Skip to content

Commit d209218

Browse files
authored
update and fix ResNet cn docs (#4322)
* refine cn docs * width_per_group -> width * remove ResNeXt from Overview * trigger * copy from en docs * add a blank line * trigger ci (remove PADDLEPADDLE_PR) * refine `Returns` * add space between cn and en char * refine desc of pretrained * fix wrong ref
1 parent 26660c4 commit d209218

16 files changed

+102
-276
lines changed

docs/api/paddle/vision/Overview_cn.rst

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,6 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
5555
" :ref:`resnet152 <cn_api_paddle_vision_models_resnet152>` ", "152层的ResNet模型"
5656
" :ref:`wide_resnet50_2 <cn_api_paddle_vision_models_wide_resnet50_2>` ", "50层的WideResNet模型"
5757
" :ref:`wide_resnet101_2 <cn_api_paddle_vision_models_wide_resnet101_2>` ", "101层的WideResNet模型"
58-
" :ref:`ResNeXt <cn_api_paddle_vision_models_ResNeXt>` ", "ResNeXt模型"
5958
" :ref:`resnext50_32x4d <cn_api_paddle_vision_models_resnext50_32x4d>` ", "ResNeXt-50 32x4d模型"
6059
" :ref:`resnext50_64x4d <cn_api_paddle_vision_models_resnext50_64x4d>` ", "ResNeXt-50 64x4d模型"
6160
" :ref:`resnext101_32x4d <cn_api_paddle_vision_models_resnext101_32x4d>` ", "ResNeXt-101 32x4d模型"

docs/api/paddle/vision/models/ResNeXt_cn.rst

Lines changed: 0 additions & 33 deletions
This file was deleted.

docs/api/paddle/vision/models/ResNet_cn.rst

Lines changed: 11 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -3,37 +3,27 @@
33
ResNet
44
-------------------------------
55

6-
.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True)
6+
.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True, groups=1)
77
8-
ResNet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
13+
1214
- **Block** (BasicBlock|BottleneckBlock) - 模型的残差模块。
13-
- **depth** (int,可选) - resnet模型的深度。默认值:50。
14-
- **width** (int,可选) - resnet模型的基础宽度。默认值:64。
15-
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
15+
- **depth** (int,可选) - ResNet 模型的深度。默认值:50。
16+
- **width** (int,可选) - 各个卷积块的每个卷积组基础宽度。默认值:64。
17+
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于 0,则不定义最后一个全连接层。默认值:1000。
1618
- **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。
19+
- **groups** (int,可选) - 各个卷积块的分组数。默认值:1。
1720

1821
返回
1922
:::::::::
20-
ResNet模型,Layer的实例。
23+
24+
ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
2125

2226
代码示例
2327
:::::::::
24-
.. code-block:: python
25-
26-
import paddle
27-
from paddle.vision.models import ResNet
28-
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
29-
30-
resnet50 = ResNet(BottleneckBlock, 50)
31-
32-
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
33-
34-
resnet18 = ResNet(BasicBlock, 18)
35-
36-
x = paddle.rand([1, 3, 224, 224])
37-
out = resnet18(x)
3828

39-
print(out.shape)
29+
COPY-FROM: paddle.vision.models.ResNet

docs/api/paddle/vision/models/resnet101_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnet101
55

66
.. py:function:: paddle.vision.models.resnet101(pretrained=False, **kwargs)
77
8-
101层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
101 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnet101模型,Layer的实例。
18+
19+
101 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnet101
24-
25-
# build model
26-
model = resnet101()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnet101(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnet101

docs/api/paddle/vision/models/resnet152_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnet152
55

66
.. py:function:: paddle.vision.models.resnet152(pretrained=False, **kwargs)
77
8-
152层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
152 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnet152模型,Layer的实例。
18+
19+
152 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnet152
24-
25-
# build model
26-
model = resnet152()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnet152(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnet152

docs/api/paddle/vision/models/resnet18_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnet18
55

66
.. py:function:: paddle.vision.models.resnet18(pretrained=False, **kwargs)
77
8-
18层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
18 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnet18模型,Layer的实例。
18+
19+
18 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnet18
24-
25-
# build model
26-
model = resnet18()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnet18(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnet18

docs/api/paddle/vision/models/resnet34_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnet34
55

66
.. py:function:: paddle.vision.models.resnet34(pretrained=False, **kwargs)
77
8-
34层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
34 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnet34模型,Layer的实例。
18+
19+
34 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnet34
24-
25-
# build model
26-
model = resnet34()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnet34(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnet34

docs/api/paddle/vision/models/resnet50_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnet50
55

66
.. py:function:: paddle.vision.models.resnet50(pretrained=False, **kwargs)
77
8-
50层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
8+
9+
50 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnet50模型,Layer的实例。
18+
19+
50 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnet50
24-
25-
# build model
26-
model = resnet50()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnet50(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnet50

docs/api/paddle/vision/models/resnext101_32x4d_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnext101_32x4d
55

66
.. py:function:: paddle.vision.models.resnext101_32x4d(pretrained=False, **kwargs)
77
8-
ResNeXt-101 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。
8+
9+
ResNeXt-101 32x4d 模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnext101_32x4d模型,Layer的实例。
18+
19+
ResNeXt-101 32x4d 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnext101_32x4d
24-
25-
# build model
26-
model = resnext101_32x4d()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnext101_32x4d(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnext101_32x4d

docs/api/paddle/vision/models/resnext101_64x4d_cn.rst

Lines changed: 7 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -5,30 +5,20 @@ resnext101_64x4d
55

66
.. py:function:: paddle.vision.models.resnext101_64x4d(pretrained=False, **kwargs)
77
8-
ResNeXt-101 64x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。
8+
9+
ResNeXt-101 64x4d 模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。
910

1011
参数
1112
:::::::::
12-
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。
13+
14+
- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。
1315

1416
返回
1517
:::::::::
16-
resnext101_64x4d模型,Layer的实例。
18+
19+
ResNeXt-101 64x4d 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。
1720

1821
代码示例
1922
:::::::::
20-
.. code-block:: python
21-
22-
import paddle
23-
from paddle.vision.models import resnext101_64x4d
24-
25-
# build model
26-
model = resnext101_64x4d()
27-
28-
# build model and load imagenet pretrained weight
29-
# model = resnext101_64x4d(pretrained=True)
30-
31-
x = paddle.rand([1, 3, 224, 224])
32-
out = model(x)
3323

34-
print(out.shape)
24+
COPY-FROM: paddle.vision.models.resnext101_64x4d

0 commit comments

Comments
 (0)