@@ -55,9 +55,9 @@ class NaiveBayesModel private[mllib] (
5555 private val brzPi = new BDV [Double ](pi)
5656 private val brzTheta = new BDM (theta(0 ).length, theta.length, theta.flatten).t
5757
58- // Bernoulli scoring requires log(condprob) if 1 log(1-condprob) if 0
59- // this precomputes log(1.0 - exp(theta)) and its sum for linear algebra application
60- // of this condition in predict function
58+ // Bernoulli scoring requires log(condprob) if 1 log(1-condprob) if 0
59+ // this precomputes log(1.0 - exp(theta)) and its sum for linear algebra application
60+ // of this condition in predict function
6161 private val (brzNegTheta, brzNegThetaSum) = modelType match {
6262 case NaiveBayes .Multinomial => (None , None )
6363 case NaiveBayes .Bernoulli =>
@@ -276,9 +276,9 @@ object NaiveBayes {
276276 /**
277277 * Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
278278 *
279- * This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p ]]) which can handle all kinds of
280- * discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
281- * document classification.
279+ * This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p ]]) which can handle all
280+ * kinds of discrete data. For example, by converting documents into TF-IDF vectors, it
281+ * can be used for document classification.
282282 *
283283 * This version of the method uses a default smoothing parameter of 1.0.
284284 *
@@ -292,9 +292,9 @@ object NaiveBayes {
292292 /**
293293 * Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
294294 *
295- * This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p ]]) which can handle all kinds of
296- * discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
297- * document classification.
295+ * This is the default Multinomial NB ([[http://tinyurl.com/lsdw6p ]]) which can handle all
296+ * kinds of discrete data. For example, by converting documents into TF-IDF vectors, it
297+ * can be used for document classification.
298298 *
299299 * @param input RDD of `(label, array of features)` pairs. Every vector should be a frequency
300300 * vector or a count vector.
0 commit comments