@@ -49,9 +49,11 @@ secondary <- "#f9c80e"
4949tertiary <- "#177245" 
5050fourth_colour <- "#A393BF" 
5151fifth_colour <- "#2e8edd" 
52- colvec <- c(base = base, primary = primary, secondary = secondary, 
53-             tertiary = tertiary, fourth_colour = fourth_colour, 
54-             fifth_colour = fifth_colour) 
52+ colvec <- c( 
53+   base = base, primary = primary, secondary = secondary, 
54+   tertiary = tertiary, fourth_colour = fourth_colour, 
55+   fifth_colour = fifth_colour 
56+ ) 
5557library(epiprocess) 
5658suppressMessages(library(tidyverse)) 
5759theme_update(legend.position = "bottom", legend.title = element_blank()) 
@@ -61,7 +63,7 @@ delphi_pal <- function(n) {
6163} 
6264scale_fill_delphi <- function(..., aesthetics = "fill") { 
6365  discrete_scale(aesthetics = aesthetics, palette = delphi_pal, ...) 
64- }   
66+ } 
6567scale_color_delphi <- function(..., aesthetics = "color") { 
6668  discrete_scale(aesthetics = aesthetics, palette = delphi_pal, ...) 
6769} 
@@ -124,7 +126,8 @@ cases <- pub_covidcast(
124126  time_type = "day", 
125127  geo_type = "state", 
126128  time_values = epirange(20200601, 20220101), 
127-   geo_values = "*") |> 
129+   geo_values = "*" 
130+ ) |> 
128131  select(geo_value, time_value, case_rate = value) 
129132
130133deaths <- pub_covidcast( 
@@ -133,7 +136,8 @@ deaths <- pub_covidcast(
133136  time_type = "day", 
134137  geo_type = "state", 
135138  time_values = epirange(20200601, 20220101), 
136-   geo_values = "*") |> 
139+   geo_values = "*" 
140+ ) |> 
137141  select(geo_value, time_value, death_rate = value) 
138142cases_deaths <- 
139143  full_join(cases, deaths, by = c("time_value", "geo_value")) |> 
@@ -156,7 +160,7 @@ First, to eliminate some of the noise coming from daily reporting, we do 7 day a
156160
157161``` {r  smooth}
158162cases_deaths <- 
159-   cases_deaths |>   
163+   cases_deaths |> 
160164  group_by(geo_value) |> 
161165  epi_slide( 
162166    cases_7dav = mean(case_rate, na.rm = TRUE), 
@@ -181,7 +185,8 @@ cases_deaths <-
181185  ungroup() |> 
182186  mutate( 
183187    death_rate = outlr_death_rate_replacement, 
184-     case_rate = outlr_case_rate_replacement) |> 
188+     case_rate = outlr_case_rate_replacement 
189+   ) |> 
185190  select(geo_value, time_value, case_rate, death_rate) 
186191cases_deaths 
187192``` 
@@ -196,8 +201,8 @@ of the states, noting the actual forecast date:
196201forecast_date_label <- 
197202  tibble( 
198203    geo_value = rep(plot_locations, 2), 
199-     source = c(rep("case_rate",4), rep("death_rate", 4)), 
200-     dates = rep(forecast_date - 7* 2, 2 * length(plot_locations)), 
204+     source = c(rep("case_rate",  4), rep("death_rate", 4)), 
205+     dates = rep(forecast_date - 7 *  2, 2 * length(plot_locations)), 
201206    heights = c(rep(150, 4), rep(1.0, 4)) 
202207  ) 
203208processed_data_plot <- 
@@ -209,7 +214,8 @@ processed_data_plot <-
209214  facet_grid(source ~ geo_value, scale = "free") + 
210215  geom_vline(aes(xintercept = forecast_date)) + 
211216  geom_text( 
212-     data = forecast_date_label, aes(x=dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right") + 
217+     data = forecast_date_label, aes(x = dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right" 
218+   ) + 
213219  scale_x_date(date_breaks = "3 months", date_labels = "%Y %b") + 
214220  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 
215221``` 
@@ -260,7 +266,8 @@ narrow_data_plot <-
260266  facet_grid(source ~ geo_value, scale = "free") + 
261267  geom_vline(aes(xintercept = forecast_date)) + 
262268  geom_text( 
263-     data = forecast_date_label, aes(x=dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right") + 
269+     data = forecast_date_label, aes(x = dates, label = "forecast\ndate", y = heights), size = 3, hjust = "right" 
270+   ) + 
264271  scale_x_date(date_breaks = "3 months", date_labels = "%Y %b") + 
265272  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 
266273``` 
@@ -278,7 +285,8 @@ forecast_plot <-
278285  epipredict:::plot_bands( 
279286    restricted_predictions, 
280287    levels = 0.9, 
281-     fill = primary) + 
288+     fill = primary 
289+   ) + 
282290  geom_point(data = restricted_predictions, aes(y = .data$value), color = secondary) 
283291``` 
284292</details >
0 commit comments