|
14 | 14 | # See the License for the specific language governing permissions and |
15 | 15 | # limitations under the License. |
16 | 16 |
|
17 | | -"""This application demonstrates face detection, face emotions |
18 | | -and speech transcription using the Google Cloud API. |
| 17 | +"""This application demonstrates speech transcription using the |
| 18 | +Google Cloud API. |
19 | 19 |
|
20 | 20 | Usage Examples: |
21 | | - python beta_snippets.py boxes \ |
22 | | - gs://python-docs-samples-tests/video/googlework_short.mp4 |
23 | | -
|
24 | | - python beta_snippets.py \ |
25 | | - emotions gs://python-docs-samples-tests/video/googlework_short.mp4 |
26 | | -
|
27 | 21 | python beta_snippets.py \ |
28 | 22 | transcription gs://python-docs-samples-tests/video/googlework_short.mp4 |
29 | 23 | """ |
|
33 | 27 | from google.cloud import videointelligence_v1p1beta1 as videointelligence |
34 | 28 |
|
35 | 29 |
|
36 | | -# [START video_face_bounding_boxes] |
37 | | -def face_bounding_boxes(gcs_uri): |
38 | | - """ Detects faces' bounding boxes. """ |
39 | | - video_client = videointelligence.VideoIntelligenceServiceClient() |
40 | | - features = [videointelligence.enums.Feature.FACE_DETECTION] |
41 | | - |
42 | | - config = videointelligence.types.FaceConfig( |
43 | | - include_bounding_boxes=True) |
44 | | - context = videointelligence.types.VideoContext( |
45 | | - face_detection_config=config) |
46 | | - |
47 | | - operation = video_client.annotate_video( |
48 | | - gcs_uri, features=features, video_context=context) |
49 | | - print('\nProcessing video for face annotations:') |
50 | | - |
51 | | - result = operation.result(timeout=900) |
52 | | - print('\nFinished processing.') |
53 | | - |
54 | | - # There is only one result because a single video was processed. |
55 | | - faces = result.annotation_results[0].face_detection_annotations |
56 | | - for i, face in enumerate(faces): |
57 | | - print('Face {}'.format(i)) |
58 | | - |
59 | | - # Each face_detection_annotation has only one segment. |
60 | | - segment = face.segments[0] |
61 | | - start_time = (segment.segment.start_time_offset.seconds + |
62 | | - segment.segment.start_time_offset.nanos / 1e9) |
63 | | - end_time = (segment.segment.end_time_offset.seconds + |
64 | | - segment.segment.end_time_offset.nanos / 1e9) |
65 | | - positions = '{}s to {}s'.format(start_time, end_time) |
66 | | - print('\tSegment: {}\n'.format(positions)) |
67 | | - |
68 | | - # Each detected face may appear in many frames of the video. |
69 | | - # Here we process only the first frame. |
70 | | - frame = face.frames[0] |
71 | | - |
72 | | - time_offset = (frame.time_offset.seconds + |
73 | | - frame.time_offset.nanos / 1e9) |
74 | | - box = frame.attributes[0].normalized_bounding_box |
75 | | - |
76 | | - print('First frame time offset: {}s\n'.format(time_offset)) |
77 | | - |
78 | | - print('First frame normalized bounding box:') |
79 | | - print('\tleft : {}'.format(box.left)) |
80 | | - print('\ttop : {}'.format(box.top)) |
81 | | - print('\tright : {}'.format(box.right)) |
82 | | - print('\tbottom: {}'.format(box.bottom)) |
83 | | - print('\n') |
84 | | -# [END video_face_bounding_boxes] |
85 | | - |
86 | | - |
87 | | -# [START video_face_emotions] |
88 | | -def face_emotions(gcs_uri): |
89 | | - """ Analyze faces' emotions over frames. """ |
