|  | 
|  | 1 | +/* | 
|  | 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | 3 | + * contributor license agreements.  See the NOTICE file distributed with | 
|  | 4 | + * this work for additional information regarding copyright ownership. | 
|  | 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | 6 | + * (the "License"); you may not use this file except in compliance with | 
|  | 7 | + * the License.  You may obtain a copy of the License at | 
|  | 8 | + * | 
|  | 9 | + *    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 10 | + * | 
|  | 11 | + * Unless required by applicable law or agreed to in writing, software | 
|  | 12 | + * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 14 | + * See the License for the specific language governing permissions and | 
|  | 15 | + * limitations under the License. | 
|  | 16 | + */ | 
|  | 17 | + | 
|  | 18 | +package org.apache.spark.ml.feature | 
|  | 19 | + | 
|  | 20 | +import scala.util.Random | 
|  | 21 | + | 
|  | 22 | +import org.scalatest.FunSuite | 
|  | 23 | + | 
|  | 24 | +import org.apache.spark.SparkException | 
|  | 25 | +import org.apache.spark.mllib.linalg.Vectors | 
|  | 26 | +import org.apache.spark.mllib.util.MLlibTestSparkContext | 
|  | 27 | +import org.apache.spark.mllib.util.TestingUtils._ | 
|  | 28 | +import org.apache.spark.sql.{DataFrame, Row, SQLContext} | 
|  | 29 | + | 
|  | 30 | +class BucketizerSuite extends FunSuite with MLlibTestSparkContext { | 
|  | 31 | + | 
|  | 32 | +  @transient private var sqlContext: SQLContext = _ | 
|  | 33 | + | 
|  | 34 | +  override def beforeAll(): Unit = { | 
|  | 35 | +    super.beforeAll() | 
|  | 36 | +    sqlContext = new SQLContext(sc) | 
|  | 37 | +  } | 
|  | 38 | + | 
|  | 39 | +  test("Bucket continuous features, without -inf,inf") { | 
|  | 40 | +    // Check a set of valid feature values. | 
|  | 41 | +    val splits = Array(-0.5, 0.0, 0.5) | 
|  | 42 | +    val validData = Array(-0.5, -0.3, 0.0, 0.2) | 
|  | 43 | +    val expectedBuckets = Array(0.0, 0.0, 1.0, 1.0) | 
|  | 44 | +    val dataFrame: DataFrame = | 
|  | 45 | +      sqlContext.createDataFrame(validData.zip(expectedBuckets)).toDF("feature", "expected") | 
|  | 46 | + | 
|  | 47 | +    val bucketizer: Bucketizer = new Bucketizer() | 
|  | 48 | +      .setInputCol("feature") | 
|  | 49 | +      .setOutputCol("result") | 
|  | 50 | +      .setSplits(splits) | 
|  | 51 | + | 
|  | 52 | +    bucketizer.transform(dataFrame).select("result", "expected").collect().foreach { | 
|  | 53 | +      case Row(x: Double, y: Double) => | 
|  | 54 | +        assert(x === y, | 
|  | 55 | +          s"The feature value is not correct after bucketing.  Expected $y but found $x") | 
|  | 56 | +    } | 
|  | 57 | + | 
|  | 58 | +    // Check for exceptions when using a set of invalid feature values. | 
|  | 59 | +    val invalidData1: Array[Double] = Array(-0.9) ++ validData | 
|  | 60 | +    val invalidData2 = Array(0.5) ++ validData | 
|  | 61 | +    val badDF1 = sqlContext.createDataFrame(invalidData1.zipWithIndex).toDF("feature", "idx") | 
|  | 62 | +    intercept[RuntimeException]{ | 
|  | 63 | +      bucketizer.transform(badDF1).collect() | 
|  | 64 | +      println("Invalid feature value -0.9 was not caught as an invalid feature!") | 
|  | 65 | +    } | 
|  | 66 | +    val badDF2 = sqlContext.createDataFrame(invalidData2.zipWithIndex).toDF("feature", "idx") | 
|  | 67 | +    intercept[RuntimeException]{ | 
|  | 68 | +      bucketizer.transform(badDF2).collect() | 
|  | 69 | +      println("Invalid feature value 0.5 was not caught as an invalid feature!") | 
|  | 70 | +    } | 
|  | 71 | +  } | 
|  | 72 | + | 
|  | 73 | +  test("Bucket continuous features, with -inf,inf") { | 
|  | 74 | +    val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity) | 
|  | 75 | +    val validData = Array(-0.9, -0.5, -0.3, 0.0, 0.2, 0.5, 0.9) | 
|  | 76 | +    val expectedBuckets = Array(0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0) | 
|  | 77 | +    val dataFrame: DataFrame = | 
