA9gTkSMBt6JiIERcaykQcC/AfsCnwG+KWnPVP+TwCXA7sBOqb0hwFmsGrWfDUyNiL2Bg4ELJG2atu0HHB8Rh7QS31FAAzAAODGVR9JGwC+BkRExCLgKOC9Xb8OI2Ac4E/ivtO4UYFlE7J7KDkpt9QV+BAyLiL2ARuB7ubbejYghEXFdheP4z4g4CLgcuA04FdgNGCVpy1TmhBTrYOD03HpSHDsDxwAHpM9jBXBs6Y4knSSpUVLjimVLK4RkZmbtVa/p30OAmyLiFYCIeFVSa2VnAVelRDgxIuaUKTMEuDUi3gaQdAtwIHA7sCgimtL6BcA9ERGSmsgSLsChwOGSzkrvewDbpeW7I+LVCn0ZAtwYESuBv0u6N63/NFlivDv1rRuwOFfvlvRzdi6Og4BLASJinqR5af1ngF2AGamtjYGHcm1dXyG+Frenn03AgohYDCBpIfBx4B9kyfrIVO7jQP+0vsXnyL5MzEpx9ASWlO4oIq4ArgDo3q9/VBGbmZlVqV6JW0Dpf+jvk2YAlGWFjQEiYrqkg4DhwDWSLoiI35dprzXLc8src+9Xsqr/Ao6OiKdWa1TaF3i7ir60tn5BROzXRlwrWP1zKJfoRPYF4quttNVWjPn95Y9By/sNJQ0FhgH7RcQySdPIvsCUxvG7iPhhFfszM7MaqNc57nuAr7RMxUraAmgmTQ0DI4CN0rbtgSURcSXw38Beqcx7aRQOMB04QtImaYr7SOD+dsRzF3Ba+sJAbpq9Gg8AR6dz3VsDQ9P6p4CtJH0wdZ5OEVQynTT1LGk3sul9gIeBAyR9Mm3bRNKn2hFjNXoDr6WkvRPZKL/UPcBISR9NcWyRPh8zM+sidRlxR8QCSecB90laATwG/AC4TdJMsgTRMoocCvyHpPeAt4Dj0vorgHmSHk3nuccDM9O2cRHxmKSGKkM6Fxib2hPZl4jDqqx7M9kU8nzgaeARYGlE/DNdpHappN5kx3ossKBCW5cBV6cp8jkt/YmIlyWNAq6V1D2V/VHaX2e5Ezg57fspsi8Lq4mIxyX9CJgiaQPgPbJz5X/txDjMzKwCRfgUZEdJ6hURb6UZhJlkF2/9vd5xrQ269+sf/Y4fW+8wzMy6VPOY4R2qL2l2RJS9j8da/7fJBTFJUh+y8/LnOmmbmVmtOHFXSdIA4JqS1csjYt+IGFqHkD5E0q+BA0pWXxIRV9cjHjMz63xO3FVKf1I2sN5xVBIRp9Y7BjMzq60i3/LUzMxsvePEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeK/47aaGrBNbxo7eOs/MzNbxSNuMzOzAnHiNjMzKxAnbjMzswJx4jYzMysQJ24zM7MCceI2MzMrECduMzOzAvHfcVtNNb2wlIbRk+sdhpmtpZp9n4d284jbzMysQJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCmS9TdyS+kj6du79UEmT6hlTZyjtl5mZrVvW28QN9AHWxQTX5f2S5Oe6m5l1kUIkbkkNkp6UNE7SfEkTJA2TNEPSM5L2kbSFpImS5kl6WNLuqe45kq6SNE3SQkmnp2bHADtKmiPpgrSul6Sb0r4mSFJqY4ykx1PbF1aI818lPSLpMUl/kbR1Wv/ZtJ85adtmFdr4vqQmSXMljUnrpkkanJb7SmpOy7tKmpnanSepf2m/lLkgHbcmScekukMl3SfpBklPpz4em9prkrRjKreVpJslzUqvA3LH9QpJU4Dfl/ThJEmNkhpXLFvajk/azMzaUqSR0ieBLwMnAbOArwFDgMOB/wT+BjwWEUdIOoQsmQxMdXcCDgY2A56SdBkwGtgtIgZClsiAPYFdgReBGcABkh4HjgR2ioiQ1KdCjA8An0nlTgS+D/w7cBZwakTMkNQLeLdcZUlfBI4A9o2IZZK2aOOYnAxcEhETJG0MdCvTr6PTcdgD6AvMkjQ91d8D2Bl4FVgIjIuIfSSdAZwGnAlcAlwcEQ9I2g64K9UBGAQMiYh38kFFxBXAFQDd+/WPNvpgZmbtUKTEvSgimgAkLQDuSQmyCWgAtgeOBoiIqZK2lNQ71Z0cEcuB5ZKWAFu3so+ZEfF82sec1O7DZIl2nKTJQKXz4NsC10vqB2wMLErrZwAXSZoA3NKyjzKGAVdHxLLUj1cr7AvgIeBsSdumdp9JkwR5Q4BrI2IF8JKk+4C9gTeAWRGxOPX3OWBKqtNE9kWnJaZdcu1unpsxuL00aZuZWW0VYqo8WZ5bXpl7v5LsC8iHMhbQMtrL111B619YPlQuIt4H9gFuJhsN31khxl8Cv4qIAcC3gB4AETEGOBHoCTwsaadW6isXc977rPqserSsjIg/ks04vAPclWYayrXZmraOKWm/+0XEwPTaJiLeTNvertC2mZnVQJESd1umA8fCB9Per0TEGxXKv0k2dV5RmtruHRF/Ips6HliheG/ghbR8fK6NHSOiKSLOBxrJpu7LmQKcIGmTVK9lqryZbFoaYGSu3R2AhRFxKXA7sHuZfk0HjpHUTdJWwEHAzIqd/nBM38nts1L/zcysxtalxH0OMFjSPLILtI6vVDgi/gHMSBdtXVCh6GbApNTufcB324jhRkn3A6/k1p+Z9jOXbHT851ZiupMsATemqfqz0qYLgVMkPUh2nrrFMcD8VHYn4Pdl+nUrMA+YC0wFvh8Rf6/Qh1Knk45rOt9/cjvqmplZJ1OErx2y2uner3/0O35svcMws7VU85jh9Q5hrSRpdkQMLrdtXRpxm5mZrfOKdFX5WkPS2WR/mpZ3Y0ScV2X9AcA1JauXR8S+nRGfmZmtu5y410BK0FUl6VbqN1H5IjczM7OyPFVuZmZWIE7cZmZmBeLEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4j8Hs5oasE1vGn1nJDOzTuMRt5mZWYE4cZuZmRWIE7eZmVmBOHGbmZkViBO3mZlZgThxm5mZFYgTt5mZWYE4cZuZmRWIb8BiNdX0wlIaRk+udxhm64Rm38zI8IjbzMysUJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQNaqxC3pp5KG1TuOepB0hKRd2ihzjqQXJM1Jry91VXxmZrZ2WKse6xkRP65l+5K6RcSKKsptGBHv1zKWMo4AJgGPt1Hu4oi4sAvi+ZBqj5+ZmdVOmyNuSQ2SnpB0paQFkqZI6ilpmqTBqUxfSc1peZSkiZLukLRI0nckfU/SY5IelrRFhX2NlzQyLTdL+omkRyU1Sdoprf9sbsT5mKTNJA2VNCnXzq8kjcq182NJDwBflrSjpDslzZZ0f67d8ZIuknQvcH65/bQS81BJ0yXdKulxSZdL2iBtu0xSYzpuP8nVGZPKzpN0oaT9gcOBC9L+dmzrc2lL6tvA3PsZknaXtKmkqyTNSv0akbY3pDqPptf+uf7dK+mPQFOqP1nSXEnzJR1TZt8npX43rli2tKNdMTOznGpH3P2Br0bENyXdABzdRvndgD2BHsCzwA8iYk9JFwPHAWOr3O8rEbGXpG8DZwEnpp+nRsQMSb2Ad6to592IGAIg6R7g5Ih4RtK+wG+AQ1K5TwHDImKFpDvasZ99gF2AvwJ3AkcBNwFnR8SrkroB90jaHXgeOBLYKSJCUp+IeF3S7cCkiLipjb58R9JxQCPw7xHxWivlxgGjgDMlfQroHhHzJP0MmBoRJ0jqA8yU9BdgCfAvEfGupP7AtcDgXP92i4hFko4