
Audit
Celestia

Presented by:

OtterSec contact@osec.io

JamesWang james.wang@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:james.wang@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-CLST-ADV-00 [high] | Invariant Violation . 6
OS-CLST-ADV-01 [high] | Incorrect Validations . 8

05 General Findings 10
OS-CLST-SUG-00 | Overflow Of EVM Stack . 11
OS-CLST-SUG-01 | Recreation Of Pruned Data Commitments 12
OS-CLST-SUG-02 | Integer Overflow . 13
OS-CLST-SUG-03 | Faulty Range Check . 14
OS-CLST-SUG-04 | Unused Functions . 15
OS-CLST-SUG-05 | Code Maturity . 16

Appendices

A Vulnerability Rating Scale 17

B Procedure 18

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 18

01 | Executive Summary

Overview
Celestia engaged OtterSec to perform an assessment of the celestia-app and
blobstream-contracts programs. This assessment was conducted between October 17th and
November 16th, 2023. For more information on our auditing methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 8 findings in total.

In particular, we discovered several vulnerabilities, including an invariant violation in which the pre-
condition for the function responsible for retrieving the path length from the key is not fulfilled in a specific
case, resulting in a revert (OS-CLST-ADV-00). Another issue is related to incorrect validation during Merkle
proof verification (OS-CLST-ADV-01). We further highlighted a stack overflow scenario due to utilizing
recursive calls (OS-CLST-SUG-00).

We also recommended removing unused functions (OS-CLST-SUG-04) andmodifying the code to adhere
to coding best practices (OS-CLST-SUG-05).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 18

02 | Scope
The source code was delivered to us in a git repository at github.com/celestiaorg/celestia-app/tree/main.
This audit was performed against v3.1.0 and v1.3.0.

A brief description of the programs is as follows:

Name Description

celestia-app A blockchain application built utilizing parts of the Cosmos stack that imple-
ment the blobstream statemachine, which creates attestations for EVM chains.
The attestations are signed by orchestrators and submitted by relayers.

blobstream-contracts Enables the relay of Celestia block header data roots to an EVM chain in one
direction. It does not directly bridge assets such as fungible or non-fungible
tokens, and it is unable to sendmessages from the EVM chain back to Celestia.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 18

https://github.com/celestiaorg/celestia-app/tree/main
https://github.com/celestiaorg/blobstream-contracts/releases/tag/v3.1.0
https://github.com/celestiaorg/celestia-app/releases/tag/v1.3.0

03 | Findings
Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 0
Low 0

Informational 6

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 18

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-CLST-ADV-00 High Resolved The numLeaves > 1 pre-condition for
pathLengthFromKey is violated when numLeaves is
not a power of two.

OS-CLST-ADV-01 High Resolved verifyInner performs incorrect validations during
Merkle proof verification.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 18

Celestia Audit 04 | Vulnerabilities

OS-CLST-ADV-00 [high]| Invariant Violation

Description

pathLengthFromKey calculates the path length from the root to a specific leaf in a Merkle tree. It
considers the leaf’s position in the left or right subtree, utilizing the starting bit, and recursively calculates
the path length. However, there is a precondition violation in the function, where numLeaves should
always be greater than one.

Utils.sol SOLIDITY

/// @notice Calculate the length of the path to a leaf
/// @param key: The key of the leaf
/// @param numLeaves: The total number of leaves in the tree
/// @return pathLength : The length of the path to the leaf
/// @dev A precondition to this function is that `numLeaves > 1`, so that

`(pathLength - 1)` does not cause an underflow when pathLength = 0.↪→

function pathLengthFromKey(uint256 key, uint256 numLeaves) pure returns (uint256
pathLength) {↪→

// Get the height of the left subtree. This is equal to the offset of the
starting bit of the path↪→

pathLength = Constants.MAX_HEIGHT - getStartingBit(numLeaves);
// Determine the number of leaves in the left subtree
uint256 numLeavesLeftSubTree = (1 << (pathLength - 1));
[...]
else {

return 1 + pathLengthFromKey(key - numLeavesLeftSubTree, numLeaves -
numLeavesLeftSubTree);↪→

}
}

This situation arises when numLeaves is not a power of two, resulting in an integer underflow in the
recursive calculation of the path length. In pathLengthFromKey, the call to getStartingBit dy-
namically determines the starting bit of the path based on the total number of leaves in the Merkle tree.
Consequently, if numLeaves is not a power of two, it eventually becomes one, violating the precondition.
Subsequently, in the recursive call, numLeaves changes to zero due to the subtraction of numLeaves
from numLeavesLeftSubTree.

