|  | 
|  | 1 | +/* | 
|  | 2 | +* Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | 3 | +* contributor license agreements.  See the NOTICE file distributed with | 
|  | 4 | +* this work for additional information regarding copyright ownership. | 
|  | 5 | +* The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | 6 | +* Add a comment to this line | 
|  | 7 | +* (the "License"); you may not use this file except in compliance with | 
|  | 8 | +* the License.  You may obtain a copy of the License at | 
|  | 9 | +* | 
|  | 10 | +*    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 11 | +* | 
|  | 12 | +* Unless required by applicable law or agreed to in writing, software | 
|  | 13 | +* distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 14 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 15 | +* See the License for the specific language governing permissions and | 
|  | 16 | +* limitations under the License. | 
|  | 17 | +*/ | 
|  | 18 | + | 
|  | 19 | +package org.apache.spark.mllib.feature | 
|  | 20 | + | 
|  | 21 | +import scala.util._ | 
|  | 22 | +import scala.collection.mutable.ArrayBuffer | 
|  | 23 | +import scala.collection.mutable.HashMap | 
|  | 24 | +import scala.collection.mutable | 
|  | 25 | + | 
|  | 26 | +import com.github.fommil.netlib.BLAS.{getInstance => blas} | 
|  | 27 | + | 
|  | 28 | +import org.apache.spark._ | 
|  | 29 | +import org.apache.spark.rdd._ | 
|  | 30 | +import org.apache.spark.SparkContext._ | 
|  | 31 | +import org.apache.spark.mllib.linalg.Vector | 
|  | 32 | +import org.apache.spark.HashPartitioner | 
|  | 33 | + | 
|  | 34 | +private case class VocabWord( | 
|  | 35 | +  var word: String, | 
|  | 36 | +  var cn: Int, | 
|  | 37 | +  var point: Array[Int], | 
|  | 38 | +  var code: Array[Int], | 
|  | 39 | +  var codeLen:Int | 
|  | 40 | +) | 
|  | 41 | + | 
|  | 42 | +class Word2Vec( | 
|  | 43 | +    val size: Int, | 
|  | 44 | +    val startingAlpha: Double, | 
|  | 45 | +    val window: Int, | 
|  | 46 | +    val minCount: Int)  | 
|  | 47 | +  extends Serializable with Logging { | 
|  | 48 | +   | 
|  | 49 | +  private val EXP_TABLE_SIZE = 1000 | 
|  | 50 | +  private val MAX_EXP = 6 | 
|  | 51 | +  private val MAX_CODE_LENGTH = 40 | 
|  | 52 | +  private val MAX_SENTENCE_LENGTH = 1000 | 
|  | 53 | +  private val layer1Size = size  | 
|  | 54 | + | 
|  | 55 | +  private var trainWordsCount = 0 | 
|  | 56 | +  private var vocabSize = 0 | 
|  | 57 | +  private var vocab: Array[VocabWord] = null | 
|  | 58 | +  private var vocabHash = mutable.HashMap.empty[String, Int] | 
|  | 59 | +  private var alpha = startingAlpha | 
|  | 60 | + | 
|  | 61 | +  private def learnVocab(dataset: RDD[String]) { | 
|  | 62 | +    vocab = dataset.flatMap(line => line.split(" ")) | 
|  | 63 | +      .map(w => (w, 1)) | 
|  | 64 | +      .reduceByKey(_ + _) | 
|  | 65 | +      .map(x => VocabWord(x._1, x._2, new Array[Int](MAX_CODE_LENGTH), new Array[Int](MAX_CODE_LENGTH), 0)) | 
|  | 66 | +      .filter(_.cn >= minCount) | 
|  | 67 | +      .collect() | 
|  | 68 | +      .sortWith((a, b)=> a.cn > b.cn) | 
|  | 69 | +     | 
|  | 70 | +    vocabSize = vocab.length | 
|  | 71 | +    var a = 0 | 
|  | 72 | +    while (a < vocabSize) { | 