90 | | - video_client = videointelligence.VideoIntelligenceServiceClient() |
91 | | - features = [videointelligence.enums.Feature.FACE_DETECTION] |
92 | | - |
93 | | - config = videointelligence.types.FaceConfig( |
94 | | - include_emotions=True) |
95 | | - context = videointelligence.types.VideoContext( |
96 | | - face_detection_config=config) |
97 | | - |
98 | | - operation = video_client.annotate_video( |
99 | | - gcs_uri, features=features, video_context=context) |
100 | | - print('\nProcessing video for face annotations:') |
101 | | - |
102 | | - result = operation.result(timeout=600) |
103 | | - print('\nFinished processing.') |
104 | | - |
105 | | - # There is only one result because a single video was processed. |
106 | | - faces = result.annotation_results[0].face_detection_annotations |
107 | | - for i, face in enumerate(faces): |
108 | | - for j, frame in enumerate(face.frames): |
109 | | - time_offset = (frame.time_offset.seconds + |
110 | | - frame.time_offset.nanos / 1e9) |
111 | | - emotions = frame.attributes[0].emotions |
112 | | - |
113 | | - print('Face {}, frame {}, time_offset {}\n'.format( |
114 | | - i, j, time_offset)) |
115 | | - |
116 | | - # from videointelligence.enums |
117 | | - emotion_labels = ( |
118 | | - 'EMOTION_UNSPECIFIED', 'AMUSEMENT', 'ANGER', |
119 | | - 'CONCENTRATION', 'CONTENTMENT', 'DESIRE', |
120 | | - 'DISAPPOINTMENT', 'DISGUST', 'ELATION', |
121 | | - 'EMBARRASSMENT', 'INTEREST', 'PRIDE', 'SADNESS', |
122 | | - 'SURPRISE') |
123 | | - |
124 | | - for emotion in emotions: |
125 | | - emotion_index = emotion.emotion |
126 | | - emotion_label = emotion_labels[emotion_index] |
127 | | - emotion_score = emotion.score |
128 | | - |
129 | | - print('emotion: {} (confidence score: {})'.format( |
130 | | - emotion_label, emotion_score)) |
131 | | - |
132 | | - print('\n') |
133 | | - |
134 | | - print('\n') |
135 | | -# [END video_face_emotions] |
136 | | - |
137 | | - |
138 | 30 | # [START video_speech_transcription] |
139 | 31 | def speech_transcription(input_uri): |
140 | 32 | """Transcribe speech from a video stored on GCS.""" |
@@ -181,23 +73,12 @@ def speech_transcription(input_uri): |
181 | 73 | description=__doc__, |
182 | 74 | formatter_class=argparse.RawDescriptionHelpFormatter) |
183 | 75 | subparsers = parser.add_subparsers(dest='command') |
184 | | - analyze_faces_parser = subparsers.add_parser( |
185 | | - 'boxes', help=face_bounding_boxes.__doc__) |
186 | | - analyze_faces_parser.add_argument('gcs_uri') |
187 | | - |
188 | | - analyze_emotions_parser = subparsers.add_parser( |
189 | | - 'emotions', help=face_emotions.__doc__) |
190 | | - analyze_emotions_parser.add_argument('gcs_uri') |
191 | 76 |
|
192 | 77 | speech_transcription_parser = subparsers.add_parser( |
193 | 78 | 'transcription', help=speech_transcription.__doc__) |
194 | 79 | speech_transcription_parser.add_argument('gcs_uri') |
195 | 80 |
|
196 | 81 | args = parser.parse_args() |
197 | 82 |
|
198 | | - if args.command == 'boxes': |
199 | | - face_bounding_boxes(args.gcs_uri) |
200 | | - elif args.command == 'emotions': |
201 | | - face_emotions(args.gcs_uri) |
202 | | - elif args.command == 'transcription': |
| 83 | + if args.command == 'transcription': |
203 | 84 | speech_transcription(args.gcs_uri) |
0 commit comments