Skip to content

Commit deab9fe

Browse files
authored
Merge pull request #388 from Kirti-Pant/patch-1
Create MovieRecommendationSystemMLProject.ipynb
2 parents 6759b30 + c8ecdfa commit deab9fe

File tree

1 file changed

+40
-0
lines changed

1 file changed

+40
-0
lines changed
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
import pandas as pd
2+
import numpy as np
3+
import difflib
4+
from sklearn.feature_extraction.text import TfidfVectorizer
5+
from sklearn.metrics.pairwise import cosine_similarity
6+
data=pd.read_csv('/content/movies.csv')
7+
data.head(5)
8+
data.tail(5)
9+
data.info()
10+
data.shape
11+
selected_features=['genres','keywords','tagline','cast','director']
12+
data.isnull().sum()
13+
selected_features
14+
data.isnull().sum()
15+
for feature in selected_features:
16+
data[feature]=data[feature].fillna('')
17+
data.isnull().sum()
18+
combined_features=data['genres']+' '+ data['keywords'] +' ' + data['tagline']+' '+ data['cast']+' '+ data['director']
19+
combined_features
20+
vectorizer=TfidfVectorizer()
21+
feature_vectors=vectorizer.fit_transform(combined_features)
22+
feature_vectors
23+
similarity=cosine_similarity(feature_vectors)
24+
print(similarity)
25+
similarity.shape
26+
movie_name=input("Enter your favourite movie name: ")
27+
list_of_titles=data['title'].tolist()
28+
find_close_max=difflib.get_close_matches(movie_name, list_of_titles)
29+
close_match=find_close_max[0]
30+
index_of_movie=data[data.title== close_match]['index'].values[0]
31+
similarity_score=list(enumerate(similarity[index_of_movie]))
32+
sorted_similar_movies=sorted(similarity_score, key=lambda x:x[1],reverse=True )
33+
print('Movies suggested for you : \n')
34+
i=1
35+
for movie in sorted_similar_movies:
36+
index=movie[0]
37+
title_from_index=data[data.index==index]['title'].values[0]
38+
if i<=30:
39+
print(i,' ',title_from_index)
40+
i+=1

0 commit comments

Comments
 (0)