Skip to content

Commit 7bac47b

Browse files
rouchenziabmfy
authored andcommitted
[EPLB] Support EPLB for Mixtral Model (vllm-project#22842)
Signed-off-by: rouchenzi <[email protected]> Signed-off-by: rouchenzi <[email protected]> Co-authored-by: Bowen Wang <[email protected]>
1 parent 4fb9052 commit 7bac47b

File tree

1 file changed

+137
-23
lines changed

1 file changed

+137
-23
lines changed

vllm/model_executor/models/mixtral.py

Lines changed: 137 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,8 @@
2323
# See the License for the specific language governing permissions and
2424
# limitations under the License.
2525
"""Inference-only Mixtral model."""
26-
from collections.abc import Iterable
26+
import typing
27+
from collections.abc import Callable, Iterable
2728
from itertools import islice
2829
from typing import Optional, Union
2930

@@ -33,8 +34,9 @@
3334

3435
from vllm.attention import Attention
3536
from vllm.compilation.decorators import support_torch_compile
36-
from vllm.config import CacheConfig, VllmConfig
37-
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
37+
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
38+
from vllm.distributed import (get_ep_group, get_pp_group,
39+
get_tensor_model_parallel_world_size)
3840
from vllm.model_executor.layers.fused_moe import FusedMoE
3941
from vllm.model_executor.layers.layernorm import RMSNorm
4042
from vllm.model_executor.layers.linear import (QKVParallelLinear,
@@ -50,8 +52,8 @@
5052
from vllm.model_executor.sampling_metadata import SamplingMetadata
5153
from vllm.sequence import IntermediateTensors
5254

53-
from .interfaces import SupportsLoRA, SupportsPP
54-
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
55+
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
56+
from .utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
5557
make_empty_intermediate_tensors_factory, make_layers,
5658
maybe_prefix)
5759

@@ -74,10 +76,32 @@ def __init__(self,
7476
quant_config: Optional[QuantizationConfig] = None,
7577
tp_size: Optional[int] = None,
7678
dp_size: Optional[int] = None,
77-
prefix: str = ""):
79+
prefix: str = "",
80+
enable_eplb: bool = False):
7881
super().__init__()
7982
self.hidden_size = hidden_size
8083

84+
self.ep_group = get_ep_group().device_group
85+
self.ep_rank = self.ep_group.rank()
86+
self.ep_size = self.ep_group.size()
87+
88+
# Expert Parallelism Load balancing settings.
89+
vllm_config = get_current_vllm_config()
90+
parallel_config = vllm_config.parallel_config
91+
self.enable_eplb = enable_eplb
92+
93+
self.n_routed_experts = num_experts
94+
self.n_logical_experts = num_experts
95+
self.n_redundant_experts = (
96+
parallel_config.eplb_config.num_redundant_experts)
97+
self.n_physical_experts = (self.n_logical_experts +
98+
self.n_redundant_experts)
99+
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
100+
self.physical_expert_start = (self.ep_rank *
101+
self.n_local_physical_experts)
102+
self.physical_expert_end = (self.physical_expert_start +
103+
self.n_local_physical_experts)
104+
81105
# Gate always runs at half / full precision for now.
82106

83107
self.gate = ReplicatedLinear(hidden_size,
@@ -97,7 +121,9 @@ def __init__(self,
97121
quant_config=quant_config,
98122
tp_size=tp_size,
99123
dp_size=dp_size,
100-
prefix=f"{prefix}.experts")
124+
prefix=f"{prefix}.experts",
125+
enable_eplb=self.enable_eplb,
126+
num_redundant_experts=self.n_redundant_experts)
101127

102128
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
103129
# NOTE: hidden_states can have either 1D or 2D shape.
@@ -200,6 +226,7 @@ def __init__(
200226
cache_config: Optional[CacheConfig] = None,
201227
quant_config: Optional[QuantizationConfig] = None,
202228
prefix: str = "",
229+
enable_eplb: bool = False,
203230
) -> None:
204231
super().__init__()
205232
self.hidden_size = config.hidden_size
@@ -221,7 +248,8 @@ def __init__(
221248
hidden_size=config.hidden_size,
222249
intermediate_size=config.intermediate_size,
223250
quant_config=quant_config,
224-
prefix=f"{prefix}.block_sparse_moe")
251+
prefix=f"{prefix}.block_sparse_moe",
252+
enable_eplb=enable_eplb)
225253
self.input_layernorm = RMSNorm(config.hidden_size,
226254
eps=config.rms_norm_eps)
227255
self.post_attention_layernorm = RMSNorm(config.hidden_size,
@@ -262,6 +290,7 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
262290
cache_config = vllm_config.cache_config
263291
quant_config = vllm_config.quant_config
264292
lora_config = vllm_config.lora_config
293+
parallel_config = vllm_config.parallel_config
265294

266295
self.config = config
267296
self.quant_config = quant_config
@@ -276,10 +305,18 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
276305
org_num_embeddings=config.vocab_size,
277306
)
278307

308+
self.enable_eplb = parallel_config.enable_eplb
309+
self.num_redundant_experts = (
310+
parallel_config.eplb_config.num_redundant_experts)
311+
279312
self.start_layer, self.end_layer, self.layers = make_layers(
280313
config.num_hidden_layers,
281314
lambda prefix: MixtralDecoderLayer(
282-
config, cache_config, quant_config=quant_config, prefix=prefix
315+
config,
316+
cache_config,
317+
quant_config=quant_config,
318+
prefix=prefix,
319+
enable_eplb=self.enable_eplb,
283320
),
284321
prefix=f"{prefix}.layers")
285322

