diff --git a/notebooks/en/_toctree.yml b/notebooks/en/_toctree.yml index 1619b9f8..1ccf658c 100644 --- a/notebooks/en/_toctree.yml +++ b/notebooks/en/_toctree.yml @@ -88,8 +88,9 @@ title: Hyperparameter Optimization with Optuna and Transformers - local: function_calling_fine_tuning_llms_on_xlam title: Fine-tuning LLMs for Function Calling with the xLAM Dataset - - + - local: grpo_vllm_online_training + title: Efficient Online Training with GRPO and vLLM in TRL + - title: Computer Vision Recipes isExpanded: false diff --git a/notebooks/en/grpo_vllm_online_training.ipynb b/notebooks/en/grpo_vllm_online_training.ipynb new file mode 100644 index 00000000..30bdf3c9 --- /dev/null +++ b/notebooks/en/grpo_vllm_online_training.ipynb @@ -0,0 +1,17209 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "vKadZFQ2IdJb" + }, + "source": [ + "# Efficient Online Training with GRPO and vLLM in TRL\n", + "\n", + "_Authored by: [Sergio Paniego](https://github.com/sergiopaniego)_\n", + "\n", + "In this notebook, we'll walk through how to post-train a Large Language Model (LLM) using **Group Relative Policy Optimization (GRPO)** with TRL, enhanced by **vLLM**. We already have a [previous recipe](https://huggingface.co/learn/cookbook/fine_tuning_llm_grpo_trl) focused on GRPO itself. In contrast, this notebook emphasizes **efficient online training with vLLM**.\n", + "\n", + "Although we focus on GRPO here, the same setup applies to **any online training method in TRL** that requires generating completions during training, such as DPO. The key idea is to **leverage vLLM** to remove the generation bottleneck and significantly accelerate training.\n", + "\n", + "Why does this matter? Online training methods rely on the model generating outputs in real time, which often becomes a critical speed and memory bottleneck. **vLLM** solves this with a high-throughput, low-latency inference engine built on **PagedAttention**, enabling faster generation and more efficient memory usage—making large-scale online training far more practical.\n", + "\n", + "This notebook is designed for Colab, where we only have access to a single GPU. We'll demonstrate how to run both TRL and vLLM on the same GPU efficiently. With more GPUs, this approach can scale seamlessly: TRL allows you to dedicate separate GPUs for training and vLLM, further boosting performance.\n", + "\n", + "As you'll see, with only a few adjustments, we can directly observe a measurable gain in training efficiency.\n", + "\n", + "The diagram below illustrates the overall training workflow and highlights where vLLM (blue box) and TRL (pink box) fit into the process:" + ] + }, + { + "cell_type": "markdown", + "source": [ + "![grpo_vllm_online_training (1).png]()" + ], + "metadata": { + "id": "8Kq4TBG3_Um_" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gSHmDKNFoqjC" + }, + "source": [ + "## 1. Install Dependencies\n", + "\n", + "First, let's install the essential libraries required for fine-tuning.\n", + "The important highlight here is **TRL with vLLM support**, which enables **high-throughput, low-latency generation** during online training, removing the common bottleneck in completion generation." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "GCMhPmFdIGSb", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "09d81e07-5612-45a0-9270-5fa05bb0d361" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/207.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.9/207.9 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m864.4/864.4 kB\u001b[0m \u001b[31m48.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.5/63.5 MB\u001b[0m \u001b[31m41.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m325.4/325.4 kB\u001b[0m \u001b[31m28.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m436.4/436.4 MB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m180.0/180.0 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.5/45.5 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.4/45.4 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.9/3.9 MB\u001b[0m \u001b[31m78.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m80.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.2/117.2 MB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.9/7.9 MB\u001b[0m \u001b[31m104.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m564.6/564.6 kB\u001b[0m \u001b[31m33.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m96.2/96.2 kB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.0/15.0 MB\u001b[0m \u001b[31m126.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.5/6.5 MB\u001b[0m \u001b[31m48.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m73.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.1/70.1 MB\u001b[0m \u001b[31m33.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m66.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m387.9/387.9 kB\u001b[0m \u001b[31m31.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m284.9/284.9 kB\u001b[0m \u001b[31m25.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m213.6/213.6 kB\u001b[0m \u001b[31m20.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m180.7/180.7 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.6/71.6 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m452.2/452.2 kB\u001b[0m \u001b[31m34.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.4/42.4 MB\u001b[0m \u001b[31m54.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m331.1/331.1 kB\u001b[0m \u001b[31m31.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.8/510.8 kB\u001b[0m \u001b[31m43.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m111.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.7/4.7 MB\u001b[0m \u001b[31m46.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m951.1/951.1 kB\u001b[0m \u001b[31m45.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "ipython 7.34.0 requires jedi>=0.16, which is not installed.\u001b[0m\u001b[31m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install -U -q trl[vllm] peft math_verify trackio\n", + "\n", + "# Tested with trl==0.23.0, peft==0.17.1, math_verify==0.8.0, vllm==0.10.2, trackio==0.5.0" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "V0-2Lso6wkIh" + }, + "source": [ + "Authenticate with your Hugging Face account to save and share your model directly from this notebook 🗝️." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "xcL4-bwGIoaR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "24c88fcfb4db4c25a12826dc3225c3ce", + "bfe60ff41ea945a7a98174359cc50704", + "df8408f963284264821b753f5fb94bac", + "284112b4ebdb49f6afca757ca89c84fd", + "7a07f2e093b44306af017f6301b5f026", + "ba37714941b44b54b53df82090678a59", + "549b9b8e58024ba0a8960e046327bac9", + "c6c6a578564d4eda9bacf8e7bd983124", + "bfa2d7bb96d246659a79cb240927617d", + "eca1d61071a848cfbde43b1fe92080f3", + "435e6cb8b924472f93afb7c2f0e849b6", + "3bcd66944c334a728c300a9420d686cd", + "6e33bc3052524de88d7314ecf4597590", + "6e8cb8d286ff40f0bda822a87df5052d", + "de38e04fa3864af195cd0942670a57fa", + "8c8ddef66a844c4d978d69ca00af1c65", + "97f4110a52a54cbc8e9b479e71f3078c", + "6ec98dbdb99d4312a3e7e2d91fe32053", + "4a15dde2e22b4c589fa84324d702799f", + "4676cd8cbcd345b0a43520a1c105520d" + ] + }, + "outputId": "d646dfaa-df9e-4540-ad97-314a266ed3e2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='
and\n", + " tags, respectively, i.e., reasoning process here \n", + " answer here . User: prompt. Assistant:\n", + "```\n", + "\n", + "This conversational structure ensures that the model **explicitly demonstrates its reasoning** before giving the answer, which is crucial for enhancing multi-step reasoning skills in mathematical problem-solving tasks." + ], + "metadata": { + "id": "6isapXWue91d" + } + }, + { + "cell_type": "code", + "source": [ + "SYSTEM_PROMPT = (\n", + " \"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant \"\n", + " \"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning \"\n", + " \"process and answer are enclosed within and tags, respectively, i.e., \"\n", + " \" reasoning process here answer here \"\n", + ")\n", + "\n", + "def make_conversation(example):\n", + " return {\n", + " \"prompt\": [\n", + " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n", + " {\"role\": \"user\", \"content\": example[\"problem\"]},\n", + " ],\n", + " }\n", + "\n", + "train_dataset = train_dataset.map(make_conversation)\n", + "test_dataset = test_dataset.map(make_conversation)" + ], + "metadata": { + "id": "iXsh50jY_hQM", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "214f0c4f680141d7a37f5ca71c2af48f", + "8c58eb689ee34851b5f57117994b39fc", + "45e8592006fe4b6a8deacde57816557a", + "fd063592e19840afa1e40cf8aef9be6d", + "8b210e791c0e480eb3232914b4b21f7d", + "63368a5047da44e6842fcdf63ff34e08", + "c06c51b4ad40406095fcc7bb6fd3b91c", + "2e5e7ca8869541c5a23c3bcce0311b70", + "7d09436859be4542aee51b7948ce772b", + "25b64fb47ee34076816cae2e5c09b509", + "c2f77bb1300147328c325a776d8be38a", + "f257f6609ee5431e91e24e762949bc5b", + "bf664d457c1c45c59514b2b46a5d31b1", + "cca36113523844f19f611063e36df649", + "a63985f3f7224765a8c7f0a5442b6a1a", + "1dca0157fdc54ccda2a2a3d901b779e3", + "6ca597da1d8545108e25cc500f9d95a9", + "57b5c8748c2240dbb362574871799984", + "f1fb075e51914ea39a7ece988f3917a1", + "515d2d5ac9d84df69c165d941ff3fb48", + "1b0b5f3e75f94976b7a89895b4904011", + "d907dd928c2143478e08584359a338bb" + ] + }, + "outputId": "b6edcaa7-21c2-4080-c3c3-f298e29ce5de" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/7244 [00:00 and tags, respectively, i.e., reasoning process here answer here ', 'role': 'system'}, {'content': 'What is the coefficient of $x^2y^6$ in the expansion of $\\\\left(\\\\frac{3}{5}x-\\\\frac{y}{2}\\\\right)^8$? Express your answer as a common fraction.', 'role': 'user'}]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We'll remove the `messages` and `problem` columns, as we only need the custom `prompt` column and `solution` to verify the generated answer." + ], + "metadata": { + "id": "q6ijkZ3VmxA4" + } + }, + { + "cell_type": "code", + "source": [ + "train_dataset = train_dataset.remove_columns(['messages', 'problem'])\n", + "print(train_dataset)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EaY8lUYSHyhA", + "outputId": "c68ccd91-2a7b-4efa-a3f1-b52c3aafa6e8" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Dataset({\n", + " features: ['solution', 'prompt'],\n", + " num_rows: 7244\n", + "})\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YIZOIVEzQqNg" + }, + "source": [ + "## 3. Post-Training the Base Model Using GRPO + vLLM ⚡\n", + "\n", + "The diagram below highlights the main differences between **PPO** (Proximal Policy Optimization) and **GRPO** (Group Relative Policy Optimization), particularly the removal of the value model in GRPO.\n", + "\n", + "A key challenge in online methods like GRPO is that the model must generate completions during training, which can quickly become a bottleneck. By integrating **vLLM**, we enable **high-throughput, low-latency generation** via its [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html) mechanism. This not only speeds up the post-training loop but also improves memory efficiency, making large-scale reasoning tasks more practical.\n", + "\n", + "TRL supports online training with vLLM in two different modes:\n", + "\n", + "- **`colocate`**: The trainer process and the vLLM process share the same GPU resources. This is the setup used in this notebook, since Colab provides only a single GPU.\n", + "- **`server`**: The trainer and vLLM run on separate GPUs. This mode is ideal for multi-GPU setups, where TRL can use some GPUs for training while vLLM uses others, communicating via HTTP.\n", + "\n", + "These modes provide flexibility to efficiently leverage available hardware while benefiting from vLLM's fast generation." + ] + }, + { + "cell_type": "markdown", + "source": [ + "![ppo_grpo.jpeg]()" + ], + "metadata": { + "id": "BbIwDpT8F_aq" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 3.1 Loading the Baseline Model\n", + "\n", + "We'll start by loading [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) as our baseline (the **Policy Model** in the diagram above). \n", + "With just **0.5B parameters**, this model is lightweight and fits comfortably within typical GPU memory. \n", + "\n", + "- For improved performance, you may consider a [larger alternative model](https://x.com/jiayi_pirate/status/1882839487417561307). \n", + "- We intentionally avoid the newer **Qwen2.5** or **Qwen3** series, since they are already optimized for reasoning/maths tasks, as also [highlighted by other developers](https://thinkingmachines.ai/blog/lora/#reinforcement-learning).\n", + "\n", + "Later in the workflow, **vLLM will reuse this same model for generation**. Importantly, we **don't need to initialize vLLM here**—TRL will handle initialization automatically once the training loop begins, thanks to **colocate mode** (explained earlier). \n", + "\n", + "We'll see how this comes into play in the next steps." + ], + "metadata": { + "id": "D-UlkRzREf-J" + } + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "from transformers import AutoModelForCausalLM\n", + "\n", + "model_id = \"Qwen/Qwen2-0.5B-Instruct\" # \"Qwen/Qwen2.5-0.5B\"\n", + "model = AutoModelForCausalLM.from_pretrained(\n", + " model_id,\n", + " dtype=\"auto\",\n", + " device_map=\"auto\",\n", + ")" + ], + "metadata": { + "id": "qv02eazzEUeJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 113, + "referenced_widgets": [ + "90d7546a359446979dc099eda12e2daf", + "0caf5d4fd2544b9096d103e530b547ea", + "12e4f6d37b8a4bdaa8f57d3dca4f00da", + "9aa07ea1ce764493acf4c89af08857f5", + "a709c8b483b344ffb293dfdd3cf1d314", + "ec5802db1887471c953c0b8f0bce0434", + "6168aae951c445c793f99d5e699ed558", + "452884ff62a54d04ac1cb531471a18fa", + "86be624af61e4ae182ec3272adac0e3a", + "fcb1a787aacc44b28d2c69279b01130a", + "e2015f7b376140e8a9e366710db55df8", + "e791e33969424dafb0b022dce21d2abf", + "b291793a1aa54c0b8837c81df0ac0b8e", + "b73f6bfa74a44e81a28767c70c3f2565", + "50fbecea76244671b33c921d7ba9ee22", + "1429d281bc94424aaa0c95928db9d635", + "41ad9d1595d641b4af06362498bf39a7", + "d3a9c397a4244335ada594ee6c9919c6", + "91b2a4d4fa9743b9baa6c23521f4ed17", + "c98e3f4bbed94beb9cc2befcce9fd15d", + "400f76d7eed747bbaff9ec2c4829da2c", + "eeab31123abe44b1bdab8fd67ada5ae5", + "681626e8db874460a9fe5e6692defa3b", + "c28de1b3f9b64580881500f5cbd1e11b", + "064ef8cd267845958af36f94e157f916", + "233d42eabb704a219195cd50bc88673f", + "76ac51b551234954bdae19a8a02eea42", + "1ec65e0a3ea94ef4bfbd29b1d0c71579", + "76a0b1ef868f458bbb8ae38801abe361", + "20b32d7743584b4b83bb84efda8b4107", + "4517fb94752943659174fea5b41cde88", + "48aa6f9cf71b4274b4be95bb128db23a", + "6cf35cab1e9f438999c71035645c60ee" + ] + }, + "outputId": "fd0b2c98-20b0-4208-d83b-92674ab18a6a" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/659 [00:00 ` tags. You can find more details [here](https://github.com/huggingface/open-r1/blob/main/src/open_r1/grpo.py). We can simply define and implement these reward functions as generic Python functions.\n", + "\n", + "In this case, we will utilize these reward functions:\n", + "\n", + "1. **Format Enforcement:** Ensures that the generation follows a specific format using ` ` tags for reasoning." + ], + "metadata": { + "id": "4M6prmhAEodm" + } + }, + { + "cell_type": "code", + "source": [ + "import re\n", + "def format_reward(completions, **kwargs):\n", + " \"\"\"Reward function that checks if the completion has a specific format.\"\"\"\n", + " pattern = r\"^.*?\\s*.*?$\"\n", + " completion_contents = [completion[0][\"content\"] for completion in completions]\n", + " matches = [re.match(pattern, content) for content in completion_contents]\n", + " rewards_list = [1.0 if match else 0.0 for match in matches]\n", + " return [1.0 if match else 0.0 for match in matches]" + ], + "metadata": { + "id": "BE7ZgN_sDPNg" + }, + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "2. **Solution Accuracy:** Verifies whether the solution to the problem is correct." + ], + "metadata": { + "id": "nOQMzHHDoE18" + } + }, + { + "cell_type": "code", + "source": [ + "from math_verify import LatexExtractionConfig, parse, verify\n", + "def accuracy_reward(completions, **kwargs):\n", + " \"\"\"Reward function that checks if the completion is the same as the ground truth.