@@ -1041,7 +1041,7 @@ class GBTRegressor(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
10411041 >>> print(gbt.getImpurity())
10421042 variance
10431043 >>> print(gbt.getFeatureSubsetStrategy())
1044- auto
1044+ all
10451045 >>> model = gbt.fit(df)
10461046 >>> model.featureImportances
10471047 SparseVector(1, {0: 1.0})
@@ -1092,20 +1092,20 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
10921092 maxDepth = 5 , maxBins = 32 , minInstancesPerNode = 1 , minInfoGain = 0.0 ,
10931093 maxMemoryInMB = 256 , cacheNodeIds = False , subsamplingRate = 1.0 ,
10941094 checkpointInterval = 10 , lossType = "squared" , maxIter = 20 , stepSize = 0.1 , seed = None ,
1095- impurity = "variance" , featureSubsetStrategy = "auto " ):
1095+ impurity = "variance" , featureSubsetStrategy = "all " ):
10961096 """
10971097 __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
10981098 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
10991099 maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \
11001100 checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \
1101- impurity="variance", featureSubsetStrategy="auto ")
1101+ impurity="variance", featureSubsetStrategy="all ")
11021102 """
11031103 super (GBTRegressor , self ).__init__ ()
11041104 self ._java_obj = self ._new_java_obj ("org.apache.spark.ml.regression.GBTRegressor" , self .uid )
11051105 self ._setDefault (maxDepth = 5 , maxBins = 32 , minInstancesPerNode = 1 , minInfoGain = 0.0 ,
11061106 maxMemoryInMB = 256 , cacheNodeIds = False , subsamplingRate = 1.0 ,
11071107 checkpointInterval = 10 , lossType = "squared" , maxIter = 20 , stepSize = 0.1 ,
1108- impurity = "variance" , featureSubsetStrategy = "auto " )
1108+ impurity = "variance" , featureSubsetStrategy = "all " )
11091109 kwargs = self ._input_kwargs
11101110 self .setParams (** kwargs )
11111111
@@ -1115,13 +1115,13 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre
11151115 maxDepth = 5 , maxBins = 32 , minInstancesPerNode = 1 , minInfoGain = 0.0 ,
11161116 maxMemoryInMB = 256 , cacheNodeIds = False , subsamplingRate = 1.0 ,
11171117 checkpointInterval = 10 , lossType = "squared" , maxIter = 20 , stepSize = 0.1 , seed = None ,
1118- impuriy = "variance" , featureSubsetStrategy = "auto " ):
1118+ impuriy = "variance" , featureSubsetStrategy = "all " ):
11191119 """
11201120 setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
11211121 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
11221122 maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \
11231123 checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \
1124- impurity="variance", featureSubsetStrategy="auto ")
1124+ impurity="variance", featureSubsetStrategy="all ")
11251125 Sets params for Gradient Boosted Tree Regression.
11261126 """
11271127 kwargs = self ._input_kwargs
0 commit comments