@@ -153,7 +153,7 @@ def gross_margin(
153153 - non-environmental commodities OUTPUTS are related to revenues.
154154 """
155155 from muse .commodities import is_enduse , is_pollutant
156- from muse .timeslices import convert_timeslice
156+ from muse .timeslices import distribute_timeslice
157157 from muse .utilities import broadcast_techs
158158
159159 tech = broadcast_techs ( # type: ignore
@@ -190,7 +190,7 @@ def gross_margin(
190190 enduses = is_enduse (technologies .comm_usage )
191191
192192 # Variable costs depend on factors such as labour
193- variable_costs = convert_timeslice (
193+ variable_costs = distribute_timeslice (
194194 var_par * ((fixed_outputs .sel (commodity = enduses )).sum ("commodity" )) ** var_exp ,
195195 )
196196
@@ -340,7 +340,7 @@ def maximum_production(technologies: xr.Dataset, capacity: xr.DataArray, **filte
340340 filters and the set of technologies in `capacity`.
341341 """
342342 from muse .commodities import is_enduse
343- from muse .timeslices import convert_timeslice
343+ from muse .timeslices import distribute_timeslice
344344 from muse .utilities import broadcast_techs , filter_input
345345
346346 capa = filter_input (
@@ -352,7 +352,9 @@ def maximum_production(technologies: xr.Dataset, capacity: xr.DataArray, **filte
352352 ftechs = filter_input (
353353 btechs , ** {k : v for k , v in filters .items () if k in btechs .dims }
354354 )
355- result = capa * convert_timeslice (ftechs .fixed_outputs ) * ftechs .utilization_factor
355+ result = (
356+ capa * distribute_timeslice (ftechs .fixed_outputs ) * ftechs .utilization_factor
357+ )
356358 return result .where (is_enduse (result .comm_usage ), 0 )
357359
358360
@@ -543,7 +545,7 @@ def minimum_production(technologies: xr.Dataset, capacity: xr.DataArray, **filte
543545 the filters and the set of technologies in `capacity`.
544546 """
545547 from muse .commodities import is_enduse
546- from muse .timeslices import convert_timeslice
548+ from muse .timeslices import distribute_timeslice
547549 from muse .utilities import broadcast_techs , filter_input
548550
549551 capa = filter_input (
@@ -564,7 +566,9 @@ def minimum_production(technologies: xr.Dataset, capacity: xr.DataArray, **filte
564566 btechs , ** {k : v for k , v in filters .items () if k in btechs .dims }
565567 )
566568 result = (
567- capa * convert_timeslice (ftechs .fixed_outputs ) * ftechs .minimum_service_factor
569+ capa
570+ * distribute_timeslice (ftechs .fixed_outputs )
571+ * ftechs .minimum_service_factor
568572 )
569573 return result .where (is_enduse (result .comm_usage ), 0 )
570574
@@ -574,10 +578,10 @@ def capacity_to_service_demand(
574578 technologies : xr .Dataset ,
575579) -> xr .DataArray :
576580 """Minimum capacity required to fulfill the demand."""
577- from muse .timeslices import convert_timeslice
581+ from muse .timeslices import distribute_timeslice
578582
579583 timeslice_outputs = (
580- convert_timeslice (technologies .fixed_outputs .sel (commodity = demand .commodity ))
584+ distribute_timeslice (technologies .fixed_outputs .sel (commodity = demand .commodity ))
581585 * technologies .utilization_factor
582586 )
583587 capa_to_service_demand = demand / timeslice_outputs
0 commit comments