You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Each specialized memory type has its own table with type-specific fields:
106
-
- episodic_memory
107
-
- semantic_memory
108
-
- procedural_memory
109
-
- strategic_memory
216
+
- episodic_memories
217
+
- semantic_memories
218
+
- procedural_memories
219
+
- strategic_memories
220
+
221
+
### Clustering Tables
222
+
- memory_clusters
223
+
- memory_cluster_members
224
+
- cluster_relationships
225
+
- cluster_activation_history
226
+
227
+
### Identity and Worldview Tables
228
+
- identity_model
229
+
- worldview_primitives
230
+
- worldview_memory_influences
231
+
- identity_memory_resonance
110
232
111
233
### Indexes and Constraints
112
234
- Vector indexes for similarity search
@@ -118,7 +240,7 @@ Each specialized memory type has its own table with type-specific fields:
118
240
### Memory Retrieval
119
241
```sql
120
242
-- Find similar memories using vector similarity
121
-
SELECT*FROMlong_term_memory
243
+
SELECT*FROMmemories
122
244
WHERE embedding <-> query_embedding < threshold
123
245
ORDER BY embedding <-> query_embedding
124
246
LIMIT10;
@@ -131,6 +253,18 @@ SELECT * FROM ag_catalog.cypher('memory_graph', $$
131
253
$$) as (related agtype);
132
254
```
133
255
256
+
## Performance Characteristics
257
+
258
+
-**Vector Search**: Sub-second similarity queries on 10K+ memories
259
+
-**Memory Storage**: Supports millions of memories with proper indexing
260
+
-**Cluster Operations**: Efficient graph traversal for relationship queries
261
+
-**Maintenance**: Requires periodic consolidation and pruning
262
+
263
+
### Scaling Considerations
264
+
- Memory consolidation recommended every 4-6 hours
265
+
- Database optimization during off-peak hours
266
+
- Monitor vector index performance with large datasets
267
+
134
268
## System Maintenance
135
269
136
270
The memory system requires three key maintenance processes to function effectively:
@@ -161,6 +295,25 @@ These maintenance tasks can be implemented using:
161
295
162
296
Choose the scheduling method that best fits your infrastructure and monitoring capabilities. Ensure proper logging and error handling for all maintenance operations.
163
297
298
+
## Troubleshooting
299
+
300
+
### Common Issues
301
+
302
+
**Database Connection Errors:**
303
+
- Ensure PostgreSQL is running: `docker compose ps`
304
+
- Check logs: `docker compose logs db`
305
+
- Verify extensions: Run test suite with `pytest test.py -v`
306
+
307
+
**Memory Search Performance:**
308
+
- Rebuild vector indexes if queries are slow
309
+
- Check memory_health view for system statistics
310
+
- Consider memory pruning if dataset is very large
311
+
312
+
**MCP Server Issues:**
313
+
- Verify Node.js dependencies: `npm install`
314
+
- Check database connectivity from MCP server
315
+
- Ensure environment variables are set correctly
316
+
164
317
## Usage Guide
165
318
166
319
### Memory Interaction Flow
@@ -212,7 +365,7 @@ graph TD
212
365
213
366
### Key Integration Points
214
367
215
-
- Use the API for all memory operations
368
+
- Use the MCP API for all memory operations
216
369
- Implement proper error handling for failed operations
217
370
- Monitor memory usage and system performance
218
371
- Regular backup of critical memories
@@ -234,4 +387,4 @@ This database schema is designed for a single AGI instance. Supporting multiple
234
387
- Separate working memory spaces per AGI
235
388
- Additional access controls and memory ownership
236
389
237
-
If you need multi-AGI support, consider refactoring the schema to include tenant isolation patterns before implementation.
390
+
If you need multi-AGI support, consider refactoring the schema to include tenant isolation patterns before implementation.
0 commit comments