|
| 1 | +# CallTraceStorage Triple-Buffer Architecture |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +The CallTraceStorage system implements a sophisticated triple-buffered architecture designed for lock-free, signal-handler-safe profiling data collection. This design enables concurrent trace collection from signal handlers while allowing safe background processing for JFR (Java Flight Recorder) serialization. |
| 6 | + |
| 7 | +Each collected call trace receives a globally unique 64-bit identifier composed of a 32-bit instance epoch ID and a 32-bit slot index. This dual-component design ensures collision-free trace identification across buffer rotations and supports stable JFR constant pool references. |
| 8 | + |
| 9 | +## Core Design Principles |
| 10 | + |
| 11 | +1. **Signal Handler Safety**: All operations in signal handlers use lock-free atomic operations |
| 12 | +2. **Globally Unique Trace IDs**: 64-bit identifiers (instance epoch + slot index) prevent collisions across buffer rotations |
| 13 | +3. **Memory Continuity**: Traces can be preserved across collection cycles for liveness tracking |
| 14 | +4. **Zero-Copy Collection**: Uses atomic pointer swapping instead of data copying |
| 15 | +5. **ABA Protection**: Generation counters and hazard pointers prevent use-after-free |
| 16 | +6. **Lock-Free Concurrency**: Multiple threads can collect traces without blocking each other |
| 17 | + |
| 18 | +## Triple-Buffer States |
| 19 | + |
| 20 | +The system maintains three `CallTraceHashTable` instances with distinct roles: |
| 21 | + |
| 22 | +``` |
| 23 | +┌─────────────┐ ┌─────────────┐ ┌─────────────┐ |
| 24 | +│ ACTIVE │ │ STANDBY │ │ SCRATCH │ |
| 25 | +│ │ │ │ │ │ |
| 26 | +│ New traces │ │ Preserved │ │ Processing │ |
| 27 | +│ from signal │ │ traces from │ │ old traces │ |
| 28 | +│ handlers │ │ prev cycle │ │ before clear│ |
| 29 | +└─────────────┘ └─────────────┘ └─────────────┘ |
| 30 | +``` |
| 31 | + |
| 32 | +### Buffer Roles |
| 33 | + |
| 34 | +- **ACTIVE**: Receives new traces from signal handlers (lock-free puts) |
| 35 | +- **STANDBY**: Contains preserved traces from the previous collection cycle |
| 36 | +- **SCRATCH**: Temporary storage during rotation, gets cleared after processing |
| 37 | + |
| 38 | +## Triple-Buffer Rotation Algorithm |
| 39 | + |
| 40 | +The rotation follows a carefully orchestrated 6-step sequence: |
| 41 | + |
| 42 | +### Phase Diagram |
| 43 | + |
| 44 | +``` |
| 45 | +BEFORE ROTATION: |
| 46 | +┌─────────────────────────────────────────────────────────────┐ |
| 47 | +│ Thread A (Signal Handler) │ Thread B (JFR Processing) │ |
| 48 | +├─────────────────────────────────────────────────────────────┤ |
| 49 | +│ │ │ |
| 50 | +│ put() → ACTIVE │ processTraces() │ |
| 51 | +│ ↓ │ ↓ │ |
| 52 | +│ [New Traces] │ Step 1: Collect STANDBY │ |
| 53 | +│ │ Step 2: Clear STANDBY │ |
| 54 | +│ │ Step 3: ATOMIC SWAP │ |
| 55 | +└─────────────────────────────────────────────────────────────┘ |
| 56 | +
|
| 57 | +DURING ROTATION (Atomic Swap): |
| 58 | +┌─────────────────────────────────────────────────────────────┐ |
| 59 | +│ OLD STATE │ ATOMIC SWAP │ NEW STATE │ |
| 60 | +├─────────────────────────────────────────────────────────────┤ |
| 61 | +│ ACTIVE = A │ │ ACTIVE = B │ |
| 62 | +│ STANDBY = B │ ──── SWAP ────→ │ STANDBY = C │ |
| 63 | +│ SCRATCH = C │ │ SCRATCH = A │ |
| 64 | +└─────────────────────────────────────────────────────────────┘ |
| 65 | +
|
| 66 | +AFTER ROTATION: |
| 67 | +┌────────────────────────────────────────────────────────────┐ |
| 68 | +│ put() → NEW ACTIVE (B) │ Step 4: Collect SCRATCH │ |
| 69 | +│ │ Step 5: Process All │ |
| 70 | +│ [Safe to continue] │ Step 6: Preserve & Clear │ |
| 71 | +└────────────────────────────────────────────────────────────┘ |
| 72 | +``` |
| 73 | + |
| 74 | +### Detailed Steps |
| 75 | + |
| 76 | +```cpp |
| 77 | +void processTraces() { |