\"\"\"\n", + " solutions = kwargs['solution']\n", + " completion_contents = [completion[0][\"content\"] for completion in completions]\n", + " rewards = []\n", + " for content, solution in zip(completion_contents, solutions):\n", + " gold_parsed = parse(solution, extraction_mode=\"first_match\", extraction_config=[LatexExtractionConfig()])\n", + " answer_parsed = parse(content, extraction_mode=\"first_match\", extraction_config=[LatexExtractionConfig()])\n", + " if len(gold_parsed) != 0:\n", + " try:\n", + " rewards.append(float(verify(answer_parsed, gold_parsed)))\n", + " except Exception:\n", + " rewards.append(0.0)\n", + " else:\n", + " rewards.append(1.0)\n", + " return rewards" + ], + "metadata": { + "id": "P3VIGZL4FLxA" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### 3.4 Configuring GRPO Training Parameters\n", + "\n", + "Next, we'll configure the training parameters for GRPO. Key parameters to experiment with are `max_completion_length`, `num_generations`, and `max_prompt_length` (see the diagram at the beginning for details on each). \n", + "\n", + "To keep things simple, we'll start with **just one training epoch**. We've doubled the `max_completion_length` so the model can generate slightly longer answers than the default in the `GRPOConfig` of 256 tokens. In practice, we recommend setting `num_generations` to 8 or more, as this has virtually no impact on GPU memory. The same principle applies to other parameters—careful experimentation and fine-tuning are key to identifying the most effective configuration for your task. In the next section, we provide a table showing training speeds for different parameter settings.\n", + "\n", + "We'll also enable **vLLM** for generation during training. This is done by setting `use_vllm=True`, which instructs TRL to automatically launch and manage vLLM once the training loop begins.\n", + "\n", + "Since this notebook runs on **a single GPU**, we configure **`colocate` mode** (via the `vllm_mode` parameter), so both the trainer and vLLM share the same GPU resources. In multi-GPU setups, you can instead run vLLM in a separate process, dedicating specific GPUs to each and letting them communicate via HTTP—unlocking even greater efficiency.\n", + "\n", + "For more advanced configurations, check out the [official vLLM integration guide](https://huggingface.co/docs/trl/main/en/vllm_integration). In multi-GPU environments, you can also launch vLLM with the `trl vllm-serve` tool to further maximize throughput and performance." + ], + "metadata": { + "id": "qW_3r8T1EtNg" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "SbqX1pQUKaSM" + }, + "outputs": [], + "source": [ + "from trl import GRPOConfig\n", + "\n", + "# Configure training arguments using GRPOConfig\n", + "training_args = GRPOConfig(\n", + " output_dir=\"Qwen2-0.5B-GRPO-vllm-trl\",\n", + " learning_rate=1e-5,\n", + " remove_unused_columns=False, # to access the solution column in accuracy_reward\n", + " gradient_accumulation_steps=16,\n", + " num_train_epochs=1,\n", + " bf16=True,\n", + "\n", + " # Parameters that control de data preprocessing\n", + " max_completion_length=512, # default: 256\n", + " num_generations=8, # default: 8\n", + " max_prompt_length=512, # default: 512\n", + "\n", + " # Parameters related to reporting and saving\n", + " report_to=[\"trackio\"],\n", + " logging_steps=10,\n", + " push_to_hub=True,\n", + " save_strategy=\"steps\",\n", + " save_steps=10,\n", + "\n", + " # Configure vLLM\n", + " use_vllm=True,\n", + " vllm_mode=\"colocate\",\n", + " # Some more params you can configure for vLLM with their defaults\n", + " # vllm_model_impl='vllm',\n", + " # vllm_enable_sleep_mode=False,\n", + " # vllm_guided_decoding_regex=None,\n", + " # vllm_server_base_url=None,\n", + " # vllm_server_host='0.0.0.0',\n", + " # vllm_server_port=8000,\n", + " # vllm_server_timeout=240.0,\n", + " # vllm_gpu_memory_utilization=0.3,\n", + " # vllm_tensor_parallel_size=1\n", + " # vllm_importance_sampling_correction=True,\n", + " # vllm_importance_sampling_cap=2.0\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pOUrD9P-y-Kf" + }, + "source": [ + "### 3.5 Training the Model 🏃\n", + "\n", + "Next, we'll configure the trainer and begin training the model.\n", + "\n", + "For this setup, we pass the two reward functions we defined earlier to the trainer to guide the learning process.\n", + "\n", + "Below is a diagram illustrating the training procedure we'll be reproducing, adapted from the [Open-R1 project](https://github.com/huggingface/open-r1)." + ] + }, + { + "cell_type": "markdown", + "source": [ + "![image.png]()" + ], + "metadata": { + "id": "xxGhmAx-ZxWQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Finally, let’s configure the `GRPOTrainer`.\n", + "\n", + "If you look closely at the output, you'll see details about the launch of vLLM. Thanks to TRL, integrating vLLM is straightforward, with minimal friction—allowing you to easily take advantage of high-throughput generation during online training.\n", + "\n", + "For a deeper understanding of the benefits, we recommend comparing this notebook with the previous GRPO recipe without vLLM." + ], + "metadata": { + "id": "6J_BL6R6ZlH2" + } + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "k_jk-U7ULYtA", + "outputId": "ef3b8a80-7dfc-480c-fb69-257f50d57f42", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 751, + "referenced_widgets": [ + "50d192a27e274caebb42c7d634260cdd", + "8ebc0cf17f0c45469fe014dd23b4a869", + "4d3b7821ceeb45b4aef06e3dba634be0", + "98303cf02e954753a1569138c6367a2d", + "cc5fddc2f96e465ab75da3b136dd5dce", + "c0b756f9fad44bfdb3dfa4590f1bffc3", + "fa2fba804290405596c7c8cc5b6b75fc", + "ebca01def8084150948dcbbf31957cbc", + "2b11a47ad38445b8a8a5d898b561e651", + "820fe47ce8ba484d8a2d2f80b07db6ad", + "ad8222be48d7491cadead0bcc7332a48", + "b761c01ff62f4d7bbe780b29d104b950", + "af7f9a1ed0db4bf180e03589d796196b", + "6da58509a3424d7fac909f398f0ad450", + "da96e0edab174049b0f227dfd2280383", + "621355ef21ff4429995762e5bd643829", + "5598aa0553d643fe859219d2fb2a8328", + "6f499085c3e04a7a965e5eec8423d64c", + "b5cccba8ff32426faab0c51ba6520f75", + "4bfa11ba58f34ab1bfcc232867e75735", + "0a43105360774ab79a75292504688396", + "683f05c868c34d218bea696b1760fce4", + "d9a681bdb457448f8a6cad05364a78fc", + "6b5defb66684415ab5c6277ef0a4b24e", + "0c17cc6752a04009ab2edcb53d283342", + "0976ea7698484069a39f558181e3be52", + "e78fe587de434b0fab967737b2076b1b", + "a1f383a889e4412aa0054421d3568477", + "af70046703a046798a27db68c690bca0", + "ea4ad06986e342ad8f6853331d17aea5", + "ad7f01c24c414de1aa6d17702b543c89", + "8b9bf3dbe3ae4f99879db7c56c27ecfd", + "d763883454fe456e810c7119874e75a8", + "01b127bcdce5497dbc886cdfcc19e17b", + "2500bd2514a94694a2ca0e9250fe32a7", + "a43abeae0dda49a79f4c7baf5de85df3", + "5f4e139822af43329b4683566c0c2027", + "a13d39ddf38a44f2912d820eca9e4929", + "9cfa3037b7a046f9be57a7c3be9a5045", + "d315a80217e2481898df545801789e7b", + "22887719dd08461993ec5afcd3f1827c", + "5eb7e3e5b75e46adb7a3ee089e3b6053", + "04af830916fa4a26b14696b4efcf3c2f", + "69c778d5ea334ae18eda9701f3875ab7", + "e58eefaeac2a42db9a0bfb2f6f471c23", + "fe48a86f65d246eea2839d5ee4d445c6", + "49013862fd79419ca64308e4e2131311", + "20fdcdb5429949eba8e975c4a22d28e2", + "3f1a48beef7b412e81c84ea3b2a4378d", + "ce1cfdd89b1d478786a7a7bc3770ba2b", + "439cf012b34649e9b052a14782a9651f", + "63c1921a52424f25bd55be6da53c6ad3", + "d5be6908b5734fb784968a7b02c52db9", + "0cc3c8bfba744d368cb0beabf9ea3760", + "fc965664a2c84c2d8dced4fe473c3f63" + ] + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:31:13 [__init__.py:216] Automatically detected platform cuda.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer_config.json: 0.00B [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "50d192a27e274caebb42c7d634260cdd" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "vocab.json: 0.00B [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b761c01ff62f4d7bbe780b29d104b950" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "merges.txt: 0.00B [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d9a681bdb457448f8a6cad05364a78fc" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer.json: 0.00B [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "01b127bcdce5497dbc886cdfcc19e17b" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:31:25 [utils.py:328] non-default args: {'seed': 0, 'max_model_len': 1024, 'distributed_executor_backend': 'external_launcher', 'gpu_memory_utilization': 0.3, 'max_num_batched_tokens': 4096, 'max_num_seqs': 128, 'disable_log_stats': True, 'model_impl': 'vllm', 'model': 'Qwen/Qwen2-0.5B-Instruct'}\n", + "INFO 10-03 11:31:43 [__init__.py:742] Resolved architecture: Qwen2ForCausalLM\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "`torch_dtype` is deprecated! Use `dtype` instead!\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:31:43 [__init__.py:1815] Using max model len 1024\n", + "INFO 10-03 11:31:43 [parallel.py:348] Disabling V1 multiprocessing for external launcher.\n", + "INFO 10-03 11:31:43 [scheduler.py:222] Chunked prefill is enabled with max_num_batched_tokens=4096.\n", + "INFO 10-03 11:31:44 [core.py:76] Initializing a V1 LLM engine (v0.10.2) with config: model='Qwen/Qwen2-0.5B-Instruct', speculative_config=None, tokenizer='Qwen/Qwen2-0.5B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=1024, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, data_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=Qwen/Qwen2-0.5B-Instruct, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={\"level\":3,\"debug_dump_path\":\"\",\"cache_dir\":\"\",\"backend\":\"\",\"custom_ops\":[],\"splitting_ops\":[\"vllm.unified_attention\",\"vllm.unified_attention_with_output\",\"vllm.mamba_mixer2\",\"vllm.mamba_mixer\",\"vllm.short_conv\",\"vllm.linear_attention\",\"vllm.plamo2_mamba_mixer\",\"vllm.gdn_attention\"],\"use_inductor\":true,\"compile_sizes\":[],\"inductor_compile_config\":{\"enable_auto_functionalized_v2\":false},\"inductor_passes\":{},\"cudagraph_mode\":1,\"use_cudagraph\":true,\"cudagraph_num_of_warmups\":1,\"cudagraph_capture_sizes\":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],\"cudagraph_copy_inputs\":false,\"full_cuda_graph\":false,\"pass_config\":{},\"max_capture_size\":256,\"local_cache_dir\":null}\n", + "INFO 10-03 11:31:47 [parallel_state.py:1165] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0\n", + "WARNING 10-03 11:31:47 [topk_topp_sampler.py:69] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.\n", + "INFO 10-03 11:31:47 [gpu_model_runner.py:2338] Starting to load model Qwen/Qwen2-0.5B-Instruct...\n", + "INFO 10-03 11:31:47 [gpu_model_runner.py:2370] Loading model from scratch...\n", + "INFO 10-03 11:31:48 [cuda.py:362] Using Flash Attention backend on V1 engine.\n", + "INFO 10-03 11:31:48 [weight_utils.py:348] Using model weights format ['*.safetensors']\n", + "INFO 10-03 11:31:48 [weight_utils.py:406] No model.safetensors.index.json found in remote.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Loading safetensors checkpoint shards: 0% Completed | 0/1 [00:00" + ], + "text/html": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "* Created new run: dainty-sunset-0\n", + "INFO 10-03 11:32:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [452/452 1:00:28, Epoch 1/1]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
100.080900
200.128500
300.209800
400.281500
500.395200
600.297500
700.294200
800.246800
900.205800
1000.171900
1100.098800
1200.111600
1300.086400
1400.055100
150-0.014400
1600.089900
1700.051200
1800.081700
1900.097800
2000.039200
2100.073300
2200.220300
2300.040700
2400.165100
2500.026300
2600.096200
2700.063000
2800.024200
2900.054100
3000.051000
3100.124900
3200.047900
330-0.000400
3400.031200
3500.006600
3600.023100
3700.014700
3800.007000
3900.063100
4000.020700
4100.098100
4200.070300
4300.002400
4400.072800
4500.013100

" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:32:44 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:32:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:33:12 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:math_verify.grader:Timeout during comparison\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:33:33 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:33:47 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:34:00 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:34:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:34:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:34:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:35:08 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:35:22 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:35:38 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:35:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:36:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:36:17 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:36:30 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:36:43 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:36:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:37:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:37:23 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:37:35 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:37:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:38:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:38:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:38:28 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:38:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:38:56 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:39:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:39:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:39:35 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:39:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:40:03 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:40:15 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:40:28 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:40:40 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:40:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:41:06 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:41:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:41:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:41:44 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:41:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:42:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:42:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:42:34 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:42:47 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:42:59 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:43:11 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:43:24 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:43:36 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:43:48 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "WARNING:math_verify.grader:Timeout during comparison\n", + "WARNING:math_verify.parser:Timeout during parsing: reasoning process here $a_1=1997^{1996^{1997}} = 7$ reasoning process here $a_2=7+1997^{1996^{1997}}=8$ reasoning process here $a_3=8+1997^{1996^{1997}}=9$ reasoning process here $a_4=9+1997^{1996^{1997}}=10$ reasoning process here $a_5=10+1997^{1996^{1997}}=11$ reasoning process here $a_6=11+1997^{1996^{1997}}=12$ reasoning process here $a_7=12+1997^{1996^{1997}}=13$ reasoning process here $a_8=13+1997^{1996^{1997}}=14$ reasoning process here $a_9=14+1997^{1996^{1997}}=15$ reasoning process here $a_{10}=15+1997^{1996^{1997}}=16$ \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:44:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:44:23 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:44:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:44:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:44:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:45:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:45:12 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/sympy/solvers/solvers.py:950: SymPyDeprecationWarning: \n", + "\n", + "Using non-Expr arguments in Add is deprecated (in this case, one of\n", + "the arguments has type 'Tuple').\n", + "\n", + "If you really did intend to use a multiplication or addition operation with\n", + "this object, use the * or + operator instead.\n", + "\n", + "See https://docs.sympy.org/latest/explanation/active-deprecations.html#non-expr-args-deprecated\n", + "for details.\n", + "\n", + "This has been deprecated since SymPy version 1.7. It\n", + "will be removed in a future version of SymPy.