|
1 | | -package com.codefortomorrow.advanced.chapter13.practice; |
| 1 | +package com.codefortomorrow.advanced.chapter13.solutions; |
| 2 | + |
| 3 | +import java.util.Scanner; |
2 | 4 |
|
3 | 5 | /* |
4 | 6 | Write a method called isPrime which returns |
5 | 7 | true if the given integer is prime and false otherwise. |
6 | 8 |
|
7 | | -This is similar to the chapter 11 problem, but this time write |
| 9 | +This is similar to the Chapter 11 problem, but this time write |
8 | 10 | your method using recursion. |
9 | 11 |
|
10 | | -In your main method, include a scanner so the user can check |
| 12 | +In your main method, include a Scanner so the user can check |
11 | 13 | as many numbers as they want until they enter -1. |
12 | 14 |
|
13 | 15 | Note: There are more complex solutions, but this is the fastest one |
14 | 16 | within the scope of this chapter. |
15 | 17 | */ |
16 | 18 |
|
17 | | -import java.lang.Math; |
18 | | -import java.util.Scanner; |
19 | | - |
20 | 19 | public class PrimePractice { |
21 | 20 |
|
22 | 21 | public static void main(String[] args) { |
23 | | - int s = 0; |
24 | | - while (s != -1) { |
25 | | - Scanner reader = new Scanner(System.in); |
| 22 | + Scanner reader = new Scanner(System.in); |
| 23 | + int number = 0; |
| 24 | + while (number != -1) { |
26 | 25 | System.out.print("Enter an integer to check: "); |
27 | | - s = reader.nextInt(); |
28 | | - if (s != -1) { |
29 | | - if (isPrime(s, 2)) System.out.println( |
30 | | - "That is a prime!" |
31 | | - ); else System.out.println("Not a prime!"); |
| 26 | + number = reader.nextInt(); |
| 27 | + if (number != -1) { |
| 28 | + if (isPrime(number, 2)) { |
| 29 | + System.out.println("That is a prime!"); |
| 30 | + } else { |
| 31 | + System.out.println("Not a prime!"); |
| 32 | + } |
32 | 33 | } |
33 | 34 | } |
| 35 | + reader.close(); |
34 | 36 | } |
35 | 37 |
|
36 | 38 | /** |
37 | 39 | * isPrime checks the primality of a given integer |
38 | | - * @param n The integer to check |
39 | | - * @param z Current Divisor(used for recursion) |
| 40 | + * @param n The integer to check |
| 41 | + * @param z Current divisor (used for recursion) |
40 | 42 | * @return boolean true if prime and false if not |
41 | 43 | */ |
42 | 44 | public static boolean isPrime(int n, int z) { |
43 | | - //Check base cases |
44 | | - if (n <= 2) return (n == 2) ? true : false; |
45 | | - //Ternary operator used there |
46 | | - if (n % z == 0) return false; |
47 | | - //If z gets high enough that z > sqrt(n), then n is prime, because factors just repeat after |
48 | | - if (Math.pow(z, 2) > n) return true; |
49 | | - |
50 | | - //If none of the above work |
| 45 | + // Check base cases |
| 46 | + if (n <= 2) { |
| 47 | + return n == 2; |
| 48 | + } |
| 49 | + |
| 50 | + // If n is divisible by the current divisor, |
| 51 | + // it has a factor other than 1 and thus is |
| 52 | + // not prime |
| 53 | + if (n % z == 0) { |
| 54 | + return false; |
| 55 | + } |
| 56 | + |
| 57 | + // If z gets high enough that z > sqrt(n), then n is prime, |
| 58 | + // because factors just repeat after |
| 59 | + if (z > Math.sqrt(n)) { |
| 60 | + return true; |
| 61 | + } |
| 62 | + |
| 63 | + // If none of the above work, |
| 64 | + // keep calling isPrime recursively |
| 65 | + // with a larger divisor |
51 | 66 | return isPrime(n, z + 1); |
52 | 67 | } |
53 | 68 | } |
0 commit comments