|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +# Standard Library |
| 5 | +# In[1]: |
| 6 | +import argparse |
| 7 | +import logging |
| 8 | +import os |
| 9 | +from functools import partial |
| 10 | +from typing import List, Optional, Tuple, Union |
| 11 | + |
| 12 | +# Third Party |
| 13 | +import numpy as np |
| 14 | +import pandas as pd |
| 15 | +import torch |
| 16 | +import torch.nn as nn |
| 17 | +from PIL import Image |
| 18 | +from sklearn.metrics import roc_auc_score |
| 19 | +from torch import Tensor |
| 20 | +from torch.autograd import Variable |
| 21 | +from torch.optim import Adam |
| 22 | +from torch.utils.data import DataLoader, Dataset |
| 23 | +from torchvision import transforms |
| 24 | +from torchvision.models.resnet import BasicBlock, ResNet |
| 25 | + |
| 26 | +# First Party |
| 27 | +from smdebug.profiler.utils import str2bool |
| 28 | +from smdebug.pytorch import get_hook |
| 29 | + |
| 30 | +DATA_FOLDER = "/home/ubuntu/pytorch_tests/histo" |
| 31 | +LABELS = f"{DATA_FOLDER}/train_labels.csv" |
| 32 | +TRAIN_IMAGES_FOLDER = f"{DATA_FOLDER}/train" |
| 33 | +USE_GPU = torch.cuda.is_available() |
| 34 | +logging.basicConfig(level="INFO") |
| 35 | +logger = logging.getLogger() |
| 36 | + |
| 37 | + |
| 38 | +def read_labels(path_to_file: str) -> pd.DataFrame: |
| 39 | + labels = pd.read_csv(path_to_file) |
| 40 | + return labels |
| 41 | + |
| 42 | + |
| 43 | +def format_labels_for_dataset(labels: pd.DataFrame) -> np.array: |
| 44 | + return labels["label"].values.reshape(-1, 1) |
| 45 | + |
| 46 | + |
| 47 | +def format_path_to_images_for_dataset(labels: pd.DataFrame, path: str) -> List: |
| 48 | + return [os.path.join(path, f"{f}.tif") for f in labels["id"].values] |
| 49 | + |
| 50 | + |
| 51 | +def train_valid_split(df: pd.DataFrame) -> Tuple: |
| 52 | + limit_df = 50000 |
| 53 | + df = df.sample(n=df.shape[0]) |
| 54 | + df = df.iloc[:limit_df] |
| 55 | + split = 40000 |
| 56 | + train = df.iloc[:split] |
| 57 | + valid = df.iloc[:split] |
| 58 | + return train, valid |
| 59 | + |
| 60 | + |
| 61 | +class MainDataset(Dataset): |
| 62 | + def __init__(self, x_dataset: Dataset, y_dataset: Dataset, x_tfms: Optional = None): |
| 63 | + self.x_dataset = x_dataset |
| 64 | + self.y_dataset = y_dataset |
| 65 | + self.x_tfms = x_tfms |
| 66 | + |
| 67 | + def __len__(self) -> int: |
| 68 | + return self.x_dataset.__len__() |
| 69 | + |
| 70 | + def __getitem__(self, index: int) -> Tuple: |
| 71 | + x = self.x_dataset[index] |
| 72 | + y = self.y_dataset[index] |
| 73 | + if self.x_tfms is not None: |
| 74 | + x = self.x_tfms(x) |
| 75 | + return x, y |
| 76 | + |
| 77 | + |
| 78 | +class ImageDataset(Dataset): |
| 79 | + def __init__(self, paths_to_imgs: List): |
| 80 | + self.paths_to_imgs = paths_to_imgs |
| 81 | + |
| 82 | + def __len__(self) -> int: |
| 83 | + return len(self.paths_to_imgs) |
| 84 | + |
| 85 | + def __getitem__(self, index: int) -> Image.Image: |
| 86 | + img = Image.open(self.paths_to_imgs[index]) |
| 87 | + return img |
| 88 | + |
| 89 | + |
| 90 | +class LabelDataset(Dataset): |
| 91 | + def __init__(self, labels: List): |
| 92 | + self.labels = labels |
| 93 | + |
| 94 | + def __len__(self) -> int: |
| 95 | + return len(self.labels) |
| 96 | + |
| 97 | + def __getitem__(self, index: int) -> int: |
| 98 | + return self.labels[index] |
| 99 | + |
| 100 | + |
| 101 | +def to_gpu(tensor): |
| 102 | + return tensor.cuda() if USE_GPU else tensor |
| 103 | + |
| 104 | + |
| 105 | +def T(tensor): |
| 106 | + if not torch.is_tensor(tensor): |
| 107 | + tensor = torch.FloatTensor(tensor) |
| 108 | + else: |
| 109 | + tensor = tensor.type(torch.FloatTensor) |
| 110 | + if USE_GPU: |
| 111 | + tensor = to_gpu(tensor) |
| 112 | + return tensor |
| 113 | + |
