Skip to content

Commit f2117c7

Browse files
jamesmckinnaplt-amy
authored andcommitted
moved lemma
1 parent 66eecd6 commit f2117c7

File tree

3 files changed

+5
-9
lines changed

3 files changed

+5
-9
lines changed

CHANGELOG.md

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2121,16 +2121,12 @@ Other minor changes
21212121

21222122
* Added new proofs in `Data.Nat.Combinatorics`:
21232123
```agda
2124+
k![n∸k]!∣n! : k ≤ n → k ! * (n ∸ k) ! ∣ n !
21242125
nP1≡n : n P 1 ≡ n
21252126
nC1≡n : n C 1 ≡ n
21262127
nCk+nC[k+1]≡[n+1]C[k+1] : n C k + n C (suc k) ≡ suc n C suc k
21272128
```
21282129

2129-
* Added new proofs in `Data.Nat.Combinatorics.Specification`:
2130-
```agda
2131-
k![n∸k]!∣n! : k ≤ n → k ! * (n ∸ k) ! ∣ n !
2132-
```
2133-
21342130
* Added new proofs in `Data.Nat.DivMod`:
21352131
```agda
21362132
m%n≤n : .{{_ : NonZero n}} → m % n ≤ n

src/Data/Nat/Combinatorics.agda

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ open Base public
3636
-- Properties of _P_
3737

3838
open Specification public
39-
using (nPk≡n!/[n∸k]!; k>n⇒nPk≡0; [n∸k]!k!∣n!; k![n∸k]!∣n!)
39+
using (nPk≡n!/[n∸k]!; k>n⇒nPk≡0; [n∸k]!k!∣n!)
4040

4141
nPn≡n! : n n P n ≡ n !
4242
nPn≡n! n = begin-equality
@@ -109,6 +109,9 @@ nC1≡n n@(suc n-1) = begin-equality
109109
------------------------------------------------------------------------
110110
-- Arithmetic of (n C k)
111111

112+
k![n∸k]!∣n! : {n k} k ≤ n k ! * (n ∸ k) ! ∣ n !
113+
k![n∸k]!∣n! {n} {k} k≤n = subst (_∣ n !) (*-comm ((n ∸ k) !) (k !)) ([n∸k]!k!∣n! k≤n)
114+
112115
nCk+nC[k+1]≡[n+1]C[k+1] : n k n C k + n C (suc k) ≡ suc n C suc k
113116
nCk+nC[k+1]≡[n+1]C[k+1] n k with <-cmp k n
114117
{- case k>n, in which case 1+k>1+n>n -}

src/Data/Nat/Combinatorics/Specification.agda

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -98,9 +98,6 @@ k!∣nP′k n@{suc n-1} k@{suc k-1} k≤n@(s≤s k-1≤n-1) with k-1 ≟ n-1
9898
(subst (k ! ∣_) (nP′k≡n!/[n∸k]! k≤n) (k!∣nP′k k≤n))
9999
where instance _ = (n ∸ k) !≢0
100100

101-
k![n∸k]!∣n! : {n k} k ≤ n k ! * (n ∸ k) ! ∣ n !
102-
k![n∸k]!∣n! {n} {k} k≤n = subst (_∣ n !) (*-comm ((n ∸ k) !) (k !)) ([n∸k]!k!∣n! k≤n)
103-
104101

105102
------------------------------------------------------------------------
106103
-- Properties of _P_

0 commit comments

Comments
 (0)