\n", + "\n", + " fi = Add(fi.lhs, -fi.rhs, evaluate=False)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:45:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:45:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:45:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:46:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:46:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:46:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:46:30 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:46:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:46:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:47:03 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:47:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:47:26 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:47:35 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:47:45 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:47:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:12 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:30 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:46 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:48:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:01 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:49:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:39 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:45 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:49:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:50:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:50:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:50:30 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:50:37 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:50:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:50:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:07 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:18 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:46 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:51:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:04 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:52:11 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:16 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:23 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:52:56 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:18 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:53:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:39 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:45 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:50 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:53:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:16 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:21 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:54:35 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:54:47 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:21 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:29 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:46 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:55:51 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:55:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:12 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:43 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:56:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:56:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:34 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:39 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:44 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:57:52 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:57:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:58:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:59:13 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 11:59:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:35 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:47 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 11:59:58 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:00:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:00:19 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:24 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:36 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:42 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:49 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:00:54 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:01 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:11 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:17 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:22 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:35 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:44 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:01:55 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:01 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:09 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:18 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:35 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "WARNING:math_verify.grader:Timeout during comparison\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:45 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:52 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:02:57 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:08 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:20 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:25 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:38 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:44 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:03:56 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:01 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:09 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:14 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:20 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:26 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:37 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:46 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:52 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:04:58 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:11 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:16 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:21 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:32 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:37 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:50 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:05:59 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:06:07 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:06:18 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:06:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:06:42 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:06:53 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:07:00 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:07:07 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:07:12 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:07:23 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:07:36 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:07:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:07:46 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:07:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:03 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:24 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:37 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:08:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:08:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:09:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:09:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:09:19 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:09:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:09:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:09:44 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:09:51 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:10:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:26 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:10:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:11:00 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:11:06 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:11:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:11:26 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:34 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:40 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:45 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:52 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:11:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:12:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:12:22 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:12:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:12:39 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:12:51 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:12:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:26 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:32 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:13:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:43 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:13:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:39 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:14:44 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:14:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:11 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:16 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:28 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:34 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:41 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:15:46 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:15:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:05 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:11 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:20 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:30 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:35 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:42 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:16:52 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:16:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:17:03 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:17:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:17:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:17:18 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:17:29 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:17:41 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:17:55 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:18:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:18:09 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:18:14 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:18:20 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:18:26 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:18:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:18:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:18:47 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:18:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:18:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:04 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:19:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:43 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:19:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:00 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:20:05 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:16 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:22 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:27 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:33 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:44 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:20:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:03 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:21:09 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:19 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:21:25 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:21:32 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:51 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:21:56 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:08 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:22:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:24 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:22:29 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:37 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:22:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:07 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:13 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:23:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:36 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:41 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:23:58 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:12 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:24:17 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:23 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:29 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:35 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:40 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:24:59 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:04 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:12 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:25:24 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:36 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:43 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:51 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:25:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:07 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:20 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:26:25 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:26:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:36 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:44 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:26:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:00 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:05 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:17 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:27:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:38 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:49 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:27:55 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:01 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:21 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:34 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:40 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:28:45 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:28:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:29:05 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:29:10 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:29:15 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:29:22 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:29:27 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n", + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:29:41 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:29:46 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:29:54 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:30:00 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:06 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:13 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:18 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:23 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:29 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:34 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:40 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:45 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:30:52 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:30:57 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:02 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:08 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:14 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:26 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:31:54 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:00 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:32:05 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:11 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:19 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:25 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:31 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:36 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:42 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:48 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:53 [block_pool.py:292] Successfully reset prefix cache\n", + "INFO 10-03 12:32:59 [block_pool.py:292] Successfully reset prefix cache\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/torch/utils/checkpoint.py:85: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO 10-03 12:33:04 [block_pool.py:292] Successfully reset prefix cache\n", + "* Run finished. Uploading logs to Trackio (please wait...)