2222from transformers .utils .generic import TensorType
2323
2424from ...image_processing_utils import BaseImageProcessor , BatchFeature
25- from ...image_transforms import rescale , resize , to_channel_dimension_format
25+ from ...image_transforms import rescale_image , resize , to_channel_dimension_format
2626from ...image_utils import ChannelDimension , get_image_size , is_batched , to_numpy_array , valid_images
2727from ...utils import logging
2828
@@ -93,7 +93,7 @@ def resize(
9393 image = resize (image , (new_h , new_w ), resample = resample , data_format = data_format , ** kwargs )
9494 return image
9595
96- def rescale (
96+ def rescale_image (
9797 self , image : np .ndarray , scale : Union [int , float ], data_format : Optional [ChannelDimension ] = None , ** kwargs
9898 ) -> np .ndarray :
9999 """
@@ -110,7 +110,7 @@ def rescale(
110110 - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
111111 - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
112112 """
113- return rescale (image = image , scale = scale , data_format = data_format , ** kwargs )
113+ return rescale_image (image = image , scale = scale , data_format = data_format , ** kwargs )
114114
115115 def preprocess (
116116 self ,
@@ -172,7 +172,7 @@ def preprocess(
172172 images = [self .resize (image , size_divisor = size_divisor , resample = resample ) for image in images ]
173173
174174 if do_rescale :
175- images = [self .rescale (image , scale = 1 / 255 ) for image in images ]
175+ images = [self .rescale_image (image , scale = 1 / 255 ) for image in images ]
176176
177177 images = [to_channel_dimension_format (image , data_format ) for image in images ]
178178
0 commit comments