|  | 78 | +      sqlContext.createDataFrame(validData.zip(expectedBuckets)).toDF("feature", "expected") | 
|  | 79 | + | 
|  | 80 | +    val bucketizer: Bucketizer = new Bucketizer() | 
|  | 81 | +      .setInputCol("feature") | 
|  | 82 | +      .setOutputCol("result") | 
|  | 83 | +      .setSplits(splits) | 
|  | 84 | + | 
|  | 85 | +    bucketizer.transform(dataFrame).select("result", "expected").collect().foreach { | 
|  | 86 | +      case Row(x: Double, y: Double) => | 
|  | 87 | +        assert(x === y, | 
|  | 88 | +          s"The feature value is not correct after bucketing.  Expected $y but found $x") | 
|  | 89 | +    } | 
|  | 90 | +  } | 
|  | 91 | + | 
|  | 92 | +  test("Binary search correctness on hand-picked examples") { | 
|  | 93 | +    import BucketizerSuite.checkBinarySearch | 
|  | 94 | +    // length 3, with -inf | 
|  | 95 | +    checkBinarySearch(Array(Double.NegativeInfinity, 0.0, 1.0)) | 
|  | 96 | +    // length 4 | 
|  | 97 | +    checkBinarySearch(Array(-1.0, -0.5, 0.0, 1.0)) | 
|  | 98 | +    // length 5 | 
|  | 99 | +    checkBinarySearch(Array(-1.0, -0.5, 0.0, 1.0, 1.5)) | 
|  | 100 | +    // length 3, with inf | 
|  | 101 | +    checkBinarySearch(Array(0.0, 1.0, Double.PositiveInfinity)) | 
|  | 102 | +    // length 3, with -inf and inf | 
|  | 103 | +    checkBinarySearch(Array(Double.NegativeInfinity, 1.0, Double.PositiveInfinity)) | 
|  | 104 | +    // length 4, with -inf and inf | 
|  | 105 | +    checkBinarySearch(Array(Double.NegativeInfinity, 0.0, 1.0, Double.PositiveInfinity)) | 
|  | 106 | +  } | 
|  | 107 | + | 
|  | 108 | +  test("Binary search correctness in contrast with linear search, on random data") { | 
|  | 109 | +    val data = Array.fill(100)(Random.nextDouble()) | 
|  | 110 | +    val splits: Array[Double] = Double.NegativeInfinity +: | 
|  | 111 | +      Array.fill(10)(Random.nextDouble()).sorted :+ Double.PositiveInfinity | 
|  | 112 | +    val bsResult = Vectors.dense(data.map(x => Bucketizer.binarySearchForBuckets(splits, x))) | 
|  | 113 | +    val lsResult = Vectors.dense(data.map(x => BucketizerSuite.linearSearchForBuckets(splits, x))) | 
|  | 114 | +    assert(bsResult ~== lsResult absTol 1e-5) | 
|  | 115 | +  } | 
|  | 116 | +} | 
|  | 117 | + | 
|  | 118 | +private object BucketizerSuite extends FunSuite { | 
|  | 119 | +  /** Brute force search for buckets.  Bucket i is defined by the range [split(i), split(i+1)). */ | 
|  | 120 | +  def linearSearchForBuckets(splits: Array[Double], feature: Double): Double = { | 
|  | 121 | +    require(feature >= splits.head) | 
|  | 122 | +    var i = 0 | 
|  | 123 | +    while (i < splits.length - 1) { | 
|  | 124 | +      if (feature < splits(i + 1)) return i | 
|  | 125 | +      i += 1 | 
|  | 126 | +    } | 
|  | 127 | +    throw new RuntimeException( | 
|  | 128 | +      s"linearSearchForBuckets failed to find bucket for feature value $feature") | 
|  | 129 | +  } | 
|  | 130 | + | 
|  | 131 | +  /** Check all values in splits, plus values between all splits. */ | 
|  | 132 | +  def checkBinarySearch(splits: Array[Double]): Unit = { | 
|  | 133 | +    def testFeature(feature: Double, expectedBucket: Double): Unit = { | 
|  | 134 | +      assert(Bucketizer.binarySearchForBuckets(splits, feature) === expectedBucket, | 
|  | 135 | +        s"Expected feature value $feature to be in bucket $expectedBucket with splits:" + | 
|  | 136 | +          s" ${splits.mkString(", ")}") | 
|  | 137 | +    } | 
|  | 138 | +    var i = 0 | 
|  | 139 | +    while (i < splits.length - 1) { | 
|  | 140 | +      testFeature(splits(i), i) // Split i should fall in bucket i. | 
|  | 141 | +      testFeature((splits(i) + splits(i + 1)) / 2, i) // Value between splits i,i+1 should be in i. | 
|  | 142 | +      i += 1 | 
|  | 143 | +    } | 
|  | 144 | +    if (splits.last === Double.PositiveInfinity) { | 
|  | 145 | +      testFeature(Double.PositiveInfinity, splits.length - 2) | 
|  | 146 | +    } | 
|  | 147 | +  } | 
|  | 148 | +} | 
0 commit comments