Skip to content

Commit 4c73073

Browse files
author
zxy844288792
committed
enable sequential test cases
1 parent edf8bf9 commit 4c73073

File tree

1 file changed

+48
-36
lines changed

1 file changed

+48
-36
lines changed

tests/python/frontend/tensorflow2/test_sequential_models.py

Lines changed: 48 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -110,46 +110,58 @@ def maxpool_batchnorm_model(input_shape, pool_size=(2, 2)):
110110

111111

112112
def test_tensorlist_stack_model():
113-
class TensorArrayStackLayer(tf.keras.layers.Layer):
114-
def __init__(self):
115-
super().__init__()
116-
117-
def call(self, inputs):
118-
inputs = tf.squeeze(inputs)
119-
outputs = tf.TensorArray(
120-
tf.float32, size=inputs.shape[0], infer_shape=False, element_shape=inputs.shape[1:]
121-
)
122-
outputs = outputs.unstack(inputs)
123-
124-
return outputs.stack()
113+
def tensorlist_stack_model(input_shape):
114+
class TensorArrayStackLayer(tf.keras.layers.Layer):
115+
def __init__(self):
116+
super().__init__()
117+
118+
def call(self, inputs):
119+
inputs = tf.squeeze(inputs)
120+
outputs = tf.TensorArray(
121+
tf.float32,
122+
size=inputs.shape[0],
123+
infer_shape=False,
124+
element_shape=inputs.shape[1:],
125+
)
126+
outputs = outputs.unstack(inputs)
127+
128+
return outputs.stack()
129+
130+
input_shape = (3, 32)
131+
model = tf.keras.Sequential(
132+
[tf.keras.layers.Input(shape=input_shape, batch_size=1), TensorArrayStackLayer()]
133+
)
134+
return model
125135

126-
shape = (3, 32)
127-
model = tf.keras.Sequential(
128-
[tf.keras.layers.Input(shape=shape, batch_size=1), TensorArrayStackLayer()]
129-
)
130-
return model
136+
run_sequential_model(tensorlist_stack_model, input_shape=(3, 32))
131137

132138

133139
def test_tensorlist_read_model():
134-
class TensorArrayReadLayer(tf.keras.layers.Layer):
135-
def __init__(self):
136-
super().__init__()
137-
138-
def call(self, inputs):
139-
inputs = tf.squeeze(inputs)
140-
outputs = tf.TensorArray(
141-
tf.float32, size=inputs.shape[0], infer_shape=False, element_shape=inputs.shape[1:]
142-
)
143-
for i in range(inputs.shape[0]):
144-
outputs = outputs.write(i, inputs[i, :])
145-
146-
return outputs.read(0)
147-
148-
shape = (3, 32)
149-
model = tf.keras.Sequential(
150-
[tf.keras.layers.Input(shape=shape, batch_size=1), TensorArrayReadLayer()]
151-
)
152-
return model
140+
def tensorlist_read_model(input_shape):
141+
class TensorArrayReadLayer(tf.keras.layers.Layer):
142+
def __init__(self):
143+
super().__init__()
144+
145+
def call(self, inputs):
146+
inputs = tf.squeeze(inputs)
147+
outputs = tf.TensorArray(
148+
tf.float32,
149+
size=inputs.shape[0],
150+
infer_shape=False,
151+
element_shape=inputs.shape[1:],
152+
)
153+
for i in range(inputs.shape[0]):
154+
outputs = outputs.write(i, inputs[i, :])
155+
156+
return outputs.read(0)
157+
158+
input_shape = (3, 32)
159+
model = tf.keras.Sequential(
160+
[tf.keras.layers.Input(shape=input_shape, batch_size=1), TensorArrayReadLayer()]
161+
)
162+
return model
163+
164+
run_sequential_model(tensorlist_read_model, input_shape=(3, 32))
153165

154166

155167
if __name__ == "__main__":

0 commit comments

Comments
 (0)