|  | 73 | +      vocabHash += vocab(a).word -> a | 
|  | 74 | +      trainWordsCount += vocab(a).cn | 
|  | 75 | +      a += 1 | 
|  | 76 | +    } | 
|  | 77 | +    logInfo("trainWordsCount = " + trainWordsCount) | 
|  | 78 | +  } | 
|  | 79 | + | 
|  | 80 | +  private def createExpTable(): Array[Double] = { | 
|  | 81 | +    val expTable = new Array[Double](EXP_TABLE_SIZE) | 
|  | 82 | +    var i = 0 | 
|  | 83 | +    while (i < EXP_TABLE_SIZE) { | 
|  | 84 | +      val tmp = math.exp((2.0 * i / EXP_TABLE_SIZE - 1.0) * MAX_EXP) | 
|  | 85 | +      expTable(i) = tmp / (tmp + 1) | 
|  | 86 | +      i += 1 | 
|  | 87 | +    } | 
|  | 88 | +    expTable | 
|  | 89 | +  } | 
|  | 90 | + | 
|  | 91 | +  private def createBinaryTree() { | 
|  | 92 | +    val count = new Array[Long](vocabSize * 2 + 1) | 
|  | 93 | +    val binary = new Array[Int](vocabSize * 2 + 1) | 
|  | 94 | +    val parentNode = new Array[Int](vocabSize * 2 + 1) | 
|  | 95 | +    val code = new Array[Int](MAX_CODE_LENGTH) | 
|  | 96 | +    val point = new Array[Int](MAX_CODE_LENGTH) | 
|  | 97 | +    var a = 0 | 
|  | 98 | +    while (a < vocabSize) { | 
|  | 99 | +      count(a) = vocab(a).cn | 
|  | 100 | +      a += 1 | 
|  | 101 | +    } | 
|  | 102 | +    while (a < 2 * vocabSize) { | 
|  | 103 | +      count(a) = 1e9.toInt | 
|  | 104 | +      a += 1 | 
|  | 105 | +    } | 
|  | 106 | +    var pos1 = vocabSize - 1 | 
|  | 107 | +    var pos2 = vocabSize | 
|  | 108 | +     | 
|  | 109 | +    var min1i = 0  | 
|  | 110 | +    var min2i = 0 | 
|  | 111 | + | 
|  | 112 | +    a = 0 | 
|  | 113 | +    while (a < vocabSize - 1) { | 
|  | 114 | +      if (pos1 >= 0) { | 
|  | 115 | +        if (count(pos1) < count(pos2)) { | 
|  | 116 | +          min1i = pos1 | 
|  | 117 | +          pos1 -= 1 | 
|  | 118 | +        } else { | 
|  | 119 | +          min1i = pos2 | 
|  | 120 | +          pos2 += 1 | 
|  | 121 | +        } | 
|  | 122 | +      } else { | 
|  | 123 | +        min1i = pos2 | 
|  | 124 | +        pos2 += 1 | 
|  | 125 | +      } | 
|  | 126 | +      if (pos1 >= 0) { | 
|  | 127 | +        if (count(pos1) < count(pos2)) { | 
|  | 128 | +          min2i = pos1 | 
|  | 129 | +          pos1 -= 1 | 
|  | 130 | +        } else { | 
|  | 131 | +          min2i = pos2 | 
|  | 132 | +          pos2 += 1 | 
|  | 133 | +        } | 
|  | 134 | +      } else { | 
|  | 135 | +        min2i = pos2 | 
|  | 136 | +        pos2 += 1 | 
|  | 137 | +      } | 
|  | 138 | +      count(vocabSize + a) = count(min1i) + count(min2i) | 
|  | 139 | +      parentNode(min1i) = vocabSize + a | 
|  | 140 | +      parentNode(min2i) = vocabSize + a | 
|  | 141 | +      binary(min2i) = 1 | 
|  | 142 | +      a += 1 | 
|  | 143 | +    } | 
|  | 144 | +    // Now assign binary code to each vocabulary word | 
|  | 145 | +    var i = 0 | 
|  | 146 | +    a = 0 | 
|  | 147 | +    while (a < vocabSize) { | 
|  | 148 | +      var b = a | 
|  | 149 | +      i = 0 | 
|  | 150 | +      while (b != vocabSize * 2 - 2) { | 
|  | 151 | +        code(i) = binary(b) | 
|  | 152 | +        point(i) = b | 
|  | 153 | +        i += 1 | 
|  | 154 | +        b = parentNode(b) | 
|  | 155 | +      } | 
