|
| 1 | +// Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +// or more contributor license agreements. See the NOTICE file |
| 3 | +// distributed with this work for additional information |
| 4 | +// regarding copyright ownership. The ASF licenses this file |
| 5 | +// to you under the Apache License, Version 2.0 (the |
| 6 | +// "License"); you may not use this file except in compliance |
| 7 | +// with the License. You may obtain a copy of the License at |
| 8 | +// |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// Unless required by applicable law or agreed to in writing, |
| 12 | +// software distributed under the License is distributed on an |
| 13 | +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +// KIND, either express or implied. See the License for the |
| 15 | +// specific language governing permissions and limitations |
| 16 | +// under the License. |
| 17 | + |
| 18 | +//! Benchmarks for `arrow‑avro` **Writer** (Avro Object Container Files) |
| 19 | +//! |
| 20 | +
|
| 21 | +extern crate arrow_avro; |
| 22 | +extern crate criterion; |
| 23 | +extern crate once_cell; |
| 24 | + |
| 25 | +use arrow_array::{ |
| 26 | + types::{Int32Type, Int64Type, TimestampMicrosecondType}, |
| 27 | + ArrayRef, BinaryArray, BooleanArray, Float32Array, Float64Array, PrimitiveArray, RecordBatch, |
| 28 | +}; |
| 29 | +use arrow_avro::writer::AvroWriter; |
| 30 | +use arrow_schema::{DataType, Field, Schema, TimeUnit}; |
| 31 | +use criterion::{criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion, Throughput}; |
| 32 | +use once_cell::sync::Lazy; |
| 33 | +use rand::{ |
| 34 | + distr::uniform::{SampleRange, SampleUniform}, |
| 35 | + rngs::StdRng, |
| 36 | + Rng, SeedableRng, |
| 37 | +}; |
| 38 | +use std::io::Cursor; |
| 39 | +use std::sync::Arc; |
| 40 | +use std::time::Duration; |
| 41 | +use tempfile::tempfile; |
| 42 | + |
| 43 | +const SIZES: [usize; 4] = [4_096, 8_192, 100_000, 1_000_000]; |
| 44 | +const BASE_SEED: u64 = 0x5EED_1234_ABCD_EF01; |
| 45 | +const MIX_CONST_1: u64 = 0x9E37_79B1_85EB_CA87; |
| 46 | +const MIX_CONST_2: u64 = 0xC2B2_AE3D_27D4_EB4F; |
| 47 | + |
| 48 | +#[inline] |
| 49 | +fn rng_for(tag: u64, n: usize) -> StdRng { |
| 50 | + let seed = BASE_SEED ^ tag.wrapping_mul(MIX_CONST_1) ^ (n as u64).wrapping_mul(MIX_CONST_2); |
| 51 | + StdRng::seed_from_u64(seed) |
| 52 | +} |
| 53 | + |
| 54 | +#[inline] |
| 55 | +fn sample_in<T, Rg>(rng: &mut StdRng, range: Rg) -> T |
| 56 | +where |
| 57 | + T: SampleUniform, |
| 58 | + Rg: SampleRange<T>, |
| 59 | +{ |
| 60 | + rng.random_range(range) |
| 61 | +} |
| 62 | + |
| 63 | +#[inline] |
| 64 | +fn make_bool_array_with_tag(n: usize, tag: u64) -> BooleanArray { |
| 65 | + let mut rng = rng_for(tag, n); |
| 66 | + let values = (0..n).map(|_| rng.random_bool(0.5)); |
| 67 | + BooleanArray::from_iter(values.map(Some)) |
| 68 | +} |
| 69 | + |
| 70 | +#[inline] |
| 71 | +fn make_i32_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<Int32Type> { |
| 72 | + let mut rng = rng_for(tag, n); |
| 73 | + let values = (0..n).map(|_| rng.random::<i32>()); |
| 74 | + PrimitiveArray::<Int32Type>::from_iter_values(values) |
| 75 | +} |
| 76 | + |
| 77 | +#[inline] |
| 78 | +fn make_i64_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<Int64Type> { |
| 79 | + let mut rng = rng_for(tag, n); |
| 80 | + let values = (0..n).map(|_| rng.random::<i64>()); |
| 81 | + PrimitiveArray::<Int64Type>::from_iter_values(values) |
| 82 | +} |
| 83 | + |
| 84 | +#[inline] |
| 85 | +fn make_f32_array_with_tag(n: usize, tag: u64) -> Float32Array { |
| 86 | + let mut rng = rng_for(tag, n); |
| 87 | + let values = (0..n).map(|_| rng.random::<f32>()); |
| 88 | + Float32Array::from_iter_values(values) |
| 89 | +} |
| 90 | + |
| 91 | +#[inline] |
| 92 | +fn make_f64_array_with_tag(n: usize, tag: u64) -> Float64Array { |
| 93 | + let mut rng = rng_for(tag, n); |
| 94 | + let values = (0..n).map(|_| rng.random::<f64>()); |
| 95 | + Float64Array::from_iter_values(values) |
| 96 | +} |
| 97 | + |
| 98 | +#[inline] |
| 99 | +fn make_binary_array_with_tag(n: usize, tag: u64) -> BinaryArray { |
| 100 | + let mut rng = rng_for(tag, n); |
| 101 | + let mut payloads: Vec<[u8; 16]> = vec![[0; 16]; n]; |
| 102 | + for p in payloads.iter_mut() { |
| 103 | + rng.fill(&mut p[..]); |
| 104 | + } |
| 105 | + let views: Vec<&[u8]> = payloads.iter().map(|p| &p[..]).collect(); |
| 106 | + BinaryArray::from_vec(views) |
| 107 | +} |
| 108 | + |
| 109 | +#[inline] |
| 110 | +fn make_ts_micros_array_with_tag(n: usize, tag: u64) -> PrimitiveArray<TimestampMicrosecondType> { |
| 111 | + let mut rng = rng_for(tag, n); |
| 112 | + let base: i64 = 1_600_000_000_000_000; |
| 113 | + let year_us: i64 = 31_536_000_000_000; |
| 114 | + let values = (0..n).map(|_| base + sample_in::<i64, _>(&mut rng, 0..year_us)); |
| 115 | + PrimitiveArray::<TimestampMicrosecondType>::from_iter_values(values) |
| 116 | +} |
| 117 | + |
| 118 | +#[inline] |
| 119 | +fn make_bool_array(n: usize) -> BooleanArray { |
| 120 | + make_bool_array_with_tag(n, 0xB001) |
| 121 | +} |
| 122 | +#[inline] |
| 123 | +fn make_i32_array(n: usize) -> PrimitiveArray<Int32Type> { |
| 124 | + make_i32_array_with_tag(n, 0x1337_0032) |
| 125 | +} |
| 126 | +#[inline] |
| 127 | +fn make_i64_array(n: usize) -> PrimitiveArray<Int64Type> { |
| 128 | + make_i64_array_with_tag(n, 0x1337_0064) |
| 129 | +} |
| 130 | +#[inline] |
| 131 | +fn make_f32_array(n: usize) -> Float32Array { |
| 132 | + make_f32_array_with_tag(n, 0xF0_0032) |
| 133 | +} |
| 134 | +#[inline] |
| 135 | +fn make_f64_array(n: usize) -> Float64Array { |
| 136 | + make_f64_array_with_tag(n, 0xF0_0064) |
| 137 | +} |
| 138 | +#[inline] |
| 139 | +fn make_binary_array(n: usize) -> BinaryArray { |
| 140 | + make_binary_array_with_tag(n, 0xB1_0001) |
| 141 | +} |
| 142 | +#[inline] |
| 143 | +fn make_ts_micros_array(n: usize) -> PrimitiveArray<TimestampMicrosecondType> { |
| 144 | + make_ts_micros_array_with_tag(n, 0x7157_0001) |
| 145 | +} |
| 146 | + |
| 147 | +#[inline] |
| 148 | +fn schema_single(name: &str, dt: DataType) -> Arc<Schema> { |
| 149 | + Arc::new(Schema::new(vec![Field::new(name, dt, false)])) |
| 150 | +} |
| 151 | + |
| 152 | +#[inline] |
| 153 | +fn schema_mixed() -> Arc<Schema> { |
| 154 | + Arc::new(Schema::new(vec![ |
| 155 | + Field::new("f1", DataType::Int32, false), |
| 156 | + Field::new("f2", DataType::Int64, false), |
| 157 | + Field::new("f3", DataType::Binary, false), |
| 158 | + Field::new("f4", DataType::Float64, false), |
| 159 | + ])) |
| 160 | +} |
| 161 | + |
| 162 | +static BOOLEAN_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 163 | + let schema = schema_single("field1", DataType::Boolean); |
| 164 | + SIZES |
| 165 | + .iter() |
| 166 | + .map(|&n| { |
| 167 | + let col: ArrayRef = Arc::new(make_bool_array(n)); |
| 168 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 169 | + }) |
| 170 | + .collect() |
| 171 | +}); |
| 172 | + |
| 173 | +static INT32_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 174 | + let schema = schema_single("field1", DataType::Int32); |
| 175 | + SIZES |
| 176 | + .iter() |
| 177 | + .map(|&n| { |
| 178 | + let col: ArrayRef = Arc::new(make_i32_array(n)); |
| 179 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 180 | + }) |
| 181 | + .collect() |
| 182 | +}); |
| 183 | + |
| 184 | +static INT64_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 185 | + let schema = schema_single("field1", DataType::Int64); |
| 186 | + SIZES |
| 187 | + .iter() |
| 188 | + .map(|&n| { |
| 189 | + let col: ArrayRef = Arc::new(make_i64_array(n)); |
| 190 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 191 | + }) |
| 192 | + .collect() |
| 193 | +}); |
| 194 | + |
| 195 | +static FLOAT32_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 196 | + let schema = schema_single("field1", DataType::Float32); |
| 197 | + SIZES |
| 198 | + .iter() |
| 199 | + .map(|&n| { |
| 200 | + let col: ArrayRef = Arc::new(make_f32_array(n)); |
| 201 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 202 | + }) |
| 203 | + .collect() |
| 204 | +}); |
| 205 | + |
| 206 | +static FLOAT64_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 207 | + let schema = schema_single("field1", DataType::Float64); |
| 208 | + SIZES |
| 209 | + .iter() |
| 210 | + .map(|&n| { |
| 211 | + let col: ArrayRef = Arc::new(make_f64_array(n)); |
| 212 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 213 | + }) |
| 214 | + .collect() |
| 215 | +}); |
| 216 | + |
| 217 | +static BINARY_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 218 | + let schema = schema_single("field1", DataType::Binary); |
| 219 | + SIZES |
| 220 | + .iter() |
| 221 | + .map(|&n| { |
| 222 | + let col: ArrayRef = Arc::new(make_binary_array(n)); |
| 223 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 224 | + }) |
| 225 | + .collect() |
| 226 | +}); |
| 227 | + |
| 228 | +static TIMESTAMP_US_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 229 | + let schema = schema_single("field1", DataType::Timestamp(TimeUnit::Microsecond, None)); |
| 230 | + SIZES |
| 231 | + .iter() |
| 232 | + .map(|&n| { |
| 233 | + let col: ArrayRef = Arc::new(make_ts_micros_array(n)); |
| 234 | + RecordBatch::try_new(schema.clone(), vec![col]).unwrap() |
| 235 | + }) |
| 236 | + .collect() |
| 237 | +}); |
| 238 | + |
| 239 | +static MIXED_DATA: Lazy<Vec<RecordBatch>> = Lazy::new(|| { |
| 240 | + let schema = schema_mixed(); |
| 241 | + SIZES |
| 242 | + .iter() |
| 243 | + .map(|&n| { |
| 244 | + let f1: ArrayRef = Arc::new(make_i32_array_with_tag(n, 0xA1)); |
| 245 | + let f2: ArrayRef = Arc::new(make_i64_array_with_tag(n, 0xA2)); |
| 246 | + let f3: ArrayRef = Arc::new(make_binary_array_with_tag(n, 0xA3)); |
| 247 | + let f4: ArrayRef = Arc::new(make_f64_array_with_tag(n, 0xA4)); |
| 248 | + RecordBatch::try_new(schema.clone(), vec![f1, f2, f3, f4]).unwrap() |
| 249 | + }) |
| 250 | + .collect() |
| 251 | +}); |
| 252 | + |
| 253 | +fn ocf_size_for_batch(batch: &RecordBatch) -> usize { |
| 254 | + let schema_owned: Schema = (*batch.schema()).clone(); |
| 255 | + let cursor = Cursor::new(Vec::<u8>::with_capacity(1024)); |
| 256 | + let mut writer = AvroWriter::new(cursor, schema_owned).expect("create writer"); |
| 257 | + writer.write(batch).expect("write batch"); |
| 258 | + writer.finish().expect("finish writer"); |
| 259 | + let inner = writer.into_inner(); |
| 260 | + inner.into_inner().len() |
| 261 | +} |
| 262 | + |
| 263 | +fn bench_writer_scenario(c: &mut Criterion, name: &str, data_sets: &[RecordBatch]) { |
| 264 | + let mut group = c.benchmark_group(name); |
| 265 | + let schema_owned: Schema = (*data_sets[0].schema()).clone(); |
| 266 | + for (idx, &rows) in SIZES.iter().enumerate() { |
| 267 | + let batch = &data_sets[idx]; |
| 268 | + let bytes = ocf_size_for_batch(batch); |
| 269 | + group.throughput(Throughput::Bytes(bytes as u64)); |
| 270 | + match rows { |
| 271 | + 4_096 | 8_192 => { |
| 272 | + group |
| 273 | + .sample_size(40) |
| 274 | + .measurement_time(Duration::from_secs(10)) |
| 275 | + .warm_up_time(Duration::from_secs(3)); |
| 276 | + } |
| 277 | + 100_000 => { |
| 278 | + group |
| 279 | + .sample_size(20) |
| 280 | + .measurement_time(Duration::from_secs(10)) |
| 281 | + .warm_up_time(Duration::from_secs(3)); |
| 282 | + } |
| 283 | + 1_000_000 => { |
| 284 | + group |
| 285 | + .sample_size(10) |
| 286 | + .measurement_time(Duration::from_secs(10)) |
| 287 | + .warm_up_time(Duration::from_secs(3)); |
| 288 | + } |
| 289 | + _ => {} |
| 290 | + } |
| 291 | + group.bench_function(BenchmarkId::from_parameter(rows), |b| { |
| 292 | + b.iter_batched_ref( |
| 293 | + || { |
| 294 | + let file = tempfile().expect("create temp file"); |
| 295 | + AvroWriter::new(file, schema_owned.clone()).expect("create writer") |
| 296 | + }, |
| 297 | + |writer| { |
| 298 | + writer.write(batch).unwrap(); |
| 299 | + writer.finish().unwrap(); |
| 300 | + }, |
| 301 | + BatchSize::SmallInput, |
| 302 | + ) |
| 303 | + }); |
| 304 | + } |
| 305 | + group.finish(); |
| 306 | +} |
| 307 | + |
| 308 | +fn criterion_benches(c: &mut Criterion) { |
| 309 | + bench_writer_scenario(c, "write-Boolean", &BOOLEAN_DATA); |
| 310 | + bench_writer_scenario(c, "write-Int32", &INT32_DATA); |
| 311 | + bench_writer_scenario(c, "write-Int64", &INT64_DATA); |
| 312 | + bench_writer_scenario(c, "write-Float32", &FLOAT32_DATA); |
| 313 | + bench_writer_scenario(c, "write-Float64", &FLOAT64_DATA); |
| 314 | + bench_writer_scenario(c, "write-Binary(Bytes)", &BINARY_DATA); |
| 315 | + bench_writer_scenario(c, "write-TimestampMicros", &TIMESTAMP_US_DATA); |
| 316 | + bench_writer_scenario(c, "write-Mixed", &MIXED_DATA); |
| 317 | +} |
| 318 | + |
| 319 | +criterion_group! { |
| 320 | + name = avro_writer; |
| 321 | + config = Criterion::default().configure_from_args(); |
| 322 | + targets = criterion_benches |
| 323 | +} |
| 324 | +criterion_main!(avro_writer); |
0 commit comments