@@ -217,7 +217,7 @@ JavaRDD<LabeledPoint> testData = splits[1];
217217// Set parameters.
218218// Empty categoricalFeaturesInfo indicates all features are continuous.
219219Integer numClasses = 2;
220- HashMap <Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
220+ Map <Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
221221String impurity = "gini";
222222Integer maxDepth = 5;
223223Integer maxBins = 32;
@@ -270,10 +270,6 @@ print('Test Error = ' + str(testErr))
270270print('Learned classification tree model:')
271271print(model.toDebugString())
272272{% endhighlight %}
273-
274- Note: When making predictions for a dataset, it is more efficient to do batch prediction rather
275- than separately calling ` predict ` on each data point. This is because the Python code makes calls
276- to an underlying ` DecisionTree ` model in Scala.
277273</div >
278274
279275</div >
@@ -350,7 +346,7 @@ JavaRDD<LabeledPoint> testData = splits[1];
350346
351347// Set parameters.
352348// Empty categoricalFeaturesInfo indicates all features are continuous.
353- HashMap <Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
349+ Map <Integer, Integer> categoricalFeaturesInfo = new HashMap<Integer, Integer>();
354350String impurity = "variance";
355351Integer maxDepth = 5;
356352Integer maxBins = 32;
@@ -409,10 +405,6 @@ print('Test Mean Squared Error = ' + str(testMSE))
409405print('Learned regression tree model:')
410406print(model.toDebugString())
411407{% endhighlight %}
412-
413- Note: When making predictions for a dataset, it is more efficient to do batch prediction rather
414- than separately calling ` predict ` on each data point. This is because the Python code makes calls
415- to an underlying ` DecisionTree ` model in Scala.
416408</div >
417409
418410</div >
0 commit comments