diff --git a/docs/sagemaker.md b/docs/sagemaker.md index 94d93b837..01c03568b 100644 --- a/docs/sagemaker.md +++ b/docs/sagemaker.md @@ -27,9 +27,9 @@ Here's a list of frameworks and versions which support this experience. | Framework | Version | | --- | --- | -| [TensorFlow](tensorflow.md) | 1.15 | +| [TensorFlow](tensorflow.md) | 1.15, 2.1 | | [MXNet](mxnet.md) | 1.6 | -| [PyTorch](pytorch.md) | 1.3 | +| [PyTorch](pytorch.md) | 1.4, 1.5 | | [XGBoost](xgboost.md) | >=0.90-2 [As Built-in algorithm](xgboost.md#use-xgboost-as-a-built-in-algorithm)| More details for the deep learning frameworks on which containers these are can be found here: [SageMaker Framework Containers](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html) and [AWS Deep Learning Containers](https://aws.amazon.com/machine-learning/containers/). You do not have to specify any training container image if you want to use them on SageMaker. You only need to specify the version above to use these containers. @@ -40,11 +40,11 @@ This library `smdebug` itself supports versions other than the ones listed above | Framework | Versions | | --- | --- | -| [TensorFlow](tensorflow.md) | 1.13, 1.14, 1.15 | +| [TensorFlow](tensorflow.md) | 1.13, 1.14, 1.15, 2.1, 2.2 | | Keras (with TensorFlow backend) | 2.3 | | [MXNet](mxnet.md) | 1.4, 1.5, 1.6 | -| [PyTorch](pytorch.md) | 1.2, 1.3 | -| [XGBoost](xgboost.md) | [As Framework](xgboost.md#use-xgboost-as-a-framework) | +| [PyTorch](pytorch.md) | 1.2, 1.3, 1.4, 1.5 | +| [XGBoost](xgboost.md) | 0.90-2, 1.0-1 | #### Setting up SageMaker Debugger with your script on your container