@@ -594,7 +594,8 @@ def test_oldhadoop(self):
594594            "mapred.output.format.class" : "org.apache.hadoop.mapred.SequenceFileOutputFormat" ,
595595            "mapred.output.key.class" : "org.apache.hadoop.io.IntWritable" ,
596596            "mapred.output.value.class" : "org.apache.hadoop.io.MapWritable" ,
597-             "mapred.output.dir" : basepath  +  "/olddataset/" }
597+             "mapred.output.dir" : basepath  +  "/olddataset/" 
598+         }
598599        self .sc .parallelize (dict_data ).saveAsHadoopDataset (conf )
599600        input_conf  =  {"mapred.input.dir" : basepath  +  "/olddataset/" }
600601        old_dataset  =  sorted (self .sc .hadoopRDD (
@@ -624,11 +625,13 @@ def test_newhadoop(self):
624625            valueConverter = "org.apache.spark.api.python.WritableToDoubleArrayConverter" ).collect ())
625626        self .assertEqual (result , array_data )
626627
627-         conf  =  {"mapreduce.outputformat.class" :
628+         conf  =  {
629+             "mapreduce.outputformat.class" :
628630                "org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat" ,
629-                 "mapred.output.key.class" : "org.apache.hadoop.io.IntWritable" ,
630-                 "mapred.output.value.class" : "org.apache.spark.api.python.DoubleArrayWritable" ,
631-                 "mapred.output.dir" : basepath  +  "/newdataset/" }
631+             "mapred.output.key.class" : "org.apache.hadoop.io.IntWritable" ,
632+             "mapred.output.value.class" : "org.apache.spark.api.python.DoubleArrayWritable" ,
633+             "mapred.output.dir" : basepath  +  "/newdataset/" 
634+         }
632635        self .sc .parallelize (array_data ).saveAsNewAPIHadoopDataset (
633636            conf ,
634637            valueConverter = "org.apache.spark.api.python.DoubleArrayToWritableConverter" )
@@ -1012,8 +1015,7 @@ class NumPyTests(PySparkTestCase):
10121015    """General PySpark tests that depend on numpy """ 
10131016
10141017    def  test_statcounter_array (self ):
1015-         x  =  self .sc .parallelize (
1016-             [np .array ([1.0 , 1.0 ]), np .array ([2.0 , 2.0 ]), np .array ([3.0 , 3.0 ])])
1018+         x  =  self .sc .parallelize ([np .array ([1.0 , 1.0 ]), np .array ([2.0 , 2.0 ]), np .array ([3.0 , 3.0 ])])
10171019        s  =  x .stats ()
10181020        self .assertSequenceEqual ([2.0 , 2.0 ], s .mean ().tolist ())
10191021        self .assertSequenceEqual ([1.0 , 1.0 ], s .min ().tolist ())
0 commit comments