Utils.sol SOLIDITY

function getStartingBit(uint256 numLeaves) pure returns (uint256 startingBit) {
startingBit = 0;
while ((1 << startingBit) < numLeaves) {

startingBit += 1;
}
return Constants.MAX_HEIGHT - startingBit;

}

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 18

Celestia Audit 04 | Vulnerabilities

ThevalueofnumLeaves is utilized indetermining theStartingBitwithingetStartingBit, where
the initial value ofStartingBit is set to zero. SincebothnumLeaves andStartingBit are zero, the
loopcondition ingetStartingBit is nevermet, andStartingBit remainsunaltered. Consequently,
getStartingBit returns zero, resulting in pathLength being zero. Therefore, when calculating
numLeavesLeftSubTree, pathLengthFromKey subtracts one from pathLength (which is zero),
resulting in an integer underflow.

Proof of Concept

1. pathLengthFromKey is called with numLeaves = 3 and key = 3.

2. The while loop in getStartingBit iterates two times, incrementing StartingBit to two,
before the loop condition fails.

3. Thus, pathLength becomes two and consequently numLeavesLeftSubTree becomes two.

4. The program executes the first recursive call where numLeaves becomes one (due to the subtrac-
tion with numLeavesLeftSubTree).

5. This time, the while loop in getStartingBit does not iterate even once as the loop condition
fails on the first iteration itself and returns zero.

6. Now,pathLengthbecomes zero, andwhile derivingnumLeavesLeftSubTree,pathLength
is subtracted by one. Since pathLength is zero, underflow occurs, and execution stops.

Remediation

Ensure that numLeaves is always a power of two when calling this function.

Patch

Resolved in fff73c2.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 18

https://github.com/celestiaorg/blobstream-contracts/commit/fff73c284b9b8d2aa11fc0259e8f49ecd5263138

Celestia Audit 04 | Vulnerabilities

OS-CLST-ADV-01 [high]| Incorrect Validations

Description

verifyInner verifies the inclusionof an innernode (non-leaf) in aMerkle tree. However, there is an issue
related to comparing the key’s position within the subtree. The current condition incorrectly compares
(proof.key - subTreeStartIndex) to 1 << (height - heightOffset - 1). The in-
tent is to check whether proof.key is in the subtree’s first or second half. Thus, instead of comparing
against the midpoint of the subtree, it compares against the difference between the height and height
offset, compromising the integrity of the Merkle proof verification process.

NamespaceMerkleTree.sol SOLIDITY

function verifyInner(
[...]
) internal pure returns (bool) {

[...]
while (true) {

[...]
// Determine if the key is in the first or the second half of
// the subtree.
if (proof.key - subTreeStartIndex < (1 << (height - heightOffset - 1))) {

node = nodeDigest(node, proof.sideNodes[height - heightOffset - 1]);
}
[...]

}
[...]

}

Moreover, an additional erroneous condition assesses whether sufficient side nodes exist in the proof for
verification. This condition pertains to comparing the length of proof.sideNodes, where
proof.sideNodes is compared to height - 1 instead of height - heightOffset - 1, ac-
curately representing the minimum required number of side nodes for the current height.

NamespaceMerkleTree.sol SOLIDITY

function verifyInner(
[...]
) internal pure returns (bool) {

[...]
if (stableEnd != proof.numLeaves - 1) {

if (proof.sideNodes.length <= height - 1) {
return false;

}
}
[...]

}

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 18

Celestia Audit 04 | Vulnerabilities

All production code at the time of this audit callsverifyInnerwithstartingHeight = 1, so there
are no immediate impacts. However, we still recommend fixing it to prevent future issues.

Remediation

Adjust 1 << (height - heightOffset - 1) to 1 << (height - 1) in the initial condition,
and for the subsequent condition, modify the comparison to check againstheight - heightOffset
- 1 instead of height - 1.