\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=452, training_loss=0.09777604969140076, metrics={'train_runtime': 3645.3922, 'train_samples_per_second': 1.987, 'train_steps_per_second': 0.124, 'total_flos': 0.0, 'train_loss': 0.09777604969140076})" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's save the results 💾" + ], + "metadata": { + "id": "z7_y1x7E1JY9" + } + }, + { + "cell_type": "code", + "source": [ + "trainer.save_model(training_args.output_dir)\n", + "trainer.push_to_hub(dataset_name=dataset_id)" + ], + "metadata": { + "id": "Cazf4AB2nbRT", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 426, + "referenced_widgets": [ + "24449228956d4761a952e94da93d24ef", + "048a1d87757a41ee95300339b8a6a644", + "38fe395a55264a37ad5db1e4f8833948", + "4cb093284a514340b3500b6384540254", + "1454c5b00864424fac462e494af1feb4", + "795444fc6d8b45c788cba7a26e14c704", + "24063846766d4f46bc1745aa72267e99", + "33397a51d88c42fd9e56d44d96063fb3", + "f80c6ba4d3804855bff3c68e4f8bb2ce", + "39e32c8487d248689d9f23ce4711a225", + "8c5811d1ada7419fbe0911a19a55b482", + "c2372bfb130d45d88233800e6a95af01", + "8722be7f942340eaa77bf1492ff3aa7e", + "f31491b2308f4195b2d61e807f4749c1", + "f27313d601f14c73815c14a9996c2cdf", + "8e1bb97bb9d9497891ea1ee1483cf350", + "cbf604590e7d4aea9e8423448a30ce2d", + "e0a312eab6ba4c0f935aeb2b74517565", + "87020498ca03494e975e9b1d9e17dd8a", + "3ab6858797c34fd4abd5c2cb843488cf", + "d28c16e27fd343a28f5a0f785840a83d", + "49dde296c20841cc8743434084c457b2", + "d8d1d1e2cd0d4fd3948a8dc0ac3b72b1", + "a230d525e65e430fb082bbd871f7efc1", + "11ac0f8c06804471bd799766ca39a9ef", + "0b7cb3fad35d47ab963e3065d5edbb66", + "e9697ae9d4b5456eaeb9d61a618ca464", + "f73b93eed0a844e0afa66c8ff3ea6e2b", + "30b84b30e0024cc884d5124a4a9561ce", + "763cadd87299481ebe1d7fdaa04718f0", + "2d1d125afd42468db94012578ba6a9b0", + "8cd68cb0e7fb4d4cb4a34c3f36942abc", + "469f0b30119b4c5aaf9bfa17e5cb73e9", + "5ed233a955b14342955f111576a395d9", + "f522922ce1fd46998a429ea0776e3b59", + "800d09a2000c4d6987fc22b8f27b9f99", + "d7ca74a02a4941e5b8aa2391d0d9e295", + "b68d1f1de1bc400e8603e0060dcf7b97", + "4c4c1787146242e483c4e600a06a7f59", + "06cad97cc9d8490ab39b4ae96d524a96", + "571227481e684c088b614161965cd29e", + "5442061b98704a4989f6a765634d0e96", + "0336d0845ba14dc19179b3a4f6581c55", + "2c71dc6b8d4443c7aeda53a49829216f", + "e71e5e084c22439d9cd3ef007beac264", + "4b3320e6d1bc404a9401db13702bed43", + "4ac8498aa540457c93d21d428e7b0846", + "77f033d7354d4b53b6dc7e2acd57e3fe", + "c98671ae1bc2427a89a8920e71dd9224", + "4dcd6d0e0ade4ec6aa2ac334185f54e2", + "dbda791e57b241eab6e434e500b71555", + "59483bad9aad4a8c95bc63042747666f", + "4c8532981d3d49bdbb40c732c642d897", + "3b5c0b62c75a4663b9cd5fe11c05f2d1", + "2a15e209d88744bc867918b0ab5d0cdc", + "94b79a811305416b9a442f5bbc5e5636", + "da01ee1365ea478084d323e046a90f60", + "d47c69a3a2434f3da81cd86780ec4df7", + "6d38d7a5f173427d9970b2f8a6cee941", + "96fcc4033bee4b09856e3c1c76064192", + "ff1d855281c644839b0a79be58f7d51b", + "856064ebeee7430e9cbe9b3b406ab597", + "4e691f29e56f4b459859f897954b98dc", + "d49e8a29926a44f782e73a660d64ed97", + "e854754fedae47428564740e30ae8ee4", + "4a0e48223abb4253b118dd7e21a9ac2f", + "7353cb8a39f44e3793a9d14974c8eefa", + "977a61c8d5ff43168b018d41c163fba4", + "6177906927984900842e9b25f8f19bbb", + "b6e939cfbb0947cdb1c1bdc3ebed9a82", + "ff501fc0e8574cf38884e0eec9b6d4c4", + "93c7b1f6a5724b93bc349c36893e28f5", + "8ec1195d53c44ac7abb7b2d1031b4ee0", + "e0694321451a4bec85c2665fe3d1f058", + "852adecfa8834dc399772f7510cf37f9", + "dad3d92ad15d4974b16cc3136d8eed90", + "be15a009b42f4f0bbd3123a6c0ca7b5c", + "d627bf1f35f640339395770218dd4efe", + "d3b0e9769ac44c89b744b0e72d776298", + "e9fc916db6ba40c886658b0d6193997a", + "5408aecda830430b8ae0178bb8c2c176", + "402171d79af94c71b414f0c81db44b93", + "b374913bd4044a3ea47599db2a064f35", + "3dff7dab14b04a788b541e4d0fe3a245", + "e3210fea513e45d1b7aed645b4e9f0d9", + "517db374d571445fa78c1eb700d40379", + "34b0de046ec2406f9ba59e7dfd159ddc", + "426792df69ce454cbbc1cbb89be08802", + "8162159b397145a9a53d2328f10875fa", + "80c822dbe1d8488581f303ff9199ac4b", + "691e6bbeca8b4930a6b4b7ee675f2d5c", + "9aa3b89510094a94b01c69cffeb42ceb", + "df86ed135ad948b2aa90d0717975944d", + "be67d7274f0d4db38a02d790a34bb266", + "05fa1783785a42ada12319d1625ac5b0", + "b9705036732a43a3ac62c0119f504809", + "f63f8445964646f8a278c076d9a55248", + "0202ba576bd743fa9adbac32334d220f", + "f2aaef56ac234cb5a3da275e99290200", + "87adeb2b42734c3895d3c150838b0fef", + "24b1e1231df1485480cc9396769ee5f4", + "d375824c68e04ac5861503b776d937ad", + "05696af5f2fd46c8be1f808d2d83b7f4", + "d5f6137d88a94cc6b5eeba88b5fa250c", + "6ed41772918f44ce9a17de77359c0e49", + "c6a2e2e8ff9f4a319ace0ec9a0eb5b4b", + "5de7bcb9d2d743e6be739a727fb0196c", + "d395da4881ed4e80afe16ae3b7957754", + "52c9252b951f4a448c5fc37e98674ec9", + "a13a7e158c53426a88895cb1b27d8620" + ] + }, + "outputId": "5cd91a8f-9d80-4965-c08f-173b3ec6dbb3" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Processing Files (0 / 0) : | | 0.00B / 0.00B " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "24449228956d4761a952e94da93d24ef" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "New Data Upload : | | 0.00B / 0.00B " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c2372bfb130d45d88233800e6a95af01" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...llm-trl/training_args.bin: 100%|##########| 7.18kB / 7.18kB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d8d1d1e2cd0d4fd3948a8dc0ac3b72b1" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...adapter_model.safetensors: 100%|##########| 2.18MB / 2.18MB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "5ed233a955b14342955f111576a395d9" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...O-vllm-trl/tokenizer.json: 100%|##########| 11.4MB / 11.4MB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e71e5e084c22439d9cd3ef007beac264" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No files have been modified since last commit. Skipping to prevent empty commit.\n", + "WARNING:huggingface_hub.hf_api:No files have been modified since last commit. Skipping to prevent empty commit.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Processing Files (0 / 0) : | | 0.00B / 0.00B " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "94b79a811305416b9a442f5bbc5e5636" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "New Data Upload : | | 0.00B / 0.00B " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7353cb8a39f44e3793a9d14974c8eefa" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...llm-trl/training_args.bin: 100%|##########| 7.18kB / 7.18kB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d627bf1f35f640339395770218dd4efe" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...adapter_model.safetensors: 100%|##########| 2.18MB / 2.18MB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8162159b397145a9a53d2328f10875fa" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " ...O-vllm-trl/tokenizer.json: 100%|##########| 11.4MB / 11.4MB " + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "87adeb2b42734c3895d3c150838b0fef" + } + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "CommitInfo(commit_url='https://huggingface.co/sergiopaniego/Qwen2-0.5B-GRPO-vllm-trl/commit/9673308cb68be4731350096fade0a79cda77dcf5', commit_message='End of training', commit_description='', oid='9673308cb68be4731350096fade0a79cda77dcf5', pr_url=None, repo_url=RepoUrl('https://huggingface.co/sergiopaniego/Qwen2-0.5B-GRPO-vllm-trl', endpoint='https://huggingface.co', repo_type='model', repo_id='sergiopaniego/Qwen2-0.5B-GRPO-vllm-trl'), pr_revision=None, pr_num=None)" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Below, you can review the `trackio` results for the training. They look promising!" + ], + "metadata": { + "id": "CqUFU6t71iNi" + } + }, + { + "cell_type": "markdown", + "source": [ + "The setup shown here runs on a single GPU, yet we can already see how vLLM boosts training efficiency. With vLLM enabled, training reaches **0.07 it/s**, whereas disabling it (`use_vllm=False`) drops performance to **0.04 it/s**—an immediate **~75% speedup** even in this basic configuration. \n", + "\n", + "And this is just the beginning: we haven't yet explored more optimal setups. For further efficiency gains, you can experiment with training parameters like `max_completion_length`, `num_generations`, or `max_prompt_length`, and scale across multiple GPUs to fully leverage vLLM's high-throughput generation." + ], + "metadata": { + "id": "RCuQUEemG3p4" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. Evaluating Different Training Configurations\n", + "\n", + "After training a model efficiently with a single configuration, it's insightful to explore other possible configurations to understand how training performance changes when using vLLM versus not using it. The table below shows various configurations along with their corresponding `it/s` (iterations per second), highlighting the performance impact of vLLM. \n", + "\n", + "These results were obtained using a Colab setup, so you can expect significantly higher gains when scaling to more advanced environments with multiple GPUs or distributed nodes.\n" + ], + "metadata": { + "id": "i0PXwdNgjqsj" + } + }, + { + "cell_type": "markdown", + "source": [ + "| `max_completion_length` | `num_generations` | `max_prompt_length` | `vLLM` | `it/s` |\n", + "|----------------------|----------------|-----------------|------|------|\n", + "| 64 | 4 | 128 | ✅ | 0.14 |\n", + "| 64 | 4 | 128 | ❌ | 0.12 |\n", + "| 64 | 8 | 128 | ✅ | 0.14 |\n", + "| 64 | 8 | 128 | ❌ | 0.12 |\n", + "| 128 | 8 | 128 | ✅ | 0.13 |\n", + "| 128 | 8 | 128 | ❌ | 0.09 |\n", + "| 128 | 16 | 128 | ✅ | 0.13 |\n", + "| 128 | 16 | 128 | ❌ | 0.09 |\n", + "| 256 | 8 | 128 | ✅ | 0.10 |\n", + "| 256 | 8 | 128 | ❌ | 0.06 |\n", + "| 256 | 16 | 128 | ✅ | 0.10 |\n", + "| 256 | 16 | 128 | ❌ | 0.06 |\n", + "| 512 | 8 | 128 | ✅ | 0.07 |\n", + "| 512 | 8 | 128 | ❌ | 0.04 |\n", + "| 512 | 16 | 128 | ✅ | 0.07 |\n", + "| 512 | 16 | 128 | ❌ | 0.04 |\n", + "| 1024 | 16 | 128 | ✅ | 0.04 |\n", + "| 1024 | 16 | 128 | ❌ | 0.02 |\n", + "| 1024 | 32 | 128 | ✅ | 0.04 |\n", + "| 1024 | 32 | 128 | ❌ | 0.02 |" + ], + "metadata": { + "id": "9lcApSmukdjn" + } + }, + { + "cell_type": "markdown", + "source": [ + "From the table above, several observations can be made:\n", + "\n", + "- As `max_completion_length` increases, the `it/s` naturally decreases, which is expected due to the larger computation per iteration. \n", + "- vLLM consistently provides faster training, and the performance gain becomes more significant as we scale to larger `max_completion_length` values. \n", + "- The `num_generations` parameter has minimal impact on `it/s`, showing that parallel generation does not significantly affect throughput in this setup. \n", + "- Although `max_prompt_length` was kept constant in these experiments, similar trends would apply if it were increased: higher values would reduce `it/s` depending on the dataset characteristics, just like `max_completion_length`.\n" + ], + "metadata": { + "id": "xOg20gROuk_z" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 5. Check the Model Performance\n", + "\n", + "We've kept things simple so far, but now let's check if the model has already learned to reason. We'll load the saved model and run an evaluation on a test sample." + ], + "metadata": { + "id": "PGPNqMlfurC9" + } + }, + { + "cell_type": "code", + "source": [ + "from transformers import AutoModelForCausalLM, AutoTokenizer\n", + "\n", + "model_id = \"sergiopaniego/Qwen2-0.5B-GRPO-vllm-trl\"\n", + "trained_model = AutoModelForCausalLM.from_pretrained(\n", + " model_id,\n", + " dtype=\"auto\",\n", + " device_map=\"auto\",\n", + ")\n", + "trained_tokenizer = AutoTokenizer.from_pretrained(model_id)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 305, + "referenced_widgets": [ + "29f01bbb3f4641fb8dd48f75c13fe73f", + "b4e71f7a844542d4931a471127711eb8", + "ed07d63bcc684c9ea68e0e344ce10e1f", + "074bfc147c2147e9aef6a2c0886fabb3", + "acefc53329024ff6b81b3468103c270a", + "75e2391ee60b490083d6f1297da57c22", + "affadddec7724fbe82d28f71b426180c", + "e7cdf617673241b09dd63136ab405d79", + "41ae2beb33b84f778e6a317eab20ec69", + "b03682c5901949adaf93e8bdbf480e92", + "d2de608d3f2f4f61baae4694a5a8de0a", + "62bef399c49c4e9b8ffb183c39887495", + "60bfea04814142dfaacda9aa258de9f8", + "3758f4296d624bdbab1fe007f6991098", + "648e0a34592643a4a492e5e174ee90d4", + "3a40365eb00646d293b75d75bb468548", + "8cd4dce996cf45e8a6283a80b63355b4", + "d97d9ea9cf5c4f1fafac1ee469f6a31f", + "6710a9e1ef9a4394922077b99401e87a", + "1f3e9545915841e887390530cfe475d9", + "6db82e165cb146a8b1690340986bfc6a", + "862df92699c64c7b8a9ef3c6f969e004", + "623fc8677a0241eca1c88146e2daebf0", + "2c1e69d50a7f4673973d06e4f461e63b", + "8021f19a762549cf8571283f43db8d3c", + "d0b91f3a78804a4d9a7961f700070127", + "28cd8a0567fa47ffbef58304327990ff", + "1268a1ecf3204642b0640148a2f01467", + "3664dd742b134c97a20b8b835b8bb820", + "e3dda5cc573e4d998185f4da2a3a2269", + "03a82ca0774c4c03854346b385f3dc62", + "ba60965841044f7fa93694761f5d3c8b", + "781ec2710ffc45cea6d44ff6be4a3898", + "3f588c0b040242ba90adb291aa080fd1", + "3853ad4388634a769ef8afe7de8af137", + "b1179cf26c554694aa50b9df90f605e9", + "a73ef52b69bc4a3f9902e9c5bdca80e7", + "3caf93da780b4fbb9e11302ad9f6f2f8", + "f8c77e5ba54946eda20ba93a01631686", + "a2fc5f0a428f4ec49fd4c5c31ce1c281", + "03f752912fbf48088cb4ac0d37aef7af", + "eca94be852914086b399eda6a37ac5dc", + "312067e15bf648a79ed9e5c1e1530b72", + "1632afd2894e4f4fbc1935774183bf6c", + "82fe3baa961b4d54bc7a8936bbdbd444", + "9459c94019c344f6a32f73f0ee79bd05", + "658f62d6c77d48f0ba9633ce3cfb3d67", + "385c999a90884f669541de594024d915", + "0190a84980fb4b99a47a8f3742497248", + "f65bba45dae9468d84137bab8570f7e8", + "1debfa4067864d0cad5580f44d6b6b83", + "fcd303c072eb499e9940e5e6dbf7b98d", + "d26dff2638e447f9a048a88d1994a174", + "c417174c8af44956891c6760e6d83838", + "a66ff5199c36419daf3cd61dcd664594", + "f763f84995b8409fbd37d88ff1213497", + "a11a91d5b61046da82c23c2a4ef9ef01", + "7a6d9dc8dcc34082b349f9db23c86164", + "ae469db875d84a78ba955eaa622ff578", + "72d0ea3eb9bb48709dc083d0675a7269", + "a0f0b115e1424c1a8a3ebc8c06d9377c", + "688e24459d0d4ed39adcdad693d3ff92", + "4341668602b747eba25f1d8fa67c11da", + "d9ced26aa4fe4748b52873f2f409e635", + "ed0a734b4e8e4e489531d9f5459d4106", + "e2bf90424775413d936c86cd421e1122", + "10ba9f61c3824dc79f31db0b334f58b8", + "c240ed63de3b4f6db02a527e9764bc38", + "5deb7cbe9dc84bca9e64b124c374e142", + "449a66d1e33c416694be64897927d887", + "69e8f81fec2343e2aebfd27d0bc18ceb", + "d23ce595b17342698032c9997e665f4a", + "68d40ba38208430b861e1e7313f97281", + "ea1a58ccc99740b599d9f51d6d061ed0", + "e2d0f7a7d42641909c40212fe7357e85", + "099f620226c5403e8b484aab8f6e355f", + "85d5475924c144aca453fc6f5dad30c8", + "3fe3512463234826b74f7185d00e887d", + "5b2a28e155cd450ab7b1eed3fc670e07", + "3d9f675483a44236a7c73d64cd6b90a1", + "cbc8cc2fae234a9fb7d19c71f16ef843", + "be433c4112a3473aa3990cdad0b8671f", + "b039d6aa93c94ffd9ab80de5436f4a74", + "7c4b47094c6a46cbbfbc564523a57f50", + "5d8c588bac624efc85fbd6bd2a68cfa8", + "3d16361a71d846019be9bfa1acf90c3f", + "79fe6e3d24234007a49b918be4a64f3f", + "91eb300d2a694f858aec854f00c0ec05", + "067de797dc2f440a9312d98da7825510", + "cb847a29bd6846b98b91f739f32cff82", + "72de174496b74ad78c73bc1da8528ad9", + "0b3a7f9f95d542d599bf4f1ff23d5531", + "05d96c9494e44bbc82a85c4c75663be7", + "07f58707185d443bbfd9a688dadc9769", + "b084e6e3346a43c488970017dc7eead8", + "d0615f5d04434936a6f6780584c71908", + "2d19638dd0f146e38178177678fa088f", + "3e16885ed06e4c0c9b24c8770ae97fda", + "ad14b8a55f7f49b882e81be9e08faa0e" + ] + }, + "id": "4ohoSJYy9AZf", + "outputId": "0f04bff7-1511-4d4d-8b61-1fa354a30f1b" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "adapter_config.json: 0%| | 0.00/857 [00:00 and tags, respectively, i.e., reasoning process here answer here ', 'role': 'system'}, {'content': \"In 1988, a person's age was equal to the sum of the digits of their birth year. How old was this person?