77from graphdatascience .pipeline .lp_training_pipeline import LPTrainingPipeline
88from graphdatascience .pipeline .nc_training_pipeline import NCTrainingPipeline
99from graphdatascience .query_runner .neo4j_query_runner import Neo4jQueryRunner
10+ from graphdatascience .server_version .server_version import ServerVersion
1011
1112PIPE_NAME = "pipe"
1213
@@ -180,6 +181,7 @@ def test_add_logistic_regression_lp_pipeline(lp_pipe: LPTrainingPipeline) -> Non
180181 assert lr_parameter_space [0 ]["penalty" ] == 42
181182
182183
184+ @pytest .mark .compatible_with (min_inclusive = ServerVersion (2 , 1 , 0 ))
183185def test_add_logistic_regression_with_range_lp_pipeline (lp_pipe : LPTrainingPipeline ) -> None :
184186 res = lp_pipe .addLogisticRegression (penalty = (42 , 1337 ))
185187 lr_parameter_space = res ["parameterSpace" ]["LogisticRegression" ]
@@ -204,11 +206,13 @@ def test_parameter_space_lp_pipeline(lp_pipe: LPTrainingPipeline) -> None:
204206 assert "penalty" in parameter_space ["LogisticRegression" ][0 ]
205207
206208
209+ @pytest .mark .compatible_with (min_inclusive = ServerVersion (2 , 1 , 0 ))
207210def test_auto_tuning_config_lp_pipeline (lp_pipe : LPTrainingPipeline ) -> None :
208211 tuning_config = lp_pipe .auto_tuning_config ()
209212 assert "maxTrials" in tuning_config
210213
211214
215+ @pytest .mark .compatible_with (min_inclusive = ServerVersion (2 , 1 , 0 ))
212216def test_configure_auto_tuning_lp_pipeline (lp_pipe : LPTrainingPipeline ) -> None :
213217 maxTrials = 1337
214218 result = lp_pipe .configureAutoTuning (maxTrials = maxTrials )
0 commit comments