@@ -2159,73 +2159,7 @@ def get_conv2d_nchw(
21592159 out_dtype = out_dtype ,
21602160 )
21612161
2162- # def verify_by_ort(x_data, w_data, b_data, data_dtype, out):
2163- # from onnx import helper, mapping, TensorProto
2164- # from onnxruntime import backend as ort_bk
2165-
2166- # def get_onnx_model(data_dtype, x_shape, w_shape, b_shape, out_shape):
2167- # x_dtype = data_dtype
2168- # w_dtype = "int8"
2169- # b_dtype = "int32"
2170- # x_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(x_dtype)]
2171- # w_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(w_dtype)]
2172- # b_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(b_dtype)]
2173-
2174- # y_dtype = "int32"
2175- # y_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(y_dtype)]
2176-
2177- # input_nodes = [
2178- # helper.make_tensor_value_info("x", x_proto_type, list(x_shape)),
2179- # helper.make_tensor_value_info("w", w_proto_type, list(w_shape)),
2180- # helper.make_tensor_value_info("B", b_proto_type, list(b_shape)),
2181- # ]
2182- # initializer = [
2183- # helper.make_tensor("x_scale", TensorProto.FLOAT, [], [1.]),
2184- # helper.make_tensor("x_zero_point", x_proto_type, [], [0]),
2185- # helper.make_tensor("w_scale", TensorProto.FLOAT, [], [1.]),
2186- # helper.make_tensor("w_zero_point", w_proto_type, [], [0]),
2187- # helper.make_tensor("y_scale", TensorProto.FLOAT, [], [1.]),
2188- # helper.make_tensor("y_zero_point", y_proto_type, [], [0]),
2189- # ]
2190- # input_names = [
2191- # "x",
2192- # "x_scale",
2193- # "x_zero_point",
2194- # "w",
2195- # "w_scale",
2196- # "w_zero_point",
2197- # "y_scale",
2198- # "y_zero_point",
2199- # "B"
2200- # ]
2201-
2202- # node_conv = helper.make_node(
2203- # "QLinearConv",
2204- # inputs=input_names,
2205- # outputs=["y"],
2206- # )
2207-
2208- # graph = helper.make_graph(
2209- # [node_conv],
2210- # "ort_conv2d_int8_test",
2211- # inputs=input_nodes,
2212- # initializer=initializer,
2213- # outputs=[helper.make_tensor_value_info("y", y_proto_type, list(out_shape))],
2214- # )
2215- # model = helper.make_model(graph, producer_name="ort_conv2d_int8_test")
2216- # return model
2217-
2218- # onnx_model = get_onnx_model(data_dtype, x_data.shape, w_data.shape, b_data.shape, out.shape)
2219- # ort_exec = ort_bk.prepare(onnx_model.SerializeToString(), "CPU")
2220- # ort_out = ort_exec.run([x_data, w_data, b_data])
2221- # # Unpack output if there's only a single value.
2222- # if len(ort_out) == 1:
2223- # ort_out = ort_out[0]
2224- # if len(out) == 1:
2225- # out = out[0]
2226- # np.testing.assert_equal(out, ort_out)
2227-
2228- I , O , H , W = 64 , 64 , 56 , 56
2162+ I , O , H , W = 1 , 1 , 56 , 56
22292163 kH = kW = 3
22302164
22312165 data_shape = (1 , I , H , W )
@@ -2271,11 +2205,6 @@ def get_conv2d_nchw(
22712205
22722206 out = rt_mod .get_output (0 ).numpy ()
22732207
2274- # print("COMPARE ORT and OUT")
2275- # verify_by_ort(data_np, weight_np, bias_np, data_dtype, out)
2276- # print("COMPARE ORT and REF")
2277- # verify_by_ort(data_np, weight_np, bias_np, data_dtype, ref)
2278-
22792208 np .testing .assert_equal (out , ref )
22802209
22812210
0 commit comments