\", 'role': 'user'}]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We'll create a function to interact with the model. In addition to generating the answer, we'll measure the inference duration and count the number of generated tokens. This will give us insights into how much the model has reasoned during generation." + ], + "metadata": { + "id": "Y1S11SHZuviW" + } + }, + { + "cell_type": "code", + "source": [ + "import time\n", + "import torch\n", + "\n", + "def generate_with_reasoning(prompt):\n", + " # Build the prompt from the dataset\n", + " prompt = \" \".join(entry['content'] for entry in prompt)\n", + "\n", + " # Tokenize and move to the same device as the model\n", + " inputs = trained_tokenizer(prompt, return_tensors=\"pt\").to(trained_model.device)\n", + "\n", + " # Generate text without gradients\n", + " start_time = time.time()\n", + " with torch.no_grad():\n", + " output_ids = trained_model.generate(**inputs, max_length=500)\n", + " end_time = time.time()\n", + "\n", + " # Decode and extract model response\n", + " generated_text = trained_tokenizer.decode(output_ids[0], skip_special_tokens=True)\n", + "\n", + " # Get inference time\n", + " inference_duration = end_time - start_time\n", + "\n", + " # Get number of generated tokens\n", + " num_input_tokens = inputs['input_ids'].shape[1]\n", + " num_generated_tokens = output_ids.shape[1] - num_input_tokens\n", + "\n", + " return generated_text, inference_duration, num_generated_tokens" + ], + "metadata": { + "id": "X7ujV-wi9IaQ" + }, + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Let's generate the answer for that test sample!" + ], + "metadata": { + "id": "p6Oav0X2uywO" + } + }, + { + "cell_type": "code", + "source": [ + "prompt = test_dataset['prompt'][0]\n", + "generated_text, inference_duration, num_generated_tokens = generate_with_reasoning(prompt)\n", + "print(generated_text)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mP1QgN5o9JmS", + "outputId": "802652f3-fca2-4e4a-8afb-6ca3e0119909" + }, + "execution_count": 44, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here In 1988, a person's age was equal to the sum of the digits of their birth year. How old was this person?< think > Reasoning process: Let's assume that the person's birth year is x. Then the age would be y = x + (x/10). We know that the age is equal to the sum of the digits of the birth year, so we can write y = 10y. Solving for y, we get y = 10x - 10, or y = x/3. Since the age must be an integer, we need to find the smallest integer value for x such that x/3 is greater than or equal to 1988. So, we have x = 1988 * 3 = 5964. Substituting this into our equation for y, we get y = 5964/3 = 1928. Therefore, this person's age was 1928 years old. < think > answer 1928 \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The model already demonstrates the ability to generate the correct `` and `` tags, even though the solution itself is incorrect.\n", + "\n", + "Given the inference time and the number of generated tokens, this approach shows potential benefits:" + ], + "metadata": { + "id": "_3zGktsqu01H" + } + }, + { + "cell_type": "code", + "source": [ + "print(f\"Inference time: {inference_duration:.2f} seconds\")\n", + "print(f\"Generated tokens: {num_generated_tokens}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LttGsjeR9LnQ", + "outputId": "2ef55d4b-bd12-4831-f271-a20fb552c666" + }, + "execution_count": 45, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Inference time: 7.71 seconds\n", + "Generated tokens: 208\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's review the generated response to better visualize this behavior:" + ], + "metadata": { + "id": "EL1s7Z-wu280" + } + }, + { + "cell_type": "code", + "source": [ + "prompt_text = \" \".join(entry['content'] for entry in prompt)\n", + "response_text = generated_text[len(prompt_text):].strip()\n", + "print(response_text)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7NYp9Bh79QyG", + "outputId": "d1e4956f-0eb8-4bc0-8564-e7b1de769f61" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "< think > Reasoning process: Let's assume that the person's birth year is x. Then the age would be y = x + (x/10). We know that the age is equal to the sum of the digits of the birth year, so we can write y = 10y. Solving for y, we get y = 10x - 10, or y = x/3. Since the age must be an integer, we need to find the smallest integer value for x such that x/3 is greater than or equal to 1988. So, we have x = 1988 * 3 = 5964. Substituting this into our equation for y, we get y = 5964/3 = 1928. Therefore, this person's age was 1928 years old. < think > answer 1928 \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We observe that the model shows some reasoning capabilities, although they are quite limited. This is likely due to using a small model and a very basic training setup, designed more for educational purposes than for maximizing performance. \n", + "\n", + "For better results, using a larger model, training on the full dataset, and adjusting the configuration to generate more and longer completions would significantly improve the model's final performance." + ], + "metadata": { + "id": "GFguIRJCu5OF" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 5. Continuing Your Learning Journey 🧑‍🎓\n", + "\n", + "This notebook is just the beginning of exploring **online training methods** with TRL, including **GRPO** and other online trainers, now enhanced with **vLLM** for faster, more efficient generation. \n", + "\n", + "If you’re eager to dive deeper, check out the resources linked throughout this notebook, as well as the following materials:\n", + "\n", + "- [vLLM Documentation](https://docs.vllm.ai/en/latest/) \n", + "- [TRL vLLM Integration Guide](https://huggingface.co/docs/trl/main/en/vllm_integration) \n", + "- [DeepSeek-R1 Repository](https://github.com/deepseek-ai/DeepSeek-R1/) \n", + "- [DeepSeek-R1 Paper](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf) \n", + "- [Open Reproduction of DeepSeek-R1](https://github.com/huggingface/open-r1/) \n", + "- [GRPO TRL Trainer Documentation](https://huggingface.co/docs/trl/main/en/grpo_trainer) \n", + "- [Phil Schmid's DeepSeek-R1 Blog Post](https://www.philschmid.de/deepseek-r1) \n", + "- [Phil Schmid's Mini DeepSeek-R1 Blog Post](https://www.philschmid.de/mini-deepseek-r1) \n", + "- [Illustrated DeepSeek-R1](https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1) \n", + "- [The LM Book: DeepSeek-R1 Article](https://thelmbook.com/articles/#!./DeepSeek-R1.md) \n", + "\n", + "Keep exploring, experimenting, and learning!\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Uh4inHFUFIku" + } + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "A100", + "machine_shape": "hm", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "24c88fcfb4db4c25a12826dc3225c3ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [], + "layout": "IPY_MODEL_549b9b8e58024ba0a8960e046327bac9" + } + }, + "bfe60ff41ea945a7a98174359cc50704": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6c6a578564d4eda9bacf8e7bd983124", + "placeholder": "​", + "style": "IPY_MODEL_bfa2d7bb96d246659a79cb240927617d", + "value": "


Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "df8408f963284264821b753f5fb94bac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_eca1d61071a848cfbde43b1fe92080f3", + "placeholder": "​", + "style": "IPY_MODEL_435e6cb8b924472f93afb7c2f0e849b6", + "value": "" + } + }, + "284112b4ebdb49f6afca757ca89c84fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_3bcd66944c334a728c300a9420d686cd", + "style": "IPY_MODEL_6e33bc3052524de88d7314ecf4597590", + "value": true + } + }, + "7a07f2e093b44306af017f6301b5f026": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_6e8cb8d286ff40f0bda822a87df5052d", + "style": "IPY_MODEL_de38e04fa3864af195cd0942670a57fa", + "tooltip": "" + } + }, + "ba37714941b44b54b53df82090678a59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c8ddef66a844c4d978d69ca00af1c65", + "placeholder": "​", + "style": "IPY_MODEL_97f4110a52a54cbc8e9b479e71f3078c", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
" + } + }, + "549b9b8e58024ba0a8960e046327bac9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "c6c6a578564d4eda9bacf8e7bd983124": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfa2d7bb96d246659a79cb240927617d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eca1d61071a848cfbde43b1fe92080f3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "435e6cb8b924472f93afb7c2f0e849b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3bcd66944c334a728c300a9420d686cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e33bc3052524de88d7314ecf4597590": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e8cb8d286ff40f0bda822a87df5052d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "de38e04fa3864af195cd0942670a57fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "8c8ddef66a844c4d978d69ca00af1c65": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97f4110a52a54cbc8e9b479e71f3078c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ec98dbdb99d4312a3e7e2d91fe32053": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a15dde2e22b4c589fa84324d702799f", + "placeholder": "​", + "style": "IPY_MODEL_4676cd8cbcd345b0a43520a1c105520d", + "value": "Connecting..." + } + }, + "4a15dde2e22b4c589fa84324d702799f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4676cd8cbcd345b0a43520a1c105520d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d91dfed37914f2cb2dcf073ca4e8f67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7da5cf6020a48ecb17b43e7270ced53", + "IPY_MODEL_dbcf83ff32dc4a50870eb24d2460a446", + "IPY_MODEL_23ab7880e51b45e0afe2051949e55f27" + ], + "layout": "IPY_MODEL_4fbe0ddf1fe14a5bad5c59a585e4da82" + } + }, + "c7da5cf6020a48ecb17b43e7270ced53": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_261bc4e6de3644be81f23e824009b913", + "placeholder": "​", + "style": "IPY_MODEL_51464b07e9264cccb2ac01f93b785f6a", + "value": "README.md: " + } + }, + "dbcf83ff32dc4a50870eb24d2460a446": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e26dd71a4da641c78d3df1f9a975663f", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6f6e5ac000a4c2abfcc33e2fedae696", + "value": 1 + } + }, + "23ab7880e51b45e0afe2051949e55f27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46e8a924553c4a4b9dcb55086f74b82e", + "placeholder": "​", + "style": "IPY_MODEL_9146eebb3df84976b5e3b58b69b79549", + "value": " 2.43k/? [00:00<00:00, 253kB/s]" + } + }, + "4fbe0ddf1fe14a5bad5c59a585e4da82": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "261bc4e6de3644be81f23e824009b913": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51464b07e9264cccb2ac01f93b785f6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e26dd71a4da641c78d3df1f9a975663f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "d6f6e5ac000a4c2abfcc33e2fedae696": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46e8a924553c4a4b9dcb55086f74b82e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9146eebb3df84976b5e3b58b69b79549": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e453c865e5e448b91ceed2f3f07f8d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3831e4fba6b146baa2c06cc48b4ee96b", + "IPY_MODEL_95f49d13fe9b40abbc5889db349711a0", + "IPY_MODEL_b69ec5bc43de4c2d9e5b87fea1f1dda4" + ], + "layout": "IPY_MODEL_6e7ca2a24ce6422aa66c55d4e04ef902" + } + }, + "3831e4fba6b146baa2c06cc48b4ee96b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddbfad298c35447d83ed1ef023dca1d8", + "placeholder": "​", + "style": "IPY_MODEL_82c0108fcebf4eac8c1fddde533baf90", + "value": "data/train-00000-of-00001.parquet: 100%" + } + }, + "95f49d13fe9b40abbc5889db349711a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c9796ebeb1b4d1ebfca705c3a5665b3", + "max": 147342955, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe10dc9dce584f87b73aa3d5224c6a14", + "value": 147342955 + } + }, + "b69ec5bc43de4c2d9e5b87fea1f1dda4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a21e9ed6efd24a468da249d1ac0a6db2", + "placeholder": "​", + "style": "IPY_MODEL_324790ad29ba475c8e56f6587c7872cd", + "value": " 147M/147M [00:03<00:00, 46.8MB/s]" + } + }, + "6e7ca2a24ce6422aa66c55d4e04ef902": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ddbfad298c35447d83ed1ef023dca1d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82c0108fcebf4eac8c1fddde533baf90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c9796ebeb1b4d1ebfca705c3a5665b3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe10dc9dce584f87b73aa3d5224c6a14": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a21e9ed6efd24a468da249d1ac0a6db2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "324790ad29ba475c8e56f6587c7872cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "98227a25e0ac4c7595367e46a857a7bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cebdd6e6eaaf4e03a2c949dddc587543", + "IPY_MODEL_2060f989b2b144c6b389d4bf64a2b639", + "IPY_MODEL_7206475129324f29b96e2267f0feb906" + ], + "layout": "IPY_MODEL_b6c285a088e5495e8f14bb5bb23cab81" + } + }, + "cebdd6e6eaaf4e03a2c949dddc587543": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ca762e8499e427c94554977ab0599b7", + "placeholder": "​", + "style": "IPY_MODEL_ff6577b9fd024b37bb6e8edd6ff9a3cf", + "value": "data/test-00000-of-00001.parquet: 100%" + } + }, + "2060f989b2b144c6b389d4bf64a2b639": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68bc43a5757e44dbb8cb5437fd45eecf", + "max": 215035, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7181f90983da47cca5669c5ecb136377", + "value": 215035 + } + }, + "7206475129324f29b96e2267f0feb906": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56b428f1af6049b7971f4ae7b13efee3", + "placeholder": "​", + "style": "IPY_MODEL_7ee1b7458a96400190472779f0074a7d", + "value": " 215k/215k [00:00<00:00, 275kB/s]" + } + }, + "b6c285a088e5495e8f14bb5bb23cab81": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ca762e8499e427c94554977ab0599b7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff6577b9fd024b37bb6e8edd6ff9a3cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68bc43a5757e44dbb8cb5437fd45eecf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7181f90983da47cca5669c5ecb136377": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56b428f1af6049b7971f4ae7b13efee3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ee1b7458a96400190472779f0074a7d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5bd4cd3466b94628bfcbbd3f2723b694": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58174211c1854d4983824de0aea25e6a", + "IPY_MODEL_7101bf7ba3474416b51375adaffbdce3", + "IPY_MODEL_d280a3eb1f01430c82a17dca8034c657" + ], + "layout": "IPY_MODEL_7fc98632a7664fae9fc2c2b9ba431903" + } + }, + "58174211c1854d4983824de0aea25e6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3dbcbb90f68f4436964dfde5fba974dc", + "placeholder": "​", + "style": "IPY_MODEL_0a7cc81000a643c8b4842777529be824", + "value": "Generating train split: 100%" + } + }, + "7101bf7ba3474416b51375adaffbdce3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5d985cb74b2473193cfc7d7b15d7c2b", + "max": 72441, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_526219c7bb8540ec9a90d8f3640cf6b0", + "value": 72441 + } + }, + "d280a3eb1f01430c82a17dca8034c657": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab6721bacbbe4a398c54e0ed3b3e5b06", + "placeholder": "​", + "style": "IPY_MODEL_fdfbd1f1f87443b5b2981d3adaf1ddb7", + "value": " 72441/72441 [00:00<00:00, 124362.39 examples/s]" + } + }, + "7fc98632a7664fae9fc2c2b9ba431903": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3dbcbb90f68f4436964dfde5fba974dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a7cc81000a643c8b4842777529be824": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c5d985cb74b2473193cfc7d7b15d7c2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "526219c7bb8540ec9a90d8f3640cf6b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab6721bacbbe4a398c54e0ed3b3e5b06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fdfbd1f1f87443b5b2981d3adaf1ddb7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "09d4238537aa404899a6d53b2f8ba81a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2112c72ad2874f998690d5d8ffb4e26b", + "IPY_MODEL_a50d398e9b9b4f1f96dc76f79833f298", + "IPY_MODEL_d33b608e4ad94887acaf9ceed694f9d3" + ], + "layout": "IPY_MODEL_1e49b5b81fdd4f06bd122d5fa26b18d3" + } + }, + "2112c72ad2874f998690d5d8ffb4e26b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_113ba51bf3ef487bad5e95c3f4b7382c", + "placeholder": "​", + "style": "IPY_MODEL_be32345635e440faa08d5ea44c5b4b15", + "value": "Generating