Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 53 additions & 26 deletions python/tvm/relay/frontend/mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,13 @@ def _stable_softrelu(x):
raise RuntimeError("Do not support act_type: {}".format(act_type))


def _mx_compare(new_op, wrapper):
def impl(inputs, attrs):
dtype = ir_pass.infer_type(inputs[0]).checked_type.dtype
return wrapper(new_op)(inputs, attrs).astype(dtype)
return impl


def _mx_conv2d(inputs, attrs):
kernel_size = attrs.get_int_tuple("kernel")
if len(kernel_size) != 2:
Expand Down Expand Up @@ -321,32 +328,52 @@ def _mx_roi_align(inputs, attrs):
]

_convert_map = {
"_copy" : _rename(_op.copy),
"relu" : _rename(_op.nn.relu),
"broadcast_add" : _rename(_op.add),
"broadcast_sub" : _rename(_op.subtract),
"broadcast_mul" : _rename(_op.multiply),
"broadcast_div" : _rename(_op.divide),
"elemwise_add" : _rename(_op.add),
"elemwise_sub" : _rename(_op.subtract),
"elemwise_mul" : _rename(_op.multiply),
"elemwise_div" : _rename(_op.divide),
"flatten" : _rename(_op.nn.batch_flatten),
"Flatten" : _rename(_op.nn.batch_flatten),
"_plus_scalar" : _binop_scalar(_op.add),
"__add_scalar__": _binop_scalar(_op.add),
"__sub_scalar__": _binop_scalar(_op.subtract),
"_minus_scalar" : _binop_scalar(_op.subtract),
"__mul_scalar__": _binop_scalar(_op.multiply),
"_mul_scalar" : _binop_scalar(_op.multiply),
"__div_scalar__": _binop_scalar(_op.divide),
"_div_scalar" : _binop_scalar(_op.divide),
"__pow_scalar__": _binop_scalar(_op.power),
"_rminus_scalar": _rbinop_scalar(_op.subtract),
"__rsub_scalar__": _rbinop_scalar(_op.subtract),
"_rdiv_scalar" : _rbinop_scalar(_op.divide),
"__rdiv_scalar__" : _rbinop_scalar(_op.divide),
"__rpow_scalar__": _rbinop_scalar(_op.power),
"_copy" : _rename(_op.copy),
"relu" : _rename(_op.nn.relu),
"broadcast_add" : _rename(_op.add),
"broadcast_sub" : _rename(_op.subtract),
"broadcast_mul" : _rename(_op.multiply),
"broadcast_div" : _rename(_op.divide),
"broadcast_mod" : _rename(_op.mod),
"broadcast_maximum" : _rename(_op.maximum),
"broadcast_minimum" : _rename(_op.minimum),
"broadcast_equal" : _mx_compare(_op.equal, _rename),
"broadcast_not_equal" : _mx_compare(_op.not_equal, _rename),
"broadcast_greater" : _mx_compare(_op.greater, _rename),
"broadcast_greater_equal": _mx_compare(_op.greater_equal, _rename),
"broadcast_lesser" : _mx_compare(_op.less, _rename),
"broadcast_lesser_equal" : _mx_compare(_op.less_equal, _rename),
"elemwise_add" : _rename(_op.add),
"elemwise_sub" : _rename(_op.subtract),
"elemwise_mul" : _rename(_op.multiply),
"elemwise_div" : _rename(_op.divide),
"_maximum" : _rename(_op.maximum),
"_minimum" : _rename(_op.minimum),
"flatten" : _rename(_op.nn.batch_flatten),
"Flatten" : _rename(_op.nn.batch_flatten),
"__add_scalar__" : _binop_scalar(_op.add),
"_plus_scalar" : _binop_scalar(_op.add),
"__sub_scalar__" : _binop_scalar(_op.subtract),
"_minus_scalar" : _binop_scalar(_op.subtract),
"__mul_scalar__" : _binop_scalar(_op.multiply),
"_mul_scalar" : _binop_scalar(_op.multiply),
"__div_scalar__" : _binop_scalar(_op.divide),
"_div_scalar" : _binop_scalar(_op.divide),
"__pow_scalar__" : _binop_scalar(_op.power),
"_power_scalar" : _binop_scalar(_op.power),
"__rsub_scalar__" : _rbinop_scalar(_op.subtract),
"_rminus_scalar" : _rbinop_scalar(_op.subtract),
"__rdiv_scalar__" : _rbinop_scalar(_op.divide),
"_rdiv_scalar" : _rbinop_scalar(_op.divide),
"__rpow_scalar__" : _rbinop_scalar(_op.power),
"_equal_scalar" : _mx_compare(_op.equal, _binop_scalar),
"_not_equal_scalar" : _mx_compare(_op.not_equal, _binop_scalar),
"_greater_scalar" : _mx_compare(_op.greater, _binop_scalar),
"_greater_equal_scalar" : _mx_compare(_op.greater_equal, _binop_scalar),
"_lesser_scalar" : _mx_compare(_op.less, _binop_scalar),
"_lesser_equal_scalar" : _mx_compare(_op.less_equal, _binop_scalar),
"_maximum_scalar" : _binop_scalar(_op.maximum),
"_minimum_scalar" : _binop_scalar(_op.minimum),
# reduction ops
"max" : _reduce(_op.max),
"min" : _reduce(_op.min),
Expand Down
83 changes: 83 additions & 0 deletions tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
import operator