@@ -325,7 +362,8 @@ def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
325362
ckpt_gate_proj_name="w1",
326363
ckpt_down_proj_name="w2",
327364
ckpt_up_proj_name="w3",
328-
num_experts=self.config.num_local_experts)
365+
num_experts=self.config.num_local_experts,
366+
num_redundant_experts=self.num_redundant_experts)
329367

330368
def load_weights(self, weights: Iterable[tuple[str,
331369
torch.Tensor]]) -> set[str]:
@@ -373,26 +411,40 @@ def load_weights(self, weights: Iterable[tuple[str,
373411
weight_loader(param, loaded_weight, shard_id)
374412
break
375413
else:
414+
is_expert_weight = False
376415
for mapping in expert_params_mapping:
377416
param_name, weight_name, expert_id, shard_id = mapping
417+
378418
if weight_name not in name:
379419
continue
380-
name = name.replace(weight_name, param_name)
420+
421+
is_expert_weight = True
422+
name_mapped = name.replace(weight_name, param_name)
423+
381424
# Skip layers on other devices.
382-
if is_pp_missing_parameter(name, self):
425+
if is_pp_missing_parameter(name_mapped, self):
383426
continue
384-
if ((name.endswith(".bias") or name.endswith("_bias"))
385-
and name not in params_dict):
427+
428+
if ((name_mapped.endswith(".bias")
429+
or name_mapped.endswith("_bias"))
430+
and name_mapped not in params_dict):
386431
continue
387-
param = params_dict[name]
388-
weight_loader = param.weight_loader
389-
weight_loader(param,
390-
loaded_weight,
391-
name,
392-
shard_id=shard_id,
393-
expert_id=expert_id)
394-
break
432+
433+
param = params_dict[name_mapped]
434+
weight_loader = typing.cast(Callable[..., bool],
435+
param.weight_loader)
436+
success = weight_loader(param,
437+
loaded_weight,
438+
name_mapped,
439+
shard_id=shard_id,
440+
expert_id=expert_id,
441+
return_success=True)
442+
if success:
443+
name = name_mapped
444+
break
395445
else:
446+
if is_expert_weight:
447+
continue
396448
# Skip loading extra bias for GPTQ models.
397449
if ((name.endswith(".bias") or name.endswith("_bias"))
398450
and name not in params_dict):
@@ -413,7 +465,8 @@ def load_weights(self, weights: Iterable[tuple[str,
413465
return loaded_params
414466

415467

416-
class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
468+
class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
469+
MixtureOfExperts):
417470
fall_back_to_pt_during_load = False
418471

419472
packed_modules_mapping = {
@@ -462,6 +515,67 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
462515
self.make_empty_intermediate_tensors = (
463516
self.model.make_empty_intermediate_tensors)
464517

518+
self.expert_weights = []
519+
self.moe_layers: list[FusedMoE] = []
520+
example_moe = None
521+
522+
for layer in self.model.layers:
523+
if isinstance(layer, PPMissingLayer):
524+
continue
525+
assert isinstance(layer, MixtralDecoderLayer)
526+
if hasattr(layer, "block_sparse_moe") and isinstance(
527+
layer.block_sparse_moe, MixtralMoE):
528+
example_moe = layer.block_sparse_moe
529+
self.moe_layers.append(layer.block_sparse_moe.experts)
530+
531+
self.num_moe_layers = len(self.moe_layers)
532+
533+
if example_moe is None:
534+
raise RuntimeError("No MixtralMoE layer found in model.layers.")
535+
536+
self.num_logical_experts = example_moe.n_logical_experts
537+
self.num_physical_experts = example_moe.n_physical_experts
538+
self.num_local_physical_experts = example_moe.n_local_physical_experts
539+
self.num_routed_experts = example_moe.n_routed_experts
540+
self.num_redundant_experts = example_moe.n_redundant_experts
541+
self.num_expert_groups = 1
542+
self.num_shared_experts = 0
543+
544+
def set_eplb_state(
545+
self,
546+
expert_load_view: torch.Tensor,
547+
logical_to_physical_map: torch.Tensor,
548+
logical_replica_count: torch.Tensor,
549+
) -> None:
550+
for layer_idx, layer in enumerate(self.moe_layers):
551+
# Register the expert weights.
552+
self.expert_weights.append(layer.get_expert_weights())
553+
layer.set_eplb_state(
554+
moe_layer_idx=layer_idx,
555+
expert_load_view=expert_load_view,
556+
logical_to_physical_map=logical_to_physical_map,
557+
logical_replica_count=logical_replica_count,
558+
)
559+
560+
def update_physical_experts_metadata(
561+
self,
562+
num_physical_experts: int,
563+
num_local_physical_experts: int,
564+
) -> None:
565+
assert self.num_local_physical_experts == num_local_physical_experts
566+
self.num_physical_experts = num_physical_experts
567+
self.num_local_physical_experts = num_local_physical_experts
568+
self.num_redundant_experts = (num_physical_experts -
569+
self.num_logical_experts)
570+
for layer in self.model.layers:
571+
if hasattr(layer, "block_sparse_moe") and isinstance(
572+
layer.block_sparse_moe, MixtralMoE):
573+
moe = layer.block_sparse_moe
574+
moe.n_local_physical_experts = num_local_physical_experts
575+
moe.n_physical_experts = num_physical_experts
576+
moe.n_redundant_experts = self.num_redundant_experts
577+
moe.experts.update_expert_map()
578+
465579
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
466580
return self.model.get_input_embeddings(input_ids)
467581

0 commit comments

Comments
 (0)