| 78 | + // PHASE 1: Liveness Analysis |
| 79 | + // Determine which traces need preservation |
| 80 | + |
| 81 | + // PHASE 2: Collection Sequence |
| 82 | + |
| 83 | + // Step 1: Collect from STANDBY (preserved traces) |
| 84 | + current_standby->collect(standby_traces); |
| 85 | + |
| 86 | + // Step 2: Clear STANDBY, prepare for new role as ACTIVE |
| 87 | + current_standby->clear(); |
| 88 | + current_standby->setInstanceId(new_instance_id); |
| 89 | + |
| 90 | + // Step 3: ATOMIC ROTATION |
| 91 | + // STANDBY (empty) → ACTIVE (receives new traces) |
| 92 | + old_active = _active_storage.exchange(current_standby); |
| 93 | + |
| 94 | + // ACTIVE (full) → SCRATCH (for processing) |
| 95 | + old_scratch = _scratch_storage.exchange(old_active); |
| 96 | + |
| 97 | + // SCRATCH (processed) → STANDBY (for next cycle) |
| 98 | + _standby_storage.store(old_scratch); |
| 99 | + |
| 100 | + // Step 4: Collect from SCRATCH (old active, now read-only) |
| 101 | + old_active->collect(active_traces); |
| 102 | + |
| 103 | + // Step 5: Process combined traces |
| 104 | + all_traces = standby_traces ∪ active_traces; |
| 105 | + processor(all_traces); |
| 106 | + |
| 107 | + // Step 6: Preserve traces for next cycle |
| 108 | + old_scratch->clear(); |
| 109 | + for (trace : preserved_traces) { |
| 110 | + old_scratch->putWithExistingIdLockFree(trace); |
| 111 | + } |
| 112 | +} |
| 113 | +``` |
| 114 | + |
| 115 | +## Memory Safety Mechanisms |
| 116 | + |
| 117 | +### Hazard Pointers |
| 118 | + |
| 119 | +Signal handlers use hazard pointers to prevent tables from being deleted during access: |
| 120 | + |
| 121 | +``` |
| 122 | +Signal Handler Thread JFR Processing Thread |
| 123 | +───────────────────── ────────────────────── |
| 124 | +1. Load active table |
| 125 | +2. Register hazard pointer ──→ 1. Check hazard pointers |
| 126 | +3. Verify table still active 2. Wait if hazards exist |
| 127 | +4. Use table safely 3. Safe to delete/clear |
| 128 | +5. Clear hazard pointer 4. Continue processing |
| 129 | +``` |
| 130 | + |
| 131 | +### ABA Protection |
| 132 | + |
| 133 | +Generation counters prevent the ABA problem during concurrent access: |
| 134 | + |
| 135 | +```cpp |
| 136 | +// Each storage operation includes generation check |
| 137 | +u64 generation = _generation_counter.load(); |
| 138 | +CallTraceHashTable* table = _active_storage.load(); |
| 139 | + |
| 140 | +if (_generation_counter.load() != generation) { |
| 141 | + // Storage was rotated, retry or abort |
| 142 | +} |
| 143 | +``` |
| 144 | + |
| 145 | +## Thread-Local Collections |
| 146 | + |
| 147 | +Each thread maintains pre-allocated collections to avoid malloc/free in hot paths: |
| 148 | + |
| 149 | +``` |
| 150 | +Thread A Thread B Thread N |
| 151 | +──────── ──────── ──────── |
| 152 | +ThreadLocalCollections ThreadLocalCollections ThreadLocalCollections |
| 153 | +├─ traces_buffer ├─ traces_buffer ├─ traces_buffer |
| 154 | +├─ standby_traces ├─ standby_traces ├─ standby_traces |
| 155 | +├─ active_traces ├─ active_traces ├─ active_traces |
| 156 | +├─ preserve_set ├─ preserve_set ├─ preserve_set |
| 157 | +└─ traces_to_preserve └─ traces_to_preserve └─ traces_to_preserve |
| 158 | +``` |
| 159 | + |
| 160 | +## Liveness Preservation |
| 161 | + |
| 162 | +The system supports pluggable liveness checkers to determine which traces to preserve: |
| 163 | + |
| 164 | +```cpp |
| 165 | +// Liveness checker interface |
| 166 | +typedef std::function<void(std::unordered_set<u64>&)> LivenessChecker; |
| 167 | + |
| 168 | +// Example: JFR constant pool preservation |
| 169 | +registerLivenessChecker([](std::unordered_set<u64>& preserve_set) { |
| 170 | + // Add trace IDs that appear in active JFR recordings |
| 171 | + preserve_set.insert(active_jfr_traces.begin(), active_jfr_traces.end()); |
| 172 | +}); |
| 173 | +``` |
| 174 | +
|
| 175 | +## 64-Bit Trace ID Architecture |
| 176 | +
|
| 177 | +The system uses a sophisticated 64-bit trace ID scheme that combines collision avoidance with instance tracking to ensure globally unique, stable trace identifiers across buffer rotations. |
| 178 | +
|
| 179 | +### Trace ID Structure |
| 180 | +
|
| 181 | +``` |
| 182 | +┌─────────────────────────────────────────────────────────────────────┐ |
| 183 | +│ 64-bit Trace ID │ |
| 184 | +├──────────────────────────────┬──────────────────────────────────────┤ |
| 185 | +│ Upper 32 bits │ Lower 32 bits │ |
| 186 | +│ Instance Epoch ID │ Hash Table Slot Index │ |
| 187 | +│ │ │ |
| 188 | +│ Unique per active rotation │ Position in hash table │ |
| 189 | +│ Prevents collision across │ (0 to capacity-1) │ |
| 190 | +│ buffer swaps │ │ |
| 191 | +└──────────────────────────────┴──────────────────────────────────────┘ |
| 192 | +``` |
| 193 | +
|
| 194 | +### Instance Epoch ID Generation |
| 195 | +
|
| 196 | +Each time a `CallTraceHashTable` transitions from STANDBY to ACTIVE during buffer rotation, it receives a new instance epoch ID: |
| 197 | +
|
| 198 | +```cpp |
| 199 | +// During rotation - Step 2 |
| 200 | +current_standby->clear(); |
| 201 | +u64 new_instance_id = getNextInstanceId(); // Atomic increment |
| 202 | +current_standby->setInstanceId(new_instance_id); |
| 203 | +
|
| 204 | +// Later during trace creation |
| 205 | +u64 trace_id = (instance_id << 32) | slot_index; |
| 206 | +``` |
| 207 | + |
| 208 | +### Collision Prevention Across Rotations |
| 209 | + |
| 210 | +The instance epoch prevents trace ID collisions when the same hash table slot is reused across different active periods: |
| 211 | + |
| 212 | +``` |
| 213 | +Timeline Example: |
| 214 | +───────────────────────────────────────────────────────────────────── |
| 215 | +
|
| 216 | +Rotation 1: Instance ID = 0x00000001 |
| 217 | +┌─────────────────┐ |
| 218 | +│ ACTIVE Table A │ Slot 100 → Trace ID: 0x0000000100000064 |
| 219 | +│ Instance: 001 │ Slot 200 → Trace ID: 0x00000001000000C8 |
| 220 | +└─────────────────┘ |
| 221 | +
|
| 222 | +Rotation 2: Instance ID = 0x00000002 |
| 223 | +┌─────────────────┐ |
| 224 | +│ ACTIVE Table A │ Slot 100 → Trace ID: 0x0000000200000064 |
| 225 | +│ Instance: 002 │ Slot 200 → Trace ID: 0x00000002000000C8 |
| 226 | +│ (same table, │ |
| 227 | +│ different ID) │ |
| 228 | +└─────────────────┘ |
| 229 | +``` |
| 230 | + |
| 231 | +### JFR Constant Pool Stability |
| 232 | + |
| 233 | +The trace ID scheme provides crucial benefits for JFR serialization: |
| 234 | + |
| 235 | +1. **Stable References**: Trace IDs remain consistent during the active period |
| 236 | +2. **Unique Across Cycles**: Even if the same slot is reused, the trace ID differs |
| 237 | +3. **Collision Avoidance**: 32-bit instance space prevents ID conflicts |
| 238 | +4. **Liveness Tracking**: Preserved traces maintain their original IDs |
| 239 | + |
| 240 | +### Implementation Details |
| 241 | + |
| 242 | +```cpp |
| 243 | +class CallTraceHashTable { |
| 244 | + std::atomic<u64> _instance_id; // Set when becoming active |
| 245 | + |
| 246 | + u64 put(int num_frames, ASGCT_CallFrame* frames, bool truncated, u64 weight) { |
| 247 | + // ... hash table logic ... |
| 248 | + |
| 249 | + // Generate unique trace ID |
| 250 | + u64 instance_id = _instance_id.load(std::memory_order_acquire); |
| 251 | + u64 trace_id = (instance_id << 32) | slot; |
| 252 | + |
| 253 | + CallTrace* trace = storeCallTrace(num_frames, frames, truncated, trace_id); |
| 254 | + return trace->trace_id; |
| 255 | + } |
| 256 | +}; |
| 257 | +``` |
| 258 | +
|
| 259 | +### Instance ID Generation |
| 260 | +
|
| 261 | +```cpp |
| 262 | +class CallTraceStorage { |
| 263 | + static std::atomic<u64> _next_instance_id; // Global counter |
| 264 | + |
| 265 | + static u64 getNextInstanceId() { |
| 266 | + return _next_instance_id.fetch_add(1, std::memory_order_relaxed); |
| 267 | + } |
| 268 | + |
| 269 | + void processTraces() { |