import tvm
from tvm.contrib import graph_runtime
Expand Down Expand Up @@ -256,6 +257,85 @@ def verify(start, stop, step):
verify(20, 1, -1)
verify(20, 1, -1.5)

def _mx_symbol(F, op_name, inputs):
op = getattr(F, op_name)
return op(*inputs)

def test_forward_broadcast_ops():
for op in ["broadcast_add", "broadcast_sub", "broadcast_mul",
"broadcast_div", "broadcast_mod", "broadcast_maximum",
"broadcast_minimum", "broadcast_equal", "broadcast_not_equal",
"broadcast_greater", "broadcast_greater_equal",
"broadcast_lesser", "broadcast_lesser_equal"]:
a_shape = (3, 4, 5)
b_shape = (4, 5)
if op == "broadcast_mod":
dtype = 'int32'
a_np = np.random.randint(1, 100, size=a_shape).astype(dtype)
b_np = np.random.randint(1, 100, size=b_shape).astype(dtype)
else:
dtype = 'float32'
a_np = np.random.uniform(size=a_shape).astype(dtype)
b_np = np.random.uniform(size=b_shape).astype(dtype)
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), mx.sym.var('b')])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)])
shapes = {'a': a_shape, 'b': b_shape}
new_sym, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(new_sym)(a_np, b_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())

def test_forward_elemwise_ops():
for op in ["elemwise_add", "elemwise_sub", "elemwise_mul",
"elemwise_div", "maximum", "minimum"]:
shape = (3, 4, 5)
dtype = 'float32'
a_np = np.random.uniform(size=shape).astype(dtype)
b_np = np.random.uniform(size=shape).astype(dtype)
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), mx.sym.var('b')])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)])
shapes = {'a': shape, 'b': shape}
new_sym, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(new_sym)(a_np, b_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())

def test_forward_scalar_ops():
for op in [operator.add, operator.sub, operator.mul, operator.truediv,
operator.pow, operator.lt, operator.le, operator.eq,
operator.ne, operator.gt, operator.ge]:
dtype='float32'
a_shape = (3, 4, 5)
a_np = np.random.uniform(size=a_shape).astype(dtype)
b_scalar = 2.3
mx_sym = op(mx.sym.var('a'), b_scalar)
ref_res = op(mx.nd.array(a_np), b_scalar)
shapes = {'a': a_shape}
new_sym, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(new_sym)(a_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())
for op in ["maximum", "minimum"]:
dtype='float32'
a_shape = (3, 4, 5)
a_np = np.random.uniform(size=a_shape).astype(dtype)
b_scalar = 2.3
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), b_scalar])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), b_scalar])
shapes = {'a': a_shape}
new_sym, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(new_sym)(a_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())


if __name__ == '__main__':
test_forward_mlp()
Expand All @@ -280,3 +360,6 @@ def verify(start, stop, step):
test_forward_argmin()
test_forward_where()
test_forward_arange()
test_forward_broadcast_ops()
test_forward_elemwise_ops()
test_forward_scalar_ops()