@@ -161,11 +161,9 @@ where
161
161
let mut transposed_matrix: Vec < Vec < ValueType > > = vec ! [ ] ;
162
162
163
163
for i in 0 ..matrix. len ( ) {
164
- let mut row: Vec < ValueType > = vec ! [ ] ;
165
- for j in i..matrix. len ( ) {
166
- row. push ( matrix[ j] [ i] ) ;
167
- }
168
- transposed_matrix. push ( row) ;
164
+ transposed_matrix. push (
165
+ ( i..matrix. len ( ) ) . map ( |j| matrix[ j] [ i] ) . collect ( )
166
+ ) ;
169
167
}
170
168
transposed_matrix
171
169
}
@@ -201,6 +199,7 @@ where
201
199
let mut product_row: Vec < ValueType > = vec ! [ ] ;
202
200
let mut product: Vec < Vec < ValueType > > = vec ! [ ] ;
203
201
202
+ #[ allow( clippy:: needless_range_loop) ]
204
203
for i in 0 ..diagonal. len ( ) {
205
204
product_row. clear ( ) ;
206
205
for j in 0 ..( i + 1 ) {
@@ -232,12 +231,12 @@ where
232
231
let mut matrix_entry: ValueType ;
233
232
234
233
for i in 0 ..upper_tri_matrix. len ( ) {
235
- for j in 0 .. lower_tri_matrix_transpose. len ( ) {
234
+ for ( j , lower_tri_matrix_transpose_entry ) in lower_tri_matrix_transpose. iter ( ) . enumerate ( ) {
236
235
matrix_entry = ValueType :: zero ( ) ;
237
236
let lower_diff: usize = ( i as i64 - j as i64 ) . max ( 0 ) as usize ;
238
237
let upper_diff: usize = ( j as i64 - i as i64 ) . max ( 0 ) as usize ;
239
- for k in 0 ..( upper_tri_matrix[ i] . len ( ) . min ( lower_tri_matrix_transpose [ j ] . len ( ) ) ) {
240
- matrix_entry = matrix_entry + upper_tri_matrix[ i] [ k + upper_diff] * lower_tri_matrix_transpose [ j ] [ k + lower_diff] ;
238
+ for k in 0 ..( upper_tri_matrix[ i] . len ( ) . min ( lower_tri_matrix_transpose_entry . len ( ) ) ) {
239
+ matrix_entry += upper_tri_matrix[ i] [ k + upper_diff] * lower_tri_matrix_transpose_entry [ k + lower_diff] ;
241
240
}
242
241
product[ i] . push ( matrix_entry) ;
243
242
}
@@ -246,6 +245,7 @@ where
246
245
}
247
246
248
247
// Compute the spline value at a given point.
248
+ #[ allow( clippy:: too_many_arguments) ]
249
249
fn spline (
250
250
& self ,
251
251
point : IndexType ,
@@ -348,10 +348,10 @@ where
348
348
self . second_derivatives = vec ! [ ValueType :: zero( ) ; tridiagonal_inverse. len( ) ] ;
349
349
let mut matrix_entry: ValueType ;
350
350
351
- for i in 0 .. tridiagonal_inverse. len ( ) {
351
+ for ( i , tridiagonal_inverse_row ) in tridiagonal_inverse. iter ( ) . enumerate ( ) {
352
352
matrix_entry = self . second_derivatives [ i] ;
353
- for j in 0 ..tridiagonal_inverse [ i ] . len ( ) {
354
- matrix_entry = matrix_entry + tridiagonal_inverse [ i ] [ j ] * rhs_vector[ j] ;
353
+ for ( j , tridiagonal_inverse_entry ) in tridiagonal_inverse_row . iter ( ) . enumerate ( ) {
354
+ matrix_entry += * tridiagonal_inverse_entry * rhs_vector[ j] ;
355
355
}
356
356
self . second_derivatives [ i] = matrix_entry;
357
357
}
0 commit comments