Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/tvm/dlight/gpu/reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def _sch_inner_spatial(
# Schedule epilogue
if epilogue_info is not None:
epilogue = epilogue_info.block_rv
sch.reverse_compute_at(epilogue, bx)
sch.reverse_compute_at(epilogue, bx, preserve_unit_loops=True)
if is_broadcast_epilogue(sch, block, epilogue):
sch.set_scope(block, 0, "shared")
_, *s = sch.get_loops(epilogue) # pylint: disable=invalid-name
Expand Down
83 changes: 83 additions & 0 deletions tests/python/dlight/test_gpu_reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -1006,5 +1006,88 @@ def fused_relax_repeat_relax_permute_dims_relax_matmul1(p_lv716: T.handle, p_ast
assert_structural_equal(mod, Expected)


def test_gemv_dyn_shape_epilogue():
@I.ir_module
class Module:
@T.prim_func(private=True)
def main(
var_A: T.handle,
B: T.Buffer((T.int64(1), T.int64(1), T.int64(4096)), "float16"),
var_C: T.handle,
):
T.func_attr({"tir.noalias": T.bool(True)})
vocab_size = T.int64()
A = T.match_buffer(var_A, (T.int64(4096), vocab_size), "float16")
C = T.match_buffer(var_C, (T.int64(1), T.int64(1), vocab_size))
C_temp = T.alloc_buffer((T.int64(1), T.int64(1), vocab_size), "float16")
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(1), vocab_size, T.int64(4096)):
with T.block("matmul"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(B[v_i0, v_i1, v_k], A[v_k, v_i2])
T.writes(C_temp[v_i0, v_i1, v_i2])
with T.init():
C_temp[v_i0, v_i1, v_i2] = T.float16(0)
C_temp[v_i0, v_i1, v_i2] = (
C_temp[v_i0, v_i1, v_i2] + B[v_i0, v_i1, v_k] * A[v_k, v_i2]
)
for i0, i1, i2 in T.grid(T.int64(1), T.int64(1), vocab_size):
with T.block("epilogue"):
v_i0, v_i1, v_i2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(C_temp[v_i0, v_i1, v_i2])
T.writes(C[v_i0, v_i1, v_i2])
C[v_i0, v_i1, v_i2] = T.Cast("float32", C_temp[v_i0, v_i1, v_i2])

# fmt: off
@I.ir_module
class Expected:
@T.prim_func(private=True)
def main(var_A: T.handle, B: T.Buffer((T.int64(1), T.int64(1), T.int64(4096)), "float16"), var_C: T.handle):
T.func_attr({"tir.is_scheduled": 1, "tir.noalias": T.bool(True)})
vocab_size = T.int64()
A = T.match_buffer(var_A, (T.int64(4096), vocab_size), "float16")
C = T.match_buffer(var_C, (T.int64(1), T.int64(1), vocab_size))
# with T.block("root"):
C_temp_local = T.alloc_buffer((T.int64(1), T.int64(1), vocab_size), "float16", scope="local")
C_temp_rf_local = T.alloc_buffer((T.int64(16), T.int64(1), T.int64(1), vocab_size), "float16", scope="local")
for ax0_fused_0 in T.thread_binding(vocab_size, thread="blockIdx.x"):
for ax0_fused_1 in T.thread_binding(T.int64(1), thread="threadIdx.x"):
for ax1_fused_1 in T.thread_binding(T.int64(16), thread="threadIdx.y"):
with T.block("matmul_rf_init"):
vax1_fused_1 = T.axis.spatial(T.int64(16), ax1_fused_1)
v0 = T.axis.spatial(vocab_size, ax0_fused_0 + ax0_fused_1)
T.reads()
T.writes(C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0])
C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0] = T.float16(0)
for ax1_fused_0, u in T.grid(T.int64(256), 1):
with T.block("matmul_rf_update"):
vax1_fused_1 = T.axis.spatial(T.int64(16), ax1_fused_1)
v0 = T.axis.spatial(vocab_size, ax0_fused_0 + ax0_fused_1)
vax1_fused_0 = T.axis.reduce(T.int64(256), ax1_fused_0)
T.reads(C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0], B[T.int64(0), T.int64(0), vax1_fused_0 * T.int64(16) + vax1_fused_1], A[vax1_fused_0 * T.int64(16) + vax1_fused_1, v0])
T.writes(C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0])
C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0] = C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0] + B[T.int64(0), T.int64(0), vax1_fused_0 * T.int64(16) + vax1_fused_1] * A[vax1_fused_0 * T.int64(16) + vax1_fused_1, v0]
for ax1_fused in T.thread_binding(T.int64(1), thread="threadIdx.x"):
for ax0 in T.thread_binding(T.int64(16), thread="threadIdx.y"):
with T.block("matmul"):
vax1_fused_1, v0 = T.axis.remap("RS", [ax0, ax0_fused_0])
T.reads(C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0])
T.writes(C_temp_local[T.int64(0), T.int64(0), v0])
with T.init():
C_temp_local[T.int64(0), T.int64(0), v0] = T.float16(0)
C_temp_local[T.int64(0), T.int64(0), v0] = C_temp_local[T.int64(0), T.int64(0), v0] + C_temp_rf_local[vax1_fused_1, T.int64(0), T.int64(0), v0]
for ax0_fused_0_1 in T.thread_binding(T.int64(1), thread="threadIdx.x"):
for ax0_fused_1 in range(T.int64(1)):
with T.block("epilogue"):
v0 = T.axis.spatial(vocab_size, ax0_fused_0)
T.reads(C_temp_local[T.int64(0), T.int64(0), v0])
T.writes(C[T.int64(0), T.int64(0), v0])
C[T.int64(0), T.int64(0), v0] = T.Cast("float32", C_temp_local[T.int64(0), T.int64(0), v0])
# fmt: on

with Target("nvidia/geforce-rtx-3090-ti"):
mod = dl.ApplyDefaultSchedule(dl.gpu.Reduction())(Module) # pylint: disable=not-callable
assert_structural_equal(mod, Expected)


if __name__ == "__main__":
tvm.testing.main()