Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion docs/api/paddle/vision/Overview_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
" :ref:`resnet152 <cn_api_paddle_vision_models_resnet152>` ", "152层的ResNet模型"
" :ref:`wide_resnet50_2 <cn_api_paddle_vision_models_wide_resnet50_2>` ", "50层的WideResNet模型"
" :ref:`wide_resnet101_2 <cn_api_paddle_vision_models_wide_resnet101_2>` ", "101层的WideResNet模型"
" :ref:`ResNeXt <cn_api_paddle_vision_models_ResNeXt>` ", "ResNeXt模型"
" :ref:`resnext50_32x4d <cn_api_paddle_vision_models_resnext50_32x4d>` ", "ResNeXt-50 32x4d模型"
" :ref:`resnext50_64x4d <cn_api_paddle_vision_models_resnext50_64x4d>` ", "ResNeXt-50 64x4d模型"
" :ref:`resnext101_32x4d <cn_api_paddle_vision_models_resnext101_32x4d>` ", "ResNeXt-101 32x4d模型"
Expand Down
33 changes: 0 additions & 33 deletions docs/api/paddle/vision/models/ResNeXt_cn.rst

This file was deleted.

32 changes: 11 additions & 21 deletions docs/api/paddle/vision/models/ResNet_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,37 +3,27 @@
ResNet
-------------------------------

.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True)
.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True, groups=1)

ResNet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::

- **Block** (BasicBlock|BottleneckBlock) - 模型的残差模块。
- **depth** (int,可选) - resnet模型的深度。默认值:50。
- **width** (int,可选) - resnet模型的基础宽度。默认值:64。
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
- **depth** (int,可选) - ResNet 模型的深度。默认值:50。
- **width** (int,可选) - 各个卷积块的每个卷积组基础宽度。默认值:64。
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于 0,则不定义最后一个全连接层。默认值:1000。
- **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。
- **groups** (int,可选) - 各个卷积块的分组数。默认值:1。

返回
:::::::::
ResNet模型,Layer的实例。

ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock

resnet50 = ResNet(BottleneckBlock, 50)

wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)

resnet18 = ResNet(BasicBlock, 18)

x = paddle.rand([1, 3, 224, 224])
out = resnet18(x)

print(out.shape)
COPY-FROM: paddle.vision.models.ResNet
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnet101_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnet101

.. py:function:: paddle.vision.models.resnet101(pretrained=False, **kwargs)

101层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

101 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnet101模型,Layer的实例。

101 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnet101

# build model
model = resnet101()

# build model and load imagenet pretrained weight
# model = resnet101(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnet101
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnet152_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnet152

.. py:function:: paddle.vision.models.resnet152(pretrained=False, **kwargs)

152层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

152 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnet152模型,Layer的实例。

152 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnet152

# build model
model = resnet152()

# build model and load imagenet pretrained weight
# model = resnet152(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnet152
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnet18_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnet18

.. py:function:: paddle.vision.models.resnet18(pretrained=False, **kwargs)

18层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

18 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnet18模型,Layer的实例。

18 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnet18

# build model
model = resnet18()

# build model and load imagenet pretrained weight
# model = resnet18(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnet18
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnet34_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnet34

.. py:function:: paddle.vision.models.resnet34(pretrained=False, **kwargs)

34层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

34 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnet34模型,Layer的实例。

34 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnet34

# build model
model = resnet34()

# build model and load imagenet pretrained weight
# model = resnet34(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnet34
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnet50_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnet50

.. py:function:: paddle.vision.models.resnet50(pretrained=False, **kwargs)

50层的resnet模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

50 层的 ResNet 模型,来自论文 `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnet50模型,Layer的实例。

50 层的 ResNet 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnet50

# build model
model = resnet50()

# build model and load imagenet pretrained weight
# model = resnet50(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnet50
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnext101_32x4d_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnext101_32x4d

.. py:function:: paddle.vision.models.resnext101_32x4d(pretrained=False, **kwargs)

ResNeXt-101 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

ResNeXt-101 32x4d 模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnext101_32x4d模型,Layer的实例。

ResNeXt-101 32x4d 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext101_32x4d

# build model
model = resnext101_32x4d()

# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnext101_32x4d
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnext101_64x4d_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnext101_64x4d

.. py:function:: paddle.vision.models.resnext101_64x4d(pretrained=False, **kwargs)

ResNeXt-101 64x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

ResNeXt-101 64x4d 模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnext101_64x4d模型,Layer的实例。

ResNeXt-101 64x4d 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext101_64x4d

# build model
model = resnext101_64x4d()

# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnext101_64x4d
24 changes: 7 additions & 17 deletions docs/api/paddle/vision/models/resnext152_32x4d_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,30 +5,20 @@ resnext152_32x4d

.. py:function:: paddle.vision.models.resnext152_32x4d(pretrained=False, **kwargs)

ResNeXt-152 32x4d模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

ResNeXt-152 32x4d 模型,来自论文 `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

- **pretrained** (bool,可选) - 是否加载预训练权重。如果为 True,则返回在 ImageNet 上预训练的模型。默认值:False。

返回
:::::::::
resnext152_32x4d模型,Layer的实例。

ResNeXt-152 32x4d 模型,:ref:`cn_api_fluid_dygraph_Layer` 的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import resnext152_32x4d

# build model
model = resnext152_32x4d()

# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
COPY-FROM: paddle.vision.models.resnext152_32x4d
Loading