| 114 | + |
| 115 | +def predict(model, dataloader): |
| 116 | + model.eval() |
| 117 | + y_true, y_hat = [], [] |
| 118 | + with torch.no_grad(): |
| 119 | + for x, y in dataloader: |
| 120 | + x = Variable(T(x)) |
| 121 | + y = Variable(T(y)) |
| 122 | + output = model(x) |
| 123 | + y_true.append(to_numpy(y)) |
| 124 | + y_hat.append(to_numpy(output)) |
| 125 | + return y_true, y_hat |
| 126 | + |
| 127 | + |
| 128 | +def iteration_trigger(iteration, every_x_iterations): |
| 129 | + if every_x_iterations == 1: |
| 130 | + return True |
| 131 | + elif iteration > 0 and iteration % every_x_iterations == 0: |
| 132 | + return True |
| 133 | + else: |
| 134 | + return False |
| 135 | + |
| 136 | + |
| 137 | +def init_triggers(step=1, valid=10, train=10): |
| 138 | + do_step_trigger = partial(iteration_trigger, every_x_iterations=step) |
| 139 | + valid_loss_trigger = partial(iteration_trigger, every_x_iterations=valid) |
| 140 | + train_loss_trigger = partial(iteration_trigger, every_x_iterations=train) |
| 141 | + return do_step_trigger, valid_loss_trigger, train_loss_trigger |
| 142 | + |
| 143 | + |
| 144 | +def auc_writer(y_true, y_hat, iteration): |
| 145 | + try: |
| 146 | + auc = roc_auc_score(np.vstack(y_true), np.vstack(y_hat)) |
| 147 | + except: |
| 148 | + auc = -1 |
| 149 | + logger.info(f"iteration: {iteration}, auc: {auc}") |
| 150 | + |
| 151 | + |
| 152 | +def create_resnet9_model(output_dim: int = 1) -> nn.Module: |
| 153 | + model = ResNet(BasicBlock, [1, 1, 1, 1]) |
| 154 | + in_features = model.fc.in_features |
| 155 | + model.avgpool = nn.AdaptiveAvgPool2d(1) |
| 156 | + model.fc = nn.Linear(in_features, output_dim) |
| 157 | + model = to_gpu(model) |
| 158 | + return model |
| 159 | + |
| 160 | + |
| 161 | +def to_numpy(tensor: Union[Tensor, Image.Image, np.array]) -> np.ndarray: |
| 162 | + if type(tensor) == np.array or type(tensor) == np.ndarray: |
| 163 | + return np.array(tensor) |
| 164 | + elif type(tensor) == Image.Image: |
| 165 | + return np.array(tensor) |
| 166 | + elif type(tensor) == Tensor: |
| 167 | + return tensor.cpu().detach().numpy() |
| 168 | + else: |
| 169 | + msg = "Input parameter is not of a valid datatype." |
| 170 | + raise ValueError(msg) |
| 171 | + |
| 172 | + |
| 173 | +def train_one_epoch( |
| 174 | + model, |
| 175 | + train_dataloader, |
| 176 | + valid_dataloader, |
| 177 | + loss, |
| 178 | + optimizer, |
| 179 | + do_step_trigger, |
| 180 | + valid_loss_trigger, |
| 181 | + train_loss_trigger, |
| 182 | +): |
| 183 | + model.train() |
| 184 | + y_true_train, y_hat_train = [], [] |
| 185 | + for iteration, (x, y) in enumerate(train_dataloader): |
| 186 | + x = Variable(T(x), requires_grad=True) |
| 187 | + y = Variable(T(y), requires_grad=True) |
| 188 | + output = model(x) |
| 189 | + y_true_train.append(to_numpy(y)) |
| 190 | + y_hat_train.append(to_numpy(output)) |
| 191 | + loss_values = loss(output, y) |
| 192 | + loss_values.backward() |
| 193 | + if do_step_trigger(iteration): |
| 194 | + optimizer.step() |
| 195 | + optimizer.zero_grad() |
| 196 | + if train_loss_trigger(iteration): |
| 197 | + auc_writer(y_true_train, y_hat_train, iteration) |
| 198 | + y_true_train, y_hat_train = [], [] |
| 199 | + if valid_loss_trigger(iteration): |
| 200 | + y_true, y_hat = predict(model, valid_dataloader) |
| 201 | + auc_writer(y_true, y_hat, iteration) |
| 202 | + return |
| 203 | + |
| 204 | + |
| 205 | +def train( |
| 206 | + model, |
| 207 | + train_dataloader, |
| 208 | + valid_dataloader, |
| 209 | + loss, |
| 210 | + optimizer, |
| 211 | + do_step_trigger, |
| 212 | + valid_loss_trigger, |
| 213 | + train_loss_trigger, |
| 214 | + epoch, |
| 215 | +): |
| 216 | + print(f"Training the model for {epoch}") |
| 217 | + for i in range(epoch): |
