diff --git a/meteor-S1erHoR5t7/README.md b/meteor-S1erHoR5t7/README.md new file mode 100644 index 0000000..257ac52 --- /dev/null +++ b/meteor-S1erHoR5t7/README.md @@ -0,0 +1,56 @@ +## This is a guide for [ICLR2019 reproducibility challenge](https://reproducibility-challenge.github.io/iclr_2019/) + +Review target: [The relativistic discriminator: a key element missing from standard GAN](https://openreview.net/forum?id=S1erHoR5t7) (*Accept Poster*) + +Issue Ticket: [S1erHoR5t7](https://github.com/reproducibility-challenge/iclr_2019/issues/10) + +Code Repo: [VSR](https://github.com/LoSealL/VideoSuperResolution) + +### How to reproduce benchmark + +0. Clone repo: + + ```bash + git clone https://github.com/LoSealL/VideoSuperResolution -b iclr_submit + ``` + +1. Download dataset and weights + + 1. CIFAR10 will be downloaded in the code automatically. + 2. CelebA is downloaded [here](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html), and is processed by: + ```bash + python VSR/Tools/DataProcessing/CelebA.py /mnt/data/dataset/celeba/ --n_test=10000 + ``` + where `/mnt/data/dataset/celeba` is your root to CelebA dataset. This will create a `resize64` folder holds `192,599` training patches and a `test64` folder holds `10000` testing patches under that root directory. + + 3. Weights are downloaded by using `python prepare_data.py --filter="\w*gan"`, which will extract weights into `./Results/` (*Requires your permission*). + +2. Evaluate GAN models + + Example for RGAN: + ```bash + cd Train + python run.py --mode=eval --model=rgan --checkpoint_dir=../Results/rgan --epochs=500 --test=cifar10 --enable_inception_score --enable_fid + ``` + + Where you can see printed FID and IS value on terminal, and you can also find records file in `/tmp/vsr//eval_results.csv`. + +3. Generate samples + + ```bash + cd Train + python run.py --model=rgan --test=cifar10 + ``` + + Where the generated images are saved in `../Results/rgan/cifar10`. + +4. Train models from scratch + + 1. Refer to general guide [here](./README.md) + 2. (Optional) Prepare your own dataset (if needed, refer DDF [here](./Data/README.md)) + 3. (Optional) Modify [model config file](./Train/parameters/rgan.yaml), all models and information are defined [here](./VSR/Models/Gan.py) + 4. Run script: (i.e. RGAN) + ```bash + cd Train + python run.py --model=rgan --epochs=500 --dataset=cifar10 + ``` \ No newline at end of file diff --git a/meteor-S1erHoR5t7/REPRODUCIBILITY_FOR_RGAN.pdf b/meteor-S1erHoR5t7/REPRODUCIBILITY_FOR_RGAN.pdf new file mode 100644 index 0000000..ba53839 Binary files /dev/null and b/meteor-S1erHoR5t7/REPRODUCIBILITY_FOR_RGAN.pdf differ