@@ -496,21 +496,27 @@ Other minor additions
496496 <±-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ → IsStrictTotalOrder _≡_ _<±_
497497 ```
498498
499- * Added new definition in ` Relation.Binary.Core ` :
499+ * Added new definitions in ` Relation.Binary.Core ` :
500500 ``` agda
501- Universal _∼_ = ∀ x y → x ∼ y
501+ Universal _∼_ = ∀ x y → x ∼ y
502+ Recomputable _~_ = ∀ {x y} → .(x ~ y) → x ~ y
502503 ```
503504
504- * The relation ` _≅_ ` in ` Relation.Binary.HeterogeneousEquality ` has
505- been generalised so that the types of the two equal elements need not
506- be at the same universe level.
505+ * Added new proof to ` Relation.Binary.Consequences ` :
506+ ``` agda
507+ dec⟶recomput : Decidable R → Recomputable R
508+ ```
507509
508510* Added new proofs to ` Relation.Nullary.Construct.Add.Point ` :
509511 ``` agda
510512 ≡-dec : Decidable {A = A} _≡_ → Decidable {A = Pointed A} _≡_
511513 []-injective : [ x ] ≡ [ y ] → x ≡ y
512514 ```
513515
516+ * The relation ` _≅_ ` in ` Relation.Binary.HeterogeneousEquality ` has
517+ been generalised so that the types of the two equal elements need not
518+ be at the same universe level.
519+
514520* Added new proof to ` Relation.Binary.PropositionalEquality.Core ` :
515521 ``` agda
516522 ≢-sym : Symmetric _≢_
@@ -520,3 +526,18 @@ Other minor additions
520526 ``` agda
521527 syntax Satisfiable P = ∃⟨ P ⟩
522528 ```
529+
530+ * Defined a notion of recomputability for unary and binary relations:
531+ ``` agda
532+ Recomputable : Pred A ℓ → Set _
533+ Recomputable P = ∀ {x} → .(P x) → P x
534+
535+ dec⟶recomputable : Decidable P → Recomputable P
536+ ```
537+
538+ ``` agda
539+ Recomputable : REL A B ℓ → Set _
540+ Recomputable _~_ = ∀ {x y} → .(x ~ y) → x ~ y
541+
542+ dec⟶recomputable : Decidable R → Recomputable R
543+ ```
0 commit comments