Patch

Resolved in 86cbb51.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 18

https://github.com/celestiaorg/blobstream-contracts/commit/86cbb5165711761dc6dc005ed421a21dba14f431

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-CLST-SUG-00 _computeRootmay surpass the Ethereum virtual machine’s stack limit due to
the recursive calls.

OS-CLST-SUG-01 Pruning of old DataCommitments due to an extended block may recreate data
commitments for past windows.

OS-CLST-SUG-02 verifyMultiHashesmay encounter an overflow issuewhen estimating the leaf
size of the subtree containing the proof range.

OS-CLST-SUG-03 GetDataCommitmentForHeight utilizes an incorrect operator.

OS-CLST-SUG-04 Removal of unutilized code to improve code readability.

OS-CLST-SUG-05 Suggestions regarding best coding practices.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-00 | Overflow Of EVM Stack

Description

The recursive structure of _computeRoot presents a potential risk of exhausting the stack on the
Ethereum virtual machine. A limited stack size constrains the Ethereum virtual machine, and each recur-
sive invocation consumes a specific portion of the stack space. In scenarios where the recursion depth
is substantial, mainly when the recursive function utilizes a significant number of local variables, as in
_computeRoot, this may surpass the Ethereum virtual machine’s stack limit, resulting in transaction
failure.

NamespaceMerkleTree.sol SOLIDITY

function _computeRoot(
NamespaceMerkleMultiproof memory proof,
NamespaceNode[] memory leafNodes,
uint256 begin,
uint256 end,
uint256 headProof,
uint256 headLeaves

) private pure returns (NamespaceNode memory, uint256, uint256, bool) {
[...]
// Recursively get left and right subtree
uint256 k = _getSplitPoint(end - begin);
(NamespaceNode memory left, uint256 newHeadProofLeft, uint256

newHeadLeavesLeft,) =↪→

_computeRoot(proof, leafNodes, begin, begin + k, headProof, headLeaves);
(NamespaceNode memory right, uint256 newHeadProof, uint256 newHeadLeaves, bool

rightIsNil) =↪→

_computeRoot(proof, leafNodes, begin + k, end, newHeadProofLeft,
newHeadLeavesLeft);↪→

[...]
}

It is important to note that this limit may differ among various Ethereum virtual machine implementations
or network setups. Consequently, opting for loop-based structures over deep recursion offers a better
solution to reduce stackusage. Furthermore, it isworthacknowledging that a comparable stackexhaustion
scenariomaymanifest inpathLengthFromKeydue to its recursivenature. However, given its utilization
of significantly fewer local variables, such a scenario is practically non-existent.

Remediation

Re-implement the logic with a loop instead of recursive calls to reduce stack utilization.

Patch

Celestia’s team decided to address this issue later due to the low probability of it occurring.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-01 | Recreation Of Pruned Data Commitments

Description

The issue concerns a potential edge case where the program prunes all past DataCommitments due to
the block being halted or stalled for an extended period. In such a circumstance, if the else branch in
NextDataCommitment is activated, it may regenerate data commitments for previous windows. While
this occurrence is deemed improbable, it may manifest if generating fewer than
DataCommitmentWindow commitments within AttestationExpiryTime.

keeper/keeper_data_commitment.go GO

// NextDataCommitment returns the next data commitment that can be written to
// state.
func (k Keeper) NextDataCommitment(ctx sdk.Context) (types.DataCommitment, error) {

[...]
else {

// only for the first data commitment range, which is: [1, data
commitment window + 1)↪→

beginBlock = 1
endBlock = dcWindow + 1

}

dataCommitment := types.NewDataCommitment(nonce, beginBlock, endBlock,
ctx.BlockTime())↪→

return *dataCommitment, nil
}

Remediation

Verify that the recreated commitment does not overlap with existing commitments or that the program
created it within a reasonable time frame from the current block time.

Patch

Celestia’s team decided to address this issue later due to the low probability of it occurring.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-02 | Integer Overflow

Description

There is a potential for overflow when calculating proofRangeSubtreeEstimate in
verifyMultiHashes. verifyMultiHashes calls _getSplitPoint internally to calculate the
split point.

