|
| 1 | +# Adapted from AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ |
| 2 | + |
| 3 | +import functools |
| 4 | + |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +from datasets import load_dataset |
| 8 | +from tqdm import tqdm |
| 9 | + |
| 10 | + |
| 11 | +def get_act_scales(model, tokenizer, dataset_path, num_samples=512, seq_len=512): |
| 12 | + model.eval() |
| 13 | + device = next(model.parameters()).device |
| 14 | + act_scales = {} |
| 15 | + |
| 16 | + def stat_tensor(name, tensor): |
| 17 | + hidden_dim = tensor.shape[-1] |
| 18 | + tensor = tensor.view(-1, hidden_dim).abs().detach() |
| 19 | + comming_max = torch.max(tensor, dim=0)[0].float().cpu() |
| 20 | + if name in act_scales: |
| 21 | + act_scales[name] = torch.max(act_scales[name], comming_max) |
| 22 | + else: |
| 23 | + act_scales[name] = comming_max |
| 24 | + |
| 25 | + def stat_input_hook(m, x, y, name): |
| 26 | + if isinstance(x, tuple): |
| 27 | + x = x[0] |
| 28 | + stat_tensor(name, x) |
| 29 | + |
| 30 | + hooks = [] |
| 31 | + for name, m in model.named_modules(): |
| 32 | + if isinstance(m, nn.Linear): |
| 33 | + hooks.append(m.register_forward_hook(functools.partial(stat_input_hook, name=name))) |
| 34 | + |
| 35 | + dataset = load_dataset("json", data_files=dataset_path) |
| 36 | + |
| 37 | + print("text", dataset["train"]["rows"][0][1]["row"]["text"]) |
| 38 | + |
| 39 | + dataset = dataset.shuffle(seed=42) |
| 40 | + |
| 41 | + for i in tqdm(range(num_samples)): |
| 42 | + input_ids = tokenizer( |
| 43 | + dataset["train"]["rows"][0][i]["row"]["text"], |
| 44 | + return_tensors="pt", |
| 45 | + max_length=seq_len, |
| 46 | + truncation=True, |
| 47 | + ).input_ids.to(device) |
| 48 | + model(input_ids) |
| 49 | + |
| 50 | + for h in hooks: |
| 51 | + h.remove() |
| 52 | + |
| 53 | + return act_scales |
0 commit comments