test split: 100%" + } + }, + "a50d398e9b9b4f1f96dc76f79833f298": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1a7247a7746f4421aa3deddad26bb6ed", + "max": 99, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_852bb6974d9e42538171a5a4d52838b3", + "value": 99 + } + }, + "d33b608e4ad94887acaf9ceed694f9d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ec5331a7f50461cb328c1bad4deb816", + "placeholder": "​", + "style": "IPY_MODEL_043eb371e5394efba9e3c7ad73b3b661", + "value": " 99/99 [00:00<00:00, 7768.39 examples/s]" + } + }, + "1e49b5b81fdd4f06bd122d5fa26b18d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "113ba51bf3ef487bad5e95c3f4b7382c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be32345635e440faa08d5ea44c5b4b15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a7247a7746f4421aa3deddad26bb6ed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "852bb6974d9e42538171a5a4d52838b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ec5331a7f50461cb328c1bad4deb816": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "043eb371e5394efba9e3c7ad73b3b661": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "214f0c4f680141d7a37f5ca71c2af48f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c58eb689ee34851b5f57117994b39fc", + "IPY_MODEL_45e8592006fe4b6a8deacde57816557a", + "IPY_MODEL_fd063592e19840afa1e40cf8aef9be6d" + ], + "layout": "IPY_MODEL_8b210e791c0e480eb3232914b4b21f7d" + } + }, + "8c58eb689ee34851b5f57117994b39fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63368a5047da44e6842fcdf63ff34e08", + "placeholder": "​", + "style": "IPY_MODEL_c06c51b4ad40406095fcc7bb6fd3b91c", + "value": "Map: 100%" + } + }, + "45e8592006fe4b6a8deacde57816557a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e5e7ca8869541c5a23c3bcce0311b70", + "max": 7244, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d09436859be4542aee51b7948ce772b", + "value": 7244 + } + }, + "fd063592e19840afa1e40cf8aef9be6d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25b64fb47ee34076816cae2e5c09b509", + "placeholder": "​", + "style": "IPY_MODEL_c2f77bb1300147328c325a776d8be38a", + "value": " 7244/7244 [00:00<00:00, 13594.76 examples/s]" + } + }, + "8b210e791c0e480eb3232914b4b21f7d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63368a5047da44e6842fcdf63ff34e08": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c06c51b4ad40406095fcc7bb6fd3b91c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e5e7ca8869541c5a23c3bcce0311b70": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d09436859be4542aee51b7948ce772b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "25b64fb47ee34076816cae2e5c09b509": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2f77bb1300147328c325a776d8be38a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f257f6609ee5431e91e24e762949bc5b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf664d457c1c45c59514b2b46a5d31b1", + "IPY_MODEL_cca36113523844f19f611063e36df649", + "IPY_MODEL_a63985f3f7224765a8c7f0a5442b6a1a" + ], + "layout": "IPY_MODEL_1dca0157fdc54ccda2a2a3d901b779e3" + } + }, + "bf664d457c1c45c59514b2b46a5d31b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ca597da1d8545108e25cc500f9d95a9", + "placeholder": "​", + "style": "IPY_MODEL_57b5c8748c2240dbb362574871799984", + "value": "Map: 100%" + } + }, + "cca36113523844f19f611063e36df649": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1fb075e51914ea39a7ece988f3917a1", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_515d2d5ac9d84df69c165d941ff3fb48", + "value": 10 + } + }, + "a63985f3f7224765a8c7f0a5442b6a1a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1b0b5f3e75f94976b7a89895b4904011", + "placeholder": "​", + "style": "IPY_MODEL_d907dd928c2143478e08584359a338bb", + "value": " 10/10 [00:00<00:00, 652.40 examples/s]" + } + }, + "1dca0157fdc54ccda2a2a3d901b779e3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ca597da1d8545108e25cc500f9d95a9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "57b5c8748c2240dbb362574871799984": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f1fb075e51914ea39a7ece988f3917a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "515d2d5ac9d84df69c165d941ff3fb48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1b0b5f3e75f94976b7a89895b4904011": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d907dd928c2143478e08584359a338bb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "90d7546a359446979dc099eda12e2daf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0caf5d4fd2544b9096d103e530b547ea", + "IPY_MODEL_12e4f6d37b8a4bdaa8f57d3dca4f00da", + "IPY_MODEL_9aa07ea1ce764493acf4c89af08857f5" + ], + "layout": "IPY_MODEL_a709c8b483b344ffb293dfdd3cf1d314" + } + }, + "0caf5d4fd2544b9096d103e530b547ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec5802db1887471c953c0b8f0bce0434", + "placeholder": "​", + "style": "IPY_MODEL_6168aae951c445c793f99d5e699ed558", + "value": "config.json: 100%" + } + }, + "12e4f6d37b8a4bdaa8f57d3dca4f00da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_452884ff62a54d04ac1cb531471a18fa", + "max": 659, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_86be624af61e4ae182ec3272adac0e3a", + "value": 659 + } + }, + "9aa07ea1ce764493acf4c89af08857f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcb1a787aacc44b28d2c69279b01130a", + "placeholder": "​", + "style": "IPY_MODEL_e2015f7b376140e8a9e366710db55df8", + "value": " 659/659 [00:00<00:00, 84.3kB/s]" + } + }, + "a709c8b483b344ffb293dfdd3cf1d314": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec5802db1887471c953c0b8f0bce0434": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6168aae951c445c793f99d5e699ed558": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "452884ff62a54d04ac1cb531471a18fa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86be624af61e4ae182ec3272adac0e3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fcb1a787aacc44b28d2c69279b01130a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2015f7b376140e8a9e366710db55df8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e791e33969424dafb0b022dce21d2abf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b291793a1aa54c0b8837c81df0ac0b8e", + "IPY_MODEL_b73f6bfa74a44e81a28767c70c3f2565", + "IPY_MODEL_50fbecea76244671b33c921d7ba9ee22" + ], + "layout": "IPY_MODEL_1429d281bc94424aaa0c95928db9d635" + } + }, + "b291793a1aa54c0b8837c81df0ac0b8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41ad9d1595d641b4af06362498bf39a7", + "placeholder": "​", + "style": "IPY_MODEL_d3a9c397a4244335ada594ee6c9919c6", + "value": "model.safetensors: 100%" + } + }, + "b73f6bfa74a44e81a28767c70c3f2565": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91b2a4d4fa9743b9baa6c23521f4ed17", + "max": 988097824, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c98e3f4bbed94beb9cc2befcce9fd15d", + "value": 988097824 + } + }, + "50fbecea76244671b33c921d7ba9ee22": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_400f76d7eed747bbaff9ec2c4829da2c", + "placeholder": "​", + "style": "IPY_MODEL_eeab31123abe44b1bdab8fd67ada5ae5", + "value": " 988M/988M [00:01<00:00, 1.21GB/s]" + } + }, + "1429d281bc94424aaa0c95928db9d635": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41ad9d1595d641b4af06362498bf39a7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3a9c397a4244335ada594ee6c9919c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91b2a4d4fa9743b9baa6c23521f4ed17": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c98e3f4bbed94beb9cc2befcce9fd15d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "400f76d7eed747bbaff9ec2c4829da2c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eeab31123abe44b1bdab8fd67ada5ae5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "681626e8db874460a9fe5e6692defa3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c28de1b3f9b64580881500f5cbd1e11b", + "IPY_MODEL_064ef8cd267845958af36f94e157f916", + "IPY_MODEL_233d42eabb704a219195cd50bc88673f" + ], + "layout": "IPY_MODEL_76ac51b551234954bdae19a8a02eea42" + } + }, + "c28de1b3f9b64580881500f5cbd1e11b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1ec65e0a3ea94ef4bfbd29b1d0c71579", + "placeholder": "​", + "style": "IPY_MODEL_76a0b1ef868f458bbb8ae38801abe361", + "value": "generation_config.json: 100%" + } + }, + "064ef8cd267845958af36f94e157f916": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20b32d7743584b4b83bb84efda8b4107", + "max": 242, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4517fb94752943659174fea5b41cde88", + "value": 242 + } + }, + "233d42eabb704a219195cd50bc88673f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48aa6f9cf71b4274b4be95bb128db23a", + "placeholder": "​", + "style": "IPY_MODEL_6cf35cab1e9f438999c71035645c60ee", + "value": " 242/242 [00:00<00:00, 32.3kB/s]" + } + }, + "76ac51b551234954bdae19a8a02eea42": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1ec65e0a3ea94ef4bfbd29b1d0c71579": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76a0b1ef868f458bbb8ae38801abe361": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20b32d7743584b4b83bb84efda8b4107": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4517fb94752943659174fea5b41cde88": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48aa6f9cf71b4274b4be95bb128db23a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cf35cab1e9f438999c71035645c60ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "50d192a27e274caebb42c7d634260cdd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8ebc0cf17f0c45469fe014dd23b4a869", + "IPY_MODEL_4d3b7821ceeb45b4aef06e3dba634be0", + "IPY_MODEL_98303cf02e954753a1569138c6367a2d" + ], + "layout": "IPY_MODEL_cc5fddc2f96e465ab75da3b136dd5dce" + } + }, + "8ebc0cf17f0c45469fe014dd23b4a869": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0b756f9fad44bfdb3dfa4590f1bffc3", + "placeholder": "​", + "style": "IPY_MODEL_fa2fba804290405596c7c8cc5b6b75fc", + "value": "tokenizer_config.json: " + } + }, + "4d3b7821ceeb45b4aef06e3dba634be0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebca01def8084150948dcbbf31957cbc", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b11a47ad38445b8a8a5d898b561e651", + "value": 1 + } + }, + "98303cf02e954753a1569138c6367a2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_820fe47ce8ba484d8a2d2f80b07db6ad", + "placeholder": "​", + "style": "IPY_MODEL_ad8222be48d7491cadead0bcc7332a48", + "value": " 1.29k/? [00:00<00:00, 155kB/s]" + } + }, + "cc5fddc2f96e465ab75da3b136dd5dce": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0b756f9fad44bfdb3dfa4590f1bffc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa2fba804290405596c7c8cc5b6b75fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ebca01def8084150948dcbbf31957cbc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "2b11a47ad38445b8a8a5d898b561e651": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "820fe47ce8ba484d8a2d2f80b07db6ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad8222be48d7491cadead0bcc7332a48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b761c01ff62f4d7bbe780b29d104b950": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af7f9a1ed0db4bf180e03589d796196b", + "IPY_MODEL_6da58509a3424d7fac909f398f0ad450", + "IPY_MODEL_da96e0edab174049b0f227dfd2280383" + ], + "layout": "IPY_MODEL_621355ef21ff4429995762e5bd643829" + } + }, + "af7f9a1ed0db4bf180e03589d796196b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5598aa0553d643fe859219d2fb2a8328", + "placeholder": "​", + "style": "IPY_MODEL_6f499085c3e04a7a965e5eec8423d64c", + "value": "vocab.json: " + } + }, + "6da58509a3424d7fac909f398f0ad450": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5cccba8ff32426faab0c51ba6520f75", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4bfa11ba58f34ab1bfcc232867e75735", + "value": 1 + } + }, + "da96e0edab174049b0f227dfd2280383": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a43105360774ab79a75292504688396", + "placeholder": "​", + "style": "IPY_MODEL_683f05c868c34d218bea696b1760fce4", + "value": " 2.78M/? [00:00<00:00, 4.17MB/s]" + } + }, + "621355ef21ff4429995762e5bd643829": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5598aa0553d643fe859219d2fb2a8328": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f499085c3e04a7a965e5eec8423d64c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5cccba8ff32426faab0c51ba6520f75": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "4bfa11ba58f34ab1bfcc232867e75735": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0a43105360774ab79a75292504688396": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "683f05c868c34d218bea696b1760fce4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9a681bdb457448f8a6cad05364a78fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b5defb66684415ab5c6277ef0a4b24e", + "IPY_MODEL_0c17cc6752a04009ab2edcb53d283342", + "IPY_MODEL_0976ea7698484069a39f558181e3be52" + ], + "layout": "IPY_MODEL_e78fe587de434b0fab967737b2076b1b" + } + }, + "6b5defb66684415ab5c6277ef0a4b24e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1f383a889e4412aa0054421d3568477", + "placeholder": "​", + "style": "IPY_MODEL_af70046703a046798a27db68c690bca0", + "value": "merges.txt: " + } + }, + "0c17cc6752a04009ab2edcb53d283342": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea4ad06986e342ad8f6853331d17aea5", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad7f01c24c414de1aa6d17702b543c89", + "value": 1 + } + }, + "0976ea7698484069a39f558181e3be52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b9bf3dbe3ae4f99879db7c56c27ecfd", + "placeholder": "​", + "style": "IPY_MODEL_d763883454fe456e810c7119874e75a8", + "value": " 1.67M/? [00:00<00:00, 49.2kB/s]" + } + }, + "e78fe587de434b0fab967737b2076b1b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1f383a889e4412aa0054421d3568477": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af70046703a046798a27db68c690bca0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea4ad06986e342ad8f6853331d17aea5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "ad7f01c24c414de1aa6d17702b543c89": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8b9bf3dbe3ae4f99879db7c56c27ecfd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d763883454fe456e810c7119874e75a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "01b127bcdce5497dbc886cdfcc19e17b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2500bd2514a94694a2ca0e9250fe32a7", + "IPY_MODEL_a43abeae0dda49a79f4c7baf5de85df3", + "IPY_MODEL_5f4e139822af43329b4683566c0c2027" + ], + "layout": "IPY_MODEL_a13d39ddf38a44f2912d820eca9e4929" + } + }, + "2500bd2514a94694a2ca0e9250fe32a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cfa3037b7a046f9be57a7c3be9a5045", + "placeholder": "​", + "style": "IPY_MODEL_d315a80217e2481898df545801789e7b", + "value": "tokenizer.json: " + } + }, + "a43abeae0dda49a79f4c7baf5de85df3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22887719dd08461993ec5afcd3f1827c", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5eb7e3e5b75e46adb7a3ee089e3b6053", + "value": 1 + } + }, + "5f4e139822af43329b4683566c0c2027": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_04af830916fa4a26b14696b4efcf3c2f", + "placeholder": "​", + "style": "IPY_MODEL_69c778d5ea334ae18eda9701f3875ab7", + "value": " 7.03M/? [00:00<00:00, 19.7MB/s]" + } + }, + "a13d39ddf38a44f2912d820eca9e4929": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9cfa3037b7a046f9be57a7c3be9a5045": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d315a80217e2481898df545801789e7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "22887719dd08461993ec5afcd3f1827c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "5eb7e3e5b75e46adb7a3ee089e3b6053": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "04af830916fa4a26b14696b4efcf3c2f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69c778d5ea334ae18eda9701f3875ab7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e58eefaeac2a42db9a0bfb2f6f471c23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe48a86f65d246eea2839d5ee4d445c6", + "IPY_MODEL_49013862fd79419ca64308e4e2131311", + "IPY_MODEL_20fdcdb5429949eba8e975c4a22d28e2" + ], + "layout": "IPY_MODEL_3f1a48beef7b412e81c84ea3b2a4378d" + } + }, + "fe48a86f65d246eea2839d5ee4d445c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce1cfdd89b1d478786a7a7bc3770ba2b", + "placeholder": "​", + "style": "IPY_MODEL_439cf012b34649e9b052a14782a9651f", + "value": "" + } + }, + "49013862fd79419ca64308e4e2131311": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63c1921a52424f25bd55be6da53c6ad3", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d5be6908b5734fb784968a7b02c52db9", + "value": 