@@ -311,12 +311,12 @@ normalize-injective-≃ : ∀ m n c d {{_ : ℕ.NonZero c}} {{_ : ℕ.NonZero d}
311311normalize-injective-≃ m n c d eq = ℕ./-cancelʳ-≡
312312 md∣gcd[m,c]gcd[n,d]
313313 nc∣gcd[m,c]gcd[n,d]
314- ( begin
314+ $ begin
315315 (m ℕ.* d) ℕ./ (gcd[m,c] ℕ.* gcd[n,d]) ≡⟨ ℕ./-*-interchange gcd[m,c]∣m gcd[n,d]∣d ⟩
316316 (m ℕ./ gcd[m,c]) ℕ.* (d ℕ./ gcd[n,d]) ≡⟨ cong₂ ℕ._*_ m/gcd[m,c]≡n/gcd[n,d] (sym c/gcd[m,c]≡d/gcd[n,d]) ⟩
317317 (n ℕ./ gcd[n,d]) ℕ.* (c ℕ./ gcd[m,c]) ≡⟨ ℕ./-*-interchange gcd[n,d]∣n gcd[m,c]∣c ⟨
318- (n ℕ.* c) ℕ./ (gcd[n,d] ℕ.* gcd[m,c]) ≡⟨ ℕ./-congʳ (ℕ.*-comm gcd[n,d] gcd[m,c]) ⟩
319- (n ℕ.* c) ℕ./ (gcd[m,c] ℕ.* gcd[n,d]) ∎)
318+ (n ℕ.* c) ℕ./ (gcd[n,d] ℕ.* gcd[m,c]) ≡⟨ ℕ./-congʳ (ℕ.*-comm gcd[n,d] gcd[m,c]) ⟩
319+ (n ℕ.* c) ℕ./ (gcd[m,c] ℕ.* gcd[n,d]) ∎
320320 where
321321 open ≡-Reasoning
322322 gcd[m,c] = ℕ.gcd m c
@@ -331,14 +331,13 @@ normalize-injective-≃ m n c d eq = ℕ./-cancelʳ-≡
331331
332332 gcd[m,c]≢0′ = ℕ.gcd[m,n]≢0 m c (inj₂ (ℕ.≢-nonZero⁻¹ c))
333333 gcd[n,d]≢0′ = ℕ.gcd[m,n]≢0 n d (inj₂ (ℕ.≢-nonZero⁻¹ d))
334- gcd[m,c]*gcd[n,d]≢0′ = Sum.[ gcd[m,c]≢0′ , gcd[n,d]≢0′ ] ∘ ℕ.m*n≡0⇒m≡0∨n≡0 _
335334 instance
336335 gcd[m,c]≢0 = ℕ.≢-nonZero gcd[m,c]≢0′
337336 gcd[n,d]≢0 = ℕ.≢-nonZero gcd[n,d]≢0′
338337 c/gcd[m,c]≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 m c {{gcd≢0 = gcd[m,c]≢0}})
339338 d/gcd[n,d]≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 n d {{gcd≢0 = gcd[n,d]≢0}})
340- gcd[m,c]*gcd[n,d]≢0 = ℕ.≢-nonZero gcd[m,c]* gcd[n,d]≢0′
341- gcd[n,d]*gcd[m,c]≢0 = ℕ.≢-nonZero (subst (_≢ 0 ) (ℕ.*-comm gcd[m,c] gcd[ n,d]) gcd[m,c]*gcd[n,d]≢0′)
339+ gcd[m,c]*gcd[n,d]≢0 = ℕ.m*n≢0 gcd[m,c] gcd[n,d]
340+ gcd[n,d]*gcd[m,c]≢0 = ℕ.m*n≢0 gcd[n,d] gcd[m,c]
342341
343342 div = mkℚ+-injective eq
344343 m/gcd[m,c]≡n/gcd[n,d] = proj₁ div
0 commit comments