|
| 1 | +""" |
| 2 | +Scikit-learn is a generic machine learning package with implementations of |
| 3 | +algorithms for classification, regression, dimensionality reduction, clustering, |
| 4 | +as well as other generic tooling. |
| 5 | +
|
| 6 | +The ``class-resolver`` provides several class resolvers for instantiating various |
| 7 | +implementations, such as those of linear models. |
| 8 | +""" # noqa:D205,D400 |
| 9 | + |
| 10 | +from sklearn.base import BaseEstimator |
| 11 | +from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier |
| 12 | +from sklearn.linear_model import ( |
| 13 | + LogisticRegression, |
| 14 | + LogisticRegressionCV, |
| 15 | + PassiveAggressiveClassifier, |
| 16 | + Perceptron, |
| 17 | + RidgeClassifier, |
| 18 | + RidgeClassifierCV, |
| 19 | + SGDClassifier, |
| 20 | +) |
| 21 | +from sklearn.tree import DecisionTreeClassifier |
| 22 | + |
| 23 | +from ..api import ClassResolver |
| 24 | + |
| 25 | +__all__ = [ |
| 26 | + "classifier_resolver", |
| 27 | +] |
| 28 | + |
| 29 | +classifier_resolver: ClassResolver[BaseEstimator] = ClassResolver( |
| 30 | + [ |
| 31 | + LogisticRegression, |
| 32 | + LogisticRegressionCV, |
| 33 | + PassiveAggressiveClassifier, |
| 34 | + Perceptron, |
| 35 | + RidgeClassifier, |
| 36 | + RidgeClassifierCV, |
| 37 | + SGDClassifier, |
| 38 | + DecisionTreeClassifier, |
| 39 | + RandomForestClassifier, |
| 40 | + GradientBoostingClassifier, |
| 41 | + ], |
| 42 | + base=BaseEstimator, |
| 43 | + base_as_suffix=False, |
| 44 | + default=LogisticRegression, |
| 45 | +) |
| 46 | +"""A resolver for classifiers. |
| 47 | +
|
| 48 | +The default value is :class:`sklearn.linear_model.LogisticRegression`. |
| 49 | +This resolver can be used like in the following: |
| 50 | +
|
| 51 | +.. code-block:: python |
| 52 | +
|
| 53 | + from sklearn import datasets |
| 54 | + from sklearn.model_selection import train_test_split |
| 55 | +
|
| 56 | + from class_resolver.contrib.sklearn import classifier_resolver |
| 57 | +
|
| 58 | + # Prepare a dataset |
| 59 | + x, y = datasets.load_iris(return_X_y=True) |
| 60 | + x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) |
| 61 | +
|
| 62 | + # Lookup with a string |
| 63 | + classifier = classifier_resolver.make("LogisticRegression") |
| 64 | + classifier.fit(x_train, y_train) |
| 65 | + assert 0.7 < classifier.score(x_test, y_test) |
| 66 | +
|
| 67 | + # Default lookup gives logistic regression |
| 68 | + classifier = classifier_resolver.make(None) |
| 69 | + classifier.fit(x_train, y_train) |
| 70 | + assert 0.7 < classifier.score(x_test, y_test) |
| 71 | +
|
| 72 | +.. seealso:: https://scikit-learn.org/stable/modules/classes.html#linear-classifiers |
| 73 | +""" |
0 commit comments