GXoyI4el49i7dcURcAVwB0L1f/2ijP2Zm1g7VnuNeFBFz0vJsoKGN8vdGxJsR8TKwFLgjrW+qom7eLWX2OQO4SNLpQJ8qp7SvB0gJeH/gRklzgN8C/XLlbsxNBbdnPzMjYmGqey0wJK3/iqRHgceAXcmS+xtkXwLGSToKWFZF/C0uA3YEBgKLgf9XoeyNwGGSNgJOAMan9YcCo1P/p5F9udoO2Ai4UlJTqps/3z4zIhal5SZgmKTzJR0YER5Sm5l1oWoT9/Lc8gqykfr7ufo9KpRfmXu/kvadV2+p17JPImIM2ci7J/BwmurOx1IunrfTzw2A1yNiYO61c5lyre2nNaWjypD0CbLZgc9FxO7AZKBH+gKwD3Az2XntOyu0u3qjES9FxIqIWAlcmdpprewy4G5gBPAV4I9pk4Cjc/3fLiKeAL4LvATsQTbS3jjXXP64PA0MIkvgP5dU0+sSzMxsdR25qryZ7D9wgJEdD6U6knaMiKaIOJ9sungnsinqXSR1T1O3nytXNyLeABZJ+nJqS5L2aMd+WrOPpE+kc9vHAA8Am5MlvKWStga+mNrtBfSOiD8BZ5KNngHeBMqeR8/FlJ8dOBKYX6k82XT5pcCsiHg1rbsLOE2SUpt7pvW9gcXpS8E3gG6txPAxYFlE/AG4ENirjRjMzKwTdeSq8guBGyR9A5jaSfFU40xJB5ONwh8H/hwRy9O593nAM2RT0605FrhM0o/IpoevA+ZWs58KbT4EjAEGANOBWyNipaTHgAXAQrKpd8iS822SepCNfr+b1l9HNlV9OjAyIp4rs59fpAvOguyL07cqxEREzJb0BnB1bvW5ZNcYzEvJuxk4jOxc/83pS8295EbZJQaQXUS3EngPOKVSDGZm1rkU4WuHOkLSUOCsiDis3rGUSqPjaWQXwq2sRwzd+/WPfsdXey2imVXSPGZ4vUOwLiJpdkQMLrdtrboBi3WedOX5I2RXttclaZuZWeeryw1YJP0aOKBk9SURcXW58msDSQOAa0pWL4+IfclGtZ25r6qPj6TPA+eXrF4UEUcCv+/MuMzMrP7qkrgj4tR67LcjIqKJVReS1XpfVR+fiLiL7IIzMzNbD3iq3MzMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrEDq8nfctv4YsE1vGn2bRjOzTuMRt5mZWYE4cZuZmRWIE7eZmVmBOHGbmZkViBO3mZlZgThxm5mZFYgTt5mZWYH477itpppeWErD6Mn1DsPWEs3+m36zDvOI28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuAtA0smSjkvLoyR9rN4xmZlZffixngUQEZfn3o4C5gMv1icaMzOrJ4+4WyGpQdITkq6UtEDSFEk9JU2TNDiV6SupOS2PkjRR0h2SFkn6jqTvSXpM0sOStmhlPx+VNDst7yEpJG2X3j8naRNJ50g6S9JIYDAwQdKcFE+zpJ9IelRSk6SdUt1NJV0laVaKYURav6ukman+PEn9U9nJkuZKmi/pmFR2kKT7JM2WdJekfmn96ZIeT/WvK9OnkyQ1SmpcsWxpJ38yZmbrNyfuyvoDv46IXYHXgaPbKL8b8DVgH+A8YFlE7Ak8BBxXrkJELAF6SNocOBBoBA6UtD2wJCKW5crelLYfGxEDI+KdtOmViNgLuAw4K607G5gaEXsDBwMXSNoUOBm4JCIGkn0JeB74AvBiROwREbsBd0raCPglMDIiBgFXpT4BjAb2jIjdU3ulfboiIgZHxOBum/Ru45CZmVl7eKq8skURMSctzwYa2ih/b0S8CbwpaSlwR1rfBOxeod6DwAHAQcDPyBKpgPurjPOWXIxHpeVDgcMltSTyHsB2ZF8izpa0LXBLRDwjqQm4UNL5wKSIuF/SbmRfRO6WBNANWJzamkc26p8ITKwyRjMz6wRO3JUtzy2vAHoC77NqpqJHhfIrc+9XUvlY30822t4euA34ARDApHbGuSK3HwFHR8RTJWWfkPQIMBy4S9KJETFV0iDgS8DPJU0BbgUWRMR+ZfY3nOxLxuHA/5G0a0S8X2WsZmbWAZ4qb79mYFBaHtlJbU4Hvg48ExErgVfJkuiMMmXfBDaros27gNOUhsuS9kw/dwAWRsSlwO3A7ukq9WUR8QfgQmAv4ClgK0n7pXobpfPjGwAfj4h7ge8DfYBea9hvMzNrJ4+42+9C4AZJ3wCmdkaDEdGc8uv0tOoBYNuIeK1M8fHA5ZLeAcqNhlucC4wF5qXk3QwcBhwDfF3Se8DfgZ8Ce5OdA18JvAecEhH/TBfDXSqpN9nvyljgaeAPaZ2AiyPi9TXuvJmZtYsiot4x2Dqse7/+0e/4sfUOw9YSzWOG1zsEs0KQNDsiBpfb5qlyMzOzAvFUeReS9Guyq8fzLomIq+sRj5mZFY8TdxeKiFPrHYOZmRWbp8rNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuM3MzArEidvMzKxAnLjNzMwKxH/HbTU1YJveNPo2l2ZmncYjbjMzswJx4jYzMysQJ24zM7MCceI2MzMrECduMzOzAnHiNjMzKxAnbjMzswLx33FbTTW9sJSG0ZPrHYZ1oWb/3b5ZTXnEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeLEbWZmViBO3GZmZgXixG1mZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeLEbWZmViBO3DUi6cEqyoyTtEtXxFOy37eqKNNm/GZm1vX8WM8aiYj9qyhzYnvalLRhRLy/5lFVr5r4zcys63nEXSMto1pJQyVNk3STpCclTZCktG2apMH58ml5pKTxaXm8pIsk3QtcIOkZSVulbRtIelZS31Zi2FrSrZLmptf+Jdt7SbpH0qOSmiSNaCX++yTdIOlpSWMkHStpZqqzY5n9niSpUVLjimVLO3YgzcxsNR5xd409gV2BF4EZwAHAA+2o/ylgWESskPQ6cCwwFhgGzI2IV1qpdylwX0QcKakb0Ktk+7vAkRHxRkr+D0u6PSKipNwewM7Aq8BCYFxE7CPpDOA04Mx84Yi4ArgCoHu//qVtmZlZB3jE3TVmRsTzEbESmAM0tLP+jRGxIi1fBRyXlk8Arq5Q7xDgMoCIWBERpcNfAT+TNA/4C7ANsHWZdmZFxOKIWA48B0xJ65vWoC9mZtYBHnF3jeW55RWUP+75kWmPkm1vf1Ao4m+SXpJ0CLAv2eh7TR0LbAUMioj3JDWX2TesHv/K3PuV+HfIzKxLecS99nhJ0s6SNgCObKPsOOAPwA25kXg59wCnAEjqJmnzku29gSUpaR8MbL+GsZuZWRdx4q6/lpH2aGASMBVY3Ead28nOV1eaJgc4AzhYUhMwm+w8e94EYLCkRrLR95PtiNvMzOpAH74OybpKSqiHR8SidtYbDFwcEQfWJrLO071f/+h3/Nh6h2FdqHnM8HqHYFZ4kmZHxOBy23x+sk4k3Q00rUHSHk02/d2Rc9tmZlZQTtx1EhH/sob1xgBj8usknQ18uaTojRFx3hqGZ2Zmaykn7nVAStBO0mZm6wFfnGZmZlYgTtxmZmYF4sRtZmZWIE7cZmZmBeLEbWZmViBO3GZmZgXixG1mZlYg/jtuq6kB2/Sm0bfANDPrNB5xm5mZFYgTt5mZWYE4cZuZmRWIE7eZmVmBOHGbmZkViBO3mZlZgThxm5mZFYgTt5mZWYE4cZuZmRWIIqLeMdg6TNKbwFP1jqOL9AVeqXcQXWR96ev60k9Yf/palH5uHxFbldvgW55arT0VEYPrHURXkNTovq5b1pd+wvrT13Whn54qNzMzKxAnbjMzswJx4rZau6LeAXQh93Xds770E9afvha+n744zczMrEA84jYzMysQJ24zM7MCceK2dpH0BUlPSXpW0ugy27tLuj5tf0RSQ27bD9P6pyR9vto266Gz+ynp45LulfSEpAWSzui63lRWi880besm6TFJk2rfi+rU6Pe3j6SbJD2ZPt/9uqY3ratRP7+bfnfnS7pWUo+u6U1la9pXSVumf5NvSfpVSZ1BkppSnUslqWt6U6WI8Muvql5AN+A5YAdgY2AusEtJmW8Dl6fl/wVcn5Z3SeW7A59I7XSrps11pJ/9gL1Smc2Ap+vdz1r1NVfve8AfgUn17mct+wr8DjgxLW8M9FnX+glsAywCeqZyNwCjCv6ZbgoMAU4GflVSZyawHyDgz8AX693X/MsjbmuPfYBnI2JhRPwTuA4YUVJmBNl/ZAA3AZ9L31ZHANdFxPKIWAQ8m9qrps2u1un9jIjFEfEoQES8CTxB9p9hvdXiM0XStsBwYFwX9KFand5XSZsDBwH/DRAR/4yI17ugL5XU5DMlu2FXT0kbApsAL9a4H9VY475GxNsR8QDwbr6wpH7A5hHxUGRZ/PfAETXtRTs5cVt7bAP8Lff+eT6cfD4oExHvA0uBLSvUrabNrlaLfn4gTdXtCTzSiTGvqVr1dSzwfWBl54e8xmrR1x2Al4Gr02mBcZI2rU34Vev0fkbEC8CFwP8Ai4GlETGlJtG3T0f6WqnN59tos66cuK09yp3nKf17wtbKtHd9PdWin1klqRdwM3BmRLyxxhF2nk7vq6TDgCURMbujwXWyWnyuGwJ7AZdFxJ7A20C9r9OoxWf6EbKR6yeAjwGbSvp6h6LsHB3pa0farCsnbmuP54GP595vy4enyz4ok6bUegOvVqhbTZtdrRb9RNJGZEl7QkTcUpPI268WfT0AOFxSM9nU5SGS/lCL4NupVr+/z0dEy+zJTWSJvJ5q0c9hwKKIeDki3gNuAfavSfTt05G+Vmpz2zbarK96n2T3qzgvstHFQrJv3S0XguxaUuZUVr8Q5Ia0vCurX/SykOzCkjbbXEf6KbJzZWPr/TnWuq8ldYey9lycVpO+AvcDn07L5wAXrGv9BPYFFpCd2xbZOePTivyZ5raP4sMXp80CPsOqi9O+VO++rhZfvQPwq1gv4EtkV0Q/B5yd1v0UODwt9wBuJLuoZSawQ67u2aneU+Su0izXZr1fnd1PsqtXA5gHzEmvteI/g1p8prntQ1lLEncNf38HAo3ps50IfGQd7edPgCeB+cA1QPd697MT+tpMNvp+i2ykvUtaPzj18zngV6S7jK4tL9/y1MzMrEB8jtvMzKxAnLjNzMwKxInbzMysQJy4zczMCsSJ28zMrECcuM3WApLOTk9emidpjqR90/ppkgbnyjVIml9S9xJJL0jaILdulKSXU1uPS/pmSZ1NJf1DUu+S9RMlfaVCnEM782lf6alaO6TlP0nq01lttyOGIyTt0tX7bS9JzZL6drRMlfvq0DFJT0z7du79VpLu7GhclnHiNquz9BjIw8ieHrY72V2q/la51gd1NwCOTOUPKtl8fUQMJPtb6p9J2rplQ0S8DUwh9/CElMSHAF3yGE5Ju5LdxGRhiulLUZ8HdBxB9lQsW6Wjx6QP2VO5AIiIl4HFkg7oaGDmxG22NugHvBIRywEi4pWIqPYWiweT3SjiMuCr5QpExBKyG0lsX7LpWrI7SbU4ErgzIpZJ2kfSg+nBGQ9K+nRpu5LOkXRW7v383LOOvy5pZhrx/1ZStzKhHQvclqvfLKlvmlV4Mj2wY76kCZKGSZoh6RlJLU8gO0fSNZKmpvXfTOt7SbpH0qPpmcojcvs4Ls1qzE119wcOBy5Ise5Y0sftU1vz0s/t0vrxyp7T/KCkhZJGljk+1fZjizTTMU/Sw5J2T+u3lDQlfQa/JXcP7SqPbz6Wr6ZjMV/S+bn1b+WWR6Z+feiYpJmfsam/80s+g3K/A2OAHVP9C9Lmiekzt46q9x1g/PJrfX8BvcjupPY08Bvgs7lt08juYNVyt7XHgfm57eOAbwCbAy8AG6X1o0i3cSR7gtUSYIuS/W6c1m+Z3t8JDE/LmwMbpuVhwM1peSjpTmhkt/c8K9fefKAB2Bm4IxfLb4DjyvT7PmBA7n0z0De18T4wgGxwMRu4iixxjQAm5vY/F+iZ6v2N7AEYG5I9lpG0/tlUd9d0LPumbVukn+OBka18NncAx6flE3L7Hk92N64NyEamz5apW20/fgn8V1o+BJiTli8FfpyWh5JOE88AAAPrSURBVJPdea9vpePbcgxL4vgY2VO9tkrHZipwRNr2Vq7cSGB8uWNC9nt4ZVo+iPQ7WOF3oIHc72natg3QVO9/b+vCa0PMrK4i4i1Jg4ADyUbQ10saHRHjU5FjI6IRPngk6KS0vDHZ7R6/GxFvSnoEOBSYnOodI2kIsBz4VkSs9mCFiPinpNuBkZJuJrt1Z8ujGnsDv5PUnyxhbNSOLn0OGATMkgRZYl1Splw/skdilrMoIppSPxcA90RESGoiSwotbouId4B3JN1L9nzmyWSnBg4ie6zoNsDWZEnxpoh4JfW/0oMmWuwHHJWWrwF+kds2MSJWAo/nT0OsQT+GAEenmKamkXZvsgR5VFo/WdJrqXy1x7fF3sC0yKarkTQhtT2xiv7nXZtimS5pc7X/eoQlZF8irIOcuM3WAhGxgmxUMy39p3482ainki+QJdim9B/4JsAyViXu6yPiO220cS3wI7JR4G2RPfkJ4Fzg3og4Mn1ZmFam7vusfrqtR/op4HcR8cM29v1Ork6p5bnllbn3K1n9/63SezYH2XTsVsCgiHhP2VPKeqS4OnqP53z9fIzlHgVZWqa1flR6jGS5eKs9vm3FVtp+a59FubIt71v7HSinB9lnbh3kc9xmdSbp02lk22Ig8Ncqqn4VODEiGiKigewJSYdK2qQdu78X6E/2BKVrc+t7k029QzbtXk4z6RGWkvZK+we4h2wU/9G0bQtJpefXAZ4APtmOWMsZIamHpC3JpvFnpdiXpKR9MKvO7d8DfCWVRdIWaf2bwGattP8gq64DOBZ4oIPxljM9tY2koWTXO7xRsv6LwEdS+WqPb4tHgM+m6we6kf3e3Je2vSRpZ626yLFFuWNyTNrfEGBpRCyl9d+BcvU/RTaVbh3kxG1Wf73IpqUflzSP7JzpOZUqpOT8eVaNronsSvEHgH+tdsdpqvdmYEuyRNHiF8DPJc0ge6xjOTcDW0iaA5xCdo6eiHicbBQ/JfXnbrJp8VKTyZJtR8xM7TwMnBvZRX0TgMGSGskS35MprgXAecB9kuYCF6U2rgP+I10EtmNJ+6cD/5b68Q3gjA7GW845Kd55ZBd1HZ/W/wQ4SNKjZKdA/if1o9rjSyq/GPgh2Ze0ucCjEdFyUeBoslMvU4HFuWrljslrkh4ELgf+d1rX2u/AP4AZ6WK1lovTDib3+2przk8HM7O6kNSTLJkckE4VtLf+OWQXV13Y2bHZ6iRNI7sIrbEDbUwHRkTEa20Wtoo84jazukgXlf0X2cVjtg6TtBVwkZN25/CI28zMrEA84jYzMysQJ24zM7MCceI2MzMrECduMzOzAnHiNjMzK5D/D68D+394l7rFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "