diff --git a/datafusion-examples/examples/simple_udf.rs b/datafusion-examples/examples/simple_udf.rs index dba4385b8eea..591991786515 100644 --- a/datafusion-examples/examples/simple_udf.rs +++ b/datafusion-examples/examples/simple_udf.rs @@ -29,23 +29,23 @@ use datafusion::{error::Result, physical_plan::functions::make_scalar_function}; use datafusion_common::cast::as_float64_array; use std::sync::Arc; -// create local execution context with an in-memory table +/// create local execution context with an in-memory table: +/// +/// ```text +/// +-----+-----+ +/// | a | b | +/// +-----+-----+ +/// | 2.1 | 1.0 | +/// | 3.1 | 2.0 | +/// | 4.1 | 3.0 | +/// | 5.1 | 4.0 | +/// +-----+-----+ +/// ``` fn create_context() -> Result { - use datafusion::arrow::datatypes::{Field, Schema}; - // define a schema. - let schema = Arc::new(Schema::new(vec![ - Field::new("a", DataType::Float32, false), - Field::new("b", DataType::Float64, false), - ])); - // define data. - let batch = RecordBatch::try_new( - schema, - vec![ - Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1])), - Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])), - ], - )?; + let a: ArrayRef = Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1])); + let b: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])); + let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?; // declare a new context. In spark API, this corresponds to a new spark SQLsession let ctx = SessionContext::new();