|
25 | 25 |
|
26 | 26 | def run_quickstart(): |
27 | 27 | # [START videointelligence_quickstart] |
28 | | - import sys |
29 | | - import time |
| 28 | + from google.cloud import videointelligence |
30 | 29 |
|
31 | | - from google.cloud import videointelligence_v1beta2 |
32 | | - from google.cloud.videointelligence_v1beta2 import enums |
33 | | - |
34 | | - video_client = videointelligence_v1beta2.VideoIntelligenceServiceClient() |
35 | | - features = [enums.Feature.LABEL_DETECTION] |
36 | | - operation = video_client.annotate_video('gs://demomaker/cat.mp4', features) |
| 30 | + video_client = videointelligence.VideoIntelligenceServiceClient() |
| 31 | + features = [videointelligence.enums.Feature.LABEL_DETECTION] |
| 32 | + operation = video_client.annotate_video( |
| 33 | + 'gs://demomaker/cat.mp4', features=features) |
37 | 34 | print('\nProcessing video for label annotations:') |
38 | 35 |
|
39 | | - while not operation.done(): |
40 | | - sys.stdout.write('.') |
41 | | - sys.stdout.flush() |
42 | | - time.sleep(15) |
43 | | - |
| 36 | + result = operation.result(timeout=90) |
44 | 37 | print('\nFinished processing.') |
45 | 38 |
|
46 | 39 | # first result is retrieved because a single video was processed |
47 | | - results = operation.result().annotation_results[0] |
48 | | - |
49 | | - for i, segment_label in enumerate(results.segment_label_annotations): |
| 40 | + segment_labels = result.annotation_results[0].segment_label_annotations |
| 41 | + for i, segment_label in enumerate(segment_labels): |
50 | 42 | print('Video label description: {}'.format( |
51 | 43 | segment_label.entity.description)) |
52 | 44 | for category_entity in segment_label.category_entities: |
|
0 commit comments