NamespaceMerkleTree.so SOLIDITY

function verifyMultiHashes(
NamespaceNode memory root,
NamespaceMerkleMultiproof memory proof,
NamespaceNode[] memory leafNodes

) internal pure returns (bool) {
[...]
// estimate the leaf size of the subtree containing the proof range
uint256 proofRangeSubtreeEstimate = _getSplitPoint(proof.endKey) * 2;
if (proofRangeSubtreeEstimate < 1) {

proofRangeSubtreeEstimate = 1;
}
[...]

}

If proof.endKey is near the maximum value of a uint256 (2256 − 1), calculating
_getSplitPoint(proof.endKey) * 2may result in an overflow. This occurs as the product of
_getSplitPoint(proof.endKey), and twomay exceed the maximum value of a uint256. How-
ever, this scenario is highly impractical since getting as many nodes in a tree to trigger this overflow is
practically impossible.

Remediation

Ensure that the developers are aware of such a possibility.

Patch

Celestia’s team decided to address this issue later due to the low probability of it occurring.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-03 | Faulty Range Check

Description

In GetDataCommitmentForHeight, the condition: if latestDC.EndBlock < height com-
pares the end block of the latest data commitment (latestDC.EndBlock) with the provided height.
The intent is to check if the provided height falls within the range of the latest data commitment, where
the range is [BeginBlock, EndBlock).

keeper/keeper_data_commitment.go GO

// GetDataCommitmentForHeight returns the attestation containing the provided
height.↪→

func (k Keeper) GetDataCommitmentForHeight(ctx sdk.Context, height uint64)
(types.DataCommitment, error) {↪→

[...]
if latestDC.EndBlock < height {

return types.DataCommitment{}, errors.Wrap(
types.ErrDataCommitmentNotGenerated,
fmt.Sprintf(

"Latest height %d < %d",
latestDC.EndBlock,
height,

),
)

}
[...]

}

Thus, a problemoccurswhen the provided height equals the latest data commitment’sEndBlock. In this
instance, the height would be considered part of the range, which is incorrect given the range definition.

Remediation

Utilize the <= operator in the condition, ensuring it is still part of the range when the provided height
equals EndBlock.

Patch

Celestia’s team decided to address this issue later due to the low impact.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-04 | Unused Functions

Description

The following functions are unused and removing them improves readability:

1. NamespaceMerkleTree._nextSubtreeSize.

2. NamespaceMerkleTree._bitsTrailingZeroes.

3. keys.ConvertByteArrToString.

Remediation

Remove the unutilized functions.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 18

Celestia Audit 05 | General Findings

OS-CLST-SUG-05 | Code Maturity

Description

1. The comment in _getSplitPointmentions that ”x is always an unsigned int * 2,” but this state-
ment is incorrect, as the programmay it with x equal to 1, as observed in verifyMultiHashes.

NamespaceMerkleTree.sol SOLIDITY

function _getSplitPoint(uint256 x) private pure returns (uint256) {
// Note: since `x` is always an unsigned int * 2, the only way for this
// to be violated is if the input == 0. Since the input is the end
// index exclusive, an input of 0 is guaranteed to be invalid (it would
// be a proof of inclusion of nothing, which is vacuous).
[...]

}

2. The utilization of params is deprecated, as indicated here. Store params directly in the module
store instead.

3. The comment inGetCurrentValset indicates the scenariowhereavalidatordoesnothaveanas-
sociated EVM address should never occur and is considered an indication of a potential vulnerability.
However, there is anattempt to recover from this situationbyderiving adefault Ethereumaddress for
the validator. Hence, it is advisable to check IsEVMAddressUnique before SetEVMAddress
to ensure that the Ethereum address is globally unique.

Remediation

Implement the suggestions mentioned above.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 18

https://github.com/cosmos/cosmos-sdk/tree/main/x/params#xparams

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 18

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-CLST-ADV-00 [high] | Invariant Violation
	OS-CLST-ADV-01 [high] | Incorrect Validations

	General Findings
	OS-CLST-SUG-00 | Overflow Of EVM Stack
	OS-CLST-SUG-01 | Recreation Of Pruned Data Commitments
	OS-CLST-SUG-02 | Integer Overflow
	OS-CLST-SUG-03 | Faulty Range Check
	OS-CLST-SUG-04 | Unused Functions
	OS-CLST-SUG-05 | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure

