Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 28 additions & 11 deletions python/tvm/relay/frontend/paddlepaddle.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,12 +203,23 @@ def convert_batch_norm(g, op, block):
mean_name = op.input("Mean")[0]
variance_name = op.input("Variance")[0]
epsilon = op.attr("epsilon")
data_layout = op.attr("data_layout")

if data_layout == "NCHW":
axis = 1
elif data_layout == "NHWC":
axis = 3
else:
msg = f'Value {data_layout} in attribute "batch_norm" of operator Conv is not "valid."'
raise tvm.error.OpAttributeInvalid(msg)

out = _op.nn.batch_norm(
g.get_node(ipt_name),
g.get_node(scale_name),
g.get_node(bias_name),
g.get_node(mean_name),
g.get_node(variance_name),
g.get_node(ipt_name), # data
g.get_node(scale_name), # gamma
g.get_node(bias_name), # beta
g.get_node(mean_name), # moving_mean
g.get_node(variance_name), # moving_var
axis=axis,
epsilon=epsilon,
)
g.add_node(op.output("Y")[0], out[0])
Expand Down Expand Up @@ -1208,12 +1219,12 @@ def convert_matmul(g, op, block):

# This implemention almost keeps same with ONNX
# Need to check input shape as batch matmul must be supported.
a_shape = shape_of(inputs[0], dtype="int32")
a_rank = infer_shape(a_shape)[0]
b_shape = shape_of(inputs[1], dtype="int32")
b_rank = infer_shape(b_shape)[0]
a_rank = len(a_shape)
b_rank = len(b_shape)
# When performing a batch matmul, we need to properly handle N-dim shapes.
if a_rank > 2 or b_rank > 2:
a_shape = shape_of(inputs[0], dtype="int32")
b_shape = shape_of(inputs[1], dtype="int32")

def flatten_to_nd(x, x_shape, nd=3):
ndims = infer_shape(x_shape)[0]
Expand Down Expand Up @@ -1524,10 +1535,16 @@ def convert_pool2d(g, op, block):
padding=paddings,
ceil_mode=ceil_mode,
count_include_pad=not exclusive,
layout=data_format,
)
else:
out = getattr(_op.nn, op_map[pooling_type])(
input_x, pool_size=ksize, strides=strides, padding=paddings, ceil_mode=ceil_mode
input_x,
pool_size=ksize,
strides=strides,
padding=paddings,
ceil_mode=ceil_mode,
layout=data_format,
)
else:
out = getattr(_op.nn, "adaptive_" + op_map[pooling_type])(
Expand Down Expand Up @@ -2973,7 +2990,7 @@ def from_program(self, program, shape_dict, scope):
if scope is None:
import paddle

scope = paddle.fluid.global_scope()
scope = paddle.static.global_scope()
self.check_unsupported_ops(program)
self.extract_parameters(program, scope)
self.ops_to_relay(program)
Expand Down