1 + } + }, + "20fdcdb5429949eba8e975c4a22d28e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cc3c8bfba744d368cb0beabf9ea3760", + "placeholder": "​", + "style": "IPY_MODEL_fc965664a2c84c2d8dced4fe473c3f63", + "value": "Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00,  3.16it/s]\n" + } + }, + "3f1a48beef7b412e81c84ea3b2a4378d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce1cfdd89b1d478786a7a7bc3770ba2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "439cf012b34649e9b052a14782a9651f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63c1921a52424f25bd55be6da53c6ad3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d5be6908b5734fb784968a7b02c52db9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0cc3c8bfba744d368cb0beabf9ea3760": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc965664a2c84c2d8dced4fe473c3f63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "24449228956d4761a952e94da93d24ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_048a1d87757a41ee95300339b8a6a644", + "IPY_MODEL_38fe395a55264a37ad5db1e4f8833948", + "IPY_MODEL_4cb093284a514340b3500b6384540254" + ], + "layout": "IPY_MODEL_1454c5b00864424fac462e494af1feb4" + } + }, + "048a1d87757a41ee95300339b8a6a644": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_795444fc6d8b45c788cba7a26e14c704", + "placeholder": "​", + "style": "IPY_MODEL_24063846766d4f46bc1745aa72267e99", + "value": "Processing Files (3 / 3)      : 100%" + } + }, + "38fe395a55264a37ad5db1e4f8833948": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33397a51d88c42fd9e56d44d96063fb3", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f80c6ba4d3804855bff3c68e4f8bb2ce", + "value": 1 + } + }, + "4cb093284a514340b3500b6384540254": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39e32c8487d248689d9f23ce4711a225", + "placeholder": "​", + "style": "IPY_MODEL_8c5811d1ada7419fbe0911a19a55b482", + "value": " 13.6MB / 13.6MB,  0.00B/s  " + } + }, + "1454c5b00864424fac462e494af1feb4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "795444fc6d8b45c788cba7a26e14c704": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24063846766d4f46bc1745aa72267e99": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "33397a51d88c42fd9e56d44d96063fb3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "f80c6ba4d3804855bff3c68e4f8bb2ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e32c8487d248689d9f23ce4711a225": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c5811d1ada7419fbe0911a19a55b482": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c2372bfb130d45d88233800e6a95af01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8722be7f942340eaa77bf1492ff3aa7e", + "IPY_MODEL_f31491b2308f4195b2d61e807f4749c1", + "IPY_MODEL_f27313d601f14c73815c14a9996c2cdf" + ], + "layout": "IPY_MODEL_8e1bb97bb9d9497891ea1ee1483cf350" + } + }, + "8722be7f942340eaa77bf1492ff3aa7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbf604590e7d4aea9e8423448a30ce2d", + "placeholder": "​", + "style": "IPY_MODEL_e0a312eab6ba4c0f935aeb2b74517565", + "value": "New Data Upload               : " + } + }, + "f31491b2308f4195b2d61e807f4749c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87020498ca03494e975e9b1d9e17dd8a", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ab6858797c34fd4abd5c2cb843488cf", + "value": 0 + } + }, + "f27313d601f14c73815c14a9996c2cdf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d28c16e27fd343a28f5a0f785840a83d", + "placeholder": "​", + "style": "IPY_MODEL_49dde296c20841cc8743434084c457b2", + "value": "  0.00B /  0.00B,  0.00B/s  " + } + }, + "8e1bb97bb9d9497891ea1ee1483cf350": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbf604590e7d4aea9e8423448a30ce2d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0a312eab6ba4c0f935aeb2b74517565": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "87020498ca03494e975e9b1d9e17dd8a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "3ab6858797c34fd4abd5c2cb843488cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d28c16e27fd343a28f5a0f785840a83d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49dde296c20841cc8743434084c457b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d8d1d1e2cd0d4fd3948a8dc0ac3b72b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a230d525e65e430fb082bbd871f7efc1", + "IPY_MODEL_11ac0f8c06804471bd799766ca39a9ef", + "IPY_MODEL_0b7cb3fad35d47ab963e3065d5edbb66" + ], + "layout": "IPY_MODEL_e9697ae9d4b5456eaeb9d61a618ca464" + } + }, + "a230d525e65e430fb082bbd871f7efc1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f73b93eed0a844e0afa66c8ff3ea6e2b", + "placeholder": "​", + "style": "IPY_MODEL_30b84b30e0024cc884d5124a4a9561ce", + "value": "  ...llm-trl/training_args.bin: 100%" + } + }, + "11ac0f8c06804471bd799766ca39a9ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_763cadd87299481ebe1d7fdaa04718f0", + "max": 7185, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d1d125afd42468db94012578ba6a9b0", + "value": 7185 + } + }, + "0b7cb3fad35d47ab963e3065d5edbb66": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8cd68cb0e7fb4d4cb4a34c3f36942abc", + "placeholder": "​", + "style": "IPY_MODEL_469f0b30119b4c5aaf9bfa17e5cb73e9", + "value": " 7.18kB / 7.18kB            " + } + }, + "e9697ae9d4b5456eaeb9d61a618ca464": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f73b93eed0a844e0afa66c8ff3ea6e2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "30b84b30e0024cc884d5124a4a9561ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "763cadd87299481ebe1d7fdaa04718f0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d1d125afd42468db94012578ba6a9b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cd68cb0e7fb4d4cb4a34c3f36942abc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "469f0b30119b4c5aaf9bfa17e5cb73e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ed233a955b14342955f111576a395d9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f522922ce1fd46998a429ea0776e3b59", + "IPY_MODEL_800d09a2000c4d6987fc22b8f27b9f99", + "IPY_MODEL_d7ca74a02a4941e5b8aa2391d0d9e295" + ], + "layout": "IPY_MODEL_b68d1f1de1bc400e8603e0060dcf7b97" + } + }, + "f522922ce1fd46998a429ea0776e3b59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c4c1787146242e483c4e600a06a7f59", + "placeholder": "​", + "style": "IPY_MODEL_06cad97cc9d8490ab39b4ae96d524a96", + "value": "  ...adapter_model.safetensors: 100%" + } + }, + "800d09a2000c4d6987fc22b8f27b9f99": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_571227481e684c088b614161965cd29e", + "max": 2175168, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5442061b98704a4989f6a765634d0e96", + "value": 2175168 + } + }, + "d7ca74a02a4941e5b8aa2391d0d9e295": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0336d0845ba14dc19179b3a4f6581c55", + "placeholder": "​", + "style": "IPY_MODEL_2c71dc6b8d4443c7aeda53a49829216f", + "value": " 2.18MB / 2.18MB            " + } + }, + "b68d1f1de1bc400e8603e0060dcf7b97": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c4c1787146242e483c4e600a06a7f59": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06cad97cc9d8490ab39b4ae96d524a96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "571227481e684c088b614161965cd29e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5442061b98704a4989f6a765634d0e96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0336d0845ba14dc19179b3a4f6581c55": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c71dc6b8d4443c7aeda53a49829216f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e71e5e084c22439d9cd3ef007beac264": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4b3320e6d1bc404a9401db13702bed43", + "IPY_MODEL_4ac8498aa540457c93d21d428e7b0846", + "IPY_MODEL_77f033d7354d4b53b6dc7e2acd57e3fe" + ], + "layout": "IPY_MODEL_c98671ae1bc2427a89a8920e71dd9224" + } + }, + "4b3320e6d1bc404a9401db13702bed43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4dcd6d0e0ade4ec6aa2ac334185f54e2", + "placeholder": "​", + "style": "IPY_MODEL_dbda791e57b241eab6e434e500b71555", + "value": "  ...O-vllm-trl/tokenizer.json: 100%" + } + }, + "4ac8498aa540457c93d21d428e7b0846": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59483bad9aad4a8c95bc63042747666f", + "max": 11418433, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c8532981d3d49bdbb40c732c642d897", + "value": 11418433 + } + }, + "77f033d7354d4b53b6dc7e2acd57e3fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b5c0b62c75a4663b9cd5fe11c05f2d1", + "placeholder": "​", + "style": "IPY_MODEL_2a15e209d88744bc867918b0ab5d0cdc", + "value": " 11.4MB / 11.4MB            " + } + }, + "c98671ae1bc2427a89a8920e71dd9224": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4dcd6d0e0ade4ec6aa2ac334185f54e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbda791e57b241eab6e434e500b71555": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59483bad9aad4a8c95bc63042747666f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c8532981d3d49bdbb40c732c642d897": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3b5c0b62c75a4663b9cd5fe11c05f2d1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a15e209d88744bc867918b0ab5d0cdc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94b79a811305416b9a442f5bbc5e5636": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_da01ee1365ea478084d323e046a90f60", + "IPY_MODEL_d47c69a3a2434f3da81cd86780ec4df7", + "IPY_MODEL_6d38d7a5f173427d9970b2f8a6cee941" + ], + "layout": "IPY_MODEL_96fcc4033bee4b09856e3c1c76064192" + } + }, + "da01ee1365ea478084d323e046a90f60": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff1d855281c644839b0a79be58f7d51b", + "placeholder": "​", + "style": "IPY_MODEL_856064ebeee7430e9cbe9b3b406ab597", + "value": "Processing Files (3 / 3)      : 100%" + } + }, + "d47c69a3a2434f3da81cd86780ec4df7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e691f29e56f4b459859f897954b98dc", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d49e8a29926a44f782e73a660d64ed97", + "value": 1 + } + }, + "6d38d7a5f173427d9970b2f8a6cee941": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e854754fedae47428564740e30ae8ee4", + "placeholder": "​", + "style": "IPY_MODEL_4a0e48223abb4253b118dd7e21a9ac2f", + "value": " 13.6MB / 13.6MB,  0.00B/s  " + } + }, + "96fcc4033bee4b09856e3c1c76064192": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff1d855281c644839b0a79be58f7d51b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "856064ebeee7430e9cbe9b3b406ab597": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e691f29e56f4b459859f897954b98dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "d49e8a29926a44f782e73a660d64ed97": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e854754fedae47428564740e30ae8ee4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a0e48223abb4253b118dd7e21a9ac2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7353cb8a39f44e3793a9d14974c8eefa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_977a61c8d5ff43168b018d41c163fba4", + "IPY_MODEL_6177906927984900842e9b25f8f19bbb", + "IPY_MODEL_b6e939cfbb0947cdb1c1bdc3ebed9a82" + ], + "layout": "IPY_MODEL_ff501fc0e8574cf38884e0eec9b6d4c4" + } + }, + "977a61c8d5ff43168b018d41c163fba4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93c7b1f6a5724b93bc349c36893e28f5", + "placeholder": "​", + "style": "IPY_MODEL_8ec1195d53c44ac7abb7b2d1031b4ee0", + "value": "New Data Upload               : " + } + }, + "6177906927984900842e9b25f8f19bbb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0694321451a4bec85c2665fe3d1f058", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_852adecfa8834dc399772f7510cf37f9", + "value": 0 + } + }, + "b6e939cfbb0947cdb1c1bdc3ebed9a82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dad3d92ad15d4974b16cc3136d8eed90", + "placeholder": "​", + "style": "IPY_MODEL_be15a009b42f4f0bbd3123a6c0ca7b5c", + "value": "  0.00B /  0.00B,  0.00B/s  " + } + }, + "ff501fc0e8574cf38884e0eec9b6d4c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93c7b1f6a5724b93bc349c36893e28f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ec1195d53c44ac7abb7b2d1031b4ee0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e0694321451a4bec85c2665fe3d1f058": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "852adecfa8834dc399772f7510cf37f9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dad3d92ad15d4974b16cc3136d8eed90": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be15a009b42f4f0bbd3123a6c0ca7b5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d627bf1f35f640339395770218dd4efe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d3b0e9769ac44c89b744b0e72d776298", + "IPY_MODEL_e9fc916db6ba40c886658b0d6193997a", + "IPY_MODEL_5408aecda830430b8ae0178bb8c2c176" + ], + "layout": "IPY_MODEL_402171d79af94c71b414f0c81db44b93" + } + }, + "d3b0e9769ac44c89b744b0e72d776298": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b374913bd4044a3ea47599db2a064f35", + "placeholder": "​", + "style": "IPY_MODEL_3dff7dab14b04a788b541e4d0fe3a245", + "value": "  ...llm-trl/training_args.bin: 100%" + } + }, + "e9fc916db6ba40c886658b0d6193997a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e3210fea513e45d1b7aed645b4e9f0d9", + "max": 7185, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_517db374d571445fa78c1eb700d40379", + "value": 7185 + } + }, + "5408aecda830430b8ae0178bb8c2c176": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_34b0de046ec2406f9ba59e7dfd159ddc", + "placeholder": "​", + "style": "IPY_MODEL_426792df69ce454cbbc1cbb89be08802", + "value": " 7.18kB / 7.18kB            " + } + }, + "402171d79af94c71b414f0c81db44b93": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b374913bd4044a3ea47599db2a064f35": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3dff7dab14b04a788b541e4d0fe3a245": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3210fea513e45d1b7aed645b4e9f0d9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "517db374d571445fa78c1eb700d40379": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34b0de046ec2406f9ba59e7dfd159ddc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "426792df69ce454cbbc1cbb89be08802": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8162159b397145a9a53d2328f10875fa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80c822dbe1d8488581f303ff9199ac4b", + "IPY_MODEL_691e6bbeca8b4930a6b4b7ee675f2d5c", + "IPY_MODEL_9aa3b89510094a94b01c69cffeb42ceb" + ], + "layout": "IPY_MODEL_df86ed135ad948b2aa90d0717975944d" + } + }, + "80c822dbe1d8488581f303ff9199ac4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be67d7274f0d4db38a02d790a34bb266", + "placeholder": "​", + "style": "IPY_MODEL_05fa1783785a42ada12319d1625ac5b0", + "value": "  ...adapter_model.safetensors: 100%" + } + }, + "691e6bbeca8b4930a6b4b7ee675f2d5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9705036732a43a3ac62c0119f504809", + "max": 2175168, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f63f8445964646f8a278c076d9a55248", + "value": 2175168 + } + }, + "9aa3b89510094a94b01c69cffeb42ceb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0202ba576bd743fa9adbac32334d220f", + "placeholder": "​", + "style": "IPY_MODEL_f2aaef56ac234cb5a3da275e99290200", + "value": " 2.18MB / 2.18MB            " + } + }, + "df86ed135ad948b2aa90d0717975944d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be67d7274f0d4db38a02d790a34bb266": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05fa1783785a42ada12319d1625ac5b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b9705036732a43a3ac62c0119f504809": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f63f8445964646f8a278c076d9a55248": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0202ba576bd743fa9adbac32334d220f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2aaef56ac234cb5a3da275e99290200": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "87adeb2b42734c3895d3c150838b0fef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_24b1e1231df1485480cc9396769ee5f4", + "IPY_MODEL_d375824c68e04ac5861503b776d937ad", + "IPY_MODEL_05696af5f2fd46c8be1f808d2d83b7f4" + ], + "layout": "IPY_MODEL_d5f6137d88a94cc6b5eeba88b5fa250c" + } + }, + "24b1e1231df1485480cc9396769ee5f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ed41772918f44ce9a17de77359c0e49", + "placeholder": "​", + "style": "IPY_MODEL_c6a2e2e8ff9f4a319ace0ec9a0eb5b4b", + "value": "  ...O-vllm-trl/tokenizer.json: 100%" + } + }, + "d375824c68e04ac5861503b776d937ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5de7bcb9d2d743e6be739a727fb0196c", + "max": 11418433, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d395da4881ed4e80afe16ae3b7957754", + "value": 