|  | 156 | +      vocab(a).codeLen = i | 
|  | 157 | +      vocab(a).point(0) = vocabSize - 2 | 
|  | 158 | +      b = 0 | 
|  | 159 | +      while (b < i) { | 
|  | 160 | +        vocab(a).code(i - b - 1) = code(b) | 
|  | 161 | +        vocab(a).point(i - b) = point(b) - vocabSize | 
|  | 162 | +        b += 1 | 
|  | 163 | +      } | 
|  | 164 | +      a += 1 | 
|  | 165 | +    } | 
|  | 166 | +  } | 
|  | 167 | +   | 
|  | 168 | +  /** | 
|  | 169 | +   * Computes the vector representation of each word in  | 
|  | 170 | +   * vocabulary | 
|  | 171 | +   * @param dataset an RDD of strings | 
|  | 172 | +   */ | 
|  | 173 | + | 
|  | 174 | +  def fit(dataset:RDD[String]): Word2VecModel = { | 
|  | 175 | + | 
|  | 176 | +    learnVocab(dataset) | 
|  | 177 | +     | 
|  | 178 | +    createBinaryTree() | 
|  | 179 | +     | 
|  | 180 | +    val sc = dataset.context | 
|  | 181 | + | 
|  | 182 | +    val expTable = sc.broadcast(createExpTable()) | 
|  | 183 | +    val V = sc.broadcast(vocab) | 
|  | 184 | +    val VHash = sc.broadcast(vocabHash) | 
|  | 185 | +     | 
|  | 186 | +    val sentences = dataset.flatMap(line => line.split(" ")).mapPartitions { | 
|  | 187 | +      iter => { new Iterator[Array[Int]] { | 
|  | 188 | +          def hasNext = iter.hasNext | 
|  | 189 | +          def next = { | 
|  | 190 | +            var sentence = new ArrayBuffer[Int] | 
|  | 191 | +            var sentenceLength = 0 | 
|  | 192 | +            while (iter.hasNext && sentenceLength < MAX_SENTENCE_LENGTH) { | 
|  | 193 | +              val word = VHash.value.get(iter.next) | 
|  | 194 | +              word match { | 
|  | 195 | +                case Some(w) => { | 
|  | 196 | +                  sentence += w | 
|  | 197 | +                  sentenceLength += 1 | 
|  | 198 | +                } | 
|  | 199 | +                case None =>  | 
|  | 200 | +              } | 
|  | 201 | +            } | 
|  | 202 | +            sentence.toArray | 
|  | 203 | +          } | 
|  | 204 | +        } | 
|  | 205 | +      } | 
|  | 206 | +    } | 
|  | 207 | +     | 
|  | 208 | +    val newSentences = sentences.repartition(1).cache() | 
|  | 209 | +    val temp = Array.fill[Double](vocabSize * layer1Size)((Random.nextDouble - 0.5) / layer1Size) | 
|  | 210 | +    val (aggSyn0, _, _, _) = | 
|  | 211 | +      // TODO: broadcast temp instead of serializing it directly or initialize the model in each executor | 
|  | 212 | +      newSentences.aggregate((temp.clone(), new Array[Double](vocabSize * layer1Size), 0, 0))( | 
|  | 213 | +        seqOp = (c, v) => (c, v) match { case ((syn0, syn1, lastWordCount, wordCount), sentence) => | 
|  | 214 | +          var lwc = lastWordCount | 
|  | 215 | +          var wc = wordCount  | 
|  | 216 | +          if (wordCount - lastWordCount > 10000) { | 
|  | 217 | +            lwc = wordCount | 
|  | 218 | +            alpha = startingAlpha * (1 - wordCount.toDouble / (trainWordsCount + 1)) | 
|  | 219 | +            if (alpha < startingAlpha * 0.0001) alpha = startingAlpha * 0.0001 | 
|  | 220 | +            logInfo("wordCount = " + wordCount + ", alpha = " + alpha) | 
|  | 221 | +          } | 
|  | 222 | +          wc += sentence.size | 
|  | 223 | +          var pos = 0 | 
