@@ -35,7 +35,6 @@ open import Relation.Binary.Construct.Add.Extrema.Strict _<_ using ([<]-injectiv
35
35
36
36
import Relation.Binary.Reasoning.StrictPartialOrder as <-Reasoning
37
37
38
-
39
38
private
40
39
variable
41
40
v p q : Level
@@ -278,33 +277,33 @@ module _ {V : Value v} where
278
277
joinʳ⁺-right⁺ kv lk ku′ bal (Any-insertWith-just ku seg′ pr rp)
279
278
280
279
-- impossible cases
281
- ... | here eq | tri< k<k′ _ _ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
280
+ ... | here eq | tri< k<k′ _ _ = begin-contradiction
282
281
[ k ] <⟨ [ k<k′ ]ᴿ ⟩
283
282
[ k′ ] ≈⟨ [ sym eq ]ᴱ ⟩
284
283
[ k ] ∎
285
- ... | here eq | tri> _ _ k>k′ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
284
+ ... | here eq | tri> _ _ k>k′ = begin-contradiction
286
285
[ k ] ≈⟨ [ eq ]ᴱ ⟩
287
286
[ k′ ] <⟨ [ k>k′ ]ᴿ ⟩
288
287
[ k ] ∎
289
- ... | left lp | tri≈ _ k≈k′ _ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
288
+ ... | left lp | tri≈ _ k≈k′ _ = begin-contradiction
290
289
let k″ = Any.lookup lp .key; k≈k″ = lookup-result lp; (_ , k″<k′) = lookup-bounded lp in
291
290
[ k ] ≈⟨ [ k≈k″ ]ᴱ ⟩
292
291
[ k″ ] <⟨ k″<k′ ⟩
293
292
[ k′ ] ≈⟨ [ sym k≈k′ ]ᴱ ⟩
294
293
[ k ] ∎
295
- ... | left lp | tri> _ _ k>k′ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
294
+ ... | left lp | tri> _ _ k>k′ = begin-contradiction
296
295
let k″ = Any.lookup lp .key; k≈k″ = lookup-result lp; (_ , k″<k′) = lookup-bounded lp in
297
296
[ k ] ≈⟨ [ k≈k″ ]ᴱ ⟩
298
297
[ k″ ] <⟨ k″<k′ ⟩
299
298
[ k′ ] <⟨ [ k>k′ ]ᴿ ⟩
300
299
[ k ] ∎
301
- ... | right rp | tri< k<k′ _ _ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
300
+ ... | right rp | tri< k<k′ _ _ = begin-contradiction
302
301
let k″ = Any.lookup rp .key; k≈k″ = lookup-result rp; (k′<k″ , _) = lookup-bounded rp in
303
302
[ k ] <⟨ [ k<k′ ]ᴿ ⟩
304
303
[ k′ ] <⟨ k′<k″ ⟩
305
304
[ k″ ] ≈⟨ [ sym k≈k″ ]ᴱ ⟩
306
305
[ k ] ∎
307
- ... | right rp | tri≈ _ k≈k′ _ = flip contradiction (irrefl⁺ [ k ]) $ begin-strict
306
+ ... | right rp | tri≈ _ k≈k′ _ = begin-contradiction
308
307
let k″ = Any.lookup rp .key; k≈k″ = lookup-result rp; (k′<k″ , _) = lookup-bounded rp in
309
308
[ k ] ≈⟨ [ k≈k′ ]ᴱ ⟩
310
309
[ k′ ] <⟨ k′<k″ ⟩
0 commit comments