2525setClass ("FPGrowthModel ", slots = list(jobj = "jobj"))
2626
2727# ' FP-growth
28- # '
28+ # '
2929# ' A parallel FP-growth algorithm to mine frequent itemsets.
30- # ' For more details, see
30+ # ' For more details, see
3131# ' \href{https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html#fp-growth}{
3232# ' FP-growth}.
3333# '
@@ -99,7 +99,10 @@ setMethod("spark.fpGrowth", signature(data = "SparkDataFrame"),
9999# Get frequent itemsets.
100100
101101# ' @param object a fitted FPGrowth model.
102- # ' @return A DataFrame with frequent itemsets.
102+ # ' @return A \code{DataFrame} with frequent itemsets.
103+ # ' The \code{DataFrame} contains two columns:
104+ # ' \code{items} (an array of the same type as the input column)
105+ # ' and \code{freq} (frequency of the itemset).
103106# ' @rdname spark.fpGrowth
104107# ' @aliases freqItemsets,FPGrowthModel-method
105108# ' @export
@@ -111,7 +114,11 @@ setMethod("spark.freqItemsets", signature(object = "FPGrowthModel"),
111114
112115# Get association rules.
113116
114- # ' @return A DataFrame with association rules.
117+ # ' @return A \code{DataFrame} with association rules.
118+ # ' The \code{DataFrame} contains three columns:
119+ # ' \code{antecedent} (an array of the same type as the input column),
120+ # ' \code{consequent} (an array of the same type as the input column),
121+ # ' and \code{condfidence} (confidence).
115122# ' @rdname spark.fpGrowth
116123# ' @aliases associationRules,FPGrowthModel-method
117124# ' @export
0 commit comments