|  | 224 | +          while (pos < sentence.size) { | 
|  | 225 | +            val word = sentence(pos) | 
|  | 226 | +            // TODO: fix random seed | 
|  | 227 | +            val b = Random.nextInt(window) | 
|  | 228 | +            // Train Skip-gram | 
|  | 229 | +            var a = b | 
|  | 230 | +            while (a < window * 2 + 1 - b) { | 
|  | 231 | +              if (a != window) { | 
|  | 232 | +                val c = pos - window + a | 
|  | 233 | +                if (c >= 0 && c < sentence.size) { | 
|  | 234 | +                  val lastWord = sentence(c) | 
|  | 235 | +                  val l1 = lastWord * layer1Size | 
|  | 236 | +                  val neu1e = new Array[Double](layer1Size) | 
|  | 237 | +                  //HS | 
|  | 238 | +                  var d = 0 | 
|  | 239 | +                  while (d < vocab(word).codeLen) { | 
|  | 240 | +                    val l2 = vocab(word).point(d) * layer1Size | 
|  | 241 | +                    // Propagate hidden -> output | 
|  | 242 | +                    var f = blas.ddot(layer1Size, syn0, l1, 1, syn1, l2, 1) | 
|  | 243 | +                    if (f > -MAX_EXP && f < MAX_EXP) { | 
|  | 244 | +                      val ind = ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2.0)).toInt | 
|  | 245 | +                      f = expTable.value(ind) | 
|  | 246 | +                      val g = (1 - vocab(word).code(d) - f) * alpha | 
|  | 247 | +                      blas.daxpy(layer1Size, g, syn1, l2, 1, neu1e, 0, 1) | 
|  | 248 | +                      blas.daxpy(layer1Size, g, syn0, l1, 1, syn1, l2, 1) | 
|  | 249 | +                    } | 
|  | 250 | +                    d += 1 | 
|  | 251 | +                  } | 
|  | 252 | +                  blas.daxpy(layer1Size, 1.0, neu1e, 0, 1, syn0, l1, 1) | 
|  | 253 | +                } | 
|  | 254 | +              } | 
|  | 255 | +              a += 1 | 
|  | 256 | +            } | 
|  | 257 | +            pos += 1 | 
|  | 258 | +          } | 
|  | 259 | +          (syn0, syn1, lwc, wc) | 
|  | 260 | +        }, | 
|  | 261 | +        combOp = (c1, c2) => (c1, c2) match { case ((syn0_1, syn1_1, lwc_1, wc_1), (syn0_2, syn1_2, lwc_2, wc_2)) => | 
|  | 262 | +          val n = syn0_1.length | 
|  | 263 | +          blas.daxpy(n, 1.0, syn0_2, 1, syn0_1, 1) | 
|  | 264 | +          blas.daxpy(n, 1.0, syn1_2, 1, syn1_1, 1) | 
|  | 265 | +          (syn0_1, syn0_2, lwc_1 + lwc_2, wc_1 + wc_2) | 
|  | 266 | +        }) | 
|  | 267 | +     | 
|  | 268 | +    val wordMap = new Array[(String, Array[Double])](vocabSize) | 
|  | 269 | +    var i = 0 | 
|  | 270 | +    while (i < vocabSize) { | 
|  | 271 | +      val word = vocab(i).word | 
|  | 272 | +      val vector = new Array[Double](layer1Size) | 
|  | 273 | +      Array.copy(aggSyn0, i * layer1Size, vector, 0, layer1Size) | 
|  | 274 | +      wordMap(i) = (word, vector) | 
|  | 275 | +      i += 1 | 
|  | 276 | +    } | 
|  | 277 | +    val modelRDD = sc.parallelize(wordMap,100).partitionBy(new HashPartitioner(100)) | 
|  | 278 | +    new Word2VecModel(modelRDD) | 
|  | 279 | +  } | 
|  | 280 | +} | 
|  | 281 | + | 
|  | 282 | +class Word2VecModel (val _model:RDD[(String, Array[Double])]) extends Serializable { | 
