@@ -1664,41 +1664,6 @@ Other minor changes
16641664 moufangLoop : MoufangLoop a ℓ₁ → MoufangLoop b ℓ₂ → MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
16651665 ```
16661666
1667- * Added new functions and proofs to ` Algebra.Construct.Flip.Op ` :
1668- ``` agda
1669- zero : Zero ≈ ε ∙ → Zero ≈ ε (flip ∙)
1670- distributes : (≈ DistributesOver ∙) + → (≈ DistributesOver (flip ∙)) +
1671- isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# →
1672- IsSemiringWithoutAnnihilatingZero + (flip *) 0# 1#
1673- isSemiring : IsSemiring + * 0# 1# → IsSemiring + (flip *) 0# 1#
1674- isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# →
1675- IsCommutativeSemiring + (flip *) 0# 1#
1676- isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring + * 0# 1# →
1677- IsCancellativeCommutativeSemiring + (flip *) 0# 1#
1678- isIdempotentSemiring : IsIdempotentSemiring + * 0# 1# →
1679- IsIdempotentSemiring + (flip *) 0# 1#
1680- isQuasiring : IsQuasiring + * 0# 1# → IsQuasiring + (flip *) 0# 1#
1681- isRingWithoutOne : IsRingWithoutOne + * - 0# → IsRingWithoutOne + (flip *) - 0#
1682- isNonAssociativeRing : IsNonAssociativeRing + * - 0# 1# →
1683- IsNonAssociativeRing + (flip *) - 0# 1#
1684- isRing : IsRing ≈ + * - 0# 1# → IsRing ≈ + (flip *) - 0# 1#
1685- isNearring : IsNearring + * 0# 1# - → IsNearring + (flip *) 0# 1# -
1686- isCommutativeRing : IsCommutativeRing + * - 0# 1# →
1687- IsCommutativeRing + (flip *) - 0# 1#
1688- semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ →
1689- SemiringWithoutAnnihilatingZero a ℓ
1690- commutativeSemiring : CommutativeSemiring a ℓ → CommutativeSemiring a ℓ
1691- cancellativeCommutativeSemiring : CancellativeCommutativeSemiring a ℓ →
1692- CancellativeCommutativeSemiring a ℓ
1693- idempotentSemiring : IdempotentSemiring a ℓ → IdempotentSemiring a ℓ
1694- quasiring : Quasiring a ℓ → Quasiring a ℓ
1695- ringWithoutOne : RingWithoutOne a ℓ → RingWithoutOne a ℓ
1696- nonAssociativeRing : NonAssociativeRing a ℓ → NonAssociativeRing a ℓ
1697- nearring : Nearring a ℓ → Nearring a ℓ
1698- ring : Ring a ℓ → Ring a ℓ
1699- commutativeRing : CommutativeRing a ℓ → CommutativeRing a ℓ
1700- ```
1701-
17021667* Added new definition to ` Algebra.Definitions ` :
17031668 ``` agda
17041669 SelfInverse : Op₁ A → Set _
0 commit comments