| 218 | + train_one_epoch( |
| 219 | + model, |
| 220 | + train_dataloader, |
| 221 | + valid_dataloader, |
| 222 | + loss, |
| 223 | + optimizer, |
| 224 | + do_step_trigger, |
| 225 | + valid_loss_trigger, |
| 226 | + train_loss_trigger, |
| 227 | + ) |
| 228 | + return |
| 229 | + |
| 230 | + |
| 231 | +def main(): |
| 232 | + parser = argparse.ArgumentParser(description="Training with histopathologic data") |
| 233 | + parser.add_argument("--batch_size", type=int, default=512) |
| 234 | + parser.add_argument("--epoch", type=int, default=1) |
| 235 | + parser.add_argument("--gpu", type=str2bool, default=True) |
| 236 | + parser.add_argument("--workers", type=int, default=4) |
| 237 | + parser.add_argument("--pin_memory", type=str2bool, default=True) |
| 238 | + parser.add_argument("--data_folder", type=str, default="/opt/ml/input/data/training") |
| 239 | + |
| 240 | + args = parser.parse_args() |
| 241 | + |
| 242 | + global DATA_FOLDER |
| 243 | + DATA_FOLDER = args.data_folder |
| 244 | + global LABELS |
| 245 | + LABELS = f"{DATA_FOLDER}/train_labels.csv" |
| 246 | + global TRAIN_IMAGES_FOLDER |
| 247 | + TRAIN_IMAGES_FOLDER = f"{DATA_FOLDER}/train" |
| 248 | + global USE_GPU |
| 249 | + if args.gpu: |
| 250 | + USE_GPU = torch.cuda.is_available() |
| 251 | + else: |
| 252 | + USE_GPU = False |
| 253 | + |
| 254 | + hook = get_hook(create_if_not_exists=True) |
| 255 | + labels = read_labels(LABELS) |
| 256 | + train, valid = train_valid_split(labels) |
| 257 | + |
| 258 | + train_labels = format_labels_for_dataset(train) |
| 259 | + valid_labels = format_labels_for_dataset(valid) |
| 260 | + |
| 261 | + train_images = format_path_to_images_for_dataset(train, TRAIN_IMAGES_FOLDER) |
| 262 | + valid_images = format_path_to_images_for_dataset(valid, TRAIN_IMAGES_FOLDER) |
| 263 | + |
| 264 | + train_images_dataset = ImageDataset(train_images) |
| 265 | + valid_images_dataset = ImageDataset(valid_images) |
| 266 | + train_labels_dataset = LabelDataset(train_labels) |
| 267 | + valid_labels_dataset = LabelDataset(valid_labels) |
| 268 | + |
| 269 | + x_tfms = transforms.Compose( |
| 270 | + [ |
| 271 | + transforms.ToTensor(), |
| 272 | + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
| 273 | + ] |
| 274 | + ) |
| 275 | + |
| 276 | + train_dataset = MainDataset(train_images_dataset, train_labels_dataset, x_tfms) |
| 277 | + valid_dataset = MainDataset(valid_images_dataset, valid_labels_dataset, x_tfms) |
| 278 | + |
| 279 | + shuffle = True |
| 280 | + batch_size = args.batch_size |
| 281 | + num_workers = args.workers |
| 282 | + |
| 283 | + train_dataloader = DataLoader( |
| 284 | + train_dataset, |
| 285 | + batch_size=batch_size, |
| 286 | + shuffle=shuffle, |
| 287 | + num_workers=num_workers, |
| 288 | + pin_memory=args.pin_memory, |
| 289 | + ) |
| 290 | + valid_dataloader = DataLoader( |
| 291 | + valid_dataset, |
| 292 | + batch_size=batch_size, |
| 293 | + shuffle=shuffle, |
| 294 | + num_workers=num_workers, |
| 295 | + pin_memory=args.pin_memory, |
| 296 | + ) |
| 297 | + |
| 298 | + resnet9 = create_resnet9_model(output_dim=1) |
| 299 | + |
| 300 | + lr = 1e-3 |
| 301 | + optimizer = Adam(resnet9.parameters(), lr=lr) |
| 302 | + loss = nn.BCEWithLogitsLoss() |
| 303 | + |
| 304 | + do_step_trigger, valid_loss_trigger, train_loss_trigger = init_triggers(1, 20, 10) |
| 305 | + |
| 306 | + train_one_epoch( |
| 307 | + resnet9, |
| 308 | + train_dataloader, |
| 309 | + valid_dataloader, |
| 310 | + loss, |
| 311 | + optimizer, |
| 312 | + do_step_trigger, |
| 313 | + valid_loss_trigger, |
| 314 | + train_loss_trigger, |
| 315 | + ) |
| 316 | + print(f"Training complete.") |
| 317 | + |
| 318 | + |
| 319 | +if __name__ == "__main__": |
| 320 | + main() |
0 commit comments