-
Notifications
You must be signed in to change notification settings - Fork 4.5k
[zero] add inference mode and its unit test #2418
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,122 @@ | ||
| from functools import partial | ||
|
|
||
| import pytest | ||
| import torch | ||
| import torch.distributed as dist | ||
| import torch.multiprocessing as mp | ||
| from torch.nn.parallel import DistributedDataParallel as DDP | ||
| from torch.testing import assert_close | ||
|
|
||
| import colossalai | ||
| from colossalai.amp import convert_to_apex_amp | ||
| from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration | ||
| from colossalai.gemini.gemini_mgr import GeminiManager | ||
| from colossalai.nn.optimizer import HybridAdam | ||
| from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer | ||
| from colossalai.nn.parallel import ZeroDDP | ||
| from colossalai.testing import parameterize, rerun_if_address_is_in_use | ||
| from colossalai.utils import free_port | ||
| from colossalai.utils.cuda import get_current_device | ||
| from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx | ||
| from tests.components_to_test import run_fwd_bwd | ||
| from tests.components_to_test.registry import non_distributed_component_funcs | ||
| from tests.test_tensor.common_utils import debug_print, set_seed | ||
|
|
||
|
|
||
| def check_param(model: ZeroDDP, torch_model: torch.nn.Module): | ||
| zero_dict = model.state_dict(only_rank_0=False) | ||
| torch_dict = torch_model.state_dict() | ||
|
|
||
| for key, value in torch_dict.items(): | ||
| # key is 'module.model.PARAMETER', so we truncate it | ||
| key = key[7:] | ||
| assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) | ||
| temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) | ||
| # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) | ||
| assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) | ||
|
|
||
|
|
||
| @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) | ||
| @parameterize('model_name', ['gpt2']) | ||
| def exam_inference(placement_policy, model_name: str): | ||
| set_seed(19360226) | ||
| get_components_func = non_distributed_component_funcs.get_callable(model_name) | ||
| model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() | ||
|
|
||
| torch_model = model_builder().cuda() | ||
| amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128) | ||
| torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) | ||
| torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) | ||
| torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) | ||
|
|
||
| init_dev = get_current_device() | ||
| with ColoInitContext(device=init_dev): | ||
| model = model_builder() | ||
|
|
||
| for torch_p, p in zip(torch_model.parameters(), model.parameters()): | ||
| p.data.copy_(torch_p.data) | ||
|
|
||
| world_size = torch.distributed.get_world_size() | ||
| config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) | ||
| config_dict[world_size]['chunk_size'] = 5000 | ||
| config_dict[world_size]['keep_gathered'] = False | ||
| if placement_policy != 'cuda': | ||
| init_device = torch.device('cpu') | ||
| else: | ||
| init_device = None | ||
| chunk_manager = ChunkManager(config_dict, init_device=init_device) | ||
| gemini_manager = GeminiManager(placement_policy, chunk_manager) | ||
| model = ZeroDDP(model, gemini_manager, pin_memory=True) | ||
|
|
||
| optimizer = HybridAdam(model.parameters(), lr=1e-3) | ||
| zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) | ||
|
|
||
| model.eval() | ||
| torch_model.eval() | ||
|
|
||
| set_seed(dist.get_rank() * 3 + 128) | ||
| train_dataloader = iter(train_dataloader) | ||
|
|
||
| def train_iter(): | ||
| input_ids, label = next(train_dataloader) | ||
| input_ids, label = input_ids.cuda(), label.cuda() | ||
| zero_optim.zero_grad() | ||
| torch_optim.zero_grad() | ||
| torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) | ||
| loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) | ||
| assert_close(torch_loss, loss) | ||
| zero_optim.step() | ||
| torch_optim.step() | ||
| check_param(model, torch_model) | ||
|
|
||
| def inference_iter(): | ||
| input_ids, label = next(train_dataloader) | ||
| input_ids, label = input_ids.cuda(), label.cuda() | ||
| with torch.no_grad(): | ||
| torch_output = torch_model(input_ids) | ||
| torch_loss = criterion(torch_output.float(), label) | ||
| zero_output = model(input_ids) | ||
| zero_loss = criterion(zero_output.float(), label) | ||
| assert_close(torch_loss, zero_loss) | ||
|
|
||
| train_iter() | ||
| inference_iter() | ||
| train_iter() | ||
|
|
||
|
|
||
| def run_dist(rank, world_size, port): | ||
| config = {} | ||
| colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') | ||
| exam_inference() | ||
|
|
||
|
|
||
| @pytest.mark.dist | ||
| @pytest.mark.parametrize('world_size', [1, 4]) | ||
| @rerun_if_address_is_in_use() | ||
| def test_inference(world_size): | ||
| run_func = partial(run_dist, world_size=world_size, port=free_port()) | ||
| mp.spawn(run_func, nprocs=world_size) | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| test_inference(1) | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.