| 270 | + // During rotation - assign new instance ID |
| 271 | + u64 new_instance_id = getNextInstanceId(); |
| 272 | + current_standby->setInstanceId(new_instance_id); |
| 273 | + |
| 274 | + // Atomic swap: standby becomes new active with fresh instance ID |
| 275 | + _active_storage.exchange(current_standby, std::memory_order_acq_rel); |
| 276 | + } |
| 277 | +}; |
| 278 | +``` |
| 279 | + |
| 280 | +### Reserved ID Space |
| 281 | + |
| 282 | +The system reserves trace IDs with upper 32 bits = 0 for special purposes: |
| 283 | + |
| 284 | +```cpp |
| 285 | +// Reserved for dropped samples (contention/allocation failures) |
| 286 | +static const u64 DROPPED_TRACE_ID = 1ULL; |
| 287 | + |
| 288 | +// Real trace IDs always have instance_id >= 1 |
| 289 | +// Format: (instance_id << 32) | slot where instance_id starts from 1 |
| 290 | +// This guarantees no collision with reserved IDs |
| 291 | +``` |
| 292 | + |
| 293 | +### Benefits of This Architecture |
| 294 | + |
| 295 | +1. **Collision Immunity**: Same slot across rotations generates different trace IDs |
| 296 | +2. **JFR Compatibility**: 64-bit IDs work seamlessly with JFR constant pool indices |
| 297 | +3. **Liveness Support**: Preserved traces maintain stable IDs across collection cycles |
| 298 | +4. **Debug Capability**: Instance ID in trace ID aids in debugging buffer rotation issues |
| 299 | +5. **Scalability**: 32-bit instance space supports ~4 billion rotations before wraparound |
| 300 | + |
| 301 | +This trace ID design ensures that each call trace has a globally unique, stable identifier that survives the complex buffer rotation lifecycle while providing essential metadata about its origin and timing. |
| 302 | + |
| 303 | +## Performance Characteristics |
| 304 | + |
| 305 | +### Lock-Free Operations |
| 306 | +- **put()**: O(1) average, lock-free with hazard pointer protection |
| 307 | +- **processTraces()**: Lock-free table swapping, O(n) collection where n = trace count |
| 308 | + |
| 309 | +### Memory Efficiency |
| 310 | +- **Zero-Copy Rotation**: Only atomic pointer swaps, no data copying |
| 311 | +- **Pre-allocated Collections**: Thread-local collections prevent malloc/free cycles |
| 312 | +- **Trace Deduplication**: Hash tables prevent duplicate trace storage |
| 313 | + |
| 314 | +### Concurrency Benefits |
| 315 | +- **Signal Handler Safe**: No blocking operations in signal context |
| 316 | +- **Multi-threaded Collection**: Multiple threads can process traces concurrently |
| 317 | +- **Contention-Free**: Atomic operations eliminate lock contention |
| 318 | + |
| 319 | +## Usage Example |
| 320 | + |
| 321 | +```cpp |
| 322 | +// Setup |
| 323 | +CallTraceStorage storage; |
| 324 | +storage.registerLivenessChecker([](auto& preserve_set) { |
| 325 | + // Add traces to preserve |
| 326 | +}); |
| 327 | + |
| 328 | +// Signal handler (lock-free) |
| 329 | +u64 trace_id = storage.put(num_frames, frames, truncated, weight); |
| 330 | + |
| 331 | +// Background processing |
| 332 | +storage.processTraces([](const std::unordered_set<CallTrace*>& traces) { |
| 333 | + // Serialize to JFR format |
| 334 | + for (CallTrace* trace : traces) { |
| 335 | + writeToJFR(trace); |
| 336 | + } |
| 337 | +}); |
| 338 | +``` |
| 339 | + |
| 340 | +## Key Architectural Benefits |
| 341 | + |
| 342 | +1. **Scalability**: Lock-free design scales linearly with thread count |
| 343 | +2. **Reliability**: Hazard pointers prevent memory safety issues |
| 344 | +3. **Flexibility**: Pluggable liveness checkers support different use cases |
| 345 | +4. **Performance**: Zero-copy operations minimize overhead |
| 346 | +5. **Safety**: Signal-handler safe operations prevent deadlocks |
| 347 | + |
| 348 | +This architecture enables high-performance, concurrent profiling data collection suitable for production environments with minimal impact on application performance. |
0 commit comments