|
| 1 | +import os |
| 2 | +import uuid |
| 3 | + |
| 4 | +from dotenv import load_dotenv |
| 5 | + |
| 6 | +from memos import log |
| 7 | +from memos.configs.embedder import EmbedderConfigFactory |
| 8 | +from memos.configs.reranker import RerankerConfigFactory |
| 9 | +from memos.embedders.factory import EmbedderFactory |
| 10 | +from memos.memories.textual.item import TextualMemoryItem, TreeNodeTextualMemoryMetadata |
| 11 | +from memos.reranker.factory import RerankerFactory |
| 12 | + |
| 13 | + |
| 14 | +load_dotenv() |
| 15 | +logger = log.get_logger(__name__) |
| 16 | + |
| 17 | + |
| 18 | +def make_item(text: str) -> TextualMemoryItem: |
| 19 | + """Build a minimal TextualMemoryItem; embedding will be populated later.""" |
| 20 | + return TextualMemoryItem( |
| 21 | + id=str(uuid.uuid4()), |
| 22 | + memory=text, |
| 23 | + metadata=TreeNodeTextualMemoryMetadata( |
| 24 | + user_id=None, |
| 25 | + session_id=None, |
| 26 | + status="activated", |
| 27 | + type="fact", |
| 28 | + memory_time="2024-01-01", |
| 29 | + source="conversation", |
| 30 | + confidence=100.0, |
| 31 | + tags=[], |
| 32 | + visibility="public", |
| 33 | + updated_at="2025-01-01T00:00:00", |
| 34 | + memory_type="LongTermMemory", |
| 35 | + key="demo_key", |
| 36 | + sources=["demo://example"], |
| 37 | + embedding=[], |
| 38 | + background="demo background...", |
| 39 | + ), |
| 40 | + ) |
| 41 | + |
| 42 | + |
| 43 | +def show_ranked(title: str, ranked: list[tuple[TextualMemoryItem, float]], top_n: int = 5) -> None: |
| 44 | + print(f"\n=== {title} ===") |
| 45 | + for i, (item, score) in enumerate(ranked[:top_n], start=1): |
| 46 | + preview = (item.memory[:80] + "...") if len(item.memory) > 80 else item.memory |
| 47 | + print(f"[#{i}] score={score:.6f} | {preview}") |
| 48 | + |
| 49 | + |
| 50 | +def main(): |
| 51 | + # ------------------------------- |
| 52 | + # 1) Build the embedder (real vectors) |
| 53 | + # ------------------------------- |
| 54 | + embedder_cfg = EmbedderConfigFactory.model_validate( |
| 55 | + { |
| 56 | + "backend": "universal_api", |
| 57 | + "config": { |
| 58 | + "provider": "openai", # or "azure" |
| 59 | + "api_key": os.getenv("OPENAI_API_KEY"), |
| 60 | + "model_name_or_path": "text-embedding-3-large", |
| 61 | + "base_url": os.getenv("OPENAI_API_BASE"), # optional |
| 62 | + }, |
| 63 | + } |
| 64 | + ) |
| 65 | + embedder = EmbedderFactory.from_config(embedder_cfg) |
| 66 | + |
| 67 | + # ------------------------------- |
| 68 | + # 2) Prepare query + documents |
| 69 | + # ------------------------------- |
| 70 | + query = "What is the capital of France?" |
| 71 | + items = [ |
| 72 | + make_item("Paris is the capital of France."), |
| 73 | + make_item("Berlin is the capital of Germany."), |
| 74 | + make_item("The capital of Brazil is Brasilia."), |
| 75 | + make_item("Apples and bananas are common fruits."), |
| 76 | + make_item("The Eiffel Tower is a famous landmark in Paris."), |
| 77 | + ] |
| 78 | + |
| 79 | + # ------------------------------- |
| 80 | + # 3) Embed query + docs with real embeddings |
| 81 | + # ------------------------------- |
| 82 | + texts_to_embed = [query] + [it.memory for it in items] |
| 83 | + vectors = embedder.embed(texts_to_embed) # real vectors from your provider/model |
| 84 | + query_embedding = vectors[0] |
| 85 | + doc_embeddings = vectors[1:] |
| 86 | + |
| 87 | + # attach real embeddings back to items |
| 88 | + for it, emb in zip(items, doc_embeddings, strict=False): |
| 89 | + it.metadata.embedding = emb |
| 90 | + |
| 91 | + # ------------------------------- |
| 92 | + # 4) Rerank with cosine_local (uses your real embeddings) |
| 93 | + # ------------------------------- |
| 94 | + cosine_cfg = RerankerConfigFactory.model_validate( |
| 95 | + { |
| 96 | + "backend": "cosine_local", |
| 97 | + "config": { |
| 98 | + # structural boosts (optional): uses metadata.background |
| 99 | + "level_weights": {"topic": 1.0, "concept": 1.0, "fact": 1.0}, |
| 100 | + "level_field": "background", |
| 101 | + }, |
| 102 | + } |
| 103 | + ) |
| 104 | + cosine_reranker = RerankerFactory.from_config(cosine_cfg) |
| 105 | + |
| 106 | + ranked_cosine = cosine_reranker.rerank( |
| 107 | + query=query, |
| 108 | + graph_results=items, |
| 109 | + top_k=10, |
| 110 | + query_embedding=query_embedding, # required by cosine_local |
| 111 | + ) |
| 112 | + show_ranked("CosineLocal Reranker (with real embeddings)", ranked_cosine, top_n=5) |
| 113 | + |
| 114 | + # ------------------------------- |
| 115 | + # 5) (Optional) Rerank with HTTP BGE (OpenAI-style /query+documents) |
| 116 | + # Requires the service URL; no need for embeddings here |
| 117 | + # ------------------------------- |
| 118 | + bge_url = os.getenv("BGE_RERANKER_URL") # e.g., "http://xxx.x.xxxxx.xxx:xxxx/v1/rerank" |
| 119 | + if bge_url: |
| 120 | + http_cfg = RerankerConfigFactory.model_validate( |
| 121 | + { |
| 122 | + "backend": "http_bge", |
| 123 | + "config": { |
| 124 | + "url": bge_url, |
| 125 | + "model": os.getenv("BGE_RERANKER_MODEL", "bge-reranker-v2-m3"), |
| 126 | + "timeout": int(os.getenv("BGE_RERANKER_TIMEOUT", "10")), |
| 127 | + # "headers_extra": {"Authorization": f"Bearer {os.getenv('BGE_RERANKER_TOKEN')}"} |
| 128 | + }, |
| 129 | + } |
| 130 | + ) |
| 131 | + http_reranker = RerankerFactory.from_config(http_cfg) |
| 132 | + |
| 133 | + ranked_http = http_reranker.rerank( |
| 134 | + query=query, |
| 135 | + graph_results=items, # uses item.memory internally as documents |
| 136 | + top_k=10, |
| 137 | + ) |
| 138 | + show_ranked("HTTP BGE Reranker (OpenAI-style API)", ranked_http, top_n=5) |
| 139 | + else: |
| 140 | + print("\n[Info] Skipped HTTP BGE scenario because BGE_RERANKER_URL is not set.") |
| 141 | + |
| 142 | + |
| 143 | +if __name__ == "__main__": |
| 144 | + main() |
0 commit comments