11418433 + } + }, + "05696af5f2fd46c8be1f808d2d83b7f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52c9252b951f4a448c5fc37e98674ec9", + "placeholder": "​", + "style": "IPY_MODEL_a13a7e158c53426a88895cb1b27d8620", + "value": " 11.4MB / 11.4MB            " + } + }, + "d5f6137d88a94cc6b5eeba88b5fa250c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ed41772918f44ce9a17de77359c0e49": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6a2e2e8ff9f4a319ace0ec9a0eb5b4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5de7bcb9d2d743e6be739a727fb0196c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d395da4881ed4e80afe16ae3b7957754": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "52c9252b951f4a448c5fc37e98674ec9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a13a7e158c53426a88895cb1b27d8620": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "29f01bbb3f4641fb8dd48f75c13fe73f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4e71f7a844542d4931a471127711eb8", + "IPY_MODEL_ed07d63bcc684c9ea68e0e344ce10e1f", + "IPY_MODEL_074bfc147c2147e9aef6a2c0886fabb3" + ], + "layout": "IPY_MODEL_acefc53329024ff6b81b3468103c270a" + } + }, + "b4e71f7a844542d4931a471127711eb8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75e2391ee60b490083d6f1297da57c22", + "placeholder": "​", + "style": "IPY_MODEL_affadddec7724fbe82d28f71b426180c", + "value": "adapter_config.json: 100%" + } + }, + "ed07d63bcc684c9ea68e0e344ce10e1f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7cdf617673241b09dd63136ab405d79", + "max": 857, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_41ae2beb33b84f778e6a317eab20ec69", + "value": 857 + } + }, + "074bfc147c2147e9aef6a2c0886fabb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b03682c5901949adaf93e8bdbf480e92", + "placeholder": "​", + "style": "IPY_MODEL_d2de608d3f2f4f61baae4694a5a8de0a", + "value": " 857/857 [00:00<00:00, 108kB/s]" + } + }, + "acefc53329024ff6b81b3468103c270a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75e2391ee60b490083d6f1297da57c22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "affadddec7724fbe82d28f71b426180c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e7cdf617673241b09dd63136ab405d79": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41ae2beb33b84f778e6a317eab20ec69": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b03682c5901949adaf93e8bdbf480e92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2de608d3f2f4f61baae4694a5a8de0a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "62bef399c49c4e9b8ffb183c39887495": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_60bfea04814142dfaacda9aa258de9f8", + "IPY_MODEL_3758f4296d624bdbab1fe007f6991098", + "IPY_MODEL_648e0a34592643a4a492e5e174ee90d4" + ], + "layout": "IPY_MODEL_3a40365eb00646d293b75d75bb468548" + } + }, + "60bfea04814142dfaacda9aa258de9f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8cd4dce996cf45e8a6283a80b63355b4", + "placeholder": "​", + "style": "IPY_MODEL_d97d9ea9cf5c4f1fafac1ee469f6a31f", + "value": "adapter_model.safetensors: 100%" + } + }, + "3758f4296d624bdbab1fe007f6991098": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6710a9e1ef9a4394922077b99401e87a", + "max": 2175168, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f3e9545915841e887390530cfe475d9", + "value": 2175168 + } + }, + "648e0a34592643a4a492e5e174ee90d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6db82e165cb146a8b1690340986bfc6a", + "placeholder": "​", + "style": "IPY_MODEL_862df92699c64c7b8a9ef3c6f969e004", + "value": " 2.18M/2.18M [00:01<00:00, 2.12MB/s]" + } + }, + "3a40365eb00646d293b75d75bb468548": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cd4dce996cf45e8a6283a80b63355b4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d97d9ea9cf5c4f1fafac1ee469f6a31f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6710a9e1ef9a4394922077b99401e87a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f3e9545915841e887390530cfe475d9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6db82e165cb146a8b1690340986bfc6a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "862df92699c64c7b8a9ef3c6f969e004": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "623fc8677a0241eca1c88146e2daebf0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c1e69d50a7f4673973d06e4f461e63b", + "IPY_MODEL_8021f19a762549cf8571283f43db8d3c", + "IPY_MODEL_d0b91f3a78804a4d9a7961f700070127" + ], + "layout": "IPY_MODEL_28cd8a0567fa47ffbef58304327990ff" + } + }, + "2c1e69d50a7f4673973d06e4f461e63b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1268a1ecf3204642b0640148a2f01467", + "placeholder": "​", + "style": "IPY_MODEL_3664dd742b134c97a20b8b835b8bb820", + "value": "tokenizer_config.json: 100%" + } + }, + "8021f19a762549cf8571283f43db8d3c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e3dda5cc573e4d998185f4da2a3a2269", + "max": 973, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03a82ca0774c4c03854346b385f3dc62", + "value": 973 + } + }, + "d0b91f3a78804a4d9a7961f700070127": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba60965841044f7fa93694761f5d3c8b", + "placeholder": "​", + "style": "IPY_MODEL_781ec2710ffc45cea6d44ff6be4a3898", + "value": " 973/973 [00:00<00:00, 131kB/s]" + } + }, + "28cd8a0567fa47ffbef58304327990ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1268a1ecf3204642b0640148a2f01467": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3664dd742b134c97a20b8b835b8bb820": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3dda5cc573e4d998185f4da2a3a2269": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03a82ca0774c4c03854346b385f3dc62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ba60965841044f7fa93694761f5d3c8b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "781ec2710ffc45cea6d44ff6be4a3898": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f588c0b040242ba90adb291aa080fd1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3853ad4388634a769ef8afe7de8af137", + "IPY_MODEL_b1179cf26c554694aa50b9df90f605e9", + "IPY_MODEL_a73ef52b69bc4a3f9902e9c5bdca80e7" + ], + "layout": "IPY_MODEL_3caf93da780b4fbb9e11302ad9f6f2f8" + } + }, + "3853ad4388634a769ef8afe7de8af137": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8c77e5ba54946eda20ba93a01631686", + "placeholder": "​", + "style": "IPY_MODEL_a2fc5f0a428f4ec49fd4c5c31ce1c281", + "value": "vocab.json: " + } + }, + "b1179cf26c554694aa50b9df90f605e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03f752912fbf48088cb4ac0d37aef7af", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_eca94be852914086b399eda6a37ac5dc", + "value": 1 + } + }, + "a73ef52b69bc4a3f9902e9c5bdca80e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_312067e15bf648a79ed9e5c1e1530b72", + "placeholder": "​", + "style": "IPY_MODEL_1632afd2894e4f4fbc1935774183bf6c", + "value": " 2.78M/? [00:00<00:00, 4.34MB/s]" + } + }, + "3caf93da780b4fbb9e11302ad9f6f2f8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8c77e5ba54946eda20ba93a01631686": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a2fc5f0a428f4ec49fd4c5c31ce1c281": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "03f752912fbf48088cb4ac0d37aef7af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "eca94be852914086b399eda6a37ac5dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "312067e15bf648a79ed9e5c1e1530b72": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1632afd2894e4f4fbc1935774183bf6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "82fe3baa961b4d54bc7a8936bbdbd444": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9459c94019c344f6a32f73f0ee79bd05", + "IPY_MODEL_658f62d6c77d48f0ba9633ce3cfb3d67", + "IPY_MODEL_385c999a90884f669541de594024d915" + ], + "layout": "IPY_MODEL_0190a84980fb4b99a47a8f3742497248" + } + }, + "9459c94019c344f6a32f73f0ee79bd05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f65bba45dae9468d84137bab8570f7e8", + "placeholder": "​", + "style": "IPY_MODEL_1debfa4067864d0cad5580f44d6b6b83", + "value": "merges.txt: " + } + }, + "658f62d6c77d48f0ba9633ce3cfb3d67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcd303c072eb499e9940e5e6dbf7b98d", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d26dff2638e447f9a048a88d1994a174", + "value": 1 + } + }, + "385c999a90884f669541de594024d915": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c417174c8af44956891c6760e6d83838", + "placeholder": "​", + "style": "IPY_MODEL_a66ff5199c36419daf3cd61dcd664594", + "value": " 1.67M/? [00:00<00:00, 2.33MB/s]" + } + }, + "0190a84980fb4b99a47a8f3742497248": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f65bba45dae9468d84137bab8570f7e8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1debfa4067864d0cad5580f44d6b6b83": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fcd303c072eb499e9940e5e6dbf7b98d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "d26dff2638e447f9a048a88d1994a174": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c417174c8af44956891c6760e6d83838": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a66ff5199c36419daf3cd61dcd664594": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f763f84995b8409fbd37d88ff1213497": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a11a91d5b61046da82c23c2a4ef9ef01", + "IPY_MODEL_7a6d9dc8dcc34082b349f9db23c86164", + "IPY_MODEL_ae469db875d84a78ba955eaa622ff578" + ], + "layout": "IPY_MODEL_72d0ea3eb9bb48709dc083d0675a7269" + } + }, + "a11a91d5b61046da82c23c2a4ef9ef01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0f0b115e1424c1a8a3ebc8c06d9377c", + "placeholder": "​", + "style": "IPY_MODEL_688e24459d0d4ed39adcdad693d3ff92", + "value": "tokenizer.json: 100%" + } + }, + "7a6d9dc8dcc34082b349f9db23c86164": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4341668602b747eba25f1d8fa67c11da", + "max": 11418433, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9ced26aa4fe4748b52873f2f409e635", + "value": 11418433 + } + }, + "ae469db875d84a78ba955eaa622ff578": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed0a734b4e8e4e489531d9f5459d4106", + "placeholder": "​", + "style": "IPY_MODEL_e2bf90424775413d936c86cd421e1122", + "value": " 11.4M/11.4M [00:01<00:00, 3.52MB/s]" + } + }, + "72d0ea3eb9bb48709dc083d0675a7269": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0f0b115e1424c1a8a3ebc8c06d9377c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "688e24459d0d4ed39adcdad693d3ff92": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4341668602b747eba25f1d8fa67c11da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9ced26aa4fe4748b52873f2f409e635": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ed0a734b4e8e4e489531d9f5459d4106": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2bf90424775413d936c86cd421e1122": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "10ba9f61c3824dc79f31db0b334f58b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c240ed63de3b4f6db02a527e9764bc38", + "IPY_MODEL_5deb7cbe9dc84bca9e64b124c374e142", + "IPY_MODEL_449a66d1e33c416694be64897927d887" + ], + "layout": "IPY_MODEL_69e8f81fec2343e2aebfd27d0bc18ceb" + } + }, + "c240ed63de3b4f6db02a527e9764bc38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d23ce595b17342698032c9997e665f4a", + "placeholder": "​", + "style": "IPY_MODEL_68d40ba38208430b861e1e7313f97281", + "value": "added_tokens.json: 100%" + } + }, + "5deb7cbe9dc84bca9e64b124c374e142": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea1a58ccc99740b599d9f51d6d061ed0", + "max": 80, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2d0f7a7d42641909c40212fe7357e85", + "value": 80 + } + }, + "449a66d1e33c416694be64897927d887": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_099f620226c5403e8b484aab8f6e355f", + "placeholder": "​", + "style": "IPY_MODEL_85d5475924c144aca453fc6f5dad30c8", + "value": " 80.0/80.0 [00:00<00:00, 10.5kB/s]" + } + }, + "69e8f81fec2343e2aebfd27d0bc18ceb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d23ce595b17342698032c9997e665f4a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68d40ba38208430b861e1e7313f97281": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea1a58ccc99740b599d9f51d6d061ed0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2d0f7a7d42641909c40212fe7357e85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "099f620226c5403e8b484aab8f6e355f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85d5475924c144aca453fc6f5dad30c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3fe3512463234826b74f7185d00e887d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5b2a28e155cd450ab7b1eed3fc670e07", + "IPY_MODEL_3d9f675483a44236a7c73d64cd6b90a1", + "IPY_MODEL_cbc8cc2fae234a9fb7d19c71f16ef843" + ], + "layout": "IPY_MODEL_be433c4112a3473aa3990cdad0b8671f" + } + }, + "5b2a28e155cd450ab7b1eed3fc670e07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b039d6aa93c94ffd9ab80de5436f4a74", + "placeholder": "​", + "style": "IPY_MODEL_7c4b47094c6a46cbbfbc564523a57f50", + "value": "special_tokens_map.json: 100%" + } + }, + "3d9f675483a44236a7c73d64cd6b90a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d8c588bac624efc85fbd6bd2a68cfa8", + "max": 367, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d16361a71d846019be9bfa1acf90c3f", + "value": 367 + } + }, + "cbc8cc2fae234a9fb7d19c71f16ef843": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_79fe6e3d24234007a49b918be4a64f3f", + "placeholder": "​", + "style": "IPY_MODEL_91eb300d2a694f858aec854f00c0ec05", + "value": " 367/367 [00:00<00:00, 52.3kB/s]" + } + }, + "be433c4112a3473aa3990cdad0b8671f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b039d6aa93c94ffd9ab80de5436f4a74": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c4b47094c6a46cbbfbc564523a57f50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d8c588bac624efc85fbd6bd2a68cfa8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d16361a71d846019be9bfa1acf90c3f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "79fe6e3d24234007a49b918be4a64f3f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91eb300d2a694f858aec854f00c0ec05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "067de797dc2f440a9312d98da7825510": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb847a29bd6846b98b91f739f32cff82", + "IPY_MODEL_72de174496b74ad78c73bc1da8528ad9", + "IPY_MODEL_0b3a7f9f95d542d599bf4f1ff23d5531" + ], + "layout": "IPY_MODEL_05d96c9494e44bbc82a85c4c75663be7" + } + }, + "cb847a29bd6846b98b91f739f32cff82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_07f58707185d443bbfd9a688dadc9769", + "placeholder": "​", + "style": "IPY_MODEL_b084e6e3346a43c488970017dc7eead8", + "value": "chat_template.jinja: 100%" + } + }, + "72de174496b74ad78c73bc1da8528ad9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d0615f5d04434936a6f6780584c71908", + "max": 328, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d19638dd0f146e38178177678fa088f", + "value": 328 + } + }, + "0b3a7f9f95d542d599bf4f1ff23d5531": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e16885ed06e4c0c9b24c8770ae97fda", + "placeholder": "​", + "style": "IPY_MODEL_ad14b8a55f7f49b882e81be9e08faa0e", + "value": " 328/328 [00:00<00:00, 42.9kB/s]" + } + }, + "05d96c9494e44bbc82a85c4c75663be7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07f58707185d443bbfd9a688dadc9769": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b084e6e3346a43c488970017dc7eead8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0615f5d04434936a6f6780584c71908": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d19638dd0f146e38178177678fa088f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e16885ed06e4c0c9b24c8770ae97fda": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad14b8a55f7f49b882e81be9e08faa0e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/notebooks/en/index.md b/notebooks/en/index.md index 0137ad9f..7de3031d 100644 --- a/notebooks/en/index.md +++ b/notebooks/en/index.md @@ -7,11 +7,11 @@ applications and solving various machine learning tasks using open-source tools Check out the recently added notebooks: +- [Efficient Online Training with GRPO and vLLM in TRL](grpo_vllm_online_training) - [Fine-tuning LLMs for Function Calling with the xLAM Dataset](function_calling_fine_tuning_llms_on_xlam) - [Post training an VLM for reasoning with GRPO using TRL](fine_tuning_vlm_grpo_trl) - [TRL GRPO Reasoning with Advanced Reward](trl_grpo_reasoning_advanced_reward) - [Fine-Tuning a Vision Language Model with TRL using MPO](fine_tuning_vlm_mpo) -- [Fine tuning a VLM for Object Detection Grounding using TRL](fine_tuning_vlm_object_detection_grounding) You can also check out the notebooks in the cookbook's [GitHub repo](https://github.com/huggingface/cookbook).