|  | 283 | + | 
|  | 284 | +  val model = _model | 
|  | 285 | + | 
|  | 286 | +  private def distance(v1: Array[Double], v2: Array[Double]): Double = { | 
|  | 287 | +    require(v1.length == v2.length, "Vectors should have the same length") | 
|  | 288 | +    val n = v1.length | 
|  | 289 | +    val norm1 = blas.dnrm2(n, v1, 1) | 
|  | 290 | +    val norm2 = blas.dnrm2(n, v2, 1) | 
|  | 291 | +    if (norm1 == 0 || norm2 == 0) return 0.0 | 
|  | 292 | +    blas.ddot(n, v1, 1, v2,1) / norm1 / norm2 | 
|  | 293 | +  } | 
|  | 294 | +   | 
|  | 295 | +  def transform(word: String): Array[Double] = { | 
|  | 296 | +    val result = model.lookup(word)  | 
|  | 297 | +    if (result.isEmpty) Array[Double]() | 
|  | 298 | +    else result(0) | 
|  | 299 | +  } | 
|  | 300 | +   | 
|  | 301 | +  def transform(dataset: RDD[String]): RDD[Array[Double]] = { | 
|  | 302 | +    dataset.map(word => transform(word)) | 
|  | 303 | +  } | 
|  | 304 | +   | 
|  | 305 | +  def findSynonyms(word: String, num: Int): Array[(String, Double)] = { | 
|  | 306 | +    val vector = transform(word) | 
|  | 307 | +    if (vector.isEmpty) Array[(String, Double)]() | 
|  | 308 | +    else findSynonyms(vector,num) | 
|  | 309 | +  } | 
|  | 310 | +   | 
|  | 311 | +  def findSynonyms(vector: Array[Double], num: Int): Array[(String, Double)] = { | 
|  | 312 | +    require(num > 0, "Number of similar words should > 0") | 
|  | 313 | +    val topK = model.map( | 
|  | 314 | +      {case(w, vec) => (distance(vector, vec), w)}) | 
|  | 315 | +    .sortByKey(ascending = false) | 
|  | 316 | +    .take(num + 1) | 
|  | 317 | +    .map({case (dist, w) => (w, dist)}).drop(1) | 
|  | 318 | +     | 
|  | 319 | +    topK | 
|  | 320 | +  } | 
|  | 321 | +} | 
|  | 322 | + | 
|  | 323 | +object Word2Vec extends Serializable with Logging { | 
|  | 324 | +  def train( | 
|  | 325 | +    input: RDD[String], | 
|  | 326 | +    size: Int, | 
|  | 327 | +    startingAlpha: Double, | 
|  | 328 | +    window: Int, | 
|  | 329 | +    minCount: Int): Word2VecModel = { | 
|  | 330 | +    new Word2Vec(size,startingAlpha, window, minCount).fit(input) | 
|  | 331 | +  } | 
|  | 332 | + | 
|  | 333 | +  def main(args: Array[String]) { | 
|  | 334 | +    if (args.length < 6) { | 
|  | 335 | +      println("Usage: word2vec input size startingAlpha window minCount num") | 
|  | 336 | +      sys.exit(1) | 
|  | 337 | +    } | 
|  | 338 | +    val conf = new SparkConf() | 
|  | 339 | +      .setAppName("word2vec") | 
|  | 340 | +       | 
|  | 341 | +    val sc = new SparkContext(conf) | 
|  | 342 | +    val input = sc.textFile(args(0)) | 
|  | 343 | +    val size = args(1).toInt | 
|  | 344 | +    val startingAlpha = args(2).toDouble | 
|  | 345 | +    val window = args(3).toInt | 
|  | 346 | +    val minCount = args(4).toInt | 
|  | 347 | +    val num = args(5).toInt | 
|  | 348 | +    val model = train(input, size, startingAlpha, window, minCount) | 
|  | 349 | +    val vec = model.findSynonyms("china", num) | 
|  | 350 | +    for((w, dist) <- vec) logInfo(w.toString + " " + dist.toString) | 
|  | 351 | +    sc.stop() | 
|  | 352 | +  } | 
